Buscar

Atividade estruturada eletricidade aplicada

Prévia do material em texto

Atividade estruturada nº1
DESCREVA O PROCESSO DE CONDUÇÃO DA CORRENTE ELÉTRICA EM UM MATERIAL
CONDUTOR. 
A corrente elétrica é o movimento ordenado de cargas elétricas, através de um condutor
elétrico. Ela pode ser definida como corrente elétrica real (sentido do movimento dos elétrons)
e corrente elétrica convencional (consiste no movimento de cargas positivas). Para isso
acontecer, duas coisas são fundamentais: uma diferença de potencial, capaz de atrair os
elétrons e um meio de propagação que permita sua passagem. Dentro dos condutores há
muitos elétrons livres descrevendo um movimento caótico, sem direção determinada. Ao
aplicar-se uma diferença de potencial entre dois pontos de um 
metal (ligando as pontas do fio a uma bateria, por exemplo), estabelece-se um campo elétrico
interno e os elétrons passam a se movimentar numa certa ordem, constituindo assim a corrente
elétrica. 
1 - COMO SE CHAMA A LEI QUE RELACIONA AS TRÊS GRANDEZAS BÁSICAS EM UM 
CIRCUITO ELÉTRICO E QUAIS SÃO ESSAS TRÊS GRANDEZAS?
A Lei de Ohm. As três grandezas são: tensão, corrente e resistência. 
V=R×I 
Onde:
V é a diferença de potencial elétrico (ou tensão, ou ddp) medida em volt (V); 
I é a intensidade da corrente elétrica medida em ampère (A);
R é a resistência elétrica medida em ohm (Ω).
2 - POR UM RESISTOR CONECTADO A UM CIRCUITO CIRCULA UMA CORRENTE DE 2,4 
A. QUAL É A QUANTIDADE DE CARGA ELÉTRICA EM COULOMBS QUE ATRAVESSA O 
RESISTOR NO PERIODO DE 2 MIN?
I=∆Q
∆t
∆Q=∆ t× I
∆Q=120×2,4
∆Q=288C
medida em ohm (Ω).medida em ohm (Ω).
3 - QUAL É A CARACTERÍSTICA PRINCIPAL DA ESTRUTURA ATÔMICA DE UM MATERIAL 
QUE FAZ COM QUE ELE SEJA CONDUTOR DE ELETRICIDADE?
Nos condutores metálicos, existe, movimentando-se desordenadamente, uma verdadeira 
nuvem de elétrons, os elétrons livres. Eles são assim chamados porque pertencem à última 
camada da eletrosfera do átomo a que estão ligados, sendo essa ligação muito fraca, isto é, a 
força de atração eletrostática exercida pelo núcleo atômico não é suficiente para manter o 
elétron fortemente ligado ao átomo. Então, o elétron migra com certa facilidade de um átomo 
para outro. É isso que faz com que o material seja bom condutor elétrico. 
Atividade estruturada nº2
Faça uma pesquisa sobre a resistividade de um material condutor de eletricidade e a influência 
da temperatura na variação de sua resistência elétrica. A partir desta pesquisa determine o 
valor da resistência elétrica de um condutor de alumínio, com comprimento de 2750 m e seção 
circular com 2,8 mm de diâmetro, na temperatura de 48 ºC. Repita os cálculos para a 
temperatura de 64 ºC.
Dados: 
 
L=2750 m 
A = 6,1544 mm² 
T0 = 48 °C e 64 °C 
α= 2.98X10^-8 Ω.m²/m 
Р=0,02857 Ω.m
P= 0,02857 Ω.m
Logo: 
 
R=pL/A => 0,02857 * 2750 / 0,0061544 
R=12766,069 
 
R = R0 [ 1 + α(t-t0)] 
 
R= 12766,069 [ 1 + 2.98X10-8(48-0)] 
R=12766,069 [ 4,98] 
R=63575.02362Ω 
 
Dados: 
L=2750 m 
A=6,1544 mm² 
T0=64°C 
α= 2.98X10-8 Ω.m²/m 
Р=0,02857 Ω.m R=12766,069Ω 
P= 0,02857 Ω.m
R= 12766,069 Ω
R=R0[ 1 + α(t-t0)] 
 
R= 12766,069 [ 1 + 2.98X10-8(64-0)] 
R= 12766,069 [0,10375*64] 
R= 84766,69816 ΩR= 84766,69816 Ω
Atividade estruturada nº3
1 – FAZER UMA PESQUISA SOBRE MULTÍMETROS DIGITAIS E ANALÓGICOS E 
DESCREVER AS V ANTAGENS E DESVANTAGENS DE CADA UM DELES EM RELAÇÃO AO 
OUTRO. 
Multímetro Digital Multímetro Analógico
Display de cristal líquido Ponteiro
Melhor para medir tensões e resistores Melhor para testar a maioria dos 
componentes elétricos
 
2 – DESCREVER COMO SE UTILIZA O MULTÍMETRO DIGITAL E QUAIS SÃO OS 
CUIDADOS A SEREM OBSERVADOS NAS MEDIDAS DE TENSÃO E NAS MEDIDAS DE 
RESISTÊNCIA ÔHMICA.
 
