Buscar

Resumo Biologia Celular

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Prof: Bonoto
Célula vegetal
As células das plantas vegetais apresentam pelo menos duas características que permitem distinguilas claramente das células animais: possuem um envoltório externo rígido, a parede celular, e um orgânulo citoplasmático responsável pela fotossíntese, o plasto. Além disso, quando adultas, a maioria das células vegetais possui uma grande bolsa membranosa na região central do citoplasma, o vacúolo central, que acumula uma substância aquosa de sais e açúcares.
Parede da célula vegetal
A parede celular começa a se formar ainda na telófase da mitose que dá origem à célula vegetal. Bolsas membranosas oriundas do aparelho de Golgi, repletas de substâncias gelatinosas denominadas pectinas, acumulam-se na região central da célula em divisão e se fundem, originando uma placa chamadafragmoplasto.
Enquanto a telófase avança, o fragmoplasto vai crescendo pela fusão de bolsas de pectina em suas bordas. Durante esse crescimento centrífugo (isto é, do centro para fora), forma-se poros no fragmoplasto, por onde passa fios de hialoplasma, que põe em comunicação os conteúdos das futuras células vizinhas. Essas pontes hiloplasmáticas são os plasmosdesmos (do grego plasmos, líquido, relativo ao citoplasma, e desmos, ponte, união).
A parede da célula vegetal é constituída por longas e resistentes microfibrilas de celulose. As microfibrilas de celulose mantêm-se unidas por uma matriz formada por glicoproteínas (proteínas ligadas á açucares) e por dois polissacarídeos,hemicelulose e pectina. O fragmoplasto atua como uma espécie de “forma” para a construção das paredes celulósicas. Cada célula irmã-secreta celulose sobre o fragmoplasto e vai construindo, de seu lado, uma parede celulósica própria. A camada de pectinas, que foi a primeira separação entre as células-irmãs, atua agora como um cimento intercelular, passando a se chamar lamela média
As células vegetais possuem um envoltório externo, espesso e relativamente rígido: a parede celulósica, também chamada membrana esquelética celulósica;
Células vegetais jovens apresentam uma parede celulósica fina e flexível, denominada parede primária.
A parede primária é elástica, de modo a permitir o crescimento celular. Depois que a célula cresceu e atingiu o tamanho e a forma definitivos, forma-se a parede secundária, mais espessa e rígida. A celulose que constitui a parede secundária é secretada através da membrana plasmática, e se deposita entre esta e a superfície interna da parede primária, na qual adere fortemente.
Conteúdo celular - principais organelas
Vacúolo
Delimitado por uma membrana denominada tonoplasto. Contém água, açúcares, proteínas; pode-se encontrar ainda compostos fenólicos, pigmentos como betalaínas, antocianinas cristais de oxalato de cálcio (drusas, estilóides, cristais prismáticos, rafídios, etc.). Muitas das substâncias estão dissolvidas, constituindo o suco celular, cujo pH é geralmente ácido, pela atividade de uma bomba de próton no tonoplasto. Em células especializadas pode ocorrer um único vacúolo, originado a partir da união de pequenos vacúolos de uma antiga célula meristemática (célula-tronco); em células parenquimáticas o vacúolo chega a ocupar 90% do espaço celular.
Funções: Ativo em processos metabólicos, como:
armazenamento de substâncias (vacúolos pequenos - acúmulo de proteínas, íons e outros metabólitos). Um exemplo são os microvacúolos do endosperma da semente de mamona (Ricinus communis), que contêm grãos de aleurona;
processo lisossômico (através de enzimas digestivas, existentes principalmente nos vacúolos centrais e bem desenvolvidos, cujo tonoplasto sofre invaginações para englobar material citoplasmático contendo organelas (a autofagia ocorre em células jovens ou durante a senescência). Se originam  a partir do sistema de membranas do complexo golgiense. Seu tamanho aumenta à medida que o tonoplasto incorpora vesículas derivadas do complexo de Golgi.
Plastos
Organelas formadas por um envelope de duas membranas unitárias contendo internamente uma matriz ou estroma, onde se situa um sistema de membranas saculiformes achatadas, os tilacóides. Originam-se dos plastídios e contêm DNA e ribossomos.
São divididos em três grandes grupos:
cloroplasto;
cromoplasto e
leucoplasto; estes, por sua vez, originam-se de estruturas muito pequenas, os proplastídios (que normalmente já ocorrem na oosfera, no saco embrionário e nos sistemas meristemáticos). Quando os proplastídios se desenvolvem na ausência de luz, apresentam um sistema especial, derivado da membrana interna, originando tubos que se fundem e formam o corpo prolamelar. Esses plastos são chamados estioplastos.
Cloroplastos: Seu genoma codifica algumas proteínas específicas dessas organelas; contêm clorofila e estão associados à fase luminosa da fotossíntese, sendo mais diferenciados nas folhas. Seu sistema de tilacóides é formado por pilhas de membranas em forma de discos, chamado de granus; é nesse sistema que se encontra a clorofila. Na matriz ocorrem as reações de fixação de gás carbônico para a produção de carboidratos, além de aminoácidos, ácidos graxos e orgânicos. Pode haver formação de amido e lipídios, estes últimos em forma de glóbulos (plastoglóbulos). Os cloroplastos produzem substâncias orgânicas através do processo de fotossíntese.
Cromoplastos: Portam pigmentos carotenóides (geralmente amarelos, alaranjados ou avermelhados); são encontrados em estruturas coloridas como pétalas, frutos e algumas raízes. Surgem a partir dos cloroplastos.
Leucoplastos: Sem pigmentos; podem armazenar várias substâncias:
amiloplastos: armazenam amido. Ex.: em tubérculos de batatinha inglesa (Solanum tuberosum).
proteinoplastos: armazenam proteínas.
elaioplastos: armazenam lipídios. Ex.: abacate (Persea americana).
Mitocôndrias
Estrutura e função das mitocôndrias
 
As mitocôndrias estão imersas no citosol, entre as diversas bolsas e filamentos que preenchem o citoplasma das células eucariontes. Elas são verdadeiras “casas de força” das células, pois produzemenergia para todas as atividades celulares.
As mitocôndrias foram descobertas em meados do século XIX, e, durante décadas, sua existência foi questionada por alguns citologistas. Somente em 1890 foi demonstrada, de modo incontestável, a presença de mitocôndrias no citoplasma celular. O termo “mitocôndria” (do grego, mitos, fio, e condros, cartilagem) surgiu em 1898, possivelmente como referência ao aspecto filamentoso e homogêneo (cartilaginoso) dessas organelas em alguns tipos de células, quando observadas ao microscópio óptico.
As mitocôndrias, cujo número varia de dezenas até centenas, dependendo do tipo de célula, estão presentes praticamente em todos os seres eucariontes, sejam animais, plantas, algas, fungos ou protozoários.
 
Estrutura interna das mitocôndrias
As mitocôndrias são delimitadas por duas membranas lipoprotéicas semelhantes às demais membranas celulares. Enquanto a membrana externa é lisa, a membrana interna possui inúmeras pregas – as cristas mitocondriais – que se projetam para o interior da organela.
A cavidade interna das mitocôndrias é preenchida por um fluido denominado matriz mitocondrial, onde estão presentes diversas enzimas, além de DNA e RNA e pequenos ribossomos e substâncias necessárias à fabricação de determinadas proteínas.
A respiração celular
No interior das mitocôndrias ocorre a respiração celular, processo em que moléculas orgânicas de alimento reagem com gás oxigênio (O2), transformando-se em gás carbônico (CO2) e água (H2O) e liberando energia.
	C6H12O6 + O2 -> 6 CO2 + 6 H2O + energia
 
A energia liberada na respiração celular é armazenada em uma substância chamada ATP (adenosina trifosfato), que se difunde para todas as regiões da célula, fornecendo energia para as mais diversas atividades celulares. O processo de respiração celular será melhor explicado na seção de Metabolismo energético.
A glicose e o metabolismo
 
	
	 
	Como já vimos, nos seres vivos o combustível mais utilizado é a glicose,substânciaaltamente energética cuja quebra no interior das células libera a energia armazenada nas ligações químicas e produz resíduos, entre eles gás carbônico e água.
A energia liberada é utilizada na execução de atividades metabólicas: síntese de diversas substâncias, eliminação de resíduos tóxicos produzidos pelas células, geração de atividade elétrica nas células nervosas, circulação do sangue etc.
O conjunto de reações químicas e de transformações de energia, incluindo a síntese (anabolismo) e a degradação de moléculas (catabolismo), constituí o metabolismo.
Toda vez que o metabolismo servir para a construção de novas moléculas que tenha uma finalidade biológica , falamos em anabolismo. Por exemplo: a realização de exercícios que conduzem a um aumento da massa muscular de uma pessoa envolve a síntese de proteínas nascélulas musculares.
Por outro lado, a decomposição de substâncias, que ocorre, por exemplo, no processo de respiração celular, com a liberação de energia para a realização das atividades celulares, constituí uma modalidade de metabolismo conhecida como catabolismo.
Associe anabolismo a síntese e catabolismo a decomposição de substâncias. De modo geral essas duas modalidades ocorrem juntas.
Durante o catabolismo, que ocorre nos processos energéticos, por exemplo, a energia liberada em decorrência da utilização dos combustíveis biológicos poderá ser canalizada para as reações de síntese de outras substâncias, que ocorre no anabolismo.
 
Energia sob a forma de ATP
Cada vez que ocorre a desmontagem da molécula de glicose, a energia não é simplesmente liberada para o meio. A energia é transferida para outras moléculas (chamadas de ATP - Adenosina Trifosfato), que servirão de reservatórios temporários de energia, “bateriazinhas” que poderão liberar “pílulas” de energia nos locais onde estiverem.
No citoplasma das células é comum a existência de uma substância solúvel conhecida como adenosina difosfato, ADP. É comum também a existência de radicais solúveis livres de fosfato inorgânico (que vamos simbolizar por Pi), ânions monovalentes do ácido orto-fosfórico. Cada vez que ocorre a liberção de energia na respiração aeróbica, essa energia liga o fosfato inorgânico (Pi) ao ADP, gerando ATP. Como o ATP também é solúvel ele se difunde por toda a célula.
A ligação do ADP com o fosfato é reversível. Então, toda vez que é necessário energia para a realização de qualquer trabalho na célula, ocorre a conversão de algumas moléculas de ATP em ADP + Pi e a energia liberada é utilizada pela célula. A recarga dos ADP ocorre toda vez que há liberação de energia na desmontagem da glicose, o que ocorre na respiração aeróbia ou na fermentação.
 
 
A estrutura do ATP
O ATP é um composto derivado de nucleotídeo em que a adenina é a base e o açúcar é a ribose. O conjunto adenina mais ribose é chamado de adenosina. A união de adenosina com três radicais fosfato leva ao composto adenosina trifosfato, ATP. As ligações que mantêm o segundo e o terceiro radicais fosfato presos no ATP são altamente energéticas (liberam cerca de 7 Kcal/mol de substância).
Assim, cada vez que o terceiro fosfato se desliga do conjunto, ocorre a liberação de energia que o mantinha unido ao ATP. É esta energia que é utilizada quando andamos, falamos, pensamos ou realizamos qualquer trabalho celular.
 Glicólise
Na glicólise, cada molécula de glicose é desdobrada em duas moléculas de piruvato (ácido pirúvico), com liberação de hidrogênio e energia, por meio de várias reações químicas.
O hidrogênio combina-se com moléculas transportadores de hidrogênio (NAD), formando NADH + H+, ou seja NADH2.
Ciclo do Ácido Cítrico ou de Krebs
 
Oxidação do Ácido Pirúvico
As moléculas de ácido pirúvico resultantes da degradação da glicose penetram no interior das mitocôndrias, onde ocorrerá a respiração propriamente dita. Cada ácido pirúvico reage com uma molécula da substância conhecida como coenzima A, originando três tipos de produtos: acetil-coenzima A, gás carbônico e hidrogênios.
O CO2 é liberado e os hidrogênios são capturados por uma molécula de NADH2 formadas nessa reação. Estas participarão, como veremos mais tarde, da cadeia respiratória.
Em seguida, cada molécula de acetil-CoA reage com uma molécula de ácido oxalacético, resultando em citrato (ácido cítrico) e coenzima A, conforme mostra a equação abaixo:
                1 acetil-CoA + 1 ácido oxalacético         1 ácido cítrico + 1 CoA
                  (2 carbonos)         (4 carbonos)                         (6 carbonos)
Analisando a participação da coenzima A na reação acima, vemos que ela reaparece intacta no final. Tudo se passa, portanto, como se a CoA tivesse contribuído para anexar um grupo acetil ao ácido oxalacético, sintetizando o ácido cítrico.
Cada ácido cítrico passará, em seguida, por uma via metabólica cíclica, denominada ciclo do ácido cítrico ou ciclo de Krebs, durante o qual se transforma sucessivamente em outros compostos.
 Analisando em conjunto as reações do ciclo de Krebs, percebemos que tudo se passa como se as porções correspondentes ao grupo acetil, anteriormente transferidas pela CoA, fossem expelidas de cada citrato, na forma de duas moléculas de CO2 e quatro hidrogênios. Um citrato, sem os átomos expelidos, transforma-se novamente em ácido oxalacético.
Os oito hidrogênios liberados no ciclo de Krebs reagem com duas substâncias aceptoras de hidrogênio, o NAD e o FAD, que os conduzirão até as cadeias respiratórias, onde fornecerãoenergia para a síntese de ATP. No próprio ciclo ocorre, para cada acetil que reage, a formação de uma molécula de ATP.
A importância metabólica do ciclo de Krebs
 
Ao estudarmos a respiração aeróbica, partimos de moléculas de glicose. Outras substâncias, porém, como proteínas e gorduras, também podem servir de combustível energético. Depois de devidamente transformadas, essas substâncias produzem moléculas de acetil, o combustível básico do ciclo de Krebs.
O ciclo de Krebs é a etapa da respiração em que a acetil-CoA oriunda das moléculas alimentares é “desmontada” em CO2 e H2O, e a energia produzida é usada na síntese de ATP.
Porém o ciclo de Krebs não participa apenas do metabolismo energético: à medida que as diversas substâncias do ciclo vão se formando, parte delas pode ser “desviada”, indo servir de matéria-prima para a síntese de substâncias orgânicas (anabolismo).
Por exemplo, uma parte das substâncias usadas pelas células para produzir aminoácidos, nucleotídeos e gorduras provém do ciclo de Krebs.
O Ciclo de Calvin
O ciclo começa com a reação de uma molécula de CO2 com um açúcar de cinco carbonos conhecido comoribulose difosfato catalisada pela enzima rubisco (ribulose bifosfato carboxilase/oxigenase, RuBP), uma das mais abundantes proteínas presentes no reino vegetal. 
Forma-se, então, um composto instável de seis carbonos, que logo se quebra em duas moléculas de três carbonos (2 moléculas de ácido 3-fosfoglicérico ou 3-fosfoglicerato, conhecidas como PGA). O ciclo prossegue até que no final, é produzida uma molécula de glicose e é regenerada a molécula de ribulose difosfato.
Note, porém, que para o ciclo ter sentido lógico, é preciso admitir a reação de seis moléculas de CO2 com seis moléculas de ribulose difosfato, resultando em uma molécula de glicose e a regeneração de outras seis moléculas de ribulose difosfato.
A redução do CO2 é feita a partir do fornecimento de hidrogênios pelo NADH2 e a energia é fornecida pelo ATP. Lembre-se que essas duas substâncias foram produzidas na fase clara. 
O esquema apresentado é uma simplificação do ciclo de Clavin: na verdade, as reações desse ciclo se parecem com as que ocorrem na glicólise, só que em sentido inverso.
É correto admitir, também, que o ciclo origina unidades do tipo CH2O, que poderão ser canalizadas para a síntese de glicose, sacarose, amido e, inclusive, aminoácidos, ácidos graxos e glicer
Prof: Rosy
O retículo endoplasmático
 
Tipos de retículo
O citoplasma dascélulas eucariontes contém inúmeras bolsas e tubos cujas paredes têm uma organização semelhante à da membrana plasmática. Essas estruturas membranosas formam uma complexa rede de canais interligados, conhecida pelo nome de retículo endoplasmático. Pode-se distinguir dois tipos de retículo: rugoso (ou granular) e liso (ou agranular).
 
Retículo endoplasmático rugoso (RER) e liso (REL)
O retículo endoplasmático rugoso (RER), também chamado de ergastoplasma, é formado por sacos achatados, cujas membranas têm aspecto verrugoso devido à presença de grânulos – osribossomos – aderidos à sua superfície externa (voltada para o citosol). Já o retículo endoplasmático liso (REL) é formado por estruturas membranosas tubulares, sem ribossomos aderidos, e, portanto, de superfície lisa.
Os dois tipos de retículo estão interligados e a transição entre eles é gradual. Se observarmos o retículo endoplasmático partindo do retículo rugoso em direção ao liso, vemos as bolsas se tornarem menores e a quantidade de ribossomos aderidos diminuir progressivamente, até deixar de existir.
 
Funções do retículo endoplasmático
O retículo endoplasmático atua como uma rede de distribuição de substâncias no interior da célula. No líquido existente dentro de suas bolsas e tubos, diversos tipos de substâncias se deslocam sem se misturar com o citosol.
Produção de lipídios
Uma importante função de retículo endoplasmático liso é a produção de lipídios. A lecitina e ocolesterol, por exemplo, os principais componentes lipídicos de todas as membranas celulares são produzidos no REL. Outros tipos de lipídios produzidos no retículo liso são os hormônios esteróides, entre os quais estão a testosterona e os estrógeno, hormônios sexuais produzidos nas células das gônadas de animais vertebrados.
Desintoxicação
O retículo endoplasmático liso também participa dos processos de desintoxicação do organismo. Nas células do fígado, o REL, absorve substâncias tóxicas, modificando-as ou destruindo-as, de modo a não causarem danos ao organismo. É a atuação do retículo das células hepáticas que permiteeliminar parte do álcool, medicamentos e outras substâncias potencialmente nocivas que ingerimos.
Armazenamento de substâncias
Dentro das bolsas do retículo liso também pode haver armazenamento de substâncias. Os vacúolos das células vegetais, por exemplo, são bolsas membranosas derivadas do retículo que crescem pelo acúmulo de soluções aquosas ali armazenadas.
Produção de proteínas
O retículo endoplasmático rugoso, graças à presença dos ribossomos, é responsável por boa parte da produção de proteínas da célula. As proteínas fabricadas nos ribossomos do RER penetram nas bolsas e se deslocam em direção ao aparelho de Golgi, passando pelos estreitos e tortuosos canais co retículo endoplasmático liso.
Aparelho de Golgi
A denominação aparelho ou complexo de Golgi é uma homenagem ao citologista italiano Camilo Golgi, que, em 1898, descobriu essa estrutura citoplasmática. Ao verificar que certas regiões com citoplasma celular se coravam por sais de ósmio de prata, Golgi imaginou que ali deveria existir algum tipo de estrutura, posteriormente confirmada pela microscopia eletrônica.
Dictiossomos
O aparelho de Golgi está presente em praticamente todas as células eucariontes, e consiste de bolsas membranosas achatadas, empilhadas como pratos. Cada uma dessas pilhas recebe o nome dedictiossomo. Nas células animais, os dictiossomos geralmente se encontram reunidos em um único local, próximo ao núcleo. Nas células vegetais, geralmente há vários dictiossomos espalhados pelo citoplasma.
Funções do aparelho de Golgi
O aparelho de Golgi atua como centro de armazenamento, transformação, empacotamento e remessa de substâncias na célula. Muitas das substâncias que passam pelo aparelho de Golgi serão eliminadas da célula, indo atuar em diferentes partes do organismo. É o que ocorre, por exemplo, com asenzimas digestivas produzidas e eliminadas pelas células de diversos órgãos (estômago, intestino, pâncreas etc.). Outras substâncias, tais como o muco que lubrifica as superfícies internas do nosso corpo, também são processadas e eliminadas pelo aparelho de Golgi. Assim, o principal papel dessa estrutura citoplasmática é a eliminação de substâncias que atuam fora da célula, processo genericamente denominado secreção celular.
Secreção de enzimas digestivas
As enzimas digestivas do pâncreas, por exemplo, são produzidas no RER e levadas até as bolsas do aparelho de Golgi, onde são empacotadas em pequenas bolsas, que se desprendem dos dictiossomos e se acumulam em um dos pólos da célula pancreática. Quando chega o sinal de que há alimento para ser digerido, as bolsas cheias de enzimas se deslocam até a membrana plasmática, fundem-se com ela e eliminam seu conteúdo para o meio exterior.
A produção de enzimas digestivas pelo pâncreas é apenas um entre muitos exemplos do papel do aparelho de Golgi nos processos de secreção celular. Praticamente todas as células do corpo sintetizam e secretam uma grande variedade de proteínas que atuam fora delas.
Lisossomos
Estrutura e origem dos lisossomos
 
Os lisossomos (do grego lise, quebra, destruição) são bolsas membranosas que contêm enzimas capazes de digerir substâncias orgânicas. Com origem no aparelho de Golgi, os lisossomos estão presentes em praticamente todas as células eucariontes. As enzimas são produzidas no RER e migram para os dictiossomos, sendo identificadas e enviadas para uma região especial do aparelho de Golgi, onde são empacotadas e liberadas na forma de pequenas bolsas
A digestão intracelular
Os lisossomos são organelas responsáveis pela digestão intracelular. As bolsas formadas nafagocitose e na pinocitose, que contêm partículas capturadas no meio externo, fundem-se aos lisossomos, dando origem a bolsas maiores, onde a digestão ocorrerá.
eroxissomos
 
Peroxissomos são bolsas membranosas que contêm alguns tipos de enzimas digestivas. Sua semelhança com os lisossomos fez com que fossem confundidos com eles até bem pouco tempo. Entretanto, hoje se sabe que os peroxissomos diferem dos lisossomos principalmente quanto ao tipo de enzimas que possuem.
Os peroxissomos, além de conterem enzimas que degradam gorduras e aminoácidos, têm também grandes quantidades da enzima catalase.
A catalase converte o peróxido de hidrogênio, popularmente conhecido como água oxigenada (H2O2), e água e gás oxigênio. A água oxigenada se forma normalmente durante a degradação de gorduras e de aminoácidos, mas, em grande quantidade, pode causar lesões à célula.
Apesar das descobertas recentes envolvendo os peroxissomos, a função dessas organelas no metabolismo celular ainda é pouco conhecida. Entre outras funções, acredita-se que participem dos processos de desintoxicação da célula.
Os centríolos
 
	Os centríolos são organelas NÃO envolvidas por membrana e que participam do progressode divisão celular. Nas células de fungos complexos, plantas superiores (gimnospermas e angiospermas) e nematóides não existem centríolos. Eles estão presentes na maioria das células de animais, algas e vegetais inferiores como as briófitas (musgos) e pteridófitas (samambaias).
Estruturalmente, são constituídos por um total de nove trios de microtúbulos protéicos, que se organizam em cilindro.
São autoduplicáveis no período que precede a divisão celular, migrando, logo a seguir, para os pólos opostos da célula.
Uma das providências que a fábrica celular precisa tomar é a construção de novas fábricas, isto é, a sua multiplicação. Isso envolve uma elaboração prévia de uma serie de “andaimes” protéicos, o chamado fuso de divisão, formado por inúmeros filamentos de microtúbulos.
Embora esses microtúbulos não sejam originados dos centríolos e sim de uma região da célula conhecido como centrossomo, é comum a participação deles no processo de divisão de uma célula animal. Já em células de vegetais superiores, como não existem centríolos, sua multiplicação se processa sem eles.
Os Cílios e Flagelos
São estruturas móveis, encontradas externamenteem células de diversos seres vivos. Os cílios são curtos e podem ser relacionados à locomoção e a remoção de impurezas. Nas células que revestem a traquéia humana, por exemplo, os batimentos ciliares empurram impurezas provenientes do ar inspirado, trabalho facilitado pela mistura com o muco que, produzido pelas células da traquéia, lubrifica e protege a traquéia. Em alguns protozoários, por exemplo, o paramécio, os cílios são utilizados para a locomoção.
Os flagelos são longos e também se relacionam a locomoção de certas células, como a de alguns protozoários (por exemplo, o tripanosssomo causador da doença de Chagas) e a do espermatozóide.
Em alguns organismos pluricelulares, por exemplo, nas esponjas, o batimento flagelar cria correntes de água que percorrem canais e cavidades internas, trazendo, por exemplo, partículas de alimento.
Estruturalmente, cílios e flagelos são idênticos. Ambos são cilíndricos, exteriores as células e cobertos por membrana plasmática. Internamente, cada cílio ou flagelo é constituído por um conjunto de nove pares de microtúbulos periféricos de tubulina, circundando um par de microtúbulos centrais. É a chamada estrutura 9 + 2.
Tanto os cílios como flagelos são originados por uma região organizadora no interior da célula, conhecida como corpúsculo basal. Em cada corpúsculo basal há um conjunto de nove trios de microtúbulos (ao invés de duplas, como nos cílios e flagelos), dispostos em círculo. Nesse sentido, a estrutura do corpúsculo basal é semelhante à de um centríolo.
 
s componentes do núcleo
O núcleo das célula que não estão em processo de divisão apresenta um limite bem definido, devido à presença da carioteca ou membrana nuclear, visível apenas ao microscópio eletrônico.
A maior parte do volume nuclear é ocupada por uma massa filamentosa denominada cromatina. Existem ainda um ou mais corpos densos (nucléolos) e um líquido viscoso (cariolinfa ou nucleoplasma).
 
A carioteca
A carioteca (do grego karyon, núcleo e theke, invólucro, caixa) é um envoltório formado por duas membranas lipoprotéicas cuja organização molecular é semelhante as demais membranas celulares. Entre essas duas membranas existe um estreito espaço, chamado cavidade perinuclear.
A face externa da carioteca, em algumas partes, se comunica com o retículo endoplasmático e, muitas vezes, apresenta ribossomos aderidos à sua superfície. Neste caso, o espaço entre as duas membranas nucleares é uma continuação do espaço interno do retículo endoplasmático.
Poros da carioteca
A carioteca é perfurada por milhares de poros, através das quais determinadas substâncias entram e saem do núcleo. Os poros nucleares são mais do que simples aberturas. Em cada poro existe uma complexa estrutura protéica que funciona como uma válvula, abrindo-se para dar passagem a determinadas moléculas e fechando-se em seguida. Dessa forma, a carioteca pode controlar a entrada e a saída de substâncias.
A face interna da carioteca encontra-se a lâmina nuclear, uma rede de proteínas que lhe dá sustentação. A lâmina nuclear participa da fragmentação e da reconstituição da carioteca, fenômenos que ocorrem durante a divisão celular.
A cromatina
A cromatina (do grego chromatos, cor) é um conjunto de fios, cada um deles formado por uma longa molécula de DNA associada a moléculas de histonas, um tipo especial de proteína. Esses fios são os cromossomos.
Quando se observam núcleos corados ao microscópio óptico, nota-se que certas regiões da cromatina se coram mais intensamente do que outras. Os antigos citologistas já haviam observados esse fato e imaginado, acertadamente, que as regiões mais coradas correspondiam a porções dos cromossomos mais enroladas, ou mais condensadas, do que outras.
Para assinalar diferenças entre os tipos de cromatina, foi criado o termo heterocromatina (do gregoheteros, diferente), que se refere à cromatina mais densamente enrolada. O restante do material cromossômico, de consistência mais frouxa, foi denominado eucromatina (do grego eu, verdadeiro).
Diferentes níveis de condensação do DNA. (1) Cadeia simples de DNA . (2) Filamento de cromatina (DNAcom histonas). (3) Cromatina condensada em interfase com centrómeros. (4) Cromatina condensada em profase. (Existem agora duas cópias da molécula de DNA) (5) Cromossoma em metafase
Os nucléolos
Na fase que a célula eucariótica não se encontra em divisão é possível visualizas vários nucléolos, associados a algumas regiões específicas da cromatina. Cada nucléolo é um corpúsculo esférico, não membranoso, de aspecto esponjoso quando visto ao microscópio eletrônico, rico em RNA ribossômico(a sigla RNA provém do inglês RiboNucleic Acid). Este RNA é um ácido nucléico produzido a partir o DNA das regiões específicas da cromatina e se constituirá um dos principais componentes dos ribossomos presentes no citoplasma.
É importante perceber que ao ocorrer a espiralação cromossômica os nucléolos vão desaparecendo lentamente. Isso acontece durante os eventos que caracterizam a divisão celular. O reaparecimento dos nucléolos ocorre com a desespiralação dos cromossomos, no final da divisão do núcleo.
 
A estrutura dos cromossomos
 
Cromossomos da célula interfásica
O período de vida da célula em que ela não está em processo de divisão é denominado interfase. A cromatina da célula interfásica, como já foi mencionada, é uma massa de filamentos chamados de cromossomos. Se pudéssemos separar, um por um, os cromossomos de uma célula interfásica humana, obteríamos 46 filamentos, logos e finos. Colocado em linha, os cromossomos humanos formariam um fio de 5 cm de comprimento, invisível ao microscópio óptico, uma vez que sua espessura não ultrapassa 30 nm.
Cromossomos da célula em divisão
Quando a célula vai se dividir, o núcleo e os cromossomos passam por grandes modificações. Os preparativos para a divisão celular têm inicio com a condensação dos cromossomos, que começam a se enrolar sobre si mesmos, tornando-se progressivamente mais curtos e grossos, até assumirem o aspecto de bastões compactos.
 
Constrições cromossômicas
Durante a condensação cromossômica, as regiões eucromáticas se enrolam mais frouxamente do que as heterocromáticas, que estão condensadas mesmo durante a interfase. No cromossomo condensado, as heterocromatinas, devido a esse alto grau de empacotamento, aparecem como regiões “estranguladas” do bastão cromossômico, chamadas constrições
Centrômero e cromátides
Na célula que está em processo de divisão, cada cromossomo condensado aparece como um par de bastões unidos em um determinado ponto, o centrômero. Essas duas “metades” cromossômicas, denominadas cromátides-irmãs são idênticas e surgem da duplicação do filamento cromossômico original, que ocorre na interfase, pouco antes de a divisão celular se iniciar.
Durante o processo de divisão celular, as cromátides-irmãs se separam: cada cromátide migra para uma das células-filhas que se formam.
O centrômero fica localizado em uma região heterocromática, portanto em uma constrição que contém o centrômero é chamada constrição primária, e todas as outras que porventura existam são chamadas constrições secundárias.
As partes de um cromossomo separadas pelo centrômero são chamadas braços cromossômicos. A relação de tamanho entre os braços cromossômicos, determinada pela posição do centrômero, permite classificar os cromossomos em quatro tipos:
metacêntrico: possuem o centrômero no meio, formando dois braços de mesmo tamanho;
submetacêntricos: possuem o centrômero um pouco deslocado da região mediana, formando dois braços de tamanhos desiguais;
acrocêntricos: possuem o centrômero bem próximo a uma das extremidades, formando um braço grande e outro muito pequeno;
telocêntricos: possuem o centrômero em um das extremidades, tendo apenas um braço.
 
Cromossomos e genes
 
O que são genes?
As moléculas de DNA dos cromossomos contêm “receitas” para a fabricação de todas as proteínas da célula. Cada “receita” é um gene.
Portanto, o gene é uma seqüência de nucleotídeos do DNA que pode ser transcritaem uma versão deRNA e conseqüentemente traduzida em uma proteína.
Conceito de genoma
Um cromossomo é comparável a um livro de receita de proteínas, e o núcleo de uma célula humana é comparável a uma biblioteca, constituída por 46 volumes, que contêm o receituário completo de todas as proteínas do indivíduo. O conjunto completo de genes de uma espécie, com as informações para a fabricação dos milhares de tipos de proteínas necessários à vida, é denominado genoma. Atualmente, graças a modernas técnicas de identificação dos genes, os cientistas mapearam o genoma humano através do Projeto Genoma Humano.
Divisão celular
Do mesmo modo que uma fábrica pode ser multiplicada pela construção de várias filiais, também as células se dividem e produzem cópias de si mesmas.
Há dois tipos de divisão celular: mitose e meiose.
Na mitose, a divisão de uma “célula-mãe” duas “células-filhas” geneticamente idênticas e com o mesmo número cromossômico que existia na célula-mãe. Uma célula n produz duas células n, uma célula 2n produz duas células 2n etc. Trata-se de uma divisão equacional.
Já na meiose, a divisão de uma “célula-mãe” 2n gera “células-filhas” n, geneticamente diferentes. Neste caso, como uma célula 2n produz quatro células n, a divisão é chamada reducional.
 
A interfase – A fase que precede a mitose
É impossível imaginar a multiplicação de uma fabrica, de modo que todas as filiais fossem extremamente semelhantes a matriz, com cópias fieis de todos os componentes, inclusive dos diretores? Essa, porém, no caso da maioria das células, é um acontecimento rotineiro. A mitose corresponde a criação de uma cópia da fabrica e sua meta é a duplicação de todos os componentes.
A principal atividade da célula, antes de se dividir, refere-se a duplicação de seus arquivos de comando, ou seja, à reprodução de uma cópia fiel dos dirigentes que se encontram no núcleo.
A interfase é o período que precede qualquer divisão celular, sendo de intensa atividade metabólica.Nesse período, há a preparação para a divisão celular, que envolve a duplicação da cromatina, material responsável pelo controle da atividade da célula. Todas as informações existentes ao longo da molécula de DNA são passadas para a cópia, como se correspondessem a uma cópia fotográfica da molécula original. Em pouco tempo, cada célula formada da divisão receberá uma cópia exata de cada cromossomo da célula se dividiu.
As duas cópias de cada cromossomo permanecem juntas por certo tempo, unidas pelo centrômero comum, constituindo duas cromátides de um mesmo cromossomo. Na interfase, os centríolos também se duplicam.
 
A interfase e a Duplicação do DNA
Houve época em que se falava que a interfase era o período de “repouso” da célula. Hoje, sabemos, que na realidade a interfase é um período de intensa atividade metabólica no ciclo celular: é nela que se dá aduplicação do DNA, crescimento e síntese. Costuma-se dividir a interfase em três períodos distintos:G1, S e G2.
O intervalo de tempo em que ocorre a duplicação do DNA foi denominado de S (síntese) e o período que antecede é conhecido como G1 (G1 provém do inglês gap, que significa “intervalo”). O período que sucede o S é conhecido como G2.
As fases da mitose
 
A mitose é um processo contínuo de divisão celular, mas, por motivos didáticos, para melhor compreendê-la, vamos dividi-la em fases: prófase, metáfase, anáfase e telófase. Alguns autores costumam citar uma quinta fase – a prometáfase – intermediária entre a prófase e a metáfase. O final da mitose, com a separação do citoplasma, é chamado de citocinese.
 
