Buscar

4 aula unidI1

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

*
Fenômenos de Transporte 
4ª Aula - Definição de Fluidos
*
Definição de Fluidos
		A Mecânica dos Fluidos é a ciência que estuda o comportamento físico dos fluidos em repouso e em movimento.
		A matéria pode ser classificada pela forma física de sua ocorrência na natureza.
		Estas formas, conhecidas como fases ou estados são:
Sólido
Líquido
Gasoso 
		
*
Definição de Fluidos
		O estado sólido é geralmente caracterizado pela resistência que o material sólido oferece à mudança de forma, isto é, as moléculas de um sólido apresentam relativa imobilidade. Suas posições médias no espaço são fixas, porém vibram e giram em torno dessa posição.
		
*
Definição de Fluidos
		A definição de fluido é introduzida, normalmente pela comparação dessa substância com um sólido. A definição mais elementar diz: Fluido é uma substância que não tem uma forma própria, assume o formato do recipiente.
		Devido à similaridade no comportamento dinâmico apresentado pelos líquidos e gases, esses são conhecidos como fluidos. Sendo que os gases se destinguem do líquido por ocupar todo o recipiente, enquanto os líquidos apresentam uma superfície livre.
*
Definição de Fluidos
		Se o problema fundamental fosse apenas reconhecer os fluidos, a definição apresentada seria perfeitamente suficiente para essa finalidade. Entretanto, é possível introduzir uma outra que, apesar de ser mais complexa, permite construir uma estrutura lógica que será de grande utilidade para o desenvolvimento da Mecânica dos Fluidos.
		Líquidos e em maior grau os gases, não oferecem resistência à mudança de forma, ou quando o fazem, é em escala muito menor quando comparada com os sólidos. 
		De uma maneira geral, o fluido é caracterizado pela relativa mobilidade de suas moléculas que, além de apresentarem os movimentos de rotação e vibração, possuem movimento de translação e portanto não apresentam uma posição média fixa no corpo do fluido.
*
Definição de Fluidos
*
Definição de Fluidos
		A principal distinção entre sólido e fluido, é portanto pelo comportamento que apresentam em face às forças externas.
		Essa distinção, no entanto, depende do tipo de força a que ambos – sólido e fluido – estão sujeitos.
		Por exemplo, se uma força de compressão (força aplicada na direção normal da superfície do material em questão) fosse usada para distinguir um sólido de um fluido, este último seria inicialmente comprimido, e a partir de um certo ponto ele se comportaria exatamente como se fosse um sólido, isto é, seria incompressível.
*
Definição de Fluidos
Volume Inicial
FP
Volume Final
FP
Força de Compressão em um Fluído
*
Definição de Fluidos
		No caso de forças cisalhantes (forças aplicadas na direção perpendicular à direção da normal a superfície do material considerado, isto é, forças tangenciais à superfície), o sólido apresenta uma resistência finita, enquanto que nos fluidos esta resistência praticamente não existe, isto é, se deformam para qualquer valor da força cisalhante.
*
Sólido
		Supondo um bloco com a base unida à superfície de apoio, enquanto que na parte superior temos uma placa na qual se aplica uma força F.
F
F
∆α
∆L
H
*
Sólido
		Se aplicarmos uma força F constante à placa, esta por sua vez exerce um esforço cisalhante sobre o bloco que se deforma e esta deformação resultante se chama deformação angular.
		Na Figura, o bloco de sólido tem sua forma modificada (caracterizada pelo ângulo ∆α) quando sujeito a ação de uma força cisalhante.
		Neste caso verificamos que o ângulo de deformação é proporcional à força que provocou a deformação. Esta relação é somente válida dentro do regime elástico para sólido.
		A Lei de Hooke da deformação de sólidos pode ser enunciada do seguinte modo:
		“No domínio das deformações elásticas, as deformações produzidas são proporcionais às forças que as produzem”.
		Ou seja, a deformação angular ∆α é proporcional ao esforço cortante.
		
