Buscar

Apostila Progressão Aritmética e Geométrica 20130804 153403

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

MATEMÁTICA FINANCEIRA 
 
 
 
 
 
Progressão Aritmética 
e Geométrica 
Progressão Aritmética 
Uma sucessão de números na qual a diferença entre dois termos consecutivos é constante, é denominada progressão 
aritmética, ou abreviadamente de P.A. 
Representação de uma P.A. 
Representando por a1 o primeiro elemento, por a2 o segundo elemento de uma P.A. e assim sucessivamente, até o último 
elemento que é representado por an, temos a seguinte representação para uma progressão aritmética: 
P.A. ( a1, a2, a3, a4, ..., an ). 
A representação acima se refere a uma P.A. finita com n elementos. Caso a sucessão seja infinita, utilizamos a seguinte 
representação: 
P.A. ( a1, a2, a3, a4, ..., an, ... ). 
 
Terminologia 
P.A. ( 5, 7, 9, 11, 13, 15 ) 
Acima temos a representação de uma progressão aritmética finita. 
Um termo qualquer é identificado por an, onde n indica a posição deste termo. Por exemplo, o termo a4 se refere ao quarto 
termo desta P.A., que no caso é igual a 11, já o primeiro termo, a1, nesta P.A. é igual a 5. 
Como supracitado, a diferença entre dois termos consecutivos de uma P.A. é constante. Neste exemplo este valor é igual a 
2, por exemplo, a diferença entre o primeiro e o segundo termo é igual a 2. 
Este valor constante que é a diferença entre um termo e outro é denominado razão da progressão aritmética e é 
representado pela letra r. 
Se representamos um termo qualquer de uma P.A. por an, então podemos dizer que o seu antecedente é igual a an - 1 e que 
o seu consequente é igual a an + 1. 
Desta forma podemos dizer que r = an + 1 - an, ou ainda r = an - an - 1. 
Veja os seguintes exemplos: r = a4 - a3 = 11 - 9 = 2 e ainda r = a3 - a2 = 9 - 7 = 2. 
Além disto temos que um termo qualquer de uma P.A. é média aritmética entre o seu antecedente e o seu consequente: 
 
 
Progressão aritmética constante 
Uma progressão aritmética é constante quando a sua razão é igual a zero. Neste caso todos os termos da P.A. têm o mesmo 
valor. 
Exemplos: 
P.A. ( 0, 0, 0, ... ) 
P.A. ( 3, 3, ..., 3 ) 
P.A. ( 7, 7, 7 ) 
Note que em todas as progressões acima r = 0. 
Progressão aritmética crescente 
Uma progressão aritmética é crescente quando a sua razão é maior que zero, ou seja, quando o consequente de um termo 
qualquer é maior que este termo. 
Exemplos: 
P.A. ( 1, 2, 3, ... ) 
P.A. ( 15, 21, 27, ... ) 
P.A. ( -16, -12, -8 ) 
Note que a razão das progressões acima, respectivamente 1, 6 e 4 são todas maiores que zero. 
Progressão aritmética decrescente 
Uma progressão aritmética é decrescente quando a sua razão é menor que zero, ou em outras palavras, quando o 
consequente de um termo qualquer é menor que este termo. 
Exemplos: 
P.A. ( 31, 29, 27, ... ) 
P.A. ( 75, 68, 61, ... ) 
P.A. ( 9, 0, -9 ) 
Veja que a razão das progressões acima, respectivamente -2, -7 e -9 são todas menores que zero. 
Fórmula do termo geral de uma P.A. 
Como sabemos, o próximo termo de um termo de uma P.A. é igual ao referido termo mais a razão r. Para uma P.A. genérica 
podemos dizer que o segundo termo é igual ao primeiro termo, a1, mais a razão r: 
 
O terceiro termo é resultado da soma do segundo termo com a razão: 
 
Mas vimos que a2 = a1 + r, substituindo-o na expressão temos: 
 