Prófase – Fase de início (pro = antes)
Os cromossomos começam a ficar visíveis devido à espiralação.
O nucléolo começa a desaparecer.
Organiza-se em torno do núcleo um conjunto de fibras (nada mais são do que microtúbulos) originadas a partir dos centrossomos, constituindo o chamado fuso de divisão (ou fuso mitótico).
Embora os centríolos participem da divisão, não é deles que se originam as fibras do fuso. Na mitose em célula animal, as fibras que se situam ao redor de cada par de centríolos opostas ao fuso constituem o áster (do grego, aster = estrela).
O núcleo absorve água, aumenta de volume e a carioteca se desorganiza.
No final da prófase, curtas fibras do fuso, provenientes do centrossomos, unem-se aos centrômeros. Cada uma das cromátides-irmãs fica ligada a um dos pólos da célula.
Note que os centrossomos ainda estão alinhados na região equatorial da célula, o que faz alguns autores designarem essa fase de prometáfase.
A formação de um novo par de centríolos é iniciada na fase G1, continua na fase S e na fase G2 a duplicação é completada. No entanto, os dois pares de centríolos permanecem reunidos no mesmo centrossomo. Ao iniciar a prófase, o centrossomo parte-se em dois e cada par de centríolos começa a dirigir-se para pólos opostos da célula que irá entrar em divisão. 
Metáfase – Fase do meio (meta = no meio)
Os cromossomos atingem o máximo em espiralação, encurtam e se localizam na região equatorialda célula.
No finalzinho da metáfase e início da anáfase ocorre a duplicação dos centrômeros.
Anáfase – Fase do deslocamento (ana indica movimento ao contrário)
As fibras do fuso começam a encurtar. Em conseqüência, cada lote de cromossomos-irmãos é puxado para os pólos opostos da célula.
Como cada cromátide passa a ser um novo cromossomo, pode-se considerar que a célula fica temporariamente tetraplóide.
Telófase – Fase do Fim (telos = fim)
Os cromossomos iniciam o processo de desespirilação.
Os nucléolos reaparecem nos novos núcleos celulares.
A carioteca se reorganiza em cada núcleo-filho.
Cada dupla de centríolos já se encontra no local definitivo nas futuras células-filhas.
Citocinese – Separando as células
A partição em duas copias é chamada de citocinese e ocorre, na célula animal, de fora para dentro, isto é, como se a célula fosse estrangulada e partida em duas (citocinese centrípeta). Há uma distribuição de organelas pelas duas células-irmãs. Perceba que a citocinese é, na verdade a divisão do citoplasma. Essa divisão pode ter início já na anáfase, dependendo da célula.
A Mitose na Célula Vegetal
A mitose ocorre sem centríolos. A citocinese é centrífuga, ocorre do centro para a periferia da célula.
Os Ácidos Nucléicos: DNA e RNA
O DNA se diferencia do RNA por possuir o açúcar desoxirribose e os nucleotídeos adenina, citosina,guanina e timina. No RNA, o açúcar é a ribose e os nucleotídeos são adenina, citosina, guanina euracila (a uracila entra no lugar da timina).
As duas cadeias de nucleotídeos do DNA são unidas uma à outra por ligações chamadas de pontes de hidrogênio, que se formam entre as bases nitrogenadas de cada fita.
O pareamento de bases ocorre de maneira precisa: uma base púrica se liga a uma pirimídica –adenina (A) de uma cadeia pareia com a timina (T) da outra e guanina (G) pareia com citosina (C).
O DNA controla toda a atividade celular. Ele possui a “receita” para o funcionamento de uma célula. Toda vez que uma célula se divide, a “receita” deve ser passada para as células-filhas. Todo o “arquivo” contendo as informações sobre o funcionamento celular precisa ser duplicado para que cada célula-filha receba o mesmo tipo de informação que existe na célula-mãe. Para que isso ocorra, é fundamental que oDNA sofra “auto-duplicação”.
 
A duplicação do DNA
O modelo estrutural do DNA proposto por Watson e Crick explica a duplicação dos genes: as duas cadeias do DNA se separam e cada uma delas orienta a fabricação de uma metade complementar.
O experimento dos pesquisadores Meselson e Stahl confirmou que a duplicação do DNA é semiconservativa, isto é, que metade da molécula original se conserva íntegra em cada uma das duas moléculas-filhas.
No processo de duplicação do DNA, as pontes de hidrogênio entre as bases se rompem e as duas cadeias começam a se separar. À medida que as bases vão sendo expostas, nucleotídeos que vagam pelo meio ao redor vão se unindo a elas, sempre respeitando a especificidade de emparelhamento: A com T,T com A, C com G e G com C. Uma vez ordenados sobre a cadeia que está que está servindo de modelo, os nucleotídeos se ligam em seqüência e formam uma cadeia complementar dobre cada uma das cadias da molécula original. Assim, uma molécula de DNA reproduz duas moléculas idênticas a ela. 
A ação da enzima DNA polimerase
Diversos aspectos da duplicação do DNA já foram desvendados pelos cientistas. Hoje, sabe-se que há diversas enzimas envolvidas nesse processo. Certas enzimas desemparelham as duas cadeias de DNA, abrindo a molécula. Outras desenrolam a hélice dupla, e há, ainda, aquelas que unem os nucleotídeos entre si. A enzima que promove a ligação dos nucleotídeos é conhecida como DNA polimerase, pois sua função é construir um polímero (do grego poli, muitas, e meros, parte) de nucleotídeos.
A mensagem do DNA é passada para o RNA
O material genético representado pelo DNA contém uma mensagem em código que precisa ser decifrada e traduzida em proteínas, muitas das quais atuarão nas reações metabólicas da célula. A mensagem contida no DNA deve, inicialmente, ser passada para moléculas de RNA que, por sua vez, orientarão a síntese de proteínas. O controle da atividade celular pelo DNA, portanto, é indireto e ocorre por meio da fabricação de moléculas de RNA, em um processo conhecido como transcrição.
 
RNA: Uma Cadeia (Fita) Simples
As moléculas de RNA são constituídas por uma seqüência de ribonucleotídeos, formando uma cadeia (fita) simples.
xistem três tipos básicos de RNA, que diferem um do outro no peso molecular: o RNA ribossômico, representado por RNAr (ou rRNA), o RNA mensageiro, representado por RNAm (ou mRNA) e o RNA transportador, representado por RNAt (ou tRNA).
O RNA ribossômico é o de maior peso molecular e constituinte majoritário do ribossomo,organóide relacionado à síntese de proteínas na célula.
O RNA mensageiro é o de peso molecular intermediário e atua conjuntamente com os ribossomos na síntese protéica.
O RNA transportador é o mais leve dos três e encarregado de transportar os aminoácidos que serão utilizados na síntese de proteínas.
Transcrição da informação genética
A síntese de RNA (mensageiro, por exemplo) se inicia com a separação das duas fitas de DNA. Apenas uma das fitas do DNA serve de molde para a produção da molécula de RNAm. A outra fita não é transcrita. Essa é uma das diferenças entre a duplicação do DNA e a produção do RNA.
As outras diferenças são:
os nucleotídeos utilizados possuem o açúcar ribose no lugar da desoxirribose;
há a participação de nucleotídeos de uracila no lugar de nucleotídeos de timina. Assim, se na fita de DNA que está sendo transcrita aparecer adenina, encaminha-se para ela um nucleotídeo complementar contendo uracila;
Imaginando um segmento hipotético de um filamento de DNA com a seqüência de bases:
DNA- ATGCCGAAATTTGCG
O segmento de RNAm formado na transcrição terá a seqüência de bases:
RNA- UACGGCUUUAAACGC
 
