Buscar

Montagem e Manutenção

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 107 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 107 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 107 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Apostila Técnica 
Curso Montagem e Manutenção 
de Micros 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Guia do Curso – Montagem e Manutenção de Micros 
Comitê para Democratização da Informática 
Rio de Janeiro, Novembro de 2008 
www.cdi.org.br 
2 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
ESTA OBRA FOI REGISTRADA EM 2009, NO RIO DE JANEIRO, EM NOME DO COMITÊ PARA A 
DEMOCRATIZAÇÃO DA INFORMÁTICA, E TEM CARÁTER TOTALMENTE SOCIAL E SEM FINS LUCRATIVOS. O 
CDI RESERVA ALGUNS DIREITOS INTELECTUAIS SOBRE SUA OBRA, MAS INCENTIVA SEU USO RESPONSÁVEL 
E ESTIMULA A SUA DIFUSÃO, DESDE QUE DETERMINADAS DIRETRIZES SEJAM RESPEITADAS. COM ESTES 
OBJETIVOS, A PRESENTE OBRA É OBJETO DE UMA LICENÇA CREATIVE COMMONS – ATRIBUIÇÃO - USO 
NÃO-COMERCIAL - VEDADA A CRIAÇÃO DE OBRAS DERIVADAS 2.5 BRASIL. 
 
 
VOCÊ PODE: 
• COPIAR, DISTRIBUIR, EXIBIR E EXECUTAR A OBRA 
SOB AS SEGUINTES CONDIÇÕES: 
• ATRIBUIÇÃO. VOCÊ DEVE DAR CRÉDITO AO AUTOR ORIGINAL, DA FORMA ESPECIFICADA PELO AUTOR 
OU LICENCIANTE. 
• USO NÃO-COMERCIAL. VOCÊ NÃO PODE UTILIZAR ESTA OBRA COM FINALIDADES COMERCIAIS. 
• VEDADA A CRIAÇÃO DE OBRAS DERIVADAS. VOCÊ NÃO PODE ALTERAR, TRANSFORMAR OU CRIAR 
OUTRA OBRA COM BASE NESTA. 
ALÉM DISSO: 
• PARA CADA NOVO USO OU DISTRIBUIÇÃO, VOCÊ DEVE DEIXAR CLARO PARA OUTROS OS TERMOS 
DA LICENÇA DESTA OBRA. 
• QUALQUER UMA DESTAS CONDIÇÕES PODEM SER RENUNCIADAS, DESDE QUE VOCÊ OBTENHA 
PERMISSÃO DO AUTOR. 
• NENHUM DOS TERMOS DESTA LICENÇA ATINGE OU RESTRINGE OS DIREITOS MORAIS DO AUTOR. 
QUALQUER DIREITO DE USO LEGÍTIMO (OU "FAIR USE") CONCEDIDO POR LEI, OU 
QUALQUER OUTRO DIREITO PROTEGIDO PELA LEGISLAÇÃO LOCAL, NÃO SÃO EM HIPÓTESE 
ALGUMA AFETADOS PELO DISPOSTO ACIMA. 
ESTE É UM SUMÁRIO DA LICENÇA JURÍDICA. PARA VER UMA CÓPIA DESTA LICENÇA, VISITE 
HTTP://CREATIVECOMMONS.ORG/LICENSES/BY-NC-ND/2.5/BR/LEGALCODE 
NO USO DA PRESENTE OBRA, VOCÊ NÃO PODERÁ IMPLÍCITA OU EXPLICITAMENTE AFIRMAR OU SUGERIR 
QUALQUER VÍNCULO, PATROCÍNIO OU APOIO DO COMITÊ PARA A DEMOCRATIZAÇÃO DA INFORMÁTICA 
SEM PRÉVIA E EXPRESSA AUTORIZAÇÃO DO PRÓPRIO CDI. A PRESENTE OBRA REPRESENTA UM MATERIAL 
ESPECÍFICO PARA UTILIZAÇÃO NOS CDIS COMUNIDADE OU ORGANIZAÇÕES AFILIADAS. A UTILIZAÇÃO DO 
MATERIAL NÃO PERMITE A APROPRIAÇÃO DA MARCA CDI NEM SUA METODOLOGIA DE TRABALHO. PARA 
MAIORES INFORMAÇÕES SOBRE O CDI, VEJA O FINAL DESTE VOLUME. 
3 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
 
 
 
 
 
CDI - COMITÊ PARA DEMOCRATIZAÇÃO DA INFORMÁTICA 
RIO DE JANEIRO – BRASIL 
RUA ALICE 150 – CEP 22241-020 
TEL: (21) 3235 - 9450 
www.cdi.org.br 
 
 
 
O CDI PROMOVE, DESDE 1995, A INCLUSÃO DIGITAL DE PÚBLICOS DE BAIXA RENDA, VISTA COMO UM 
PROCESSO QUE INTEGRA EDUCAÇÃO, TECNOLOGIA, CIDADANIA E EMPREENDEDORISMO. E UTILIZA O 
COMPUTADOR COMO PODEROSA FERRAMENTA DE APOIO AO DESENVOLVIMENTO DE INDIVÍDUOS E 
COMUNIDADES, ESTIMULANDO-OS A EXERCITAR SUAS CAPACIDADES E A BUSCAR SOLUÇÕES PARA OS SEUS 
DESAFIOS. 
 
A EXPERIÊNCIA DO CDI COMPROVA QUE A APROPRIAÇÃO DA TECNOLOGIA COMBATE A POBREZA E 
INCENTIVA JOVENS E ADULTOS A SE TORNAREM PROTAGONISTAS DE SUAS PRÓPRIAS VIDAS. ATRAVÉS DA 
INFORMÁTICA, ELES PODEM ACESSAR O CONHECIMENTO, INTERAGIR COM O MUNDO E TORNAREM-SE 
AGENTES DE TRANSFORMAÇÃO SOCIAL. 
 
ESTA É UMA OBRA DE CRIAÇÃO COLETIVA E REÚNE O CONHECIMENTO PRODUZIDO, DEMOCRATIZADO E 
COMUNICADO AO LONGO DOS 14 ANOS DE ATIVIDADE DA REDE CDI, A QUAL FICA AQUI TODO O NOSSO 
AGRADECIMENTO. 
 
4 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
 
 
 
MISSÃO DO CDI 
 
 
Promover a inclusão social de 
populações menos favorecidas, 
utilizando as tecnologias da informação 
e comunicação como um instrumento 
para a construção e o exercício da 
cidadania. 
 
 
VISÃO DO CDI 
 
 
Tornar-se um projeto com efetiva 
influência no destino dos países onde 
atua, ampliando o conceito de inclusão 
digital como uma integração entre 
educação, tecnologia, cidadania e 
empreendedorismo - com vistas à 
transformação social. 
 
