50 pág.

# Mat1162 2016.2 - Provas - Maple

DisciplinaCálculo II22.590 materiais683.907 seguidores
Pré-visualização50 páginas
```LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

Pergunta: Voc\303\252 saberia dizer, atrav\303\251s de conceitos b\303\241sicos de C\303\241lculo I (crescimento, decrescimento, concavidade, etc), por que o gr\303\241fico da fun\303\247\303\243o LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVEjZjJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2JC1GLDYlUSJ4RidGL0YyL0YzUSdub3JtYWxGJ0Y9LUkjbW9HRiQ2LVEifkYnRj0vJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRkUvJSlzdHJldGNoeUdGRS8lKnN5bW1ldHJpY0dGRS8lKGxhcmdlb3BHRkUvJS5tb3ZhYmxlbGltaXRzR0ZFLyUnYWNjZW50R0ZFLyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGVEY9 no intervalo LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkobWZlbmNlZEdGJDYmLUYjNictSSNtbkdGJDYkUSIwRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUkjbW9HRiQ2LVEiLEYnRjQvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHUSV0cnVlRicvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRjg2LVEifkYnRjRGOy9GP0Y9RkFGQ0ZFRkdGSUZLL0ZPRk0tSSNtaUdGJDYlUSN4MUYnLyUnaXRhbGljR0ZAL0Y1USdpdGFsaWNGJ0Y0RjQvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGUUY0 tem o formato apresentado pelo Maple?

Exerc\303\255cio 1:

No papel, desenhe o interior da regi\303\243o acima, pontilhado.

Exerc\303\255cio 2:

Expresse a regi\303\243o acima na forma do conjunto

explicitando LUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHRic2JVEiZkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJw==, LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEiZ0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJ0YvRjI=, LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEiYUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJ0YvRjI=, LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEiYkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJ0YvRjI=.

Exerc\303\255cio 3:

Escreva a fronteira da regi\303\243o como uma uni\303\243o de dois gr\303\241ficos da forma LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYvLUkjbWlHRiQ2JVEieUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GLDYlUSJmRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNiQtRiw2JVEieEYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJy1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmhuL0ZORmluRlxvLUYsNiVRImFGJ0YvRjItRjY2LVEmJmxlcTtGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRldGY28tRiw2JVEiYkYnRi9GMkY5 e um gr\303\241fico da forma LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYvLUkjbWlHRiQ2JVEieEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GLDYlUSJnRidGL0YyLUkobWZlbmNlZEdGJDYkLUYjNiQtRiw2JVEieUYnRi9GMkY5RjktRjY2LVEiLEYnRjlGOy9GP0YxRkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTlEsMC4zMzMzMzMzZW1GJy1GNjYtUSJ+RidGOUY7Rj5GQEZCRkRGRkZIRmhuL0ZORmluRlxvLUYsNiVRImNGJ0YvRjItRjY2LVEmJmxlcTtGJ0Y5RjtGPkZARkJGREZGRkhGSkZNRldGY28tRiw2JVEiZEYnRi9GMkY5.

Exerc\303\255cio 4: