Buscar

Concreto Protendido Fundamentos Iniciais

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 83 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 83 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 83 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

1
 
Concreto Protendido 
 
Fundamentos Iniciais 
 
 
 
 
 
Hideki Ishitani 
Ricardo Leopoldo e Silva França 
 
 
Escola Politécnica – USP 
Departamento de Engenharia de Estruturas e Fundações 
 
 
2002 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
1
 
 1 
 
Conceitos Básicos 
CONCRETO PROTENDIDO 
 
 
 
 
1. Introdução 
 
O concreto resiste bem à compressão, mas não tão bem à tração. Normalmente a 
resistência à tração do concreto é da ordem de 10% da resistência à compressão do 
concreto. Devido a baixa capacidade de resistir à tração, fissuras de flexão aparecem para 
níveis de carregamentos baixos. Como forma de maximizar a utilização da resistência à 
compressão e minimizar ou até eliminar as fissuras geradas pelo carregamento, surgiu a 
idéia de se aplicar um conjunto de esforços auto-equilibrados na estrutura, surgindo aí o 
termo protensão. 
 
Figura 1. Fila de livros. 
Na figura 1 temos um exemplo clássico de como funciona a protensão. Quando se quer 
colocar vários livros na estante, aplicamos forças horizontais comprimindo-os uns contra 
os outros a fim de mobilizar as forças de atrito existente entre eles e forças verticais nas 
extremidades da fila, e assim, conseguirmos colocá-los na posição desejada. 
Tecnicamente o concreto protendido é um tipo de concreto armado no qual a armadura 
ativa sofre um pré-alongamento, gerando um sistema auto-equilibrado de esforços (tração 
no aço e compressão no concreto). Essa é a diferença essencial entre concreto protendido e 
armado. Deste modo o elemento protendido apresenta melhor desempenho perante às 
cargas externas de serviço. 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
2
 
 
(a) Concreto Simples 
 
(b) Concreto Armado 
 
(c) Concreto Protendido 
Figura 2. Diferença de comportamento de um tirante 
 
Na figura 2 observamos o comportamento do gráfico Carga-Deformação de um tirante 
tracionado sem armadura (Concreto Simples), com armadura sem protensão (Concreto 
Armado) e com armadura protendida (Concreto Protendido). A pré-compressão, 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
3
decorrente do pré-alongamento da armadura ativa do tirante, aumenta substancialmente a 
capacidade de resistir ao carregamento externo necessário antes de iniciar a fissuração. 
 
 
 
 
Figura 3. Carga deslocamento em peças fletidas de concreto armado e concreto protendido. 
 
Na figura 3, mostra-se a diferença da curva carga-flecha em uma viga de concreto armado 
(CA) e em uma viga com armadura de protensão (CP). Ambas têm a mesma capacidade 
última (Mu), mas a peça protendida tem um momento de fissuração (Mr”) muito maior que 
a viga de concreto armado. Devido a contraflecha inicial da viga protendida, suas 
deformações iniciais são menores do que a viga de concreto armado, para um mesmo nível 
de carregamento. 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
4
1.1. Noções Preliminares 
Considere-se a viga esquematizada na figura 4: 
 
 
Figura 4. Viga com carregamento permanente (g) e variável (q). 
 
a) Considere-se a atuação isolada da carga acidental q = 22,2 kN/ m. 
A esta carga corresponde o momento fletor máximo no meio do vão: 
×
= = =
2
q,max
2ql 22,2 6
M 100 kN.m
8 8
 
Nesta seção, em regime elástico linear, as tensões extremas valem: 
−
− × 
= ⋅ = = = = = −  × 
− −
σ
3
q,max q,max q,max q,max
sup 3 2 2
sup
q,sup
M M M Mh 100 10
y . 12 MPa
bh bh 0,2 0,5I 2 W
12 6 6
 
e 
3
q,max q,max q,max q,max
inf 3 2 2
inf
q,inf
M M M Mh 100 10
y . 12 MPa
bh bh 0,2 0,5I 2 W
12 6 6
−× 
= ⋅ = = = = =  × σ 
conforme mostra a fig. 5. Os sinais atribuídos aos módulos de resistência Wsup e Winf 
permitem compatibilizar as convenções clássicas adotadas para momento fletor e tensões 
normais. A tensão máxima de tração vale 12 MPa junto à borda inferior e a de compressão, 
-12 MPa junto à borda superior. 
 
Figura 5 – Diagrama de Tensões Normais – Viga de Concreto Armado 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
5
Para o material concreto, tensões desta ordem de grandeza provocam, seguramente, a 
ruptura da seção transversal por tração. No concreto armado, a resistência da seção é 
obtida pela utilização de uma armadura aderente posicionada junto à borda tracionada. No 
concreto protendido, lança-se mão da “protensão” para alterar o diagrama de tensões 
normais tornando-o mais apropriado à resistência do concreto. 
A idéia básica da protensão está ligada à redução (e eventualmente, à eliminação) das 
tensões normais de tração na seção. Entende-se por peça de concreto protendido aquela 
que é submetida a um sistema de forças especial e permanentemente aplicadas chamadas 
forças de protensão tais que, em condições de utilização, quando agirem simultaneamente 
com as demais ações, impeçam ou limitem a fissuração do concreto. Normalmente, as 
forças de protensão são obtidas utilizando-se armaduras adequadas chamadas armaduras de 
protensão. 
 
 
b) Considere-se a aplicação da força de protensão P = 1200 kN centrada na seção 
mais o efeito da carga acidental do item a). 
 
Para isso, imagine-se que a viga seja de concreto com uma bainha metálica flexível e vazia 
posicionada ao longo de seu eixo. Após o endurecimento do concreto introduz-se uma 
armadura nesta bainha, fig. 6A. Através de macacos hidráulicos apoiados nas faces da viga, 
aplique-se à armadura a força de protensão P = 1200 kN. Naturalmente, a seção de 
concreto estará comprimida com a força P = -1200 kN. Esta pré-compressão aplicada ao 
concreto corresponde ao que se denomina de protensão da viga. A tensão de compressão 
uniforme, decorrente desta protensão, vale: 
 
3
cpsup cpinf
c
P P 1200 10
12 MPa
A bh 0,2 0,5
−
− ×
σ = σ = = = = −
×
 
 
onde desprezou-se a redução da área Ac devido ao furo (vazio correspondente à bainha). 
Acrescentando-se o efeito do carregamento do item a), o diagrama de tensões normais na 
seção do meio do vão será inteiramente de compressão, com exceção da borda inferior 
onde a tensão normal é nula. 
 
( )σ = σ + σ = − + − = −sup cpsup qsup 12 12 24 MPa 
( )σ = σ + σ = − + =inf cpinf qinf 12 12 0 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
6
 
 
 
Figura 6 – Diagrama de Tensões Normais – Viga de Concreto Protendido 
A tensão máxima de compressão vale -24 MPa junto à borda superior da seção e a tensão 
mínima será nula na borda inferior. Desta forma a tensão normal de tração foi eliminada. 
Observa-se que a tensão máxima de compressão corresponde ao dobro da tensão devida à 
carga acidental q. 
O diagrama de tensões normais ao longo do vão da viga varia entre os valores 
esquematizados nas figuras 6B e 6D, pois o momento fletor aumenta de zero nos apoios ao 
valor máximo no meio do vão. 
 
c) Considere-se a protensão P = 600 kN aplicada com excentricidade ep = 8,33 cm, 
mais o efeito da carga acidental do item a) 
 
De maneira análoga ao que foi visto no item b), se a posição da bainha for deslocada 
paralelamente ao eixo da viga de 8,33 cm, conforme mostra a fig. 7A, e reduzir-se a força 
de protensão P para 600 kN, as seções da viga ficam submetidas à força normal Np = -600 
kN e ao momento P.ep: 
p pM Pe 600 0,0833 50 kN.m= = − × = − 
As tensões normais extremas devidas à protensão passam avaler: 
 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
7
p p
cpsup 2
c sup c sup
P.e eP 1 1 0,0833 6
P 600 0
A W A W 0,2 0,5 0,2 0,5
  × 
σ = + = + = − − =     × ×   
e 
p p
cpinf 2
c inf c inf
P.e eP 1 1 0,0833 6
P 600 12 MPa
A W A W 0,2 0,5 0,2 0,5
  × 
σ = + = + = − + = −   × ×   
 
resultando um diagrama triangular de tensões normais de compressão. 
 
 
Figura 7 – Diagrama de Tensões Normais – Viga de Concreto Protendido (Protensão Excêntrica) 
 
Se for acrescentado o carregamento do item a), o diagrama resultante de tensões normais, 
na seção do meio do vão, será triangular e inteiramente de compressão. 
 ( )σ σ σsup sup sup= + = + − = −cp q MPa0 12 12 
 ( )σ σ σinf inf inf= + = − + =cp q 12 12 0 
A tensão máxima de compressão vale -12 MPa junto à borda superior da seção e a tensão 
mínima será nula na borda inferior. A máxima tensão de compressão final coincide com a 
máxima tensão de compressão devido apenas à protensão, havendo apenas troca das 
bordas. A tensão máxima final de compressão foi reduzida à metade do caso b), mostrando 
a indiscutível vantagem desta solução sobre a anterior. O diagrama de tensões normais ao 
longo do vão da viga varia entre os valores esquematizados nas figuras 7B e 7D, pois o 
momento fletor aumenta de zero junto aos apoios ao valor máximo no meio do vão. 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
8
 
d) Acrescente-se ao caso do item c) o efeito da carga permanente total g = 14,22 
kN/ m. 
 