*
Fluidos
		
F
∆α1
∆α2
∆α3
∆α1 < ∆α2 < ∆α3
	A mesma experiência será agora realizada colocando-se um fluido
entre as placas. Suponha que seja possível, por exemplo, por meio de um 
corante, visualizar o volume em destaque abaixo.
	Supondo agora esta mesma força aplicada a um elemento de fluido.
Não haveria um valor fixo para o ângulo de deformação ∆α, característico do
cisalhamento, porém seria observada uma deformação contínua e irreversível
do elemento do fluido, mesmo para pequenos valores da força cisalhante.
*
Fluidos
		
F
∆α1
∆α2
∆α3
∆α1 < ∆α2 < ∆α3
 Os pontos do fluido em contato com a placa fixa ficarão parados junto
dela provocado pelo princípio da aderência: Os pontos de um fluido, em
contato com uma superfície sólida, aderem aos pontos dela, com os quais
estão em contato.
*
Fluidos
		
	Do exposto, pode-se concluir que os sólidos resistem às forças de
cisalhamento até o seu limite elástico ser alcançado (este valor é denominado
tensão crítica de cisalhamento), a partir da qual experimentam uma deformação
irreversível, enquanto que os fluidos são imediatamente deformados
irreversivelmente, mesmo para pequenos valores da tensão de cisalhamento. 
	Um fluido pode ser definido como uma substância que muda
continuamente de forma enquanto existir uma tensão de cisalhamento, ainda
que seja pequena.
	Uma força de cisalhamento é a componente tangencial da força que
age sobre a superfície, e dividida pela área da superfície dá origem à tensão de
cisalhamento média sobre a área.
	Nem todos os fluidos apresentam a mesma relação entre a tensão e a
taxa de deformação.
*
Fluidos
		
	Conclusão: Fluido é uma substância que se deforma 
continuamente, quando submetido a uma força tangencial
constante qualquer ou, em outras palavras, fluido é uma 
substância que submetido a uma força tangencial constante,
não atinge uma nova configuração de equilíbrio estático.
*
Tensão de cisalhamento – Lei de Newton da viscosidade
		
	Seja uma força aplicada sobre uma superfície de área A.
	Essa força pode ser decomposta segundo a direção normal à 
superfície e da tangente, dando origem a uma componente normal e 
outra tangencial.
	Define-se tensão de cisalhamento média como sendo o quociente
entre o módulo da componente tangencial da força e a área sobre a qual
está aplicada.
*
Tensão de cisalhamento – Lei de Newton da viscosidade
	Em outras palavras a tensão de cisalhamento é a força tangencial
por unidade de área. As unidades mais utilizadas para essa grandeza serão
o kgf/m2 do sistema MK*S (Técnico), o dina/cm2 (CGS) e o N/m2 (SI).
	
	A placa superior é inicialmente acelerada pela força , fato 
facilmente observável, já que passa da velocidade nula para uma 
finita. Nota-se, porém, que a partir de um certo instante a placa superior
adquire uma velocidade v0 constante. Isso demonstra que a força 
externa Ft aplicada na placa é equilibrada por forças internas ao fluido, 
visto que, não existindo aceleração, pela segunda lei de Newton da 
dinâmica, a resultante das forças deverá ser nula (equilíbrio dinâmico).
	
*
Tensão de cisalhamento – Lei de Newton da viscosidade
	Devido ao princípio da aderência o fluido junto à placa superior irá
se deslocar com velocidade v0 , enquanto aquele junto à placa inferior estará
com velocidade nula. As camadas intermediárias deverão se adaptar às
extremas, adquirindo velocidades que variam desde v0 até zero.
	Em cada seção normal às placas, como a seção AB genérica, irá
se formar um diagrama de velocidades, onde cada camada do fluido 
desliza sobre a adjacente com uma certa velocidade relativa. Criando uma
espécie de atrito entre as diversas camadas do fluido.
	Tal deslizamento entre camadas origina tensões de cisalhamento,
que, multiplicadas pela área da placa, originam uma força tangencial 
interna ao fluido, responsável pelo equilíbrio da força Ft externa, o que fará
com que a placa
superior assuma uma velocidade constante v0.
*
Tensão de cisalhamento – Lei de Newton da viscosidade
	Newton descobriu que em muitos fluidos a tensão de cisalhamento
é proporcional (α) ao gradiente da velocidade, isto é, à variação da 
velocidade com y.
	