Em uma célula eucariótica, o RNAm produzido destaca-se de seu molde e, após passar por um processamento, atravessa a carioteca e se dirige para o citoplasma, onde se dará a síntese protéica. Com o fim da transcrição, as duas fitas de DNA seu unem novamente, refazendo-se a dupla hélice.
O código genético
A mensagem genética contida no DNA é formada por um alfabeto de quatro letras que correspondem aos quatro nucleotídeos: A, T, C e G. Com essas quatros letras é preciso formar “palavras” que possuem o significado de “aminoácidos”. Cada proteína corresponde a uma “frase” formada pelas “palavras”, que são os aminoácidos. De que maneira apenas quatro letras do alfabeto do DNA poderiam ser combinadas para corresponder a cada uma das vinte “palavras” representadas pelos vinte aminoácidos diferentes que ocorrem nos seres vivos.
Uma proposta brilhante sugerida por vários pesquisadores, e depois confirmada por métodos experimentais, foi a de que cada três letras (uma trinca de bases) do DNA corresponderia uma “palavra”, isto é, um aminoácido. Nesse caso, haveria 64 combinações possíveis de três letras, o que seria mais do que suficiente para codificar os vinte tipos diferentes de aminoácidos(matematicamente, utilizando o método das combinações seriam, então, 4 letras combinadas 3 a 3, ou seja, 43 = 64 combinações possíveis).
O código genético do DNA se expressa por trincas de bases, que foram denominadas códons.Cada códon, formado por três letras, corresponde a um certo aminoácido.
A correspondência entre o trio de bases do DNA, o trio de bases do RNA e os aminoácidos por eles especificados constitui uma mensagem em código que passou a ser conhecida como “código genético”.
 
Mas, surge um problema. Como são vinte os diferentes aminoácidos, há mais códons do que tipos de aminoácidos! Deve-se concluir, então, que há aminoácidos que são especificados por mais de um códon, o que foi confirmado. A tabela abaixo, especifica os códons de RNAm que podem ser formados e os correspondentes aminoácidos que especificam.
Dizemos que o código genético é universal, pois em todos os organismos da Terra atual ele funciona da mesma maneira, quer seja em bactérias, em uma cenoura ou no homem.
O códon AUG, que codifica para o aminoácido metionina, também significa início de leitura, ou seja, é um códon que indica aos ribossomos que é por esse trio de bases qe deve ser iniciada a leitura do RNAm.
Note que três códons não especificam nenhum aminoácido. São os códons UAA, UAG e UGA, chamados de códons e parada durante a “leitura” (ou stop códons) do RNA pelos ribossomos, na síntese protéica.
Diz-se que o código genético é degenerado porque cada “palavra” (entenda-se aminoácido) pode ser especificada por mais de uma trinca.
Tradução: Síntese de Proteínas
Tradução é o nome utilizado para designar o processo de síntese de proteínas. Ocorre no citoplasma com a participação, entre outros, de RNA e de aminoácidos.
 
Quem participa da síntese de proteínas?
Cístron (gene) é o segmento de DNA que contém as informações para a síntese de um polipeptídeo ou proteína.
O RNA produzido que contém uma seqüência de bases nitrogenadas transcrita do DNA é um RNA mensageiro.
No citoplasma, ele será um dos componentes participantes da síntese de proteínas, juntamente com outros dois tipos de RNA, todos de fita simples e produzidos segundo o mesmo processo descrito para o RNA mensageiro:
	RNA ribossômico, RNAr. Associando-se a proteínas, as fitas de RNAr formarão os ribossomos, orgânulos responsáveis pela leitura da mensagem contida no RNA mensageiro;
RNAs transportadores, RNAt. Assim chamados porque serão os responsáveis pelo transportede aminoácidos até o local onde se dará a síntese de proteínas junto aos ribossomos. São moléculas de RNA de fita simples, de pequeno tamanho, contendo, cada uma, cerca de 75 a 85 nucleotídeos. Cada fita de RNAt torce-se sobre si mesma, adquirindo o aspecto visto na figura abaixo.
Duas regiões se destacam em cada transportador: uma é o local em que se ligará o aminoácido a ser transportado e a outra corresponde ao trio de bases complementares (chamado anticódon) do RNAt, que se encaixará no códon correspondente do RNAm.
 
Anticódon é o trio de bases do RNAt, complementar do códon do RNAm.
RNA - Tradução passo a passo
A tradução é um processo no qual haverá a leitura da mensagem contida na molécula de RNAm pelos ribosomo, decodificando a linguagem de ácido nucléico para a linguagem de proteína.
Cada RNAt em solução liga-se a um determinado aminoácido, formando-se uma molécula chamada aminoacil-RNAt, que conterá, na extremidade correspondente ao anticódon, um trio de códon do RNAm.
Para entendermos bem este processo, vamos admitir que ocorra a síntese de um peptídeo contendo apenas sete aminoácidos, o que se dará a partir da leitura de um RNAm contendo sete códons (21 bases hidrogenadas). A leitura (tradução) será efetuada por um ribossomo que se deslocará ao longo do RNAm
Esquematicamente na síntese protéica teríamos:
Um RNAm, processado no núcleo, contendo sete códons (21 bases hidrogenadas) se dirige aocitoplasma.
No citoplasma, um ribossomo se liga ao RNAm na extremidade correspondente ao início da leitura. Dois RNAt, carregando os seus respectivos aminoácidos (metionina e alanina), prendem-se ao ribossomo. Cada RNAt liga-se ao seu trio de bases (anticódon) ao trio de bases correspondentes ao códon do RNAm. Uma ligação peptídica une a metionina à alanina.
O ribossomo se desloca ao longo do RNAm. O RNAt que carregava a metionina se desliga do ribossomo. O quarto RNAt, transportando o aminoácido leucina, une o seu anticódon ao códon correspondente do RNAm. Uma ligação peptídica é feita entre a leucina e a alanina.
O ribossomo novamente se desloca. O RNAt que carregava a alanina se desliga do ribossomo. O quarto RNAt, transportando o aminoácido ácido glutâmico encaixa-se no ribossomo. Ocorre a união do anticódon desse RNAt com o códon correspondente do RNAm. Uma ligação peptídica une o ácido glutâmico à leucina.
Novo deslocamento do ribossomo. O quinto RNAt, carregando a aminoácido glicina, se encaixa no ribossomo. Ocorre a ligação peptídica da glicina com o ácido glutâmico.
Continua o deslocamento do ribossomo ao longo do RNAm. O sexto RNAt, carregando o aminoácido serina, se encaixa no ribossomo. Uma liogação peptídica une a serina à glicina.
Fim do deslocamento do ribossomo. O último transportador , carregando o aminoácido triptofano, encaixa-se no ribossomo. Ocorre a ligação peptídica do triptofano com a serina. O RNAt que carrega o triptofano se separa do ribossomo. O mesmo ocorre com o transportador que portava a serina.
O peptídeo contendo sete aminoácidos fica livre no citoplasma. Claro que outro ribossomo pode se ligar ao RNAm, reiniciando o processo de tradução, que resultará em um novo peptídio. Perceba, assim, que o RNAm contendo sete códons (21 bases nitrogenadas) conduziu a síntese de um peptídeo formado por sete aminoácidos.
Os polirribossomos
Em algumas células, certas proteínas são produzidas em grande quantidade. Por exemplo, a observação de glândulas secretoras de certos hormônios de natureza protéica (que são liberados para o sangue, indo atuar em outros órgãos do mesmo organismo) mostra, em certos locais, uma fileira de ribossomos efetuando a leitura do mesmo RNA mensageiro. Assim, grandes quantidades da mesma proteína são produzidas.
Ao conjunto de ribossomos, atuando ao longo se um RNAm, dá-se o nome de polirribossomos
Comunicação e sinalização celular
Ccc “Do simples para o complexo, moléculas organizadas formam as células, que unidas formam os tecidos, que unidos formam os órgãos, os quais unidos formam os sistemas orgânicos que criam e mantém a vida.”
           
“A vida de todos os organismos pluricelulares baseia-se na comunicação e nas interações entre as células que os compõem”  
            Assim pensando, a vida depende basicamente do bom funcionamento de suas células, tanto de forma individual como de forma coletiva. De forma individual as células devem ter aparatos que permitam garantir a normalidade estrutural e bioquímica, e de forma coletiva deverão se relacionar através de sistemas de comunicação e sinalização. Essa comunicação poderá ocorrer por contato direto ou por intermédio de moléculas de sinalização.
        Comunicação por Contato direto:
                   Junções comunicantes => Permitem a passagem direta de moléculas pequenas (<1500Da) entre as células tais como os eletrólitos e os 2º mensageiros.
                       Moléculas de aderência => São glicoproteínas transmembrana que pertencem a cinco grandes famílias:
1- Integrinas
2- Caderinas
3- Selectinas
4- Imunoglobulinas
5- Moléculas ricas em leucina
        As moléculas de aderência celular desempenham papéis importantes tanto durante o desenvolvimento embrionário quanto nos fenômenos de reparação tecidual e combates a invasões tumorais na vida adulta.
       Comunicação por Moléculas de sinalização:
            As moléculas de sinalização de origem celular podem pertencer a várias famílias de substâncias bioquímicas e atuarão como mensageiras entre duas células mais ou menos distantes entre si.
Famílias das moléculas de sinalização
•Neurotransmissores
• Hormônios e neuro-hormônios
• Citocinas
• Imunoglobulinas
• Eicosanóides (derivados do ác. aracdônico)
• Gases (ON, CO)
             Dentre os diferentes tipos de comunicação celular que envolvem moléculas de sinalização destacam-se:
Comunicação endócrina – Torna possível a ligação de células distantes através de sinais químicos. As moléculas sinalizadoras  são os hormônios. Atingem a célula alvo através da circulação sanguínea. 
Comunicação parácrina – Comunicação entre células vizinhas que não utiliza a circulação. Ex: células endoteliais-musculatura lisa vascular, onde o óxido nítrico atua como modulador do tônus.
Comunicação neurócrina – Semelhantemente à parácrina, essa comunicação ocorre entre células próximas. A diferença existe no tipo de ligação, tendo em vista que a comunicação neurócrina somente liga uma célula nervosa a outra, ou a uma célula muscular. O mecanismo básico é a sinapse (neuro-neuronal ou neuro-muscular).
Comunicação autócrina – Ocorre quando o sinal age sobre a célula que o emitiu. Muito utilizado com a intenção de amplificar  sinais, como a retroalimentação positiva. Pode também atuar na retroalimentação negativa, inibindo sua própria síntese. Vale ressaltar, que há necessidade de que a célula que produz a substância, também possua receptor para a mesma.
Comunicação intrácrina – Forma especializada de comunicação autócrina. Visa atuação dentro da própria célula, não chegando a haver exteriorização do sinal.  Faz-se necessário um receptor intracelular.
Comunicação justácrina – As moléculas sinalizadoras participantes possuem baixo peso molecular, além das moléculas de aderência. A proximidade no contato entre moléculas de aderência vizinhas na superfície celular, possibilita a transmissão
              As trocas de informações entre as células condicionam e regulam o funcionamento dos órgãos e determinam a homeostase de todo o organismo. As informações são transmitidas de célula a célula sob a forma de moléculas. De acordo com a natureza química das moléculas de sinalização ocorrerão respostas celulares diferentes em diferentes locais. As moléculas podem ser classificadas em:
Hidrossolúveis – São pequenas moléculas derivadas dos aminoácidos, as catecolaminas, ou peptídeos, moléculas de grande peso. São  os neuro-transmissores ou hormônios. 
Lipossolúveis – Moléculas de pequeno tamanho, cuja capacidade de difusão através da membrana celular as caracteriza. Podem ser derivadas do colesterol (esteróides), derivadas de aminoácidos (tireóideos) ou compostos gasosos (ON e CO).
                Para que haja resposta a uma determinana molécula sinalizadora a célula deverá ter a capacidade de reconhecer a substância. Este reconhecimento é feito através dos receptores localizados na membrana celular, no citosol ou no núcleo. 
            Os mecanismos de homeostase envolvem ação de diversos receptores distribuídos nos vários compartimentos orgânicos. 
                Na medida em que você for aprofundando seus conhecimentos nas diversas seções dessa WebQuest você será informado sobre os diferentes receptores envolvidos em respostas que visam o equilíbrio e manutenção do ambiente interno, ou seja, a homeostase.
Moléculas sinalizadoras e seus receptores
A - Moléculas de sinalização ativas nos receptores da membrana
1 - Hormônios peptídicos
- Hipotalâmicos (TRH, CRH, GH-RH, GnRH, etc)
- Adeno-hipofisários (GH, TSH, ACTH, prolactina, LH, FSH)
- Neuro-hipofisários (ADH, ocitocina)
- Tireóideos (Calcitonina)
- Paratormônio (PTH)
- Pancreáticos (Insulina e glucagon)
- Fatores endoteliais (endotelina)
2 - Citocinas
3 - Eicosanóides (prostaglandinas e tromboxanos)
4 - Neurotransmissores (norepinefrina, acetilcolina, serotonina, etc) e neuropeptídeos
B -  Moléculas de sinalização ativas nos receptores intracelulares (citosólicos e/ou nucleares)
1 - Hormônios esteróides- Glicocorticóides e mineralocorticóides
- Sexuais (testosterona, estrogênios, progesterona)
- Vitamina D
2 - Hormônios tireóideos (T3/T4)
3 - CO, ON

Outros materiais