O quarto termo é resultado da soma do terceiro termo com a razão e como sabemos que a3 = a1 + 2r, temos: 
 
Seguindo este raciocínio, o quinto termo será: 
 
O sexto termo será: 
 
Resumidamente temos: 
 
Portanto, partindo-se do primeiro termo, a fórmula do termo geral de uma progressão aritmética é: 
 
Mas e se partirmos de outro termo que não o primeiro? 
Vejamos: 
 
 
Na fórmula do termo geral da P.A., subtraímos 1 de n quando partimos do termo a1, perceba que quando partimos do 
termo a2, subtraímos 2 de n, assim como subtraímos 3 ao partirmos de a3 e 4 quando partirmos de a4. Partindo então de 
um termo m, podemos reescrever a fórmula do termo geral da P.A. como: 
 
 
Compreendendo a fórmula do termo geral da P.A. em função de 
qualquer termo 
Como é de costume vamos a um exemplo para que a explicação fique de mais fácil entendimento. 
Através da fórmula acima, vamos expressar o termo a5 de uma P.A. genérica, em função do termo a3: 
 
Temos então que o termo a5 pode ser expresso em função do termo a3 como: 
 
Embora seja óbvio, se não formos alertados, talvez não percebamos o que de fato a fórmula faz. Vejamos: 
Sabemos que o próximo termo após a3, é o termo a4, que equivale a a3 mais r, para chegarmos ao próximo termo, o a5, 
somamos mais outra vez a razão r, ou seja, como nos deslocamos duas posições à direita, acrescentamos 2r ao termo a3 
para chegarmos ao termo a5. Veja que foi exatamente este o resultado obtido em função da fórmula, ou seja, a5 = a3 + 2r. 
Agora para que vejamos como este raciocínio é bem mais prático que recorrermos à formula, vamos voltar de a5 para a3: 
Agora o termo procurado está à esquerda do termo atual, na verdade duas posições à sua esquerda, então vamos subtrair 
de a5 duas vezes a razão, temos então que a3 = a5 - 2r. 
Apenas para confirmação, vemos na sentença abaixo que através da fórmula chegamos ao mesmo resultado: 
 
Em resumo, se partindo do termo atual iremos avançar n termos à direita, para chegarmos ao termo final, então temos que 
somar n vezes a razão r ao termo inicial. Se nos deslocarmos à esquerda, o procedimento é semelhante, só que ao invés de 
somarmos, iremos subtrair n vezes a razão r ao termo inicial. 
Podemos afirmar, por exemplo, que a17 = a7 + 10r, pois avançamos 10 termos de a7 a a17, assim como a20 = a25 - 5r, 
pois retrocedemos 5 termos de a25 para a20. 
Soma dos termos de uma P.A. 
Para expormos o raciocínio iremos utilizar a primeira P.A. utilizada como exemplo: 
P.A. ( 5, 7, 9, 11, 13, 15 ) 
Qual é a soma dos seus termos? 
Primeiramente vamos escrevê-la em ordem contrária: 
P.A. ( 15, 13, 11, 9, 7, 5 ) 
Agora vamos montar uma outra P.A. cujo termo an seja a soma do termo an desta duas progressões: 
P.A. ( 20, 20, 20, 20, 20, 20 ) 
Repare as somas são todas iguais, isto ocorre porque a soma de dois termos equidistantes dos extremos de uma P.A. finita é 
igual à soma dos seus extremos. Como neste caso os extremos são 5 e 15, temos que a soma de dois termos quaisquer 
equidistantes dos extremos será igual a 20. 
Tendo em vista que temos seis termos nesta P.A, multiplicando 6 por 20, nos dará 120 que equivale a justamente o dobro 
da soma dos termos da P.A. 
A divisão de 120 por 2 nos dará a soma dos termos desta P.A. que é igual a 60. 
Generalizando temos que a soma de todos os termos de uma progressão aritmética é igual ao produto do número de termos 
pela metade da soma do primeiro com o n-ésimo termo. Em notação matemática temos: 
 