*
Tensão de cisalhamento – Lei de Newton da viscosidade
	Disso pode-se traduzir a lei de Newton da viscosidade:
	Os fluidos que obedecem a essa lei são ditos fluidos newtonianos.
	Os fluidos que comportam de forma a obedecer à equação acima são
a grande maioria, como água, ar, óleos etc., e o restantes, chamados
não-newtonianos, não serão abordados pois são de pequeno interesse geral, 
sendo objeto apenas de estudos muito especializados.
*
Viscosidade absoluta ou dinâmica
	A lei de Newton da viscosidade impõe uma proporcionalidade
entre a tensão de cisalhamento e o gradiente da velocidade. Tal fato
leva à introdução de um coeficiente de proporcionalidade na equação (1).
Tal coeficiente será indicado por µ e denomina-se viscosidade dinâmica
ou absoluta.
	Essa grandeza µ é uma propriedade de cada fluido e de suas
condições, como, por exemplo, a pressão e, principalmente , a
temperatura.
	A origem da viscosidade nos fluidos mereceria uma análise
microscópica que não será feita neste estudo.
*
Viscosidade absoluta ou dinâmica
	De forma simplificada, pode-se dizer que a viscosidade dos fluidos
é originada por uma coesão entre as moléculas e pelos choques entre elas.
Uma forma de visualizar a existência da viscosidade é retornar à experiência
das duas placas. Verificou-se que, após um certo tempo de aplicação da 
força Ft cte na placa superior, esta assume um velocidade v0 cte, pelo 
equilíbrio dinâmico da força externa por forças desenvolvidas internamente.
	A viscosidade, portanto, não é uma propriedade observável num 
fluido em repouso, pois, qualquer que seja a força tangencial, ele se deforma.
Com o movimento do fluido, porém, ela faz sentir seu efeito, criando as
condições para equilibrar a força Ft externa.
	Pode-se dizer que a viscosidade dinâmica é a propriedade dos fluidos
que permite equilibrar, dinamicamente, forças tangenciais externas quando 
os fluidos estão em movimento.
*
Viscosidade absoluta ou dinâmica
	Conclusão: Viscosidade é a propriedade que indica a maior ou
a menor dificuldade de o fluido escoar (escorrer).
	As unidades da viscosidade podem ser obtidas por análise
dimensional a partir da lei de Newton da viscosidade. Adotando como
grandezas fundamentais FLT:
*
Viscosidade absoluta ou dinâmica
No SI:
	A viscosidade dinâmica possui um valor diferente para cada fluido
e varia, para um mesmo fluido, principalmente em relação à temperatura.
Os gases e os líquidos comportam-se de maneiras diferentes quanto a esse
aspecto.
	Nos líquidos, a viscosidade diminui com o aumento da temperatura,
enquanto nos gases a viscosidade aumenta com o aumento da temperatura.
A razão desse comportamento exige uma análise microscópica que não
será estudada.
*
Simplificação prática
	Onde é o gradiente da velocidade ou variação de v com y.
	A lei de Newton da viscosidade é escrita da seguinte forma:
*
Simplificação prática
	O deslocamento dy na direção do eixo y, corresponde uma 
variação dv da velocidade. Quando a distância é pequena, pode-se
considerar, sem muito erro, que a variação de v com y seja linear.
	A simplificação que resulta desse fato é a seguinte: o ∆ABC =
∆MNP, logo:
*
Simplificação prática
	ou, de uma forma mais geral:
	ficando a lei de Newton:
	Esse fato leva a simplificações importantes nos problemas,
evitando hipóteses e integrações às vezes complicadas.
*
Exemplo
 Exemplo: Um pistão de peso G = 4N cai dentro de um cilindro com uma
velocidade constante de 2 m/s. O diâmetro do cilindro é 10,1 cm e do pistão
é 10,0 cm. Determinar a viscosidade do lubrificante colocado na folga entre
o pistão e o cilindro.
Solução: Se a velocidade é constante a 
aceleração é nula. Logo o pistão está em
equilíbrio dinâmico, isto é:
Na direção do movimento, a força
causada pelas tensões de 
cisalhamento 
deve equilibrar
o peso G, na velocidade dada.
*
Exemplo
Logo,
Sendo a distância
ou
ou
muito pequena, adota-se um diagrama linear de velocidades.
Nesse caso,
Logo,
*
Massa específica ( )
	Massa específica é a massa de fluido por unidade de volume.
onde
m = massa
V = volume
Unidades no SI:
*
Massa específica ( )
	Exemplo 1: Uma sala tem dimensões iguais a 4x3x5 m , e a massa
de ar no interior vale 72 kg. Determine a massa específica do ar nestas
condições.
*
Massa específica ( )
	Exemplo 2: A massa específica de um determinado óleo é de