 
VALORES DO CDI 
 
 
• Solidariedade 
• Protagonismo 
• Transparência 
• Co-responsabilidade 
• Eqüidade 
• Inovação 
• Excelência 
5 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
Sumário 
1. APRESENTAÇÃO ....................................................................................... 10 
1.1. COMO UTILIZAR A APOSTILA?........................................................................ 11 
2. ASPECTOS FÍSICOS .................................................................................... 13 
2.1. O QUE É ELETRICIDADE ESTÁTICA E O QUE ELA PODE OCASIONAR? .................................... 13 
2.1.1. Situações em que o corpo humano acumula carga estática: ...................... 14 
2.1.2. As recomendações para a minimização do efeito dessa energia são:............ 14 
2.2. ENERGIA ELÉTRICA.................................................................................. 14 
2.2.1. Proteções: ................................................................................. 14 
a. Filtro de Linha: .............................................................................. 15 
b. Estabilizadores de Tensão:................................................................. 15 
c. No-breaks: .................................................................................... 16 
2.2.2. A Tomada do micro: ..................................................................... 16 
2.2.3. Aterramento: ............................................................................. 17 
2.3. BARRAMENTOS INTERNOS E EXTERNOS ...................................................... 18 
a. O barramento do processador ............................................................. 19 
b. O barramento das memórias............................................................... 20 
c. Velocidade do barramento das memórias ............................................... 20 
d. Barramento AGP ............................................................................. 22 
e. Barramento PCI .............................................................................. 22 
f. Barramento PCI Express .................................................................... 23 
g. Barramento VLB.............................................................................. 25 
h. Barramento ISA .............................................................................. 26 
i. Barramentos AMR, CNR e ACR ............................................................. 27 
2.4. PORTAS DE COMUNICAÇÃO .................................................................... 28 
a. Serial: ......................................................................................... 28 
b. Paralela: ...................................................................................... 28 
c. IrDA (Infrared Data Association):.......................................................... 28 
d. USB (Universal Serial Bus):................................................................. 29 
e. Firewire: ...................................................................................... 30 
2.5. SISTEMA DE VÍDEO .............................................................................. 30 
a. Tipos de Monitores .......................................................................... 31 
b. Placas de Vídeo .............................................................................. 31 
2.6. MEMÓRIAS........................................................................................ 32 
2.6.1. MEMÓRIA ROM (Read Only Memory – Memória só de leitura)..................... 32 
2.6.2. MEMÓRIA RAM (RandomAccess Memory – Memória de Acesso Aleatório) ...... 34 
2.6.3. MEMÓRIA CACHE:......................................................................... 35 
2.6.4. MEMÓRIA CMOS ........................................................................... 36 
2.7. DRIVES INTERNOS E EXTERNOS................................................................ 37 
a. Drive de disquete:........................................................................... 37 
b. CD-ROM:....................................................................................... 37 
c. Pendrive:...................................................................................... 39 
d. Disco Rígido (HD – Hard Disk) .............................................................. 39 
2.8. PLACA IDE (INTEGRATED DRIVER ELETRÔNICOS)................................................... 41 
2.9. PLACA SCSI (SMALL COMPUTER SYSTEM INTERFACE) .............................................. 41 
2.10. TECLADO ........................................................................................... 43 
6 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
2.11. MOUSE ............................................................................................. 43 
2.12. GABINETE .......................................................................................... 44 
2.13. FONTE DE ALIMENTAÇÃO............................................................................ 45 
2.14. PLACA MÃE (MOTHER BOARD) ................................................................. 47 
2.15. MICROPROCESSADOR................................................................................ 48 
a. Tipos de Processadores ..................................................................... 49 
2.16. IMPRESSORAS .................................................................................... 49 
3. SETUP................................................................................................... 52 
STANDARD CMOS SETUP ............................................................................. 52 
INTEGRATED PERIPHERALS .......................................................................... 52 
3.1. STANDARD CMOS SETUP........................................................................ 53 
3.2. BIOS FEATURES SETUP.......................................................................... 53 
3.3. CHIPSET FEATURES SETUP ..................................................................... 55 
3.4. POWER MANAGEMENT SETUP.................................................................. 56 
3.5. PCI/PCI CONFIGURATION SETUP.............................................................. 57 
3.6. INTEGRATED PERIPHERALS .................................................................... 58 
3.7. ADVANCED CMOS SETUP........................................................................ 59 
3.8. VÍDEO ROM SHADOWN ............................................................................. 61 
3.9. ADVACED CHIPSET SETUP ...................................................................... 62 
3.10. POWER MANAGEMENT SETUP.................................................................. 62 
3.11. SISTEMA OPERACIONAL ............................................................................. 63 
4. SEQUÊNCIA DE DESMONTAGEM ..................................................................... 65 
5. ROTEIRO DE MONTAGEM............................................................................. 67 
6. DICAS DE MANUTENÇÃO.............................................................................. 69 
6.1. PROCEDIMENTOS DE SEGURANÇA .................................................................... 69 
7. LOCALIZAÇÃO DOS DEFEITOS ....................................................................... 71 
7.1. DEFEITOS SINALIZADOS POR HARDWARE............................................................. 71 
7.2. DEFEITOS SINALIZADOS POR SOFTWARE ............................................................. 75 
7.3. DEFEITOS NÃO SINALIZADOS ........................................................................ 78 
7.4. COMO DESCOBRIR DEFEITOS NO PROCESSADOR...................................................... 78 
7.5. COMO INSTALAR DOIS HDS ......................................................................... 79 
8. ERROS TÍPICOS DE MONTAGEM ..................................................................... 82 
8.1. ESPUMA ANTIESTÁTICA:............................................................................. 82 
8.2. PLACA-MÃE FROUXA: ............................................................................... 82 
8.3. CABO DE FORÇA INTERNO: .......................................................................... 82 
8.4. FLAT CABLE DO DISCO RÍGIDO: ...................................................................... 83 
8.5. CD-ROM COMO SLAVE DO DISCO RÍGIDO: ........................................................... 83 
8.6. O MICRO NÃO LIGA................................................................................. 83 
8.7. OVERCLOKING ...................................................................................... 84 
8.8. UPGRADE DO PROCESSADOR ........................................................................ 85 
8.9. CONSERTO DA PLACA-MÃE.......................................................................... 86 
8.10. MONTAGEM POR PARTES: ........................................................................... 86 
8.11. CONFIRA OS JUMPERS: .............................................................................. 87 
8.12. CHIPSET DANIFICADO: .............................................................................. 87 
7 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
8.13. BIOS DANIFICADO: ................................................................................. 87 
8.14. CAPACITOR DANIFICADO: ........................................................................... 88 
8.15. CRISTAIS DANIFICADOS: ............................................................................. 89 
8.16. REGULADORES DE VOLTAGEM: ...................................................................... 90 
8.17. INTERFACE DE TECLADO:............................................................................ 90 
8.18. TROCA DO PROCESSADOR: .......................................................................... 90 
8.19. INSTALE UMA INTERFACE AUXILIAR:.................................................................. 91 
8.20. VAZAMENTO DA BATERIA: ........................................................................... 91 
8.21. É MELHOR COMPRAR UMA PLACA NOVA: ............................................................. 92 
8.22. SUPERAQUECIMENTO................................................................................ 92 
8.23. PROBLEMAS COM A VENTOINHA DA FONTE ........................................................... 93 
8.24. MICROS MAL MONTADOS ............................................................................ 94 
9. CUIDADOS COM O EQUIPAMENTO................................................................... 97 
10. PRIMEIROS SOCORROS........................................................................... 100 
10.1. LIMPEZA DOS ROLETES: ........................................................................... 100 
10.2. TRAVAMENTO DE EIXO: ........................................................................... 100 
10.3. LIMPEZA DOS SENSORES ÓTICOS: .................................................................. 100 
10.4. MAU CONTATO NOS BOTÕES:...................................................................... 101 
10.5. UMA OLHADINHA BÁSICA NOS CABOS............................................................... 101 
10.6. UMA GERAL NO HD DOS MICROS...................................................................102 
11. ORGANIZAÇÃO.................................................................................... 104 
11.1. ORGANIZAÇÃO DO AMBIENTE DE TRABALHO........................................................ 104 
11.2. APLICANDO ORGANIZAÇÃO NO LABORATÓRIO DE MANUTENÇÃO: ................................ 105 
8 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
 
 
 
 
Capítulo I 
Apresentação 
 
 
 
 
9 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
1. Apresentação 
 
Seja bem vindo ao curso de Montagem e Manutenção de Micros! 
Você inicia agora uma viagem ao universo físico de um computador e aprenderá além 
das partes físicas como é possível montá-la e conservá-la de maneira para que tudo funcione 
adequadamente. 
Os conhecimentos adquiridos poderão ajudar na solução de problemas simples e 
freqüentes, mas é necessário tempo e dedicação nos estudos. Para se tornar um bom 
profissional você terá que reservar tempo fora do horário das aulas, para estudar a apostila, 
fazer as pesquisas solicitadas, enfim... É preciso estudar para conseguir fazer um trabalho de 
qualidade. 
Não exploramos aqui todos os componentes de um computador. Mas esperamos que 
se sinta motivado a investir em sua formação e se torne um bom profissional. 
Esperamos também, contar com suas idéias e dinamismo para investir na oferta de 
serviços na comunidade, na sua EIC, e quem sabe montar um negócio próprio. 
Vamos dar início a este desafio? 
 
10 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
1.1. Como utilizar a apostila? 
 
Esta apostila oferece os principais conceitos e apresentações sobre a montagem e 
manutenção de equipamentos. Para você tirar um maior proveito recomendamos estudar 
com atenção cada tópico abordado. Ao longo dos assuntos, também poderão aparecer 
alguns ícones para lhe indicar alguma dica ou alguma atenção especial ao assunto abordado. 
 
 
Este ícone alerta 
sobre coisas que não 
podem ser feitas. 
Este ícone oferece 
informações auxiliares 
para o entendimento 
básico do assunto. 
Este ícone é seguido 
de instruções que 
devem ser seguidas. 
 
Organizamos a apostila em 11 capítulos com assuntos variados entre conceitos, dicas 
e cuidados. Por isto, ela pode ser estudada passo a passo, servindo como um guia. Use o 
sumário para localizar o que está procurando e vá diretamente ao assunto do seu interesse. 
 
Bom estudo! 
11 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
 
 
 
Capítulo II 
Aspectos Físicos 
12 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
2. ASPECTOS FÍSICOS 
 
Neste capítulo vamos dar uma boa olhada na parte física do computador, conhecendo 
cada peça que compõe esta grande arquitetura. 
Quando observamos um computador de fora conseguimos identificar pelo menos 
quadro partes principais que utilizamos enquanto usuário: 
 
a. O computador que é o conjunto de circuitos 
eletrônicos armazenados dentro do gabinete. 
Nesta parte é onde ocorre o processamento de 
dados. 
b. O teclado e mouse que são dispositivos para 
informar ao computador o que queremos, ou 
seja, eles são dispositivos de entrada de 
dados. 
c. O monitor de vídeo, por onde conseguimos 
visualizar as informações que inserimos e foram processadas pelo computador, ou 
seja, um dispositivo de saída. 
 
Todo este conjunto é conectado entre si por vários cabos e precisam de preparo para 
funcionar corretamente. Mas até aqui temos o olhar apenas como usuário. E o que significa e 
como funciona cada parte? 
Antes de aprofundar na parte física, nosso estudo continua falando um pouco sobre 
eletricidade, pois precisamos dela para o funcionamento do equipamento. 
Falar sobre a Rede de Energia Elétrica pode parecer algo fora de um curso de 
Montagem de Computadores, mas se soubermos alguns conhecimentos e a rede não estiver 
bem preparada podem ocorrer choques ao usuário ou danos ao equipamento. 
 
2.1. O que é eletricidade estática e o que ela pode ocasionar? 
 
O corpo humano funciona como capacitador, isto é, um dispositivo eletrônico capaz de 
acumular cargas elétricas. Quando o corpo está carregado, ao tocar uma peça metálica, uma 
parte desta carga é transferida para a mesma. Durante esta transferência surge uma 
pequena corrente elétrica. Se o corpo tocar um pino ou chip, este será submetido a uma 
corrente instantânea acima da qual foi projetado para funcionar. Os CHIP’s de um modo geral 
13 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
e principalmente os CI’s e memórias de qualquer tipo são essencialmente sensíveis aos 
efeitos da eletricidade estática, que pode danificá-los de uma maneira irreversível. 
 
2.1.1. Situações em que o corpo humano acumula carga 
estática: 
 
 
 
1. Não proceder a conexão 
de qualquer componente, 
placas ou periféricos com o 
aparelho ligado. 
 
2. Quando estiver 
manuseando o computador, 
mesmo que tiver 
descarregado a eletricidade 
estática, pelo simples fato 
de andar pela sala, seu corpo 
estará novamente carregado, 
e após algum tempo, quando 
você for manusear o 
computador, terá que 
descarregar a eletricidade 
estática novamente. 
• Ambiente muito seco dificulta a dissipação das cargas elétricas 
como uma sala com ar condicionado. 
• Salas com piso de material plástico, carpete ou piso suspenso 
são altos condutores de eletricidade estática. 
• Cadeiras de plástico possuem cargas elétricas que são 
transferidas para o nosso corpo. 
 
2.1.2. As recomendações para a minimização do efeito 
dessa energia são: 
 
• Descarregar a eletricidade estática das mãos através de um fio 
terra. 
• Descarregar a eletricidade estática através de uma pulseira 
anti-estática. 
• Segurar sempre na placa pelas bordas, sem tocar nos componentes ou pinos. 
• Descarregar a eletricidade estática tocando em alguma parte metálica do computador 
que não seja pintada. 
 
2.2. Energia elétrica 
2.2.1. Proteções: 
 
A rede elétrica assim como a rede telefônica e de dados devem ser protegidos de 
distúrbios naturais ou artificiais. Existem 2 tipos de energias elétricas: tensão alternada ou 
tensão contínua. Veja a seguir alguns problemas gerados na rede elétrica: 
 
Transientes ou surtos de tensão; 
• Ruídos de linha; 
• Pico de tensão; 
14 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
• Sobretensão; 
• Queda brusca e rápida; 
• Queda de tensão ou subtensão. 
 
Podemos utilizar os seguintes equipamentos para proteção: 
 
a. Filtro de Linha: 
 
Protege contra ruídos provenientes da rede elétrica, gerados por 
rádio interferências e interferências eletromagnéticas, que podem 
queimar equipamentos sensíveis como o microcomputador. Para que o 
filtro de linha funcione, é necessário que o mesmo tenha em seu 
interior vários componentes eletrônicos como capacitores, resistores e 
bobinas, que formam um supressor de transientes e um fio terra. 
 
b. Estabilizadores de Tensão: 
 
O estabilizador de tensão é um equipamento responsável 
por manter a tensão elétrica em sua saída estável, mesmo que haja 
variações na rede elétrica. Assim, se a rede oferece picos ou está 
com a tensão acima (sobretensão) ou abaixo (subtensão) do valor 
ideal, ele oferece uma compensação e mantém a sua saída com 
um valor estável, protegendo, assim, o seu equipamento. 
Infelizmente os estabilizadores de tensão mais baratos do 
mercado são ineficientes e não protegem corretamente, deixando que variações da rede 
passem para o computador. 
Bons estabilizadores de tensão são caros. Os mais caros são, inclusive, "inteligentes". 
Esses estabilizadorespodem ser conectados ao micro através da porta serial, permitindo que 
você monitore a condição da rede, inclusive com gráficos estatísticos. 
 
 
Você pode verificar esse problema fazendo um teste bem simples. Ligue um abajur, contendo uma 
lâmpada de 60W em uma das tomadas do estabilizador, e deixe-o ligado enquanto você estiver 
mexendo em seu micro. Ao longo do tempo, o brilho da lâmpada não deverá variar, provando que a 
tensão da saída do estabilizador é fixa, isto é, na varia. Porém, em muitos casos, você verificará que 
o brilho da lâmpada aumenta ou diminui, provando que o estabilizador que você está usando não está 
funcionando adequadamente, já que a tensão presente em sua saída está variando. 
15 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
c. No-breaks: 
 
O no-break (que em inglês é chamado UPS, Uninterruptible Power 
Supply) é um dispositivo que oferece uma proteção extra ao seu 
equipamento. No caso da falta de energia elétrica, o no-break continua 
alimentando o seu micro durante o tempo necessário para que você 
salve o seu trabalho. 
Essa alimentação é provida por uma bateria, que fica sendo 
carregada enquanto a rede elétrica está funcionando corretamente. Essa 
bateria possui uma autonomia, que em geral não é muito grande (nos no-breaks mais 
comuns, essa autonomia é de algo entre 10 e 15 minutos). Por isso, o no-break não deve ser 
usado para ficar usando o computador enquanto não há luz, mas sim para dar a oportunidade 
de salvar o seu trabalho e então desligar o micro. 
Tanto que não é recomendado que você ligue outros periféricos ao no-break, tais 
como impressoras e scanners. Nesse equipamento você deve conectar somente o micro e o 
monitor. 
 
2.2.2. A Tomada do micro: 
 
A tomada do micro deve ser preparada do mesmo jeito em qualquer lugar do mundo, 
dentro dos padrões internacionais. Uma tomada utilizada em sistema de microcomputador 
tem a seguinte configuração: 
 
• O fio FASE deve ser instalado no pólo da direita da tomada; 
• O fio NEUTRO deve ser instalado no pólo da esquerda da tomada; 
• O fio TERRA deve ser instalado no pólo inferior da tomada; 
 
16 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
O fio NEUTRO deve sempre estar ligado ao gabinete do micro. Caso o fio FASE seja 
trocado com o NEUTRO, o computador dará choque em quem tocá-lo, já que o gabinete terá 
a voltagem da rede a que estiver ligado, 110V ou 220V. O fio NEUTRO deve ser parafusado 
na fonte, e esta parafusada ao gabinete. 
A instalação elétrica é um dos itens mais importantes para a vida útil do computador. 
A primeira providência é instalar uma tomada que possui três saídas: uma para neutro, uma 
para fase e outra para o terra. Esta tomada é conhecida também como tomada para 
computador ou fase-neutro-terra. Esta tomada obriga a energia a entrar e sair do computador 
por lados padronizados e determinados. O elemento mais importante da história é o pino 
terra. 
Depois de definir qual é o local adequado para instalação da tomada do computador, 
temos um problema: a tomada. Geralmente, as tomadas utilizadas nas instalações elétricas, 
residenciais ou comerciais são de 2 pólos, mas, o cabo de força do micro contém 3 pinos, 
portanto, seremos forçados a trocar a tomada de 2 pólos por uma de 3, específica para 
computadores. 
 
2.2.3. Aterramento: 
 
O aterramento é feito para proteger o seu computador de eletricidade estática. 
 
 
 
Muitos problemas que acontecem no computador são decorrentes de uma instalação 
inadequada. Muitas vezes o usuário na ansiedade de ver o computador funcionando não tem 
o devido cuidado com a instalação e usa adaptadores para ligar o micro em uma tomada 
comum ou retira o pino de terra da tomada do computador, tais como: 
17 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
O computador torna-se mais sensível a interferências provenientes da rede elétrica. 
Podemos levar choque quando tocamos em algumas das partes metálicas do computador. 
Pode acontecer um curto circuito quando realizamos a conexão do computador com outros 
periféricos, tais como: monitor, impressora e modem. 
Alguns defeitos na fonte de alimentação podem tornar-se irrecuperáveis mesmo tendo 
fusíveis de proteção. Muitas empresas anulam a garantia de seus micros caso estes tenham 
sido ligados sem o fio terra. 
 
Requisitos para um bom aterramento: 
 
• Uma haste de cobre padrão Copel (2,20 à 3,00 metros de altura); 
• Fio de eletricidade comum; 
• Tomada tripolar. 
 
 
2.3. BARRAMENTOS INTERNOS E EXTERNOS 
 
Barramentos são conjuntos de sinais digitais através dos quais o processador 
transmite e recebe dados de circuitos externos. Alguns barramentos são usados para 
transmissões feitas entre placas, ou dentro de uma mesma placa. Existem vários 
barramentos nesta categoria: 
 
• Barramento local 
• Barramento da memória 
• Barramento PCI 
• Barramento ISA 
• Barramento AGP 
• Barramento AMR/CNR 
 
 
 
18 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
a. O barramento do processador 
 
Através deste barramento o processador faz a 
comunicação com o seu exterior. Nele trafegam os 
dados lidos da memória, escritos na memória, 
enviados para interfaces e recebidos de interfaces. 
Pode ser dividido em três grupos: 
• Barramento de dados 
• Barramento de endereços 
• Barramento de controle 
 
Através do barramento de endereços o processador pode especificar qual a placa ou 
interface através da qual quer transmitir ou receber dados, e também especificar o endereço 
de memória no qual deseja ler ou armazenar dados. A maioria dos processadores modernos 
têm barramento de endereços com 36 bits, podendo assim endereçar até 64 GB de memória 
física. O barramento de dados tem 64 bits na maioria dos processadores modernos. O 
barramento de endereços é sempre unidirecional, ou seja, os bits são gerados pelo 
processador. O barramento de dados é bidirecional, ou seja, os dados são ora transmitidos, 
ora recebidos pelo processador. 
O barramento de controle contém vários sinais que são necessários ao funcionamento 
do processador, bem como controlar o tráfego do barramento de dados. Alguns dos seus 
sinais são de saída, outros são de entrada, outros são bidirecionais. Existem sinais para 
indicação do tipo de operação (leitura ou escrita), sinais se especificação de destino/origem 
de dados (memória ou E/S), sinais de sincronismo, sinais de interrupção, sinais que permitem 
a outro dispositivo tomar o controle do barramento, sinais de clock, sinais de programação e 
diversos outros. 
Na maioria dos casos, o barramento do processador é o mais veloz existente em uma 
placa de CPU, mas isto nem sempre ocorre. Por exemplo, uma placa de CPU pode ter o 
processador operando com barramento de 100 MHz e as memórias operando a 133 MHz. Ter 
a memória mais rápida é vantajoso no caso de placas com vídeo onboard, já que estaria 
sendo acessada, ora pelo processador, ora pelos circuitos de vídeo. Neste caso o 
barramento da memória seria o de tráfego mais intenso do computador. 
 
19 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
b. O barramento das memórias 
 
Nas placas de CPU antigas, as memórias eram ligadas diretamente ao 
barramento do processador, através de chips chamados buffers bidirecionais. Esses 
chips tinham como único objetivo amplificar a corrente vinda do processador, 
permitindo que o barramento de dados fosse ligado a um número grande de chips de 
memória. Portanto a velocidade do barramento do processador era igual à velocidade 
do barramento das memórias. 
 
c. Velocidade do barramento das memórias 
 
Atualmenteas memórias são ligadas ao processador através do chipset. A 
função do chipset nesta conexão não é de apenas aplificar corrente. A maioria dos 
chipsets possui registradores que permitem que a memória opere de forma assíncrona 
ao processador, ou seja, com um clock diferente. Alguns chipsets podem ter o 
processador operando a 100 MHz e as memórias a 66, ou 133 MHz. Outros podem ter 
o processador operando a 200 MHz e as memórias a 133. Existem vários outros 
exemplos de clocks diferentes. Nesses casos dizemos que a memória está operando 
de forma assíncrona ao processador. 
Podemos encontrar barramentos de memória operando com diversas 
velocidades: 
 
Tipo de 
memória Clock 
Transferências 
por ciclo 
Taxa de transferência 
máxima teórica 
FPM, EDO 66 MHz 1/3 176 MB/s (*) 
SDRAM PC66 66 MHz 1 533 MB/s 
SDRAM PC100 100 MHz 1 800 MB/s 
SDRAM PC133 133 MHz 1 1067 MB/s 
DDR200 100 MHz 2 1600 MB/s 
20 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
Tipo de 
memória Clock 
Transferências 
por ciclo 
Taxa de transferência 
máxima teórica 
DDR266 
 
133 MHz 2 2133 MB/s 
DDR300 
 
150 MHz 2 2400 MB/s 
DDR333 
 
166 MHz 2 2666 MB/s 
DDR400 
 
200 MHz 2 3200 MB/s 
RDRAM 
 
100 MHz 4 3200 MB/s (**) 
 
(*) Memórias FPM e EDO gastam de 2 a 4 ciclos em Page Mode para fazer cada transferência, por isso 
consideramos uma média de 3 ciclos para cada transferência, ou 1/3 de transferência a cada ciclo. 
(**) Um módulo RDRAM opera com 1600 MB/s, porém são usados aos pares, resultando em 3200 MB/s. 
Note ainda que a DDR SDRAM mais veloz indicada na tabela é a DDR400, porém na época em que a 
RDRAM oferecia 3200 MB/s, a DDR mais veloz era a DDR266. Juntamente com a chegada de chips DDR 
mais velozes, chegarão também ao mercado chips RDRAM também com maior velocidade. 
 
 
As taxas de transferência mostradas na tabela acima são meros limites teóricos, e 
nunca são obtidos na prática. São taxas momentâneas que vigoram apenas quando a 
transferência se dá em modo burst. Essas taxas não são sustentadas por períodos 
significativos, já que a cada 3 transferências em que usam um só ciclo, é exigida uma 
transferência inicial que dura 2 ou 3 ciclos (latência 2 ou 3), resultando em temporizações 
como 2-1-1-1 ou 3-1-1-1, o que resulta em 0,8 e 0,75 transferências por ciclo, em média. Mais 
tempo é perdido, antes de cada transferência, ao serem usados os comandos de leitura e 
gravação, onde mostramos como são as formas de onda dos acessos aos vários tipos de 
memória. Finalmente um outro fator contribui para reduzir ainda mais o desempenho, que é a 
atuação da cache. A maioria dos acessos à memória passa pelas caches do processador, 
mas certos ciclos podem ser feitos no modo uncached. O processador estaria neste caso 
fazendo leituras e escritas diretamente na memória, e sem usar o modo burst (transferências 
da cache são feitas em grupos de 4 acessos consecutivos). 
21 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
d. Barramento AGP 
 
Este barramento foi lançado em 1997 pela 
Intel, especificamente para acelerar o desempenho de 
placas de vídeo em PCs equipados com o Pentium II 
e processadores mais modernos. Trata-se do 
Acelerated Graphics Port. É formado por um único 
slot, como o mostrado na figura abaixo. Observe que 
este slot é muito parecido com os utilizados no bar-
ramento PCI, mas existem diferenças sutis do ponto 
de vista mecânico. Fica um pouco mais deslocado 
para a parte frontal do computador, além de possuir 
uma separação interna diferente da existente no slot PCI. Desta forma, é impossível encaixar 
neste slot, uma placa que não seja AGP. 
O AGP é um slot solitário, usado exclusivamente para placas de vídeo projetadas no 
padrão AGP. Muitos modelos de placas de vídeo são produzidos nas versões PCI e AGP (ex: 
Voodoo 3 3000 AGP e Voodoo 3 3000 PCI). A principal vantagem do AGP é a sua taxa de 
transferência, bem maior que a verificada no barramento PCI. 
Placas de CPU com slot AGP começaram a se tornarem comuns a partir de 1998. As 
primeiras placas de CPU a apresentar slot AGP foram as que usavam o chipset Intel i440LX, 
para Pentium II, e depois as que usavam o i440BX. Outros fabricantes de chipsets passaram 
a desenvolver produtos que também davam suporte ao barramento AGP. Placas de CPU 
para a plataforma Super 7 (K6, K6-2, etc.) também passaram a apresentar slot AGP. 
Atualmente todas as placas de CPU de alto desempenho apresentam um slot AGP. Por outro 
lado, muitas placas de CPU para PCs de baixo custo, tipicamente as que possuem vídeo 
onboard, não possuem slot AGP, com raras exceções. 
 
e. Barramento PCI 
 
A figura mostra os conectores usados no 
barramento PCI (Peripheral Component Interconnect). Nas 
placas de CPU modernas podemos encontrar 3, 4, 5 ou 6 
slots PCI. Em algumas placas mais simples, tipicamente 
aquelas que têm “tudo onboard”, podemos encontrar 
22 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
apenas um ou dois slots PCI. Nos slots PCI, conectamos placas de expansão PCI. Alguns 
exemplos típicos de placas de expansão PCI são: 
 
• Placa de vídeo (SVGA); 
• Placa de interface SCSI; 
• Placa de rede; 
• Placa digitalizadora de vídeo 
 
 
É importante notar que Barramento PCI não é sinônimo de Slot PCI. O Barramento PCI é um conjunto 
de sinais digitais que partem do chipset e do processador, e atingem tanto as placas de expansão, 
através dos slots, como circuitos da placa de CPU. Por exemplo, as interfaces para disco rígido e as 
interfaces USB embutidas na placa de CPU são controladas através do barramento PCI, apesar de não 
utilizar os slots. 
 
 
f. Barramento PCI Express 
 
O barramento PCI Express foi desenvolvido para substituir os barramentos PCI e 
AGP. Ele é compatível em termos de software com o barramento PCI, o que significa que os 
sistemas operacionais e drivers antigos não precisam sofrer modificações para suportar o 
barramento PCI Express. 
O barramento PCI Express é um barramento serial trabalhando no modo full-duplex. 
Os dados são transmitidos nesse barramento através de dois pares de fios chamados pista 
utilizando o sistema de codificação 8b/10b, o mesmo sistema usado em redes Fast Ethernet 
(100BaseT, 100 Mbps). Cada pista permite obter taxa de transferência máxima de 250 MB/s 
em cada direção, quase o dobro da do barramento PCI. O barramento PCI Express pode ser 
construído combinando várias pistas de modo a obter maior desempenho. Podemos 
encontrar sistemas PCI Express com 1, 2, 4, 8, 16 e 32 pistas. Por exemplo, a taxa de 
transferência de um sistema PCI Express com 8 pistas (x8) é de 2 GB/s (250 * 8). 
23 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
Na tabela abaixo comparamos as taxas de transferências dos barramentos PCI, AGP 
e PCI Express. 
 
Barramento Taxa de Transferência
PCI 133 MB/s 
AGP 2x 533 MB/s 
AGP 4x 1.066 MB/s 
AGP 8x 2.133 MB/s 
PCI Express x1 250 MB/s 
PCI Express x2 500 MB/s 
PCI Express x4 1.000 MB/s 
PCI Express x16 4.000 MB/s 
PCI Express x32 8.000 MB/s 
 
 
 
 
O barramento PCI Express define um tipo diferente de slot baseado na quantidade de 
pistas do sistema. Por exemplo, o tamanho físico do slot do barramento PCI Express x1 é 
diferente da do barramento PCI Express x4. Na Figura 4 você pode ver a diferença entre os 
slots do barramento PCI Express. 
 
24 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
g. Barramento VLB 
 
Antes do surgimento do barramento PCI, alguns outros barramentos forma usados 
nos PCs, oferecendo taxas de transferência mais elevadas. Obarramento MCA e o EISA 
foram dois padrões adotados entre o final dos anos 80 e o início dos anos 90. O MCA 
(Microchannel Architecture) era usado em PCs IBM PS/2 e teve várias versões, de 16 e 32 
bits, operando a 10 e 16 MHz. O barramento EISA (Enhanced ISA) foi desenvolvido por 
diversas empresas que precisavam de um barramento mais rápido mas não podiam usar o 
MCA, que era barramento proprietário da IBM. O EISA opera com 32 bits e usa clocks entre 6 
e 8,33 MHz. 
Algumas placas de CPU 
chegaram a utilizar barramentos locais 
de alta velocidade para expansões de 
memória. Permitiam a instalação de 
uma placa especial de memória, mas 
infelizmente esses barramentos eram 
proprietários. Significa que uma placa 
de CPU com um barramento local 
proprietário para expansão de 
memória deveria obrigatoriamente 
usar uma placa de expansão de 
memória do mesmo fabricante. Como 
esses barramentos não eram 
padronizados, não foram usados em 
larga escala pela indústria de placas 
para PCs. A necessidade deste tipo de barramento cessou com a proliferação dos módulos 
de memória, que permitiam obter elevadas capacidades de memória em pouco espaço. 
A necessidade de barramentos mais rápidos voltou a ser grande quando as placas de 
vídeo passaram a operar com altas resoluções e elevado número de cores. As antigas placas 
VGA de 16 bits operavam de forma satisfatória em modo texto, e com gráficos de 640x480 
com 256 cores, quando toda a memória de vídeo ocupava apenas 300 kB. Já com a 
resolução de 1024x768 com 16 milhões de cores, a memória de vídeo ocupa cerca de 2 MB. 
Para transferir integralmente uma tela nesta resolução para uma placa de vídeo ISA, seria 
necessário um tempo de cerca de 0,25 a 0,5 segundo. A movimentação da tela seria 
25 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
extremante lenta, o que criou a necessidade de um novo barramento mais veloz, próprio para 
a placa de vídeo. 
Foi então que surgiu o VESA Local Bus (VLB), criado pela Video Electronics 
Standa
. Barramento ISA 
mento ISA (Industry Standard Architecture) surgiu no início dos anos 80. Foi 
criado 
tos mais avançados, as placas de CPU 
possuí
 as quais: 
 
 Placas fax/modem 
ce para scanner SCSI 
ote que estamos falando principalmente de modelos antigos, pois a maioria dos 
fabrica
is demoraram para adotar 
o padrã
rds Association. Este barramento era representado fisicamente por um conector 
adicional que ficava alinhado com os slots ISA. Neste barramento era feita a reprodução 
quase fiel dos sinais de dados, endereço e controle do processador 486. 
 
h
 
O barra
pela IBM para ser utilizado no IBM PC XT (8 bits) e no IBM PC AT (16 bits). Apesar de 
ter sido lançado há muito tempo, podemos encontrar slots ISA em praticamente todos os PCs 
produzidos nos últimos anos. Apenas a partir do ano 2000 tornaram-se comuns novas placas 
de CPU que aboliram completamente os slots ISA. 
No tempo em que não existiam barramen
am 6, 7 e até 8 slots ISA. Depois da popularização do barramento PCI, as placas de 
CPU passaram a apresentar apenas 2 ou 3 slots ISA. As raras placas produzidas atualmente 
que possuem slots ISA apresentam apenas um ou dois desses slots. 
Os slots ISA são utilizados por várias placas de expansão, entre
•
• Placas de som 
• Placas de interfa
• Interfaces proprietárias 
• Placas de rede 
 
N
ntes de placas de expansão já adotou definitivamente o padrão PCI, e não fabricam 
mais novos modelos ISA. De qualquer forma, a presença de slots ISA em uma placa de CPU 
é útil caso seja necessário aproveitar placas de expansão antigas. 
As placas fax/modem e as placas de som foram as que ma
o PCI. O motivo desta demora é que o tráfego de dados que elas utilizam mal chega a 
ocupar 5% da capacidade de transferência de um slot ISA. Já as placas de vídeo, placas de 
26 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
rede, interfaces SCSI e digitalizadoras de vídeo operam com taxas de transferência mais 
elevadas, por isso foram as primeiras a serem produzidas no padrão PCI. 
 
i. Barramentos AMR, CNR e ACR 
 
Muitas placas de CPU modernas possuem conectores para a instalação de um riser 
card. São os slots AMR, CNR e ACR. Um riser card é uma placa de interface especial, cujo 
principal objetivo é a redução de custo. A idéia básica dessas placas é dividir cada interface 
em duas partes. Uma parte, totalmente digital e de baixo custo, é embutida no chipset. A 
outra parte, mais voltada para funções analógicas, fica no riser card. A comunicação entre o 
chipset da placa de CPU e o Riser Card é feita em um formato serial, utilizando um reduzido 
número de pinos. 
O primeiro padrão de riser card foi o 
AMR (Audio Modem Riser). Destinava-se a ser 
usado apenas com circuitos de som e modem. 
Para utilizar essas placas é preciso ter no 
chipset, os circuitos de áudio AC’97 e de 
modem MC’97. Muitos chipsets modernos 
possuem tais circuitos. Os circuitos de som 
AC’97 são relativamente simples, mas com boa 
qualidade. Os circuitos MC’97 são similares 
aos existentes nos soft modems. Toda a parte 
digital desses dispositivos fica localizada no 
chipset, e a parte analógica fica em uma placa de expansão AMR, que deve ser instalada no 
slot apropriado. A figura abaixo mostra um slot AMR. 
Depois do AMR, a Intel criou um novo padrão, o CNR (Communications Network 
Riser). O tipo de slot é idêntico ao usado pelo padrão AMR. Neste slot podemos instalar riser 
cards com funções de áudio, modem e rede. As placas AMR e CNR têm formatos 
semelhantes. 
Podemos então considerar que usar uma placa AMR ou CNR é o mesmo que utilizar 
uma placa de som simples, ou um soft modem, ou uma interface de rede comum. A diferença 
é que parte dos circuitos ficam no chipset (SouthBridge e Super I/O) e parte fica no riser card. 
Existem vários tipos de riser card no mercado: modem, áudio, áudio+modem, áudio+rede, 
modem+rede, modem+áudio+USB, etc. 
27 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
O padrão ACR, promovido pela AMD e outros fabricantes de modems e produtos de 
comunicação, é compatível com o AMR, e também oferece funções de rede, USB e 
comunicação em banda larga. Seu slot possui mais pinos, e é similar ao slot PCI, porém com 
uma fixação mecânica diferente. 
 
 
2.4. PORTAS DE COMUNICAÇÃO 
 
As portas de comunicação são plugues os quais permitem a ligação de periféricos 
externos, que evoluíram conforme a necessidade das aplicações e dispositivos externos, 
como impressoras, mouses, discos rígidos, câmeras digirais e outros. 
 
a. Serial: 
 
A porta serial inicialmente atingiu a velocidade de 9600 bits por segundo, e em sua 
última versão chegou a atingir 115 kbps. Usada normalmente para mouse, antigamente 
também foi utilizada para transferir arquivos e conectar modems externos. 
 
b. Paralela: 
 
A porta paralela inicialmente atingiu a velocidade de 150 kbytes por segundo e com o 
padrão ECP chegou a atingir 1.2 Megabytes por segundo, este exigido pelas últimas 
impressoras paralelas que foram fabricadas. 
É uma porta normalmente usada para conectar impressoras e scanners, mas também 
foi usada, antigamente para ligar microcomputadores e transmitir arquivos. 
 
c. IrDA (Infrared Data Association): 
 
O IrDA é uma porta para uso de comunicação sem fios: a comunicação é feita através 
de luz infravermelha, da mesma forma que ocorre com o controle remoto da televisão. Você 
pode ter até 126 periféricos IrDA “interligados” com uma mesma porta. É muito comum 
notebooks com uma porta IrDA , podendo assim transferir arquivos de um notebook para 
outro, ou imprimirem uma impressora com porta IrDA sem a necessidade de cabos. 
28 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
A porta IrDA pode ser utilizada para conectar vários tipos de periféricos sem fio ao 
micro, tais como teclado, mouse e impressora. A porta pode estar conectada diretamente à 
placa-mãe do micro ou então através de um adaptador IrDA conectado à porta serial ou USB. 
Existem dois padrões IrDA: 
 
• IrDA 1.0: Comunicações até 115.200 bps 
• IrDA 1.1: Comunicações até 4.194.304 bps 
 
d. USB (Universal Serial Bus): 
 
O USB é uma porta para periféricos onde, através de um único plugue, todos os 
periféricos externos podem ser encaixados. Podemos conectar até 127 dispositivos em série 
em uma única porta USB. 
O padrão USB acaba de vez com inúmeros problemas de 
falta de padronizações no PC moderno. Para cada periférico, 
normalmente há a necessidade de uma porta no micro e, 
dependendo do periférico (como alguns modelos de scanner de 
mão), há a necessidade de instalação de uma placa periférica 
dentro do micro, que ainda por cima deve ser configurada. Uma 
das grandes vantagens do USB pe que o próprio usuário pode 
instalar um novo periférico, sem a menor possibilidade de gerar 
algum tipo de conflito, ou queimar uma placa. 
Conector USB 
A porta USB utilizava inicialmente na versão 1.1 duas taxas de transferência: 12 
Mbps, usada por periféricos que exigem mais velocidade (como câmeras digitais modems, 
impressoras e scanners) e 1,5 Mbps para periféricos mais lentos (como teclados, joysticks e 
mouse). 
Já na versão recente (2.0), a porta USB pode atingir velocidade de até 480 Mbps. A 
utilização do barramento USB depende sobretudo da placa-mãe: seu chipset deverá ter um 
controlador USB. 
 
29 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
e. Firewire: 
 
A idéia da porta Firewire é bastante parecido com a do USB. A 
grande diferença é o seu foco. Enquanto o USB pe voltado 
basicamente para periféricos normais que todo PC apresenta 
externamente, o firewire vai mais além: pretende simplesmente 
substituir o padrão SCSI (Small Computer System Interface). Não é 
apenas um padrão de discos rígidos, mas um padrão de ligação de 
periféricos em geral. 
 
Conector Firewire 
Atualmente, a taxa de transferência da porta Firewire é de 200 Mbps, mas pode atingir 
400 Mbps em sua segunda versão. Devido à complexidade na construção de circuitos mais 
rápidos, a tecnologia Firewire é mais cara do que a USB. 
O Firewire apresenta as demais idéias e características do barramento USB. Podemos 
conectar até 63 periféricos ao barramento, como câmeras de vídeo, scanners de mesa, 
videocassetes, fitas DAT, aprarelhos de som, etc. Depois do avanço do USB para versão 2.0, 
várias placas-mãe deixaram de incluir portas firewire. 
 
 
2.5. SISTEMA DE VÍDEO 
 
O conjunto monitor e placa de vídeo têm a função de 
transformar informações armazenadas na memória em imagem 
visível. Hoje formam o principal meio de comunicação do micro 
para o operador. A placa de vídeo transforma a informação em 
pontos de cor e luz, juntando a eles sinais de sincronismo vertical e 
horizontal e enviando para o monitor, que apresenta na tela uma 
imagem visível. 
Cada ponto desses é chamado pixel (picture element – elemento de imagem). Quanto 
maior o número de pontos usados para formar a imagem, melhor a sua qualidade. O número 
de bits usados para expressar as cores da imagem também é importante para a qualidade. 
Quanto maior o número de bits, maior número de cores pode ser apresentado na tela. 
Quanto menor o espaço entre dois pontos da imagem (DOT PITCH), maior a impressão de 
continuidade. Essas configurações são executadas através do driver da placa, no sistema 
operacional (painel de controle, no Windows). 
 
30 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
a. Tipos de Monitores 
 
• CGA: não é mais utilizado. São aquelas famosas telas verdes ou laranja. É facilmente 
identificado pelo seu conector de 9 pinos. 
• EGA: não é mais utilizado. Foi um avanço do CGA que tinha 4 cores, contra 16 cores do 
EGA. 
• VGA: ainda é usado e fabricado em baixa escala. Pode apresentar um número infinito de 
cores. Tem conectores de 15 pinos. 
• SVGA: é o mais utilizado atualmente. Pode apresentar um número infinito de cores e 
existe de vários tamanhos: 14”, 15”, 17”, e 21”. 
• LCD: os monitores de cristal líquido, antes um produto restrito aos notebooks, são 
realidade nos mercados de desktops. As três grandes vantagens desses monitores são o 
menor espaço que ele ocupa na mesa, o menor consumo elétrico e a total ausência de 
cintilação. Os mais vendidos são os de 15” e 17”. 
 
 
 
 
Monitor SVGA CRT 17” Monitor LCD 17” 
 
b. Placas de Vídeo 
 
Quanto maior a definição e o número de cores, mais memória é exigida na placa de 
vídeo e mais desempenho será exigido do sistema. As placas de vídeo on-board geralmente 
usam parte da memória RAM como memória de vídeo, diminuindo o espaço disponível para 
outras aplicações. 
 
CGA : primeiro padrão colorido para computadores pessoais. Com resolução em 
monocromático, 4 tons de cinza ou 4 cores, 16 tons de cinza ou em cores. 
Normalmente tinham barramento de 8 bits. 
31 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
EGA : Com resolução mais avançada. Com 64 cores. Normalmente tinham barramento de 8 
bits. 
VGA : Com 16 ou 256 cores, dependendo da capacidade de memória que a placa possuir. 
3D : A fim de melhorar o desempenho na formação de imagens tridimensionais, foram 
criadas as placas de vídeo 3D. Com uma placa dessas no micro, o processador 
principal, em vez de enviar informações de cada ponto que precisa ser desenhado na 
tela, envia somente a localização das vértices dos polígonos presentes na imagem e o 
processador 3D faz a ligação desses pontos na tela. Há várias placas de vídeo 3D no 
mercado. Assim como as placas de vídeo tradicionais, as principais características de 
placas 3D são provenientes do chipset e quantidade de memória de vídeo. Há uma 
grande quantidade de chipsets 3D: GeForce, Voodoo, Savege 2000, TNT, ATI Radeon, 
além das versões mais recentes desses chipsets, como as GeForce FX e ATI série X, 
e assim por diante. 
 
GEFORCE FX5500 ATI RADEON X800GT 
 
2.6. MEMÓRIAS 
 
Uma memória é um dispositivo capaz de armazenar informações. No micro, utilizamos 
alguns tipos diferentes, sendo os principais: ROM, RAM, Cache e CMOS. Quando falamos de 
memória estamos nos referindo àquela composta por Circuitos Integrados (CI’s). Os CI’s são 
construídos com pequenos pedaços de silício que é um metal semicondutor. 
 
2.6.1. MEMÓRIA ROM (Read Only Memory – Memória só de leitura) 
 
Ë uma memória que contém dados gravados na fábrica, fundamentais para o 
funcionamento básico do sistema. Algumas podem ser regravadas, mas não o são durante a 
operação normal da máquina; apenas em situações especiais como atualizações. A principal 
memória ROM do micro é a chamada BIOS, que recebe esse nome de um dos programas 
armazenados em seu interior que ao todo são três: POST, BIOS e SETUP. Cada um desses 
programas possui uma função específica. 
32 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
a. POST (Power On Self Test – Teste inicial ao ligar) 
 
Testa a máquina a cada vez que é ligada, para verificar se ela tem condições de 
prosseguir o processamento sem erros. O POST detecta erros fatais capazes de impedir o 
funcionamento seguro da máquina. Testa principalmente: a memória RAM, a placa de vídeo, 
o micro-processador, a placa-mãe, driver de disquete e teclado. Caso seja encontrado um 
erro, o sistema permanecerátravado (o boot não irá prosseguir) e uma série de apitos será 
emitida através do alto-falante do sistema. Essa série de apitos obedece a um código, 
informando a natureza da falha encontrada. Cada modelo de BIOS usa um código diferente, 
e, portanto, só poderemos identificar o erro caso conheçamos o código para aquela BIOS. 
Caso contrário, será necessária a substituição de peças para diagnosticar o defeito. 
 
 
b. BIOS (Basic Input-Output System – Sistema básico de entrada e saída) 
 
Programa básico que controla todo o fluxo de informações no micro. Opera de acordo 
com as configurações de hardware e preferências carregadas através do setup na CMOS. 
 
 
c. SETUP 
 
Programa de configuração que nos permite informar ao sistema, dispositivos de 
hardware presentes e opções de funcionamento. As placas-mãe novas permitem 
também o monitoramento de algumas funções através do Setup – temperatura do 
micro-processador, por exemplo. O setup é o programa que nos dá acesso à 
configuração; os dados configurados através dele são gravados numa memória 
chamada CMOS. Cada versão de ROM da BIOS possui um setup diferente, 
correspondente aos recursos presentes na placa-mãe onde está implantada. Existem 
diversos fabricantes de BIOS, sendo os mais encontrados AMI, Award e Phoenix. 
Cada um apresenta aparência diferente, porém o conteúdo é equivalente. 
 
33 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
2.6.2. MEMÓRIA RAM (Random Access Memory – Memória de Acesso Aleatório) 
 
Representa a maior parte da memória que vamos encontrar no computador. Quando 
dizemos que um micro tem 16 MB de memória estamos nos referindo à DRAM. Constitui a 
memória de trabalho do micro-processador. Os programas em atividade, assim como os 
dados em processamento, ficam na memória RAM. As instruções a serem executadas e os 
dados a serem processados são lidos na memória RAM; os resultados são armazenados 
também na memória RAM. Embora montada na placa-mãe, a memória RAM é considerada 
um módulo à parte, pois pode ser trocada ou expandida independentemente. 
 
 Tipos de memória RAM: 
 
A memória RAM é constituída de células de memória, capazes de armazenar um bit 
cada uma, construídas dentro de chips de maneira que podem ser acessadas diretamente 
onde está a informação que nos interessa, através de endereçamento. Os chips são 
agrupados em placas de pequeno porte chamadas PENTES que são encaixadas em slots 
próprios na placa-mãe. Existem duas tecnologias principais para construção dessas 
memórias, denominadas memória dinâmica e memória estática. 
 
a. Dinâmica 
 
Constituída por minúsculos capacitores, capazes de armazenar energia. Cada 
capacitor armazena um bit, podendo assumir duas voltagens de carga diferentes, que 
representam bits 0 e 1. Como o tamanho físico é pequeno, a quantidade de carga 
armazenada também é, e se perde se a memória não for regravada de tempos em tempos. 
Esse processo de regravação é chamado REFRESHING (refrescamento) e ocorre 
automaticamente a intervalos de tempo da ordem de mili-segundos, comandado pela lógica 
da placa-mãe. Ao desligarmos a máquina, cessa a alimentação e o refrescamento, e os 
dados armazenados são perdidos. 
 
b. Estática 
 
Constituída por pequenos flip-flops, que podem ser setados em dois estados 
diferentes, representando bits 0 e 1. O flip-flop, uma vez setado, não muda de estado a não 
ser que seja forçado pelo circuito de controle, e por isso não é necessário refrescamento para 
34 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
esse tipo de memória. Quando o equipamento é desligado, cessa a alimentação e os flip-
flops são desligados, perdendo-se os dados gravados na memória. 
 
 Tamanhos e tipos de pentes de memória: 
 
Nos XT e nos primeiros 286, as memórias não eram agrupadas em pentes. Os chips 
eram diretamente soquetados nas placas-mãe. A quantidade de chips era grande e isso 
dificultava a manutenção. Em seguida, surgiram os pentes, que foram evoluindo em 
capacidade, tipo e tamanho. 
 
Pente Utilização 
30 PINOS 
 
Usado do 286 ao 486. Capacidade típica entre 256KB e 2MB. Memória 
dinâmica SIMM. 
72 PINOS 
 
Usado do 486 ao Pentium MMX. Capacidade típica entre 4 e 16 MB. 
Memória dinâmica SIMM, de tipos FP (Fast Page) ou EDO (Extended 
Data Output). 
168 PINOS 
 
Usado do Pentium 2 ao Pentium 3. Capacidade típica entre 32 e 256 MB. 
Memórias dinâmicas EDO ou estática. 
184 PINOS 
 
Usado a partir do Pentium 4. Capacidade típica entre 128 e 256 MB. 
Memórias dinâmicas dos tipos RAMBUS ou DDR (Double Data Rate). 
 