Um multímetro digital oferece a facilidade de mostrar diretamente em seu visor, que chamamos
de display de cristal líquido, o valor numérico da grandeza medida, sem termos que ficarmos 
fazendo multiplicações (como ocorre no analógico). 
 
Um multímetro digital pode ser utilizado para diversos tipos de medidas, agora irei citar três 
mais comuns: 
- Tensão elétrica (medida em volts - V); 
- Corrente elétrica (medida em Amperes - A) 
- Resistência elétrica (medida em Ohms). 
 
Além destas ele pode ter escalas para outras medidas como: temperatura, frequência, 
semicondutores, capacitância, ganho de transistores, etc. Em multímetros digitais o valor da 
escala já indica o máximo valor a ser medido por ela, independente da grandeza. A seleção 
entre as escalas pode ser feita através de uma chave rotativa, chaves de pressão, chaves tipo 
H -H ou o multímetro pode mesmo não ter chave alguma, neste caso falamos que o multímetro 
digital é um aparelho de auto-range, ou seja, ele seleciona a grandeza e a escala que esta 
sendo medida automaticamente. 
 
Um coisa muito importante ao usar um multímetro digital é saber selecionar a escala correta 
para a medição a ser feita. 
Para medirmos uma tensão por exemplo, é necessário que conectemos as pontas de prova em
paralelo com o ponto a ser medido. Se quisermos medir a tensão aplicada sobre uma lâmpada 
devemos colocar uma ponta de prova de cada lado da lâmpada, isto é uma ligação paralelo. 
 
Cuidados na Utilização do Voltímetro 
1. A graduação máxima da escala deverá sempre ser maior que a tensão máxima que se 
deseja medir. 
2. Procura fazer a leitura mais próxima possível do meio da escala, para que haja maio r 
precisão. 
3. O ajuste de zero deve ser feito sempre que for necessário com ausência de tensão. 
4. Evitar qualquer tipo de choque mecânico. 
5. Usar o voltímetro sempre na posição correta, para que haja maior precisão nas leituras. 
6. Caso o voltímetro tenha polaridade, o lado (+) do mesmo deve ser ligado ao pólo positivo da 
fonte e o lado (-) do aparelho com o negativo da fonte 
 
 
Cuidados na utilização do ohmímetro 
1. A graduação máxima da escala deverá ser sempre maior que a resistência máxima que se 
deseja medir. 
2. Ajustar o ohmímetro a zero toda vez que se for medir uma resistência. 
3. A resistência deve ser medida sempre com ausência de corrente e desconectada do circuito. 
4. Evitar choque mecânico do aparelho. 
5. Usar o aparelho sempre na posição correta, para minimizar erros de medição.
 
3 – DESCREVER TAMBÉM COMO SE FAZ OS CUIDADOS A SEREM TOMADOS PARA A 
MEDIÇÃO DE CORRENTE ELÉTRICA. 
1.Graduação máxima da escala deverá ser sempre maior que a corrente máxima que se 
deseja medir. 
2. Procurar utilizar uma escala, onde a leitura da medida efetuada seja o mais próximo possível
do meio da mesma. 
3. Ajustá-lo sempre no zero, para que a leitura seja correta (ajuste feito com ausência de 
corrente). 
4. Evitar choques mecânicos com o aparelho. 
5. Não mudar a posição de utilização do multímetro, evitando assim leituras incorretas. 
6. Obedecer à polaridade do aparelho, se o mesmo for polarizado. O pólo positivo (+) do 
amperímetro ligado ao pólo positivo da fonte e o pólo negativo (-) ao pólo negativo do circuito.
Atividade estruturada nº4
DESENHAR UM CIRCUITO DE CORRENTE CONTÍNUA COM TODOS OS ELEMENTOS
LIGADOS EM SÉRIE, CONTENDO DUAS FONTES DE TENSÃO E QUATRO RESISTORES,
DE FORMA QUE O VALOR DA TENSÃO TOTAL DO CIRCUITO SEJA IGUAL A 80 V E A
CORRENTE QUE CIRCULA NO CIRCUITO SEJA UM VALOR ENTRE 2 MA E 4 MA. OS
VALORES DOS RESISTORES DEVEM SER MÚLTIPLOS DE QUALQUER UM DOS
SEGUINTES VALORES A SEGUIR: 1; 1,2; 1,5; 1,8; 2,4; 2,7; 3,3; 4,7; 6,8; 8,2.
EXEMPLO: UM RESISTOR PODE TER 1,5 Ω OU PODE TER 15 Ω. ATRIBUIR O VALOR A
CADA FONTE DE TENSÃO E1 E E2. ATRIBUIR O VALOR A CADA RESISTOR R1, R2, R3, E
R4.
Atividade estruturada nº5
CONSIDERE UMA FONTE DE TENSÃO CONTÍNUA LIGADA A UM RESISTOR DE
RESISTÊNCIA DE VALOR DESCONHECIDO IGUAL A R. EM SÉRIE COM O RESISTOR TEM
UM MILIAMPERÍMETRO PARA MEDIR A CORRENTE QUE PASSA PELO RESISTORE EM
PARALELO COM O RESISTOR TEM UM VOLTÍMETRO PARA MEDIR A TENSÃO APLICADA
NO RESISTOR. VARIOU-SE A TENSÃO DA FONTE DE FORMA QUE NO RESISTOR SE
OBTEVE OS VALORES DE TENSÃO E DE CORRENTE QUE CONSTAM DA TABELA
ABAIXO:
Atividade estruturada nº6
UMA BATERIA FORNECE CORRENTE PARA DOIS RESISTORES LIGADOS EM PARALELO
COMO MOSTRA A FIGURA ABAIXO. O RESISTOR DA ESQUERDA TEM UMA
RESISTÊNCIA DE 60 Ω E O DA DIREITA TEM VALOR IGUAL A RX. A CORRENTE
FORNECIDA PELA FONTE É 1 A. DETERMINE O VALOR DE RX E A POTÊNCIA
CONSUMIDA POR RX. DETERMINE O VALOR DO RESISTOR RY QUE COLOCADO EM
PARALELO COM O CIRCUITO FAZ A CORRENTE FORNECIDA PELA FONTE DOBRAR DE
VALOR.
RT=60×RX
60+RX
=60×15
60+15
=12Ω
V=R×I
12=60×RX
60+RX
×I
60×RX=60+RX ×12
60 R=12RX+60×12
60 RX−12RX=720
48 RX=720
RX=15Ω
V=R×I
12=12×RY
12+RY
×2
12
2
= 12RY
12+RY
6= 12RY
12+RY
6 (12+RY )=12 RY
12RY−6 RY=72
RY=72
6
RY=12Ω
Atividade estruturada nº7
1. CONSIDERE UMA FONTE DE TENSÃO CONTÍNUA DE VALOR AJUSTÁVEL EM SÉRIE
COM UM RESISTOR DE 100.
2. O VALOR DA TENSÃO DA FONTE VAI VARIAR DE 2 EM 2 V DE ZERO ATÉ 10 V, E PARA
CADA VALOR DE TENSÃO A 
POTÊNCIA CONSUMIDA PELO RESISTOR VAI SER CALCULADA PELA FÓRMULA 
R V P2.
3. CONSTRUA UMA TABELA EM QUE UMA COLUNA TENHA O VALOR DA TENSÃO E NA
OUTRA COLUNA O VALOR DA POTÊNCIA, OU SEJA, PARA CADA VALOR DE TENSÃO
TEREMOS UM VALOR DE POTÊNCIA. 
4. CONSTRUA UM GRÁFICO DA POTÊNCIA DISSIPADA EM FUNÇÃO DA TENSÃO
APLICADA NO RESISTOR DE 100 . P = F (V). NO EIXO VERTICAL UTILIZE UMA ESCALA
DE 0 A 1 W, COM DIVISÕES DE 0,1 W PARA A POTÊNCIA E NO EIXO HORIZONTAL UMA
ESCALA DE 0 A 10 V COM DIVISÕES DE 1 V. 
5. A CURVA OBTIDA É LINEAR?
 6. USANDO O GRÁFICO OBTIDO, DETERMINE A TENSÃO PARA A POTÊNCIA DISSIPADA
DE 500 MW.
Atividade estruturada nº8
PARA O CIRCUITO MOSTRADO NA FIGURA ABAIXO: 
1. DETERMINE A CORRENTE I 
2. CALCULE A TENSÃO DE CIRCUITO ABERTO V
R = 6+ 8+ 3= 17
V= 20V + 18V = 38V 
 
1) 
V=R*I 
38= 17 * I 
I= 38/17 
I= 2,24ª
2) Vaberto = 20V + 18V = 38V
Atividade estruturada nº9
PARA A FORMA DE ONDA MOSTRADA NA FIGURA ABAIXO, DETERMINE O VALOR EFICAZ
DA TENSÃO:
Vmax = Veficaz x √2 6 = Veficaz x √2 Veficaz = 6 / √2 Vmax = Veficaz x √2 6 = Veficaz x √2 Veficaz = 6 / √2 Vmax = Veficaz x √26 = Veficaz x √2Veficaz = 6 / √2
Veficaz = 4,24 V

Outros materiais

Perguntas Recentes