O momento fletor máximo no meio do vão vale: 
 
2 2
g
gl 14,22 6
M 64 kN.m
8 8
×
= = = 
 
e as tensões normais extremas: 
g
gsup
sup
M
7,68 MPa
W
σ = = − 
g
ginf
inf
M
7,68 MPa
W
σ = = 
Superpondo-se o efeito deste carregamento à situação do item c), o diagrama de tensões 
normais na seção mais solicitada passa a ser o indicado na fig. 8, pois 
( ) ( )sup cpsup qsup gsup 0 12 7,68 19,68MPaσ = σ + σ + σ = + − + − = − 
 ( ) ( )inf cpinf qinf ginf 12 12 7,68 7,68MPaσ = σ + σ + σ = − + + = 
 
Figura 8 – Diagrama de Tensões Normais (G + Q) – Viga de Concreto Protendido (Protensão Excêntrica) 
 
Nota-se o aparecimento de uma tensão de tração de 7,68 MPa junto à borda 2, e a tensão 
máxima de compressão aumenta, atingindo - 19,68 MPa na borda 1. 
É importante observar que a tensão de tração resultante pode ser eliminada simplesmente 
aumentando a excentricidade da armadura de protensão para ep = 0,19 m. O aumento de 
excentricidade vale exatamente eg = -Mg / Np = -64 / (-600) = 0,107 m. De fato, as novas 
tensões normais devidas à protensão valem: 
 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
9
p p
cpsup 2
c sup c sup
P.e eP 1 1 0,19 6
P 600 7,68 MPa
A W A W 0,2 0,5 0,2 0,5
  × 
σ = + = + = − − =     × ×   
e 
p p
cpinf 2
c inf c inf
P.e eP 1 1 0,19 6
P 600 19,68 MPa
A W A W 0,2 0,5 0,2 0,5
  × 
σ = + = + = − + = −   × ×   
 
e, portanto, 
( ) ( )sup cpsup qsup gsup 7,68 12 7,68 12 MPaσ = σ + σ + σ = + − + − = − 
( ) ( )inf cpinf qinf ginf 19,68 12 7,68 0σ = σ + σ + σ = − + + = 
Assim, o efeito do peso próprio foi compensado simplesmente pelo aumento da 
excentricidade da força de protensão (aumento da distância da armadura de protensão em 
relação ao CG da seção) sem gasto adicional de material. Naturalmente, esta compensação 
apresenta um limite pois é necessário manter um cobrimento mínimo de proteção desta 
armadura. 
Da análise do diagrama de tensões normais ao longo da viga, pode-se observar que nas 
proximidades dos apoios aparecem tensões de tração. Particularmente, na seção do apoio 
esta tensão atinge 7,68 MPa. Para anular esta tensão, a excentricidade da força de protensão 
deve reassumir o valor ep = 8,33 cm. Na prática, isto pode ser obtido, de maneira 
aproximada, alterando-se o perfil reto da armadura ao longo da viga por um perfil curvo 
(em geral parabólico). Conforme mostra a fig. 9, o trecho parabólico pode ter o seu início 
no meio do vão e passar pelo ponto A junto ao apoio. 
 
Figura 9 – Perfil da armadura de protensão 
 
O perfil parabólico procura acompanhar a variação da excentricidade eg = -Mg/Np ao longo 
da viga. 
Em estruturas isostáticas, o fato da armadura de protensão ser curva não altera o ponto de 
aplicação da força correspondente à protensão. Este continua sendo o ponto de passagem 
da armadura na seção transversal. De fato, com base na fig. 10, o equilíbrio separado da 
armadura (suposta flexível) exige a presença da força P junto à seção analisada e, também, 
da pressão radial 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
10
 
p
P
rr
= 
onde r é o raio de curvatura local. As cargas atuantes na armadura isolada agem, como 
carregamento de sentido contrário, sobre a viga de concreto. As reações de apoio são nulas, 
pois a estrutura é isostática (a estrutura deforma-se livremente sob ação da protensão). 
Desta forma, o esforço resultante na seção transversal é exatamente -P, aplicado no ponto 
de passagem da armadura na seção transversal e com a inclinação do cabo neste ponto. 
Em estruturas hiperestáticas, a protensão pode gerar reações de apoio (reações 
hiperestáticas de protensão) que geram esforços (hiperestáticos) adicionais de protensão 
nas seções. 
 
Figura 10 – Diagrama de Equilíbrio de uma Viga de Concreto Protendido Isostática 
 
Convém observar que, mesmo sendo admitida a constância da força de tração (P) na 
armadura de protensão, a força normal equivalente é variável no trecho curvo desta 
armadura, pois: 
pN Pcos= − α 
como, em geral, o ângulo α é pequeno pode-se admitir Np ≈ - P, pelo menos para efeito de 
pré-dimensionamento das seções. Vale observar, também, o aparecimento da força 
cortante equivalente: 
pV Psen= − α 
 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
11
Na realidade, como será visto mais adiante, a força normal de tração na armadura de 
protensão também varia um pouco ao longo do cabo por causa das inevitáveis perdas de 
protensão. 
Normalmente, a força de protensão é obtida pela utilização de um grupo de cabos que, por 
sua vez, são constituídos de várias cordoalhas. Cada cabo tem um desenvolvimento 
longitudinal próprio. Contudo, as análises podem ser efetuadas com o “cabo equivalente” 
(ou “cabo resultante”). Este cabo virtual tem a força de protensão P e o seu ponto de 
passagem é dado pelo centro de gravidade das forças de protensão de cada cabo na seção. 
 
Figura 11 – Cabo de Protensão Equivalente 
De qualquer forma, a utilização adequada de cabos curvos permite eliminar as tensões 
normais de tração nas seções transversais ao longo do vão. 
 
e) Considere-se a viga constituída de concreto armado 
Admita-se que a viga faça parte do sistema estrutural para uma biblioteca com 
carregamento constituído de g = 14,22 kN/m e q = 22,22 kN/m. O dimensionamento 
como concreto armado, segundo a NBR6118:2003, admitindo-se fck= 35 MPa e aço CA50, 
conduz aos seguintes resultados: 
Estado Limite Último (momento fletor): 
34xlim= 34= =0,438
d
ξ ξ 
Mg+q = 164,4 kN.m → ξ = 0,42 < ξlim 
As = 12 cm
2 (6φ16) 
Estado Limite de Utilização, para a Combinação Freqüente com ψ1=0,7: 
MCF = Mg + 0,7Mq = 134,0 kN.m 
ηb =1,5 → w = 0,12 < 0,3 ( OK, admitindo-se fissura admissível de 0,3 mm) 
a = 1,56 cm ≈ l/270 (flecha no estádio II, de valor aceitável) 
 
 
Escola Politécnica– Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
12
f) Considere-se, agora, a protensão obtida com armadura CA60 (apenas para efeito 
de análise comparativa, pois não se utiliza protensão com aço CA60) 
Para se obter a força de protensão de 600 kN, se for admitida uma tensão útil no aço de 50 
kN/cm2 (500 MPa), seriam necessários Ap = 12 cm
2 de armadura de protensão. Desta 
forma, aparentemente, ter-se-ia atendido às condições vistas nas análises dos itens c) e d). 
Veja-se contudo, o que acontece com o valor da força de protensão ao longo do tempo. 
Admitindo-se a atuação do carregamento utilizado no item e), resulta o diagrama de 
tensões normais indicado na fig. 12. 
 
Figura 12 – Diagrama de Tensões Normais 
Devido à protensão e à carga permanente, a tensão normal no concreto junto à armadura 
vale 
c,g+p=-10,56 MPaσ 
que corresponde a uma deformação imediata da ordem de 
ic,g+p
-10,56
=-0,00053
20000
ε ≅ 
onde se admitiu Ec = 20 GPa. 
Sabe-se que, a retração do concreto em ambiente normal é equivalente a cerca de - 15ºC de 
queda de temperatura, isto é: 
-5
cs=-10 15=-0,00015ε × 
onde se admitiu o coeficiente de dilatação térmica αt = 10
-5 ºC-1. 
Por outro lado, a deformação imediata provocada pela carga permanente pode chegar a 
triplicar devido ao fenômeno da fluência. Assim, pode ocorrer ao longo do tempo uma 
deformação total de encurtamento da ordem de 
co cs ic,g+p+3 =-0,00015-3 0,00053=-0,00174ε ≅ ε ε × 
Normalmente, após as operações de protensão, as bainhas são injetadas com nata de 
cimento garantindo-se a aderência entre a armadura e o concreto. Desta forma, a armadura 
de protensão passa a ter a mesma deformação adicional que o concreto adjacente. Para a 
deformação de encurtamento estimado anteriormente, tem-se uma queda de tensão na 
armadura de 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
13
5 -3
cop Ep =-2,1 l0 1,74 10 =-365,4 MPa∆σ ≅ ε × × × 
Onde adotou-se para o módulo de elasticidade da armadura o valor Ep = 2,1 × 10
5 MPa. 
Essa redução na tensão normal de tração na armadura provoca a queda da força efetiva de 
protensão para 
Pef = 600 - 36,54 × 12 = 161,52 kN. 
É inviável, na prática, considerar esta redução da protensão no dimensionamento. 
Como conclusão, pode-se afirmar que armaduras usuais de concreto armado com 
resistências de escoamento limitadas a cerca de 600 MPa ficam automaticamente excluídas 
para uso como armadura de protensão por causa das perdas inevitáveis que, praticamente, 
anulam o efeito de protensão. 
g) Considere-se, agora, a viga de concreto armado utilizando armadura de 
protensão (aço de alta resistência). 
Admita-se a situação do item d) com armadura de alta resistência com fyk = 1500 MPa. A 
solução em armadura simples é obtida no domínio 4 com As = 6,32 cm
2, nos estados 
limites de utilização tem-se fissuras de cerca de 3,6 décimos de mm (φ16) e flecha da ordem 
de 3,5 cm (≈ l/170), ambas, seguramente, além dos limites aceitáveis. Neste caso particular, 
o dimensionamento conduziu a uma peça com pouca dutilidade (Domínio 4), onde não se 
consegue deformar a armadura de modo a permitir a exploração de sua elevada resistência. 
A conclusão é de que as armaduras de alta resistência não são apropriadas para o uso em 
concreto armado, ou seja, sem a pré-tensão. 
h) Finalmente, considere-se a viga protendida com armadura de alta resistência 
A protensão através de armaduras de alta resistência permite a utilização de tensões de 
protensão da ordem de 1300 MPa. Neste nível de solicitação da armadura, as perdas de 
protensão mencionadas são perfeitamente assimiladas resultando em tensões efetivas de 
cerca de 1000 MPa. Garante-se, assim, o efeito da protensão na peça, a fissuração é 
praticamente inexistente e a flecha é substancialmente reduzida pois a rigidez à flexão 
corresponde ao momento de inércia da seção não fissurada. Um outro aspecto, também de 
importância, é o fato da oscilação de tensão na armadura devida à atuação da carga 
acidental ser percentualmente pequena reduzindo o efeito da fadiga. 
 