2.6.3. MEMÓRIA CACHE: 
 
É uma memória que podemos chamar de secretária, ou seja, deixa na mão tudo 
aquilo que nós mais utilizamos para facilitar a busca de arquivos. Exemplo: quando 
minimizamos um programa deixando-o na barra de tarefas, este programa está armazenado 
na memória cachê, fazendo com que o acesso a este programa fique mais rápido, não 
necessitando que seja fechado o aplicativo. Esta opção só pode ser utilizada com o micro 
ligado. 
A memória cache é uma memória auxiliar utilizada pelo processador para tornar mais 
rápido o acesso às informações gravadas na memória RAM. Verificou-se que o processador, 
durante a operação, acessa repetidas vezes o mesmo endereço de memória RAM, buscando 
a mesma informação. Como a memória cache é mais rápida, embora de menor capacidade 
que a RAM, os dados lidos são copiados na cache, permitindo que a próxima leitura seja 
35 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
efetuada nela, o que agiliza o processamento. Normalmente existem duas memórias cache 
no sistema: 
 
a. Cache Interno ou L1 (Level 1 – nível 1) 
 
Fica dentro do chip do micro-processador. Tem pouca capacidade devido ao pouco 
espaço disponível, mas como está dentro do micro-processador, trabalha com o seu clock 
interno e por isso é muito veloz. 
 
b. Cache Externo ou L2 (Level 2 – nível 2) 
 
Fica soldado na placa-mãe. Tem maior capacidade devido ao maior espaço 
disponível, mas como está fora do micro-processador, trabalha com o seu clock externo e por 
isso é mais lento que o cache interno. Os dados que se encontram armazenados na cache 
são arquivados em outra memória que funciona como se fosse um índice, chamada TAG 
RAM, e que está também implementada na placa-mãe. A existência de um cache de tamanho 
razoável dá ao sistema um desempenho muito superior ao de outro idêntico, porém, sem 
cache ou com cache reduzido. Nas placas de hoje em dia o cache não é expansível. 
 
2.6.4. MEMÓRIA CMOS 
 
Memória fabricada com tecnologia CMOS (Complementary Metal Oxide Silicon) que 
tem a função de armazenar os dados configurados no Setup. A CMOS é uma memória volátil, 
isto é, quando sem alimentação, ela perde os dados gravados. Por esse motivo, e porque a 
configuração do Setup é trabalhosa, a CMOS é alimentada por uma bateria presente na 
placa-mãe. Quando o micro é desligado, a bateria mantém a CMOS alimentada, garantindo 
que ao ser ligado novamente, não seja necessária nova configuração. 
 
36 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
2.7. DRIVES INTERNOS E EXTERNOS 
 
a. Drive de disquete: 
 
Atualmente os equipamentos fabricados já não 
vêem com disquete, pois sua capacidade de 
armazenamento já foi ultrapassada por outras 
possibilidades. No entanto, é importante conhece-los no 
caso de uma situação que necessite utilizar um 
equipamento mais antigo. 
Os tipos mais populares são de 1.44 MB polegadas. Cada tipo de disco tem diferentes 
frutos na embalagem para indicar a capacidade. O de 1.44MB tem dois furos e possui um 
envelope de plástico duro,que dá mais proteção contra danos físicos. 
Em geral, os disquetes possuem uma abertura que permite que eles possam ser 
protegidos contra gravações, evitando desta forma a infecção por alguns vírus durante a 
leitura. Nos disquetes de 1.44, se a abertura estiver fechada, poderemos ler e escrever 
normalmente e se estiver aberta, só poderemos ler. 
Os principais cuidados ao utilizar disquetes são: 
 
• Mantenha sempre longe de campos magnéticos e de materiais ferromagnéticos; 
• Não exponha o disquete ao calor excessivo ou ao sol; 
• Não coloque objetos pesados sobre o disquetes; 
• Não dobre o disquete ou fixe papeletes com clipes, pois estes produzem dobras no 
invólucro, causando atrito interno durante seu uso. 
 
b. CD-ROM: 
 
O aparelho de CD se tornou um padrão mundial de gravações, pois os discos, além 
de serem portáteis e oferecerem uma excelente resistência física, apresentam sons de alta 
qualidade, sem ruído. O aparelho lê a superfície da mídia de CD através de um feixe ótico 
(laser), o que permite que informações sejam gravadas muito próximas das outras. 
Como um CD trabalha com dados digitais, o mesmo serve para o armazenamento de 
informações utilizadas por computadores. O CD de áudio armazena até 74 minutos de 
música e 650 Mb de dados. 
37 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
A velocidade de transferência de dados de uma unidade de leitura ou gravação de CD 
é expressa em “X”. 1 X corresponde a uma transferência de 150 KB por segundo; portanto 
um CD-ROM de 52X transfere 52x150 KB/s ou 7,8 MB/s. 
Existem ainda outros tipos de CD que são cada vez mais facilmente encontrados, 
todos com o mesmo tamanho de um CD convencional: 
 
• CD-R: Cd Recordable – estes discos só podem ser gravados uma vez, não aceitando 
regravações; 
• CD-RW: CD Read and Write – estes discos permitem a regravação, graças ao material 
de mídia de CD-RW, que é fotossensível e altera suas propriedades de acordo com a 
incidência do laser; 
• DVD: Digital Versatile Disk - há vários padrões de DVD, os mais comuns são o DVD-5, 
que consegue armazenar até 4,7 Gb de dados e o DVD-9 que pode armazenar até 9 Gb 
de dados. Os discos de DVD só podem ser lidos por unidades de DVD, ou então 
aparelhos de DVD. Já as unidades de DVD podem ler qualquer tipo de CD; 
• DVD-RW: DVD Read and Write – com a evolução, as gravadoras de DVD passaram a 
ficar cada vez mais acessíveis, assim, hoje em dia, encontramos usuários fazendo filmes 
caseiros e backups em mídias de DVD. Existem vários formatos também, entre eles o 
DVD+R, DVD-R, DVD+RW, DVD-RW e DVD-RAM, onde deve-se verificar qual o padrão 
que a gravadora aceita antes de comprar a mídia a ser usada. 
 
 
 
Gravador de DVD Interno Gravador de DVD Externo 
 
38 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
c. Pendrive: 
 
Para atender o tamanho de arquivos cada vez maiores e a 
necessidade de mobilidade foi criado o pendrive, na qual podermos 
armazenar, transferir e transportar grandes arquivos em um 
dispositivo do tamanho de um batom ou um isqueiro. É clicar, 
arrastar e soltar e em instantes os arquivos estão prontos para 
viagem. Pode armazenar qualquer arquivo digital em que você 
possa pensar: trabalhos, teses, imagens, planilhas, slides, m
Encontramos no mercado uma diversidade de capacidade de armazenamento que varia 
desde 128 Mb, 512 Mb, 1Gb até 32 Gb. 
úsicas e muito mais. 
 
d. Disco Rígido (HD – Hard Disk) 
 
HD é a abreviatura de Hard Disk (disco rígido), e é a mesma coisa que winchester. O 
HD é um disco fabricado com metal ou vidro, rígido, recoberto por material composto de 
partículas magnetizáveis, como no disquete. É uma unidade selada que contém uma série de 
placas metálicas chamadas de pratos. Cada lado de um prato é coberto com uma fina 
camada de material magnético. Cada superfície do disco tem uma cabeça magnética 
associada, de forma que os dados podem ser gravados em cada superfície. Cada superfície 
dos pratos é dividida em uma série de anéis chamados de TRILHAS, e cada trilha fica 
dividida em seções, com o nome de setores. 
As diferenças principais estão na capacidade de armazenamento, muito maior no HD, 
e no fato de que o disquete é removível e o HD é fixo. O sistema de gravação e leitura é 
idêntico ao do disquete, porém para obter essa capacidade maior, as partículas 
magnetizáveis precisam ter um tamanho menor e estar mais juntas, aumentando a densidade 
de gravação (número de bits por unidade de área). Para manter a integridade da cobertura 
magnética do disco, a cabeça de gravação e leitura do HD não pode encostar nele, mas 
precisa ficar a uma distância tão pequena que permita a leitura dos minúsculos ímãs. 
A distância entre a cabeça e a superfície do disco é de cerca de 1 mícron (1 milésimo 
de milímetro). Para conseguir manter essa distância tão pequena, a cabeça é separada do 
disco por um colchão de ar criado pela própria rotação do disco. Quando a máquina é 
desligada e o disco para de girar, as cabeças “aterrisam”. Um circuito no driver movimenta-as 
para uma área apropriada onde podem tocar o disco sem danos. 
39 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
Os fabricantes estabelecem um tempo de acesso médio para os discos rígidos. Este 
número indica o tempo médio levado pelo computador para iniciar a leitura dos dados. 
Embora os primeiros discos rígidos muitas vezes apresentassem um tempo de acesso 
médio de 80 milissegundos (ms), em muitos drives mais novos de grandes capacidades, o 
tempo de acesso médio é inferior a 10 (ms). Os parâmetros restantes de importância são os 
mais fáceis de entender. O driver tem uma capacidade de disco formatado, um fator de forma 
e uma altura. 
A capacidade de armazenagem formatada é a quantidade máxima de dados que pode 
ser guardada em disco. O sistema operacional utiliza alguma área do disco para guardar 
informações com números de setores e trilhas divididas em setores. Cada setor do disco tem 
seu próprio número de referência e o controlador do driver usa este número para achar um 
determinado setor do disco. O disco é dividido em áreas chamadas de clusters. Um cluster é 
o tamanho mínimo de espaço para dados que o sistema operacional utiliza para guardar um 
arquivo. 
O sistema operacional coloca informações úteis para a armazenagem de dados em 
três áreas do disco: o setor de inicialização, o diretório e a tabela de alocação de arquivos 
(FAT). 
O setor de inicialização (“boot”) contém informações sobre onde cada partição inicia e 
termina. Quando dá partida do computador, ele usa os dados sobre esta partição, para nela 
encontrar os arquivos do sistema operacional. Uma vantagem de adicionar um disco rígido no 
computador é que poderá normalmente inicializar através dele. Cada vez mais fabricantes 
estão fornecendo discos rígidos que já vêm formatados e assim a instalação fica mais fácil 
para o usuário final, porém, existem diversos passos na preparação do disco. Depois que o 
disco estiver instalado e configurado você fica com um disco inicializável que contém três 
áreas principais: o setor de inicialização, o diretório, a área de alocação de arquivos e a área 
de dados. 
A área mais importante do disco é a do diretório e tabela de locação de arquivos e de 
uma FAT. A lista do diretório tem informações, como os atributos de arquivo que indicam se 
um arquivo é só para leitura ou se é de sistema escondido (oculto) ou tipo arquivo. 
A FAT (File Allocation Table) é outra lista que guarda informações sobre a posição dos 
dados do arquivo. A lista consiste em uma série de entradas, uma para cada cluster. 
Quando o sistema operacional quer ler um arquivo, encontra o cluster de partida doarquivo no diretório e olha a entrada do cluster de partida. Se todo arquivo cabe em um só 
cluster, a entrada da FAT mostra um indicador de final de arquivo. Embora este processo de 
40 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
armazenagem de arquivos possa parecer complicado, é bastante eficiente. O sistema 
operacional pode rapidamente armazenar e recuperar as informações desejadas. 
 