Observe que esta fórmula nos permite calcular a soma de todos os termos de uma P.A., ou a soma de apenas os n primeiros 
termos da mesma. 
Se não dispusermos de an, desde que tenhamos a razão r, podemos utilizar esta outra fórmula abaixo, que foi deduzida 
simplesmente se substituindo an por seu respectivo valor a1 + (n - 1)r: 
 
Mas se ao invés de somarmos todos os elementos da P.A., quiséssemos somar apenas os termos do terceiro ao quinto por 
exemplo? 
Neste caso é como se tivéssemos a seguinte P.A.: 
P.A. ( 9, 11, 13 ) 
Recorrendo à fórmula temos: 
 
 
Mas veja que podemos expressar a fórmula da soma dos termos da seguinte maneira: 
 
Note que declaramos como p e q a posição do primeiro e do último termo do intervalo respectivamente, declarando assim ap 
como o primeiro termo do intervalo e aq como o último. Note também que o número de termos do intervalo considerado é 
igual à diferença entre as posições do últimoe do primeiro termo considerado, mais um. 
Aplicando esta nova fórmula temos: 
 
 
Exemplos de problemas envolvendo Progressão Aritmética 
Qual é o vigésimo termo da P.A. ( 3, 10, 17, ... )? 
Identificando as variáveis do problema temos: 
 
Como conhecemos o primeiro termo e a razão da P.A., através da fórmula do termo geral iremos calcular o valor do 
vigésimo termo: 
 
Logo: 
O vigésimo termo da referida P.A. é igual a 136. 
 
Qual é a soma dos números ímpares entre 10 e 30? 
Sabemos que a diferença entre um número ímpar e o seu antecedente igual a 2. Este é o valor da razão. 
O primeiro número ímpar do intervalo informado é 11 é o último é 29, portanto temos as seguintes variáveis: 
 
Para calcularmos a soma dos termos, primeiramente precisamos identificar quantos termos são. Através da fórmula do 
termo geral iremos obter o número de termos da sucessão: 
 
Agora que sabemos que a sucessão possui 10 termos, podemos calcular a sua soma: 
 
Portanto: 
A soma dos números ímpares entre 10 e 30 é igual a 200. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Progressão Geométrica 
Uma sucessão de números na qual o quociente entre dois termos consecutivos é constante, é denominada progressão 
geométrica, ou abreviadamente de P.G. 
Representação de uma P.G. 
Representando por a1 o primeiro elemento, por a2 o segundo elemento de uma P.G. e assim sucessivamente, até o último 
elemento que é representado por an, temos a seguinte representação para uma progressão geométrica: 
P.G. ( a1, a2, a3, a4, ..., an ). 
A representação acima se refere a uma P.G. finita com n elementos. Caso a sucessão seja infinita, utilizamos a seguinte 
representação: 
P.G. ( a1, a2, a3, a4, ..., an, ... ). 
 
Terminologia 
P.G. ( 3, 12, 48, 192, 768 ) 
Acima temos a representação de uma progressão geométrica finita. 
Um termo qualquer é identificado por an, onde n indica a posição deste termo. Por exemplo, o termo a3 se refere ao terceiro 
termo desta P.G., que no caso é igual a 48, já o primeiro termo, a1, nesta P.G. é igual a 3. 
Como citado acima, o quociente entre dois termos consecutivos de uma P.G. é constante. Neste exemplo este valor é igual a 
4, por exemplo, a divisão do segundo pelo primeiro termo é igual a 4. 
Este valor constante que é o quociente entre um termo e outro é denominado razão da progressão geométrica e é 
representado pela letra q. 
Se representamos um termo qualquer de uma P.G. por an, então podemos dizer que o seu antecedente é igual a an - 1 e que 
o seu consequente é igual a an + 1. 
Desta forma podemos dizer que , ou ainda . 
Veja estes exemplos: e também . 
Além disto temos que um termo qualquer de uma P.G. é média geométrica entre o seu antecedente e o seu consequente: 
 