Figura 13 – Diagrama de Goodman 
A fig. 13 apresenta, esquematicamente, o clássico diagrama de Goodman. 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
14
1.2. Breve histórico 
Datam do final do século passado, as primeiras experiências de uso do concreto 
protendido. Foram tentativas fracassadas provocadas pelas perdas provenientes da retração 
e fluência do concreto que praticamente anularam as forças iniciais de protensão. 
Eugene Freyssinet (França, 1928) utilizou arames refilados de alta resistência resolvendo o 
problema gerado pela perda progressiva de protensão. 
Hoyer, na Alemanha, fez as primeiras aplicações práticas do concreto protendido com 
aderência inicial utilizando fios de alta resistência. 
A primeira ponte protendida foi a de Aue, na Alemanha, projetada por Dischinger (1936) 
com protensão sem aderência (cabos externos). 
Com os equipamentos e ancoragens de protensão (fabricados inicialmente por Freyssinet 
na França em 1939 e Magnel na Bélgica em 1940), divulgou-se o uso do concreto 
protendido nas obras. 
Ulrich Finsterwalder, desenvolveu a aplicação do protendido às pontes construídas em 
balanços sucessivos, processo originalmente utilizado por Emílio Henrique Baumgart no 
projeto e construção da ponte de concreto armado sobre o Rio do Peixe em Herval, Santa 
Catarina. 
No Brasil, a primeira ponte protendida foi construída no Rio de Janeiro em 1949, projetada 
por Freyssinet. 
Inicialmente, procurava-se eliminar totalmente as tensões normais de tração com a 
protensão (protensão completa). Atualmente, existe a tendência em utilizar a protensão 
parcial onde, em situações de combinações extremas de ações, permite-se a fissuração da 
peça como ocorre no concreto armado. Desta forma tem-se, hoje, a unificação do concreto 
2armado com o concreto protendido constituindo o concreto estrutural. 
 
1.3. Vantagens do concreto protendido 
a) Emprego de aços de alta resistência. Estes aços não são viáveis no concreto armado 
devido à presença de fissuras de abertura exagerada provocadas pelas grandes 
deformações necessárias para explorar a sua alta resistência; além disso, em certas 
situações existem dificuldades para se conseguir estas deformações. Ao mesmo tempo 
que a alta resistência constitui uma necessidade para a efetivação do concreto 
protendido (por causa das perdas progressivas), ela elimina os problemas citados. 
b) Eliminação das tensões de tração. Havendo necessidade, consegue-se eliminar as 
tensões de tração e, portanto, a fissuração do concreto. De qualquer forma, constitui 
um meio eficiente de controle de abertura de fissuras quando estas forem permitidas. 
c) Redução das dimensões da seção transversal. O emprego obrigatório de aços de 
alta resistência associado a concretos de maior resistência, permite a redução das 
dimensões da seção transversal com redução substancial do peso próprio. Tem-se, 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
15
assim, estruturas mais leves que permitem vencer maiores vãos. Também, a protensão 
favorece a resistência ao cisalhamento, além de reduzir a força cortante efetiva. 
d) Diminuição da flecha. A protensão, praticamente, elimina a presença de seções 
fissuradas. Tem-se, assim, redução da flecha por eliminar a queda de rigidez à flexão 
correspondente à seção fissurada. 
e) Desenvolvimento de métodos construtivos. A protensão permite criar sistemas 
construtivos diversos: balanço sucessivo, pré-moldados, etc. 
 
1.4. Problemas com armaduras ativas e desvantagensdo concreto protendido 
a) Corrosão do aço de protensão. Como nos aços de concreto armado as armaduras de 
protensão também sofrem com a corrosão eletrolítica. No entanto nas armaduras 
protendidas apresentam outro tipo de corrosão - denominada corrosão sob tensão 
(stress-corrosion) - fragilizando a seção da armadura, além de propiciar a ruptura frágil. 
Por este motivo a armadura protendida deve ser muito protegida. 
b) Perdas de protensão. São todas as perdas verificadas nos esforços aplicados nos 
cabos de protensão. 
b.1) Perdas imediatas, que se verificam durante a operação de estiramento e 
ancoragem dos cabos: 
b.1.1) Perdas por atrito, produzidas por atrito do cabo com peças adjacentes, durante a 
protensão; 
b.1.1.2) Perdas nas ancoragens, provocadas por movimentos nas cunha de 
ancoragem, quando o esforço no cabo é transferido do macaco para a placa de apoio; 
b.1.1.3) Perdas por encurtamento elástico do concreto. 
b.2) Perdas retardadas, que ocorrem durante vários anos: 
b.2.1) Perdas por retração e fluência do concreto. Produzidas por encurtamentos 
retardados do concreto, decorrentes das reações químicas e do comportamento viscoso. 
b.2.2) Perdas por relaxação do aço, produzidas por queda de tensão nos aços de alta 
resistência, quando ancoradas nas extremidades, sob tensão elevada. 
c) Qualidade da injeção de nata nas bainhas e da capa engraxada nas cordoalhas 
engraxadas. 
d) Forças altas nas ancoragens. 
e) Controle de execução mais rigoroso. 
f) Cuidados especiais em estruturas hiperestáticas. 
 
 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
16
 
1.5 Exemplos de aplicação da protensão em estruturas da construção civil. 
Edifícios: 
Vigas mais esbeltas Lajes com vãos maiores 
 
 
Pontes 
Estaiadas Arcos 
 
 
Reservatórios: (minimizar fissuras) 
Obras marítimas. (ambiente agressivo – 
concreto pouco permeável) 
 
 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
17
 
Barragens Muros de arrimo 
 
 
Elevação de reservatórios. 
 
 
 
 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
19
 
 2 
 
Materiais e sistemas para protensão 
DEFINIÇÕES 
 
 
2.1 Definições (conforme a Norma NBR6118:2003 - Projeto de 
Estruturas de Concreto - Procedimento). 
 
2.1.1. Elementos de concreto protendido. 
“Aqueles nos quais parte das armaduras é previamente alongada por equipamentos especiais de 
protensão com a finalidade de, em condições de serviço, impedir ou limitar a fissuração e os 
deslocamentos da estrutura e propiciar o melhor aproveitamento de aços de alta resistência no ELU”. 
A resistência usual do concreto (fck) varia de 25 MPa a 50 MPa. 
Normalmente, as forças de protensão são obtidas utilizando-se armaduras de alta 
resistência chamadas armaduras de protensão ou armaduras ativas. A resistência usual de 
ruptura (fptk) varia de 1450 MPa a 1900 MPa. 
2.1.2. Armadura de protensão. 
Aquela constituída por barras, por fios isolados, ou por cordoalhas destinada à produção de forças de 
protensão, isto é, na qual se aplica um pré alongamento inicial. (O elemento unitário da armadura ativa 
considerada no projeto pode ser denominado cabo, qualquer que seja seu tipo (fio, barra, cordoalha ou 
feixe). 
A fig. 14 ilustra os diferentes tipos de aço para protensão. 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
20
 
Figura 14 – Tipos de Fios, Barras e Cabos para Protensão 
As barras de aço para protensão são, geralmente, apresentadas em forma de barras 
rosqueadas com nervuras laminadas a quente. Uma bitola típica é a barra DYWIDAG φ 32. 
Os fios de aço para concreto protendido são padronizados pela NBR-7482. As cordoalhas 
são constituídas de 2, 3 ou 7 fios de aço de protensão e são padronizadas pela NBR-7483. 
As armaduras de protensão são submetidas a tensões elevadas de tração em geral acima de 
50% da sua resistência de ruptura (fptk). Nessas condições, costumam apresentar uma perda 
de tensão (∆σpr) sob deformação constante, denominada relaxação do aço. Deste ponto 
de vista os aços de protensão são classificados em aços de relaxação normal (RN) quando 
∆σpr pode atingir cerca de 12% da tensão inicial (σpi) e aços de relaxação baixa (RB) onde: 
pr pi3,5% ∆σ ≤ σ 
Os aços de protensão são designados conforme ilustram os exemplos seguintes: 
CP 170 RB L 
Concreto 
Protendido 
fptk Resistência característica de 
ruptura em kN/ cm2 
RB Relaxação 
Baixa 
RN Relaxação 
Normal 
L – Fio liso 
E – Fio entalhe 
 
Figura 15 – Diagrama Tensão-Deformação de Aços para Protensão 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
21
Conforme a NBR-7482 têm-se os fios padronizados listados a seguir onde fpyk é o valor 
característico da resistência convencional de escoamento, considerada equivalente à tensão 
que conduz a 0,2% de deformação permanente, e o módulo de elasticidade é admitido 
como sendo de Ep = 210 GPa. 
Tabela 1. Características físicas e mecânicas de fios produzidos pela Belgo Mineira. 
TENSÃO 
MÍNIMA DE 
RUPTURA 
TENSÃO MÍNIMA A 
1% DE 
ALONGAMENTO FIOS 
D
IÂ
M
E
T
R
O
 
N
O
M
IN
A
L 
(m
m
) 
Á
R
E
A
 A
PR
O
X
. 
(m
m
2 ) 
Á
R
E
A
 M
ÍN
IM
A
 
(m
m
2 ) 
M
A
SS
A
 A
PR
O
X
. 
(k
g/
km
) 
(MPa) (kgf/mm2) (MPa) (kgf/mm2) A
LO
N
G
. A
PÓ
S 
R
U
PT
U
R
A
 (%
) 
CP 145RBL 9,0 63,6 62,9 500 1.450 145 1.310 131 6,0 
CP 150RBL 8,0 50,3 49,6 394 1.500 150 1.350 135 6,0 
CP 170RBE 7,0 38,5 37,9 302 1.700 170 1.530 153 5,0 
CP 170RBL 7,0 38,5 37,9 302 1.700 170 1.530 153 5,0 
CP 170RNE 7,0 38,5 37,9 302 1.700 170 1.450 145 5,0 
CP 175RBE 
CP 175RBE 
CP 175RBE 
4,0 
5,0 
6,0 
12,6 
19,6 
28,3 
12,3 
19,2 
27,8 
99 
154 
222 
1.750 
1.750 
1.750 
175 
175 
175 
1.580 
1.580 
1.580 
158 
158 
158 
5,0 
5,0 
5,0 
CP 175RBL 
CP 175RBL 
5,0 
6,0 
19,6 
28,3 
19,2 
27,8 
154 
222 
1.750 
1.750 
175 
175 
1.580 
1.580 
158 
158 
5,0 
5,0 
CP 175RNE 
CP 175RNE 
CP 175RNE 
4,0 
5,0 
6,0 
12,6 
19,6 
28,3 
12,3 
19,2 
27,8 
99 
154 
222 
1.750 
1.750 
1.750 
175 
175 
175 
1.490 
1.490 
1.490 
149 
149 
149 
5,0 
5,0 
5,0 
 
 
Dependendo do fabricante outras bitolas de fios são encontradas, tais como: 
 
Fios de aço de relaxação normal (fpyk = 0,85 fptk) 
CP 150 RN - φ 5; 6; 7; 8 (mm) 
CP 160 RN - φ 4; 5; 6; 7 
CP 170 RN - φ 4 
 
Fios de aço de relaxação baixa (fpyk = 0,9 fptk): 
CP 150 RB - φ 5; 6; 7; 8 (mm) 
CP 160 RB - φ 5; 6; 7 
 
As cordoalhas são padronizadas pela NBR-7483. O módulo de deformação Ep = 195.000 
MPa. A resistência característica de escoamento é considerada equivalente à tensão 
correspondente à deformação de 0,1 %. 
 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
22
Tabela 2 Características físicas e mecânicas das cordoalhas produzidas pela Belgo Mineira. 
 