830 kg/m3 . Determine a massa e o peso de óleo contido em um barril 
de 200 litros.
	Sabemos que: 1 litro = 1 dm3 = 0,001 m3
*
Peso específica ( )
	Peso específico é o peso de fluido por unidade de volume.
onde
G = peso
V = volume
Unidades no SI:
*
Relação entre Peso específica ( ) e Massa específica ( )
mas
ou
e
*
Peso específico relativo para líquidos ( )
	É a relação entre o peso específico do líquido e o peso especí-
fico da água em condições padrão. Será adotado que
	Como a massa específica e o peso específico diferem por uma
constante, conclui-se que a massa específica relativa e o peso específico
relativo coincidem.
*
Peso específico relativo para líquidos ( )
Exemplo: O peso específico relativo de uma substância é 0,8. Qual
será seu peso específico?
*
Densidade(d)
Conceito: Algumas vezes é importante saber a densidade de uma 
substância, ou seja, a relação entre a sua massa específica e a massa
específica da água em uma situação de referência (pelo comum é 4º C, 
uma condição na qual ρH20 = 1000 kg/m3), ou seja,
Sendo, assim, um número adimensional. Por exemplo, a densidade
Do mercúrio é 13,6, a do gelo é 0,92, a da gasolina é 0,7, a do ouro
19,2, a do aço é 8 etc. Naturalmente, substâncias que têm sua
Densidade menor que a da água irão flutuar nela.
*
Viscosidade cinemática ( )
	Viscosidade cinemática é o quociente entre a viscosidade
dinâmica e a massa específica.
Unidades no SI:
*
Fluido ideal
	Fluido ideal é aquele cuja viscosidade é nula. Seria o fluido que 
escoa sem perdas de energia por atrito. É claro que nenhum fluido possui
essa propriedade; no entanto, algumas vezes será interessante admitir
essa hipótese.
*
Fluido ou escoamento incompressível
	Diz-se que um fluido é incompressível se o seu volume não varia
ao modificar a pressão. Isso implica o fato de que, se o fluido for incom-
pressível, a sua massa específica não variará com a pressão.
	É claro que na prática não existem fluidos nessas condições. Os 
líquidos, porém, têm um comportamento muito próximo a esse e na prática,
normalmente, são considerados como tais. Mesmo os gases em certas
condições, em que não são submetidos a variações de pressão muito 
grandes, podem ser considerados incompressíveis. Exemplo é o estudo
de ventilação, em que, em geral, essa hipótese é aceitável.
	Sempre que ao longo do escoamento a variação da massa
específica for desprezível, o estudo do fluido será efetuado pelas leis
estabelecidas para fluidos incompressíveis.
*
Equação de estado dos gases
	Quando o fluido não puder ser considerado incompressível e, ao
mesmo tempo, houver efeitos térmicos, haverá necessidade de determinar
as variações da massa específica em função da pressão e da temperatura. 
De uma maneira geral, essas variações obedecem, para os gases, as leis 
do tipo
denominadas equações de estado.
	Para as finalidades desse desenvolvimento, sempre que for
necessário, o gás envolvido será suposto como ‘gás perfeito’, obedecendo
à equação de estado:
ou
*
Equação de estado dos gases
	onde:
p = pressão absoluta
		R = constante cujo valor depende do gás
		T = Temperatura absoluta (lembrar que a escala absoluta
			é a Kelvin e K = oC + 273)
	Para o ar, por exemplo, R = 287 m2/s2K
	Numa mudança do estado de um gás:	
*
Equação de estado dos gases
	O processo é dito isotérmico quando na transformação não há
variação de temperatura. Neste caso:
	O processo é dito isobárico quando na transformação não há
variação de pressão. Neste caso:
	O processo é dito isocórico ou isométrico quando na 
transformação não há variação de volume. Neste caso:
*
Equação de estado dos gases
	O processo é dito adiabático quando na transformação não há
troca de calor. Neste caso:
onde K é chamada constante adiabática cujo valor depende do gás. No
caso do ar, k = 1,4.
*
Equação de estado dos gases
Exemplo: Numa tubulação escoa hidrogêneo (k=1,4, R=4.122 m2/s2K).
Numa seção (1), p1=3x105 N/m2 (abs) e T1=30oC. Ao longo da tubulação, a 
temperatura mantém-se constante. Qual a massa específica do gás numa
seção (2), em que p2 = 1,5 x 105 N/m2 (abs)?
Solução:
Logo:
Logo:
Como:
ou:
*
Equação de estado dos gases
Portanto:
*
1ª Lista de Exercício
Lista_exercicio_FendeTransporte_Saladeaula_1
Lista_exercicio_FendeTransporte_VT_1
Desafio: Lista_exercicio_FendeTransporte_desafio_1

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Outros materiais