 
Progressão geométrica constante 
Uma progressão geométrica é constante quando a sua razão é igual a 1, ou quando o primeiro termo é igual a zero. Neste 
caso todos os termos da P.G. têm o mesmo valor. 
Exemplos: 
P.G. ( 0, 0, 0, 0, ... ) 
P.G. ( 5, 5, ..., 5 ) 
P.G. ( 9, 9, 9 ) 
No primeiro exemplo temos que a1 = 0 e nos outros dois q = 1. 
Progressão geométrica crescente 
Uma progressão geométrica é crescente quando o consequente de um termo qualquer é maior que este termo. Isto ocorre 
quando q > 1 e a1 > 0, ou quando 0 < q < 1 e a1 < 0. 
Exemplos: 
P.G. ( 1, 2, 4, ... ) 
P.G. ( -480, -120, -30, ... ) 
Note que a razão das progressões acima é respectivamente 2 e 0,25. No primeiro caso, q > 1 e a1 > 0 e no segundo caso 
temos que 0 < q < 1 e a1 < 0. 
Progressão geométrica decrescente 
Uma progressão geométrica é decrescente quando o consequente de um termo qualquer é menor que este termo. Isto 
ocorre quando q > 1 e a1 < 0, ou quando 0 < q < 1 e a1 > 0. 
Exemplos: 
P.G. ( -35, -105, -315, ... ) 
P.G. ( 1400, 560, 224, ... ) 
Veja que a razão das progressões acima é respectivamente 3 e 0,4. No primeiro exemplo, q > 1 e a1 < 0 e no segundo 
temos que 0 < q < 1 e a1 > 0. 
Progressão geométrica alternante ou oscilante 
Uma progressão geométrica cujos termos alternem ou oscilem de positivo para negativo e vice-versa, é denominada P.G. 
oscilante ou P.G. alternante. Isto ocorre quando q < 0 e a1 ≠ 0. 
Exemplos: 
P.G. ( -3, 6, -12, ... ) 
P.G. ( 729, -218,7, 65,61, -19,683, ... ) 
Em ambos os casos a1 ≠ 0. No primeiro caso a razão é igual a -2, logo q < 0 e no segundo temos que a razão é igual a -
0,3, portanto também temos q < 0. 
Fórmula do termo geral de uma P.G. 
Sabemos que o termo seguinte a um termo de uma P.G. é igual ao referido termo multiplicado pela razão q. Para uma P.G. 
genérica podemos dizer que o segundo termo é igual ao primeiro termo, a1, vezes a razão q: 
 
O terceiro termo é resultado da multiplicação do segundo termo pela razão: 
 
No entanto como vimos que a2 = a1 . q, substituindo-o na expressão temos: 
 
O quarto termo é resultado do produto do terceiro termo com a razão e como sabemos que a3 = a1 . q
2, temos: 
 
Pelo mesmo raciocínio, o quinto termo será: 
 
O sexto termo será: 
 
De forma resumida temos: 
 
Portanto, partindo-se do primeiro termo, a fórmula do termo geral de uma progressão geométrica é: 
 
Mas e se partirmos de outro termo que não o primeiro? 
Vejamos: 
 
 
Na fórmula do termo geral da P.G., subtraímos 1 de n quando partimos do termo a1, perceba que quando partimos do 
termo a2, subtraímos 2 de n, assim como subtraímos 3 ao partirmos de a3 e 4 quando partirmos de a4. Partindo então de 
um termo m, podemos reescrever a fórmula do termo geral da P.G. como: 
 
 
Compreendendo a fórmula do termo geral da P.G. em função de 
qualquer termo 
Como já fizemos no caso da P.A., vamos a um exemplo para que a explicação fique de mais fácil entendimento. 
Através da fórmula acima, vamos expressar o termo a7 de uma P.G. genérica, em função do termo a4: 
 