 
 
HD ATA HD SATA 
 
2.8. PLACA IDE (Integrated Driver Eletrônicos) 
 
A placa Super IDE é uma controladora que era indispensável nos antigos 386 e em 
alguns 486. Era nesta placa que eram obrigatoriamente conectados o winchester, drives de 
disco flexível, mouse e impressora. No suporte metálico da placa estão alojados normalmente 
dois conectores; um DB-9 macho, usado normalmente o mouse e um DB-25, usado para 
conectar a impressora paralela. Pode suportar até dois discos rígidos conectados à placa 
através de um “cabo flat”. 
Nos micros Pentium, 586 e até mesmo nos 486 mais modernos, a placa SIDE já está 
agregada à placa mãe. As placas-mãe que dispensam o uso da placa SIDE são chamadas 
de IDE-ON-BOARD (hoje é muito comum encontrar no mercado). 
 
2.9. PLACA SCSI (Small Computer System Interface) 
 
Pronuncia-se “Scazy”. Ao contrário da IDE e outras, não é um interface de disco, mas 
uma interface geral em nível de sistema, ou seja, suporta diversos tipos de periféricos, 
incluindo CD-ROM’s, Scanners, impressoras. 
Trata-se de um padrão de interligação entre os periféricos e o sistema. Uma SCSI 
geralmente suporta até 7 periféricos conectados. 
Discos rígidos SCSI são mais inteligentes que os modelos IDE. Um disco SCSI pode 
receber diversas solicitações de acesso, em várias partes da sua superfície magnética. Esses 
discos podem receber e manter pendentes comandos de leitura ao mesmo tempo em que 
41 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
realizam outros acessos. Ao terminar um acesso, obtém da fila de acessos pendentes, aquele 
que resulta no mais curto movimento com as cabeças de leitura e gravação. Desta forma os 
acessos são feitos em uma ordem mais inteligente, resultando em maior desempenho global. 
Discos IDE não possuem este recurso. Executam um comando de leitura ou gravação de 
cada vez. Os discos SCSI são portanto os mais indicados para uso em servidores, nos quais 
o número de solicitações de acesso é muito maior. 
O padrão SCSI (ou melhor, “os padrões”) deixa o usuário confuso com o grande nú-
mero de termos empregados. Você encontrará nomes como: 
 
• SCSI-1, SCSI-2, SCSI-3 
• Fast SCSI, Wide SCSI, Fast Wide SCSI 
• Ultra SCSI, Wide Ultra SCSI 
• Ultra2 SCSI, Wide Ultra2 SCSI 
• Ultra3 SCSI, Wide Ultra3 SCSI 
• Fast-20, Fast-40, Fast-80 
• Ultra160, Ultra320 
 
A maioria desses padrões é compatível com os padrões anteriores. Por exemplo, 
placas de interface Ultra2 SCSI podem controlar dispositivos Ultra2 SCSI, Ultra SCSI, Fast 
SCSI, SCSI-1, etc. As interfaces são vendidas de acordo com o máximo clock utilizado. 
Encontramos então placas dos tipos: 
 
• SCSI-1 • SCSI-2 (Fast, Wide, Fast Wide) 
• Ultra SCSI • Ultra2 SCSI 
• Ultra3 SCSI • Ultra4 SCSI 
 
Placa SCSI com 2 canais 
 
42 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
2.10. Teclado 
 
O teclado constitui o principal meio 
de entrada de comandos e dados para o 
micro. A conexão do teclado ao computador 
é feita através de um cabo com uma 
tomada tipo DIN, Mini DIN, USB que é ligada diretamente na placa mãe, não necessitando de 
placa específica para controle do teclado. 
Quanto às teclas, existem inúmeros tipos de teclados, atendendo a cada língua. Há 
teclados para uso com o português, que possuem tecla “Ç”; já o padrão americano, para uso 
com inglês não tem o “Ç” porque ele não é usado. Quando o tipo de teclado não está 
corretamente configurado no sistema, algumas letras e caracteres especiais são trocados. 
 
2.11. Mouse 
 
O mouse é um item praticamente obrigatório nos computadores (exceto àqueles com 
aplicações especiais, tais como servidores). Graças a esse dispositivo, que orienta uma seta 
na tela do computador, conseguimos realizar tarefas de tal forma que o mouse parece ser 
uma extensão de nossas mãos. Atualmente, existem dois tipos básicos de mouse: os 
tradicionais, que operam com uma "bolinha" em sua base inferior e os mouses ópticos, que 
usam um sensor óptico no lugar da "bolinha". 
 
Tradicional Optical 
 
 
 
43 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
2.12. Gabinete 
 
 
O Gabinete é a estrutura onde são montados todos 
os componentes do micro: fonte, placa–mãe, drives, disco 
rígido, cd rom etc. Muitas pessoas confundem e acabam 
chamando erroneamente o gabinete de CPU (CPU é 
apenas o processo). Isso se deve ao fato de que o gabinete 
envolve praticamente todo o computador. 
Os gabinetes verticais podem ser encontrados em 3 
tipos básicos: 
 
Mini Tower: pequeno, possui apenas 3 baias (visto na imagem abaixo); 
Mid Tower: médio, possui 4 baias; 
Full Tower: grande, com mais de 4 baias. 
 
Nos gabinentes ainda é possível encontrar os seguintes itens: 
 
• Botão TURBO (apenas em gabinetes antigos) 
• Botão RESET 
• Botão ou chave para ligar o computador (POWER) 
• LED de POWER ON 
• LED indicador de modo turbo (apenas em gabinetes antigos) 
• LED indicador de acesso ao disco rígido (indica que o disco rígido está sendo acessado) 
• Display digital para indicação de clock (apenas em gabinetes antigos) 
 
O gabinete exerce as seguintes funções no micro: 
• Serve como base ou chassis para a montagem dos módulos internos; 
• Oferece uma proteção mecânica para as peças internas; 
• Efetua uma blindagem dos componentes, impedindo que campos eletrostáticos e 
eletromagnéticos externos causem interferência no funcionamento do micro; 
• Serve como painel de operação, com chaves e indicadores. 
 
44 
 
Apostila Técnica - Curso Montagem e Manutenção de Micros 
 Algumas características: 
 
• LIGADO ou POWER: indica que a máquina está ligada. 
• STANBY: indica que a máquina está recebendo alimentação, porém está em estado de 
desativada. 
• ATIVIDADE DO HD: indica que o HD está sendo acessado. 
 
2.13. Fonte de Alimentação 
 
A principal função da fonte de alimentação é converter em tensão contínua a tensão 
alternada fornecida pela rede elétrica comercial. Em outras palavras, a fonte de alimentação 
converte os 110V ou 220V alternados da rede elétrica convencional para as tensões 
contínuas utilizadas pelos componentes eletrônicos do computador, que são: +3,3V, +5V, 
+12V, -5V e -12V. A fonte de alimentação também participa do processo de refrigeração, 
facilitando a circulação de ar dentro do gabinete. 
Uma fonte típica é montada com uma das laterais aparente, pela traseira do gabinete. 
Nessa lateral, a fonte possui alguns dispositivos com funções específicas: 
 
• Tomada de entrada: conector onde é encaixado o cabo de força, que vem do 
estabilizador, do no-break ou da tomada. 
• Tomada de saída para monitor: conector onde é encaixado o cabo de força que vai 
alimentar o monitor. A vantagem de ligá-lo a esse conector é que não precisaremos mais 
acionar o botão liga-desliga do monitor, pois essa saída é desligada quando se desliga o 
micro e é ligada quando o micro é ligado. Importante: essa saída é calculada para 
fornecer a energia requerida pelo monitor, que é baixa. Não ligue nenhuma outra coisa 
nessa tomada. 
• Chave 110/220 Volts: serve para selecionar a voltagem em que a fonte será ligada, de 
acordo com a rede local. Algumas fontes mais modernas têm seleção automática de 
voltagem e não usam mais a chave.

Outros materiais