DIÂM
NOM. 
ÁREA 
APROX 
ÁREA 
MÍNIMA 
MASSA 
APROX 
CARGA 
MÍNIMA DE 
RUPTURA 
CARGA MÍNIMA A 
1% DE 
ALONGAMENTO 
ALONG
APÓS 
RUPT. CORDOALHAS 
(mm) (mm2) (mm2) (kg/km) (kN) (kgf) (kN) (kgf) (%) 
CORD CP 190 RB 3x3,0 
CORD CP 190 RB 3x3,5 
CORD CP 190 RB 3x4,0 
CORD CP 190 RB 3x4,5 
CORD CP 190 RB 3x5,06,5 
7,6 
8,8 
9,6 
11,1 
21,8 
30,3 
39,6 
46,5 
66,5 
21,5 
30,0 
39,4 
46,2 
65,7 
171 
238 
312 
366 
520 
40,8 
57,0 
74,8 
87,7 
124,8 
4.080 
5.700 
7.480 
8.770 
12.480 
36,7 
51,3 
67,3 
78,9 
112,3 
3.670 
5.130 
6.730 
7.890 
11.230 
3,5 
3,5 
3,5 
3,5 
3,5 
CORD CP 190 RB 7 
CORD CP 190 RB 7 
CORD CP 190 RB 7 
CORD CP 190 RB 7 
CORD CP 190 RB 7 
CORD CP 190 RB 7 
6,4* 
7,9* 
9,5 
11,0 
12,7 
15,2 
26,5 
39,6 
55,5 
75,5 
101,4 
143,5 
26,2 
39,3 
54,8 
74,2 
98,7 
140,0 
210 
313 
441 
590 
792 
1.126 
49,7 
74,6 
104,3 
140,6 
187,3 
265,8 
4.970 
7.460 
10.430 
14.060 
18.730 
26.580 
44,7 
67,1 
93,9 
126,5 
168,6 
239,2 
4.470 
6.710 
9.390 
12.650 
16.860 
23.920 
3,5 
3,5 
3,5 
3,5 
3,5 
3,5 
 
Dependendo do fabricante outras bitolas de cordoalhas são encontradas, tais como: 
 
Cordoalhas de 2 e 3 fios (fpyk = 0,85 fptk): 
CP 180 RN - 2 × φ (2,0 ; 2,5 ; 3,0 ; 3,5) 
CP 180 RN - 3 × φ (2,0 ; 2,5 ; 3,0 ; 3,5) 
 
Cordoalhas de 7 fios de relaxação normal (fpyk = 0,85 fptk): 
CP 175 RN - φ 6,4 ; 7,9 ; 9,5 ; 11,0 ; 12,7 ; 15,2 
CP 190 RN - φ 9,5 ; 11,0 ; 12,7 ; 15,2 
 
Cordoalhas de 7 fios de relaxação baixa (fpyk = 0,9 fptk): 
CP 175 RB - φ 6,4 ; 7,9 ; 9,5 ; 11,0 ; 12,7 ; 15,2 
CP 190 RB - φ 9,5 ; 11,0 ; 12,7 ; 15,2 
 
Normalmente, os cabos de protensão são constituídos por um feixe de fios ou cordoalhas. 
Assim, por exemplo, pode-se ter cabos de: 
2 cordoalhas de 12,7 mm ; 3 cordoalhas de 12,7 mm; 
12 cordoalhas de 12,7 mm; 12 cordoalhas de 15,2 mm, etc. 
 
2.1.3. Armadura passiva. 
“Qualquer armadura que não seja usada para produzir forças de protensão, isto é, que não seja 
previamente alongada”. 
Normalmente são constituídas por armaduras usuais de concreto armado padronizadas pela 
NBR-7480 (Barras e fios de aço destinados a armadura para concreto armado). 
Usualmente, a armadura passiva é constituída de estribos (cisalhamento), armaduras 
construtivas, armaduras de pele, armaduras de controle de aberturas de fissuras e, 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
23
eventualmente, armaduras para garantir a resistência última à flexão, complementando a 
parcela principal correspondente à armadura de protensão. 
 
2.1.4. Concreto com armadura ativa pré-tracionada (protensão com aderência 
inicial). 
Aquele em que o pré-alongamento da armadura (ativa de protensão) é feito utilizando-se apoios 
independentes da peça, antes do lançamento do concreto, sendo a ligação da armadura de protensão com 
os referidos apoios desfeita após o endurecimento do concreto; a ancoragem no concreto realiza-se só por 
aderência. 
 
Figura 16 - Pista de protensão. 
 
2.1.5. Concreto com armadura ativa pós-tracionada (protensão com aderência 
posterior). 
Aquele em que o pré-alongamento da armadura (ativa de protensão) é realizado após o endurecimento 
do concreto, utilizando-se, como apoios, partes da própria peça, criando-se posteriormente aderência com 
o concreto de modo permanente, através da injeção das bainhas. 
 
• Concretagem com a bainha 
embutida na peça. 
• Colocação da armadura 
• Aplicação da protensão 
• Fixação da armadura estirada 
(ancorada) 
• Injeção de nata de cimento 
(grout), estabelecendo aderência 
entre armadura e concreto. 
Figura 17 - Viga com protensão a posteriori. 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
24
 
Figura 18 - Bainhas para protensão 
 
2.1.6. Concreto com armadura ativa pós-tracionada sem aderência (protensão sem 
aderência) 
Aquele obtido como em (e), mas em que, após o estiramento da armadura ativa, não é criada aderência 
com o concreto, ficando a mesma ligada ao concreto apenas em pontos localizados. Concreto protendido 
sem aderência (armadura de protensão pós-tracionada) 
 
 
Figura 19 - Cordoalha não aderente. 
 
 
2.2. Níveis de protensão 
 
“Os níveis de protensão estão relacionados com os níveis de intensidade da força de protensão, que por 
sua vez é função da proporção de armadura ativa utilizada em relação à passiva”. 
 
Deste modo, usualmente pode-se ter três níveis de protensão: 
 
♣ Nível 1 – Protensão Completa 
♣ Nível 2 – Protensão Limitada 
♣ Nível 3 – Protensão Parcial 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
25
 
Figura 20 – Diagrama Carga-Deformação dos diferentes níveis de protensão 
 
A escolha adequada do nível de protensão em uma estrutura irá depender de critérios pré-
estabelecidos, onde se levará em conta a agressividade do meio ambiente e/ou limites para 
a sua utilização, quando posta em serviço. 
 
2.2.1. Estados Limites de Serviço (ou de utilização): 
“Estados limites de serviço são aqueles relacionados à durabilidade das estruturas, aparência, conforto do 
usuário e boa utilização funcional da mesma, seja em relação aos usuários, seja às máquinas e aos 
equipamentos utilizados”. 
A garantia do atendimento destes Estados Limites de Serviço (ELS) se faz com a garantia, 
conforme a situação de não se exceder os Estados Limites Descritos a seguir: 
 
2.2.1.1. Estado limite de descompressão (ELS-D): 
Estado no qual toda seção transversal está comprimida, e em apenas um ou mais pontos da 
seção transversal a tensão normal é nula, calculada no estádio I, não havendo tração no 
restante da seção (exceto junto à região de ancoragem no protendido com aderência inicial 
onde se permite esforços de tração resistidos apenas por armadura passiva, respeitadas as 
exigências referentes à fissuração para peças de concreto armado). 
 