Temos então que o termo a7 pode ser expresso em função do termo a4 como: 
 
Agora preste bastante atenção ao seguinte: 
Sabemos que o próximo termo após a4, é o termo a5, que equivale a a4 vezes q. Para chegarmos ao próximo termo, o a6, 
multiplicamos mais uma vez pela razão q e para chegarmos finalmente ao termo a7, multiplicamos mais outra vez por q, ou 
seja, como nos deslocamos três posições à direita, multiplicamos a4 por q
3 para chegarmos ao termo a7. Veja que foi 
exatamente este o resultado obtido em função da fórmula, ou seja, a7 = a4 . q
3. 
Vejamos que este raciocínio é bem mais prático que recorrermos à formula, para voltarmos de a7 para a4: 
Agora o termo procurado está à esquerda do termo atual, na verdade três posições à sua esquerda, então vamos multiplicar 
a7 por q
-3, temos então que a4 = a7 . q
-3, que equivale a dividirmos a7 por q três vezes. 
Então vamos chegar ao mesmo resultado através da fórmula para confirmarmos esta explicação: 
 
Resumindo, se partindo do termo atual iremos avançar n termos à direita, para chegarmos ao termo final, então temos que 
multiplicar o termo inicial por n vezes a razão q, ou seja, multiplicá-lo por q
n
. Se nos deslocarmos à esquerda, o 
procedimento é semelhante, só que ao invés de multiplicarmos, iremos dividir o termo inicial n vezes pela razão q, o que 
equivale a multiplicá-lo por q-n. 
Como exemplo temos que a15 = a11 . q
4, pois avançamos 4 termos de a11 a a15, assim como a2 = a7 . q
-5, pois 
retrocedemos 5 termos de a7 para a2. 
Soma dos termos de uma P.G. 
Podemos expressar a soma dos n termos de uma P.G. finita como: 
 
Multiplicando-a pela razão q temos: 
 
Vamos analisar o segundo membro das duas expressões. Note que o segundo termo da primeiraexpressão é igual ao 
primeiro termo da segunda expressão, a mesma coisa ocorre com o segundo, terceiro, quarto, até o último termo do 
segundo membro da primeira expressão. 
Ao subtrairmos a primeira expressão da segunda, estes termos que ocorrem em duplicidade são anulados e ficamos então 
com a seguinte expressão: 
 
Temos então: 
 
Portanto podemos utilizar a fórmula abaixo para calcularmos a soma de todos os termos de uma P.G. finita e também dos n 
primeiros termos de uma P.G. qualquer, desde que q ≠ 1: 
 
Para q = 1 temos uma fórmula mais simples: 
 
 
Produto dos termos de uma P.G. 
Como feito no caso da soma, vamos agora deduzir a fórmula de cálculo do produto dos termos de uma progressão 
geométrica. Vejamos: 
 
Portanto a fórmula para o cálculo do produto dos termos de uma P.G. finita, ou do produto dos n primeiros termos de uma 
P.G. é: 
 
 
Exemplos de problemas envolvendo Progressão Geométrica 
Formamos uma P.G. partindo do número 5 e o multiplicando sucessivamente por 3, até finalizarmos no número 
17.433.922.005. Quantos termos há nesta progressão geométrica? 
Identificando as variáveis do problema temos: 
 
Através da aplicação da fórmula do termo geral iremos calcular o número de termos da progressão: 
 
Portanto: 
Nesta progressão geométrica há 21 termos. 
 
Qual é a soma dos termos da P.G. ( 8, 56, 392, ..., 134456)? 
A partir do enunciado podemos calcular a razão da progressão: 
 
Para calcularmos a soma dos termos, primeiramente precisamos saber quantos eles são. Os dados disponíveis que temos 
para calcular esta quantidade são: 
 
Calculando n temos: 
 
Agora que sabemos quantos termos são, podemos calcular a soma dos mesmos: 
 
Logo: 
A soma dos termos da referida P.G. é igual a 156864.

Outros materiais