2.2.1.2. Estado limite de formação de fissuras (ELS-F): estado limite que é atingido 
quando a máxima tensão de tração na seção, calculada no Estádio I (concreto não fissurado 
e comportamento elástico linear dos materiais) é igual a resistência à tração do concreto na 
flexão. A resistência à tração na flexão é dado por fct,fl = 1,2 fctk,inf para peças de seção T e, 
igual a fct,fl = 1,5 fctk,inf para peças de seção retangular, sendo: 
( )2/3ctk,inf ckf 0,21 f= 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
26
2.2.1.3. Estado limite de abertura de fissuras (ELS-W): 
Estado em que as fissuras apresentam-se com aberturas iguais aos máximos especificados 
na tabela 4. A verificação da segurança aos estados limites de abertura de fissuras deve ser 
feita calculando-se as tensões nas barras da armadura de tração no estádio II (concreto 
fissurado à tração e comportamento elástico linear dos materiais). 
Isto será feito para cada elemento ou grupo de elementos das armaduras passiva e de 
protensão (excluindo-se os cabos protendidos que estejam dentro da bainha ou cordoalha 
engraxada, os quais não são levados em conta no cálculo da fissuração). Esta postura é 
tomada devido ao controle da fissuração ser propiciado pela aderência da armadura passiva 
e da ativa (pré-tração) com o concreto que a envolve. Nos outros casos a influência da 
protensão no controle de fissuração é desprezível, do ponto de vista da aderência. 
Será considerada uma área Acr do concreto de envolvimento, constituída por um retângulo 
cujos lados não distam mais de 7 φi do contorno do elemento da armadura, conforme 
indicado na fig. 21: 
 
 
Figura 21 – Área Acr do concreto de envolvimento 
 
A grandeza da abertura de fissuras - wk - determinada para cada parte da região de 
envolvimento, é dada pela menor dentre aquelas obtidas pelas duas expressões que seguem: 
ctS
S
Si
k
fE
w ii
σσ
η
φ 3
)75,02(10
1
1 −
= 




+
−
= 45
4
)75,02(10
1
1 riS
Si
k
E
w i
ρ
σ
η
φ
 
 
Sendo σsi, φi, Esi, ρr definidos para cada área de envolvimento em exame: 
 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
27
Acri é a área da região de envolvimento protegida pela barra φi 
φi é o diâmetro da barra que protege a região de envolvimento considerada 
ρri é a taxa de armadura passiva ou ativa aderente ( que não esteja dentro de bainha) em 
relação a área da região de envolvimento (Acri) 
σs é a tensão de tração no centro de gravidade da armadura considerada, calculada no 
Estádio II. Nas peças com protensão, σs é o acréscimo de tensão, no centro de gravidade 
da armadura, entre o Estado Limite de Descompressão e o carregamento considerado. 
Deve ser calculada no Estádio II, considerando toda armadura ativa, inclusive aquela 
dentro de bainhas. 
O cálculo no Estádio II (que admite comportamento linear dos materiais e despreza a 
resistência à tração do concreto) pode ser feito considerando a relação αe = 15. 
 
Figura 22 – Diagrama Carga-Deformação e os Estados Limites 
 
2.2.2. Combinações de carregamento 
Na determinação das solicitações referentes a estes estados limites devem ser empregadas 
as combinações de ações estabelecidas em Normas. A NB1-2003 considera as seguintes 
combinações nas verificações de segurança dos estados limites de utilização: 
 
2.2.2.1. Combinação rara (CR): 
d gk pk (cc cs te)k qlk 1 qik
i 1
F F F F F F+ +
>
= + + + + ψ ∑ 
2.2.2.2. Combinação freqüente (CF): 
d gk pk (cc cs te)k 1 qlk 2 qik
i 1
F F F F F F+ +
>
= + + + ψ + ψ ∑ 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
28
2.2.2.3. Combinação quase permanente (CQP): 
>
d gk pk (cc cs te)k 2 qik
i 1
F F F F F+ += + + + ψ ∑ 
2.2.2.4. Situação de protensão. 
d gk pkF F F= + 
 
As ações parciais são as seguintes: 
 
Fgk → peso próprio e demais ações permanentes, excetuando-se a força de protensão 
e as coações; 
Fpk → protensão (incluindo os “hiperestáticos de protensão”); 
F (cc+cs+te) → retração, fluência e temperatura; 
Fqlk → ação variável escolhida como básica; 
Fqik → demais ações variáveis (i> 1) concomitantes com Fqlk. 
 
Os valores de ψ1 e ψ2 dependem do tipo de uso, e são dados por: 
Tabela 3 – Fatores de Redução ψ1 e ψ2 
Ações ψ1 ψ2 
Cargas acidentais de edifícios 
Locais em que não há predominância de pesos de equipamentos que 
permaneçam fixos por longos períodos de tempo, nem de elevadas 
concentrações de pessoas 
0,4 0,3 
Locais em que há predominância de pesos de equipamentos que 
permanecem fixos por longos períodos de tempo, ou de elevada 
concentração de pessoas 
0,6 0,4 
Biblioteca, arquivos, oficinas e garagens 0,7 0,6 
Cargas acidentais de Pontes 0,5 0,3 
Observação: os valores de ψ1 e ψ2 são os recomendados pela última redação da nova NB1-2003 
(NBR6118:2003 – Projeto de Estruturas de Concreto - Procedimento) 
 
Nas verificações, a NB1-2003 estabelece graduação de níveis de protensão mínimos para 
que se observem valores característicos (wk) das aberturas de fissuras. Estes valores são 
definidos em função das condições do meio ambiente e da sensibilidade das armaduras à 
corrosão (tabela 4). Assim, por exemplo, para meio ambiente pouco agressivo com 
protensão parcial nível 1, o valor característico da abertura da fissura é de 0,2 mm e deve 
ser verificado pela combinação de ações do tipo freqüente. 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
29
Tabela 4. Classes de agressividade ambiental e exigências relativas a fissuração excessiva e a proteção da 
armadura ativa 
Tipos de concreto estrutural Classe de agressividade ambiental 
Exigências 
relativas ao E. 
L.. de 
fissuração 
excessiva 
Combinação de 
ações a considerar 
Concreto simples 
(sem protensão e sem 
armadura) 
I a IV Não há - 
I 
ELS-W 
ωk ≤ 0,4mm 
Freqüente 
Concreto armado 
(sem protensão) 
II a IV 
ELS-W 
ωk ≤ 0,3mm 
Freqüente 
Concreto protendido nível 1 
(protensão parcial) 
Pré-tração ou Pós-Tração 
I I e II 
ELS-W 
ωk ≤ 0,2mm 
Freqüente 
ELS-F Freqüente 
Concreto protendido nível 2 
(protensão limitada) 
Pré-tração ou Pós-Tração 
II III e IV ELS-D Quase permanente 
ELS-F Rara Concreto protendido nível 3 
(protensão completa) 
Pré-tração 
III e IV ELS-D. Freqüente 
NOTA - ELS-W – Estado Limite de Serviço - Abertura de fissuras; ELS-F – Estado Limite de 
Serviço – Formação de fissuras; ELS-D – Estado Limite de Serviço – Descompressão 
 
 
2.3. Escolha do tipo de protensão 
 
A escolha do tipo de protensão deve ser feita em função do tipo de construção e da 
agressividade do meio ambiente. Na falta de conhecimento mais preciso das condições 
reais de cada caso, pode adotar-se a seguinte classificação do nível de agressividade do meio 
ambiente: 
♣ Não agressivo, como no interior dos edifícios em que uma alta umidade relativa pode 
ocorrer durante poucos dias por ano, e em estruturas devidamente protegidas; 
♣ Pouco agressivo, como no interior de edifícios em que uma alta umidade relativa pode 
ocorrer durante longos períodos, e nos casos de contato da face do concreto próxima à 
armadura protendida com líquidos, exposição prolongada a intempéries ou a alto teor 
de umidade; 
♣ Muito agressivos como nos casos de contato com gases ou líquidos agressivos ou com 
solo e em ambiente marinho. 
 
Escola Politécnica – Universidade de São Paulo 
PEF – Departamento de Engenharia de Estruturas e Geotécnica 
 
 
 
30
Na ausência de exigências mais rigorosas feitas por normas peculiares à construção 
considerada, a escolha do tipo de protensão deve obedecer às exigências mínimas indicadas 
a seguir: 
 
2.3.1. Protensão completa Ambientes muito agressivos 
Existe protensão completa quando se verificam as duas condições seguintes: 
♣ Para as combinações freqüentes de ações (CF), previstas no projeto, é respeitado o 
estado limite de descompressão (ELD); 
♣ Para as combinações raras de ações (CR), quando previstas no projeto, é respeitado o 
estado limite de formação de fissuras (ELF). 
 
2.3.2. Protensão limitada Ambientes medianamente agressivos 
Existe protensão limitada quando se verificam as duas condições seguintes: 
♣ Para as combinações quase permanentes de ações (CQP), previstas no projeto, é 
respeitado o estado limite de descompressão (ELD); 
♣ Para as combinações freqüentes de ações (CF), previstas no projeto, é respeitado o 
estado limite de formação de fissuras (ELF). 
 
2.3.2. Protensão parcial Ambientes pouco agressivos 
Existe protensão parcial quando se verifica a condição seguinte: 
♣ Para as combinações freqüentes de ações (CF), previstas no projeto, é respeitado o 
estado limite de aberturas de fissuras (ELW), com wk = 0,2 mm. 
 
Observação importante: 
Nas pontes ferroviárias e vigas de pontes rolantes só é admitida protensão com aderência. 
 
 
 
 
 
 
 
 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
31
 3 
 
Perdas de Protensão 
DEFINIÇÕES 
 
3.1. Introdução 
A força efetiva de protensão é variável ao longo do cabo e menor do que a aplicada pelo 
dispositivo de protensão. Esta redução de força é chamada de perda de protensão. Ela é 
devida a várias causas. Costuma-se agrupar as perdas emdois conjuntos: 
A. Perdas imediatas que ocorrem durante o estiramento e ancoragem dos cabos 
B. Perdas progressivas, que ocorrem ao longo do tempo. 
No caso comum de concreto protendido com aderência posterior, constituem perdas 
imediatas, aquelas provenientes de: 
̇ Atrito entre o cabo e a bainha; 
̇ Acomodação do cabo nas ancoragens; 
̇ Encurtamento do concreto durante a operação de protensão. 
As perdas progressivas são provocadas pela: 
̇ Retração e fluência do concreto 
̇ Relaxação da armadura de protensão. 
3 2. Perdas por atrito em cabos pós-tracionados 
As perdas por atrito variam ao longo do cabo. O fenômeno envolvido é o do atrito entre o 
cabo e a bainha e é similar ao problema de uma polia que recebe um momento torçor 
através de uma correia. 
 
Figura 23 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
32
Conforme o esquema da fig. 23, pode-se escrever: 
p. P.ds + dP = 0 
onde: 
P = coeficiente de atrito entre a correia e a polia. 
 
Substituindo 
r
P
p e ds=r.dD�
na expressão anterior, tem-se: 
P
. .r.d dP 0
r
P D � ou DP� d.
P
dP
 
Portanto, 
C.)Pln( �DP� 
Sendo P=P0, para D = 0, vem 
)Pln(=C 0 
e, portanto 
PD -)Pln(-)Pln( 0 ou PD� e.PP 0 . 
 
Figura 24 
Em situações usuais, ilustradas na fig.24, P | 0,2 e D d 20° (0,35 rad). Portanto, o produto 
PD d 0,07. Para valores desta ordem pode-se tomar 
e 1�PD # � PD 
resultando 
� �たg1PP 0 �# . 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
33
Na realidade, o cabo apresenta ondulações inevitáveis ao longo do seu comprimento, 
inclusive no trecho curvo. Em um comprimento projetado x (incluindo trechos retos e 
curvos), pode-se pensar num ângulo equivalente às ondulações do trecho, dado por k xD . 
Portanto, a força de protensão num ponto de abscissa x (normalmente, para o cálculo das 
perdas por atrito, pode-se adotar como comprimento aproximado do cabo o valor de sua 
projeção sobre o eixo x da peça) é dada por: 
� �> @xkgた1PP gi ��# . 
Pode-se definir: 
k kD P 
resultando 
� �kxたg1PP 0 ��# 
A nova NB-1 (NBR6118:2003 – Projeto de Estruturas de Concreto Armado – 
Procedimento) estabelece os seguintes valores para o coeficiente P (coeficiente de atrito 
aparente entre o cabo e a bainha), quando não existirem dados experimentais: 
 
P = 0,50 entre cabo e concreto (sem bainha); 
P = 0,30 entre barras ou fios com mossas ou saliências e bainha metálica; 
P = 0,20 entre fios lisos ou cordoalhas e bainha metálica; 
P = 0,10 entre fios lisos ou cordoalhas e bainha metálica lubrificada; 
P = 0,05 entre cordoalha e bainha de polipropileno lubrificada. 
A unidade de P é 1/radianos ou rad-1 
 
O coeficiente k é o coeficiente de perda por metro provocada por curvaturas não 
intencionais do cabo. Na falta de dados experimentais pode ser adotado o valor 0,01�P, 
sendo a unidade de k igual a 1/m ou m-1. 
 
A tabela 5 apresenta os valores de P e k apresentados pelo CEB e ACI: 
Tabela 5. Coeficientes P e k segundo o CEB e o ACI 
 P k 
0,50 0,005 CEB Cabos em dutos 
de concreto 0,15 a 0,25 0,0033 a 0,0049 ACI 
0,20 0,002 CEB Cordoalhas em 
bainha metálica 0,15 a 0,25 0,00066 ACI 
0,20 0,002 CEB Monocordoalhas 
engraxadas 0,05 a 0,15 0,00066 ACI 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
34
Costuma-se determinar o valor da força de protensão nas extremidades de cada trecho 
(reto ou curvo) a partir da força já definida para a extremidade inicial do respectivo trecho. 
Normalmente, admite-se que, em cada trecho, o diagrama de força possa ser aproximado 
por uma variação linear. 
Considere-se o cabo esquematizado na fig. 25: 
 
Figura 25 
Admitindo-se: 
P = 0,2 ; k = 0,002 m-1 ; PA = 1733 KN; Ap = 11,84 cm2 
a1 = 10 m ; a2 = 5 m ; D = 8,5°= 0,148 rad.; Ep = 19500 kN/cm2 
resulta 
� �1AB kaたg1PP ��# 
� � 1647KN0,002.100,2.0,14811733PB �� 
� �2BC ka1PP � o � � 1631KN,002.5011647PC � 
O alongamento do cabo no final da protensão vale 
l
1733 1647 1647 1631 1
10 5 108,7 mm
2 2 11,84 19500
� �§ ·' u � u ¨ ¸ u© ¹ 
A fig. 26 apresenta o diagrama de força de protensão ao longo da viga com a aplicação de 
P0 nas extremidades. 
 
Figura 26 
 
A 
B C 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
35
3.3. Perda por acomodação das cunhas de ancoragem 
Geralmente, a ancoragem do cabo é feita por encunhamento individual das cordoalhas. 
Este encunhamento é acompanhado de um recuo do cabo (G), de alguns milímetros 
acarretando uma queda na força de protensão, num trecho de comprimento x junto à 
ancoragem, e mobilizando forças de atrito em sentido contrário àquelas da operação de 
protensão. A figura 27 apresenta as diversas situações que podem ocorrer com a 
acomodação nas ancoragens de um cabo simétrico, protendido simultaneamente pelas suas 
extremidades. 
 
Figura 27 
Para o cálculo da influência do encunhamento serão descrito dois métodos; o primeiro é de 
simples interpretação e entendimento, fácil e de utilidade prática; já o segundo é mais 
aprimorado e preciso. Deste modo, será resolvido o seguinte problema: 
Determinar o diagrama de força de protensão após o encunhamento para o cabo de 
protensão da viga esquematizada na figura 27. As perdas durante a protensão foram 
determinadas no item 3.2. Dados: 
P = 0,2 (coeficiente de atrito - trechos curvos) 
k = 0,002 / m (coeficiente de atrito ao longo do cabo) 
fptk = 1900 MPa (valor característico da resistência à ruptura) 
0,77 fptk = 1463 MPa (tensão normal máxima no ato de protensão) 
Ap = 11,844 cm
2 (área da seção do cabo de 12 cordoalhas de 12,7 mm) 
P0 = 0,77 fptk Ap = 1733 kN (força inicial de protensão) 
Ep = 195000 MPa (módulo de elasticidade da armadura de protensão) 
G = 6 mm (recuo do cabo devido à cravação da cunha de ancoragem) 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
36
P0 = 1733kN ; P1 = 1647kN ; P2= 1631 kN 
 
Figura 28 
 
1° Método 
 
O efeito do encunhamento pode ser feito conforme o procedimento indicado a seguir: 
 
1. Determinar AG = G Ep Ap = 0,006 ˜ 19500 ˜ 11,844 = 1385,75 
2. Determinar a área do triângulo (P0P1A) = A1 = 860, figura 29 (caso A); 
 
 
Figura 29 
2.1. Se A1 for maior ou igual do que AG , a influência do encunhamento está restrita ao 
trecho curvo inicial e pode ser definida através da igualdade [área da figura 
(P0PP01)]=AG , resultando 
� � � � 20 0 1
1
2 P P x P ka x
A
2 aG
� PD � 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
37
� �10 1
A a
x
P ka
G PD � 
0 1
1
1
P P
P P x
a
� � 
01 0P 2P P � 
 
 
2.2. Se A1 for menor do que AG , a influência do recuo na ancoragem estende-se além de P1 
e deve-se prosseguir com o item 3; 
 
 
3. Determinar a área da figura (P0P1P2BC) = A2 = 1260, da figura 30 (caso B); 
 
 
Figura 30 
 
 
3.1. Se A2 for maior ou igual do que AG , a extensão da influência do encunhamento pode 
ser definida através da igualdade [áreada figura (P0P1PP11P01)] = AG = 1385,7, 
resultando; 
� �1 1 1 1 1y y2 P P a 2P ky a A A2 2 G
§ · § ·� � � �¨ ¸ ¨ ¸© ¹ © ¹ 
de onde se obtém y e, portanto, x e os valores de P11 e P01; 
 
 
3.2. Se A2 for menor do que AG , todo o cabo é afetado pelo encunhamento, figura 9 e os 
valores da força de protensão podem ser obtidos a partir da expressão (caso C): 
� �1 2 22 P a a A AG' � � P 4,19 kN' . 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
38
 
Figura 31 
 
A. Nos cabos protendidos por uma das extremidades (ancoragem fixa na outra 
extremidade), o diagrama de força de protensão pode ser definido (a partir da 
extremidade que recebe a protensão) aplicando-se, por exemplo, o procedimento visto 
no item anterior. 
 
2° Método 
 
a) Caso A, em que x < a1 
 
 
Figura 32 
 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
39
Nesta situação o encunhamento afeta apenas o trecho curvo do cabo. A variação de 
comprimento de um elemento de cabo (dx), sujeito à força de protensão de valor P, é dada 
por: 
p p
Pdx
dl
E A
 
onde: 
Ep = módulo de deformação do aço de protensão 
Ap = área da seção transversal da armadura de protensão. 
 
Desta forma, o valor do recuo é dado pela área da figura triangular hachurada dividida pela 
rigidez normal do cabo (Ep Ap). Isto é, 
 
� � � �0 0 1
p p 1 p p
2 P P x 2P ka x x 1
2E A a 2 E A
� PD �G ˜ ˜ ou � �
p p 1
0 1
E A a
x
P ka
G PD � [para (x < a1)] 
 
resultando 
 
o
1
x
P P 1 kx
a
§ · �PD �¨ ¸© ¹
 o 01 0P 2P P � . 
 
b) Caso B, em que (a1 < x d al + a2) 
 
 
Figura 33 
 
A área da figura hachurada dividida pela rigidez normal do cabo fornece o valor do recuo 
do cabo. Assim 
 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
40
� � � � p p0 1 1 11 1 1 E AP ka a x aP k x a a2 2 2
PD � �§ ·� � � G¨ ¸© ¹ 
 
logo 
� � 2p p 0 1 1 1 1
1
E A P P a P ka
x
P k
G � � � 
resultando 
� �1 1P P 1 k x a � �ª º¬ ¼ 
01 0P 2P P � 
11 1P 2P P � 
 
c) Caso C em que (x = a1 + a2) 
 
 
Figura 34 
 
Tem-se: 
� � � � � � p p0 1 1 21 2 1 1 2 E AP P a aP P a P a a2 2 2
� § ·� � � � ' � G¨ ¸© ¹ 
ou 
� �0 1 2p p 1 1 2 1
1 2
P P a
E A a P P a
2 2 2P
a a
�G § ·� � � �¨ ¸© ¹' � 
01 2 0P 2P P 2 P � � ' 
11 2 1P 2P P 2 P � � ' 
P.2PP 222 '� 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
41
Resolvendo o exemplo anteriormente proposto pelo 2o método 
 
Não se sabe a priori, até onde chega a influência do recuo nas ancoragens. A solução pode 
ser encontrada por tentativas. Pode-se começar, por exemplo, admitindo-se tratar do caso 
A (item 3.3) onde a influência é restrita ao trecho curvo. Assim, 
 
� �
p p 1
0 1
E A a
x
P ka
G PD � � �
19500 11,844 0, 006 10
12,70 m
1733 0, 2 0,148 0, 002 10
˜ ˜ ˜ ˜ � ˜ 
 
O valor obtido mostra que o recuo afeta além do trecho curvo inicial (x > a1 = 10 m). Caso 
se admita o caso B (influência até um ponto do trecho reto), vem: 
 
� � 2p p 0 1 1 1 1
1
E A P P a P ka
x
P k
G � � � 
 
� � 219500 11,844 0, 006 1733 1647 10 1647 0,002 10
x 16,1 m
1647 0, 002
˜ ˜ � � ˜ � ˜ ˜ ˜ 
 
Este valor ultrapassa a metade do comprimento do cabo (simetria) que é de 15 m. Conclui-
se, assim, tratar-se do caso c, resultando: 
 
� �0 1 2p p 1 1 2 1
1 2
P P a
E A a P P a
2 2 2P
a a
�G § ·� � � �¨ ¸© ¹' � 
 
� �0, 006 1733 1647 519500 11,844 10 1647 1631 10
2 2 2P 4,19 kN
10 5
� § ·˜ ˜ � ˜ � � �¨ ¸© ¹' � 
 
01 2 0P 2P P 2 P 2 1631 1733 2 4,19 1521 kN � � ' ˜ � � ˜ 
 
11 2 1P 2P P 2 P 2 1631 1647 2 4,19 1607 kN � � ' ˜ � � ˜ 
 
21 2P P 2 P 1631 2 4,19 1623 kN � ' � ˜ 
 
A figura 35 apresenta o diagrama de força normal no cabo: 
 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
42
 
Figura 35 
 
3.4. Perda de protensão por encurtamento do concreto durante a 
fase de protensão dos cabos (concreto protendido com 
armadura pós-tracionada) 
 
Figura 36 
Considere-se a seção transversal esquematizada na figura 36 de uma viga protendida com 
armadura pós-tracionada, constituída de 5 cabos (n = 5). 
Normalmente, a protensão total é obtida estirando-se, seqüencialmente, um cabo por vez 
num total de cinco operações. A protensão de um cabo provoca uma deformação imediata 
do concreto e, consequentemente, afrouxamento dos cabos anteriormente protendidos. A 
perda média de protensão pode ser estimada através da expressão: 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
43
� �p p g cp n 12n�'V D V �V 
onde: 
g
g p
c
M
e
I
V o tensão no concreto ao nível do baricentro da armadura de 
protensão, devida à carga permanente mobilizada pela protensão; 
2
p
cp
c c
e1
P
A I
§ ·V � �¨ ¸¨ ¸© ¹
 o tensão no mesmo ponto anterior, devida à protensão simultânea 
dos n cabos; 
p
p
c
E
E
D o coeficiente de equivalência; 
Ac , Ic o área e momento de inércia da seção transversal; 
ep o excentricidade da resultante de protensão. 
A deformação total, junto à fibra de passagem da resultante dos n cabos de protensão, é 
dada por 
g c,p
c,pg g c,p
cE
V �VH H � H 
portanto, a protensão de cada cabo provoca a deformação 
c,pg
c,pg1 n
HH 
Admitindo-se a protensão seqüencial dos n cabos, pode-se construir a seguinte tabela: 
Tabela 6 
 Encurtamento dos cabos 
 Protensão C1 Protensão C2 Protensão C3 Protensão C4 Protensão C5 Total 
C1 Hc,pg1 Hc,pg1 Hc,pg1 Hc,pg1 4Hc,pg1
C2 Hc,pg1 Hc,pg1 Hc,pg1 3Hc,pg1
C3 Hc,pg1 Hc,pg1 2Hc,pg1
C4 Hc,pg1 1Hc,pg1
C5 
 
Portanto, a deformação total vale 
� � � �c,pg1 c,pg1n n 11 2 ... n 1 2
�H � � � � Hª º¬ ¼ 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
44
que é a soma dos n - 1 primeiros termos da progressão aritmética ( 1,2,...,n - 1). 
A perda total de protensão correspondente é dada por 
� �
c,pg1 p p,1
n n 1
P E A
2
�' H 
onde: 
Ap,1 é a área da seção transversal de um cabo 
ou 
� � � �c,pg g cp p
p p,1 p
c
An n 1 n n 1
P E A E
2 n 2 nE n
H V �V� �' 
onde 
Ap é a área total dos n cabos. 
Finalmente, tem-se: 
� �p p g cp
p
P n 1
A 2n
' �'V D V �V 
Considere-se o exemplo com os seguintes dados: 
P1 = 1614 kN ; P2 = 1621 kN ; P3 = 1623 kN; P4 = P5 = 1624 kN 
Dp = 5,85 ; Ic = 0,519 m4 ; Ac = 0,944 m2 ; ep = 0,816 m ; Mg = 3000 kN.m 
Ap = 11,84 cm
2 (de cada cabo) ; P0 = 1733 kN (força inicial de protensão por cabo) 
Tem-se: 
iP P 8106kN ¦ 
g
g p
c
M 3000
e 0,816 4,72MPa
I 0,519
V u 
2 2
p
c,p
c c
e1 1 0,816
P 8106 18,99MPa
A I 0,944 0,519
§ · § ·V � � � � �¨ ¸ ¨ ¸¨ ¸ © ¹© ¹
 
Logo 
� � � �p p g cp n 1 5 15,85 4,72 18,99 33, 4MPa2n 2 5� �'V D V �V u � u�u 
A tensão inicial de tração na armadura de protensão vale: 
0
p0
p
P 1733
1464MPa
A 11,84
V 
 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
45
A perda percentual é de 
p
p0
33, 4
2, 3%
1464
'V � �V 
P 8106 3, 34 5 11,84 7908 kN � u u 
O percentual devido à perda imediata vale, portanto 
� � � �0 0P P / P 8665 7908 /8665 9%� � 
 
3.5. Perdas progressivas em armaduras aderentes 
Encerradas as operações de protensão da peça de concreto protendido, os cabos são 
injetados com nata de cimento, estabelecendo-se a aderência entre a armadura de protensão 
e o concreto. Admite-se que esta aderência seja perfeita, isto é, podem ser consideradas 
iguais às deformações adicionais no concreto e na armadura de protensão. 
As perdas progressivas são devidas à fluência e retração do concreto e à relaxação da 
armadura de protensão. A fluência e a relaxação exprimem a influência do tempo nos 
campos de tensões e deformações. 
O fenômeno da fluência pode ser caracterizado através da seguinte experiência: Considere-
se uma barra (fig. 37) à qual é aplicada, num certo instante t0 , a força de tração permanente 
de valor P0 que, portanto, será mantida constante ao longo do tempo. No instante t0 tem-se 
um alongamento inicial de valor a0. No material sujeito a fluência, este alongamento 
aumenta ao longo do tempo para um valor assintótico af. A fluência acarreta, portanto, um 
aumento da deformação sob tensão constante. 
 
 
 
 
 
 
 
 
 
 
Figura 37 
 
L0 a 
A B 
A B’ 
Pi = cte 
t 
a 
to 
a0 
P 
to 
Pi 
t 
Pi = constante
Fluência 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
46
O fenômeno da relaxação pode ser caracterizado através da seguinte experiência. 
Considere-se uma barra (fig. 38) à qual é aplicada, num certo instante t0 , um alongamento 
permanente de valor a0 mantido constante ao longo do tempo. Para isto, é necessário 
aplicar uma força de tração de intensidade Pi. No material viscoelástico, esta força diminui 
ao longo do tempo para um valor assintótico Pf. A viscoelasticidade acarreta, neste caso, 
diminuição da tensão sob deformação constante que é chamada de relaxação. 
 
 
 
 
 
 
 
 
 
 
 
Figura 38 
Pode-se admitir que o efeito do tempo em uma peça de concreto protendido transcorra em 
condições que se aproximam da fluência pura no concreto e da relaxação pura na armadura 
de protensão. 
De fato, no concreto, as solicitações de caráter permanente são devidas à carga permanente 
(constante) e à protensão que relativamente varia pouco; as tensões normais 
correspondentes no concreto acabam gerando deformações adicionais semelhantes a 
fluência pura. 
A grande deformação inicial aplicada na armadura para se obter a força de protensão, 
mantém-se praticamente constante ao longo do tempo provocando perdas de tensão 
semelhantes a relaxação pura. 
 
 
 
 
 
 
L0 
P 
A B 
A B’ 
a0 = cte 
t 
P 
to 
Pi 
a 
to 
a0 
t 
a0 = constante
Relaxação 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
47
3.5.1.Perdas por retração no concreto (Shrinkage 'Vp,s) 
 
 
Figura 39 
 
Deformação por retração Hcs= Equivale a uma diminuição de temperatura entre 15°C a 38°C 
 
- Umidade relativa do ambiente (U) 
 
Umidade Relativa do Ar (Diminui) Retração (aumenta)
Rio de Janeiro 
 São Paulo 
 U= 78% Hcs=-20x 10-5 
 
- Consistência do concreto no lançamento: 
 
a
c
 0,45 0,50 0,55 0,65 0,65 
 Porosidade aumenta o 
 Índice de vazios aumenta o 
- Espessura fictícia da peça hfic; 
 
Figura 40 
 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
48
Idade fictícia do concreto no instante (to) da aplicação da carga 
(Diminui) . 
Retração 
(Aumenta) 
- Idade fictícia do concreto no instante considerado (t) 
 
 
Figura 41 
p cs
p
E H'V # E E é um fator de correção ( t1,0 ), pode ser usado E=1 a favor da segurança 
 
3.5.2. Perdas por fluência do concreto, (Creep Hcc) 
 
Figura 42 
c 0 0
c
cc
cc 0 c
l (t , t ) l
l
l
(t , t )
' M '
'H 
H M H
 
 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
49
 
Figura 43 
 
Figura 44 
� �po pg po
p p
c c c
c,pog
F eM F
e e
I A I
.§ ·� � ¨ ¸¨ ¸© ¹
V 
g po c
p
c c c
2
pc,pog
M F A
e
I A I
1 e� § ·�¨ ¸© ¹
K
V 
'*(*)
 
positivo negativo
c,pog c,g c,po
ª º ª º« » « »« » « »¬ ¼ ¬ ¼
V V � V 
p c,pog
p,c
fD M V'V # E 
onde: 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
50
p,c'V é a perda no aço de protensão devido a fluência 
pD é a razão entre os módulos de elasticidade do aço e do concreto s
c
E
E
. 
A seguir apresenta-se o critério aproximado da Nova Norma NB1-2003 para se estimar a 
deformação por fluência e retração. 
Em casos onde não é necessária grande precisão, os valores finais do coeficiente de fluência M(tf,to) e da 
deformação específica de retração Hcs(tf,to) do concreto, submetido a tensões menores que 0,5 fc quando do 
primeiro carregamento, podem ser obtidos, por interpolação linear, a partir da tabela 7. 
Esta tabela fornece o valor do coeficiente de fluência M(tf,to) e da deformação específica de retração 
Hcs(tf,to) em função da umidade ambiente e da espessura equivalente 2Ac/u, onde Ac é a área da seção 
transversal e u é o perímetro desta seção em contato com a atmosfera. Os valores desta tabela são 
relativos a temperaturas do concreto entre 10ºC e 20ºC, podendo-se, entretanto, admitir temperaturas 
entre 0ºC e 40ºC. Esses valores são válidos para concretos plásticos e de cimento Portland comum. 
Tabela 7 Valores característicos superiores da deformação específica de retração Hcs(t
f,to) e do coeficiente de fluência M(tf,to) 
Umidade ambiente (%) 40% 55% 75% 90% 
Espessura Equivalente c
2A
u
 (cm) 20 60 20 60 20 60 20 60 
 5 4,4 3,9 3,8 3,3 3,0 2,6 2,3 2,1 
M(tf,to) to(dias) 30 3,0 2,9 2,6 2,5 2,0 2,0 1,6 1,6 
 60 3,0 2,6 2,2 2,2 1,7 1,8 1,4 1,4 
 5 -0,44 -0,39 -0,37 -0,33 -0,23 -0,21 -0,10 -0,09
Hcs(tf,to) ‰ to(dias) 30 -0,37 -0,38 -0,31 -0,31 -0,20 -0,20 -0,09 -0,09
 60 -0,32 -0,36 -0,27 -0,30 -0,17 -0,19 -0,08 -0,09
 
 
3.5.3. Perdas por relaxação do aço, (Hp,r) 
 
A relaxação da armadura de protensão é a perda de protensão quando os fios ou 
cordoalhas estão sujeitos essencialmente com uma deformação constante. Por 
simplificação, pode-se considerar o efeito da relaxação da armadura semelhante à fluência 
do concreto, lembrando somente que a fluência caracteriza-se pelo aumento das 
deformações ao passo que a relaxação do aço é uma diminuição da tensão com o tempo. 
Escola Politécnica– Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
51
Figura 45 
 
O valor da força de protensão em uma determinada época, considerada somente a 
relaxação do aço, é dado por: 
))t,t(1.(F)t,t(F 00p0p \� portanto PFp 
15,0
0
10000 1000
tt
)t,t( ¹¸
·
©¨
§ �\ \ 
Onde: 
Vpi e Pi são respectivamente a tensão e a força no macaco; 
Vp0 e P0 são respectivamente a tensão e a força no tempo t = to; 
Vpf e Pf são respectivamente a tensão e a força no tempo t = f; 
\(to,t) é o coeficiente de relaxação do aço no instante t para protensão e carga permanente 
mobilizada no instante tº 
\1000 é a relaxação de fios e cordoalhas, após 1000 h a 20ºC e para tensões variando de 0,5 a 
0,8 fptk, obtida em ensaios descritos na NBR 7484, não devendo ultrapassar os valores 
dados na NBR 7482 e na NBR 7483,respectivamente. 
Para efeito de projeto, os valores médios da relaxação para as perdas de tensão, referidas a 
valores básicos da tensão inicial, de 50% a 80% da resistência característica fptk (\1000), são 
reproduzidos na tabela 8. 
Tabela 8 Valores de <1000, em % 
 Cordoalhas Fios Barras 
Vpo RN RB RN RB 
0,5 fptk 0 0 0 0 0 
0,6 fptk 3,5 1,3 2,5 1,0 1,5 
0,7 fptk 7 2,5 5 2 4 
0,8 fptk 12 3,5 8,5 3 7 
 
Escola Politécnica – Universidade de São Paulo 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
52
Para tensões inferiores a 0,5 fptk, admite-se que não haja perda de tensão por relaxação. 
Para tensões intermediárias entre os valores fixados na tabela 7, permite-se a interpolação 
linear. 
Pode-se considerar, para o tempo infinito (t=50 anos), o valor é f\ # 2,5 \1000. 
 
3.5.3.1. Fluência da armadura de protensão, (Hp,c) 
 
A fluência e a relaxação do aço são o mesmo fenômeno, medido somente em diferentes 
circunstâncias. A fluência do aço é dado por: 
 
> @o o(t , t ) ln 1 (t , t )F � �\ 
F(to,t) é o coeficiente de fluência do aço 
As perdas por relaxação da armadura protendida poder ser avaliada por: 
po
p,r
fV F'V � E 
ou po 1000p,r
V \'V # � E Para aplicações usuais. 
 
3.6. Perdas progressivas totais. 
A perda progressiva total considerando a fluência e a retração do concreto e a relaxação da 
armadura ativa é fornecida por: 
o1000ou
c,pog p p cs po
p
E
\
f fV D M � H �V F'V E 
ppp さ
2
1とgぬ1く ¹¸
·
©¨
§ ��� ff M 
2
p
c
c
g po
c,pog p
c c
e
1 A
I
Varia em cada seção
M F
e
I A
§ ·K �¨ ¸¨ ¸© ¹ Ÿ
V � K
 
Escola Politécnica – Universidade de São Paulo 
 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
53
 
 4 
 
Flexão simples (ELU) 
DEFINIÇÕES 
 
 
4.1 Introdução 
Basicamente a diferença entre o concreto armado e o concreto protendido é a existência do 
pré-alongamento na armadura de protensão. No caso de solicitações normais, pode-se 
dizer que o procedimento de cálculo no Estado Limite Último (ELU) para estruturas 
protendidas é o mesmo que aqueles do concreto armado. 
A Nova NB1-2003 refere-se a estado limite último como: 
 
Estados Limites Últimos são aqueles relacionados ao colapso, ou a qualquer outra forma de 
ruína estrutural, que determine a paralisação do uso da estrutura. 
 
Como as estruturas de concreto armado, as de concreto protendido devem atender a dois 
tipos de condições: 
1. Comportamento dúctil e coeficiente de segurança satisfatório, na ruptura. 
2. Comportamento satisfatório sob efeito de cargas permanentes e cargas de serviço. 
No caso da flexão simples de vigas de concreto protendido, o item 2 obedecerá às mesmas 
condições das adotadas no concreto armado. 
No caso da análise dos esforços resistentes de uma seção, admitem-se as seguintes 
hipóteses de cálculo: 
a) As seções transversais se mantém planas após deformação; 
b) A deformação das barras aderentes (passivas ou ativas), em tração ou compressão, é a 
mesma do concreto em seu entorno; 
c) Para armaduras ativas não-aderentes, o eventual acréscimo de força deve ser calculado 
através do efeito de viga-armada para a combinação de ações em estudo, sendo que para 
estruturas de edifícios, permite-se aproximar esse acréscimo por 50% do que se obteria 
para armadura aderente; 
Escola Politécnica – Universidade de São Paulo 
 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
54
d) As tensões de tração no concreto, normais à seção transversal, podem ser desprezadas; 
e) A distribuição de tensões no concreto se faz de acordo com o diagrama parábola-
retângulo, com tensão de pico igual a 0,85 fcd permitindo-se a substituição desse diagrama 
pelo retângulo de altura 0,8.x (onde x é a profundidade da linha neutra), com a seguinte 
tensão: 
̇ 0,85 fcd no caso da largura da seção, medida paralelamente à linha neutra, não diminuir a 
partir dessa para a borda comprimida. 
̇ 0,80 fcd no caso contrário. 
f) A tensão nas armaduras é obtida a partir dos diagramas tensão-deformação, com os 
respectivos valores de cálculo: 
 
Vs
Es
fyd
fyk
Hs
fyd
Huk
 
Figura 46: Diagrama tensão-deformação 
para aços de armaduras passivas 
Vs
Ep
fpyk
fpyd
��H pH uk
fptk
fptd
 
Figura 47: Diagrama tensão-deformação 
para aços de armaduras ativas 
Vs
Ep
fpyk
fpyd
��H pH uk
fptk
fptd
 
Figura 48: Diagrama tensão-deformação 
simplificado para aços de armaduras ativas 
 
O módulo de elasticidade do aço passivo pode ser admitido igual a 210 GPa 
O módulo de elasticidade para fios e cordoalhas pode ser considerado igual a 200 GPa. 
 
Escola Politécnica – Universidade de São Paulo 
 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
55
g) O Estado Limite Último é caracterizado quando a distribuição das deformações na seção 
transversal pertencer a um dos domínios definidos na figura 49 a seguir: 
 
Figura 49. Domínios de deformação. 
 
4.2. Dimensionamento a flexão simples de vigas de seção retangular 
composta por armadura protendida aderente e por armadura passiva 
simples. 
 
4.2.1. Dados de entrada: 
 
Figura 50 – Esquema para Dimensionamento 
 
Esforços solicitantes 
Msd 
FpRR�
Nsd=0 
 
 
Geometria e armadura protendida 
 
Incógnitas: 
x = ? (Posição da linha neutra) 
As = ? (Armadura Passiva) 
Tal que os esforços resistentes 
Nrd e Mrd sejam Nrd = Nsd = 0 
e Mrd t Msd 
Escola Politécnica – Universidade de São Paulo 
 
Prof. Ricardo Leopoldo e Silva França / Prof. Hideki Ishitani / Prof. Francisco Graziano 
PEF – Departamento de Estruturas e Fundações 
56
bw; h; d; dp; Ap;Pf 
Materiais 
fck; fy (armadura passiva) e Es; fpyk (armadura ativa) e Ep 
4.2.2. Seqüência geral de solução. 
 
A seqüência dada a seguir é mais geral e resolve todos os problemas, embora a rigor seja 
mais complexa. 
a) Arbitra-se um valor para x (ou 
x
d
), por exemplo 
x
0,30
d
 
b) Para este valor de x (ou 
x
d
) calcula-se a deformada de Estado Limite Último (ELU) 
correspondente. Os domínios de deformação no ELU são 1 a 5. 
Assim se: 
c
c
c
x x
0, 259 10‰
d d x
x h
0, 259 3,5‰
d d
h x 2‰
3 hd d 1
7 x
d H �
d d H 
d H 
�
 
Onde Hc é a deformação na fibra mais

Outros materiais