Buscar

Química Geral - Estudo das Soluções

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 131 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 131 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 131 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1.1. Dispersões
Uma dispersão consiste num sistema no qual uma substância (disperso)
encontra-se disseminada, na forma de pequenas partículas no interior de outra
(dispersante)
Dependendo do tamanho da partícula que constitui o disperso, a dispersão
assume características diversas, sendo classificada em três tipos : soluções,
colóides e suspensões.
A classificação acima é feita de acordo com o diâmetro médio das
partículas dos disperso:
Tipo de dispersão Tamanho da partícula dispersa
Solução verdadeira entre 0 e 10-9 m (1 nanometro)
Colóide entre 10-9 e 10-6 m (1 à 103 nanometro)
Suspensão acima de 10-6 m (acima de 103 nanometro)
Como características gerais dos três tipos de dispersões podemos
mencionar que:
a) soluções verdadeiras ou soluções:
- o disperso (soluto) é constituído de átomos, íons ou pequenas
moléculas;
- pelas reduzidas dimensões do disperso (soluto), as soluções
verdadeiras sempre serão sistemas homogêneos, sendo que as
partículas não são visíveis mesmo com equipamentos óticos de alta
resolução e ampliação;
- não há sedimentação das partículas e não é possível a sua
separação por nenhum tipo de filtro;
Exemplos:
- sacarose em água, NaCl em água, etanol em água, atmosfera
(isenta de poeira), etc.
b) colóides:
- o disperso é constituído por aglomerados de átomos, moléculas ou
íons ou, até mesmo, por macromoléculas;
- as partículas do disperso são visualizáveis em equipamentos óticos
(microscópios) de alta resolução (ampliação);
- as partículas podem ser separadas por ultracentrifugação (elevado
número de RPM) ou por ultrafiltração (filtros cujo diâmetro do poro é
bastante reduzido);
1. ESTUDO DOS SISTEMAS DISPERSOS
2
Exemplos: leite, gelatina em água, fumaças em geral, neblina, etc.
c) suspensões:
- o disperso é constituído de grandes aglomerados de átomos ou
moléculas;
- as partículas do disperso são visíveis em microscópio comum,
constituindo-se em sistemas heterogêneos;
- as partículas do disperso sedimenta-se por ação da gravidade ou em
centrífugas comuns podendo, também, ser separadas por filtros
comuns de laboratório;
Exemplos: poeira no ar.
1.2. Est udo das Soluç ões verdadei ras ou Soluç ões
Dentre os sistemas dispersos, as soluções verdadeiras ou simplesmente
soluções são extremamente importantes no cotidiano do química, pois nas
atividades mais comuns de laboratório (análises, sínteses, separações,
formulação de produtos, etc) o químico trabalha com soluções que, em geral, são
aquosas.
1.2.1. Formação de Soluções
Quando uma solução é formada ocorre uma disseminação espontânea de
uma substância no interior de outra, originando um sistema mais entrópico
(desorganizado) que as substâncias originais.
 substância A substância B mistura A + B (solução)
 l l l l l O O O O l O l O l O l O l O
 l l l l l O O O O O l O l O l O l O l
 l l l l l O O O O l O l O l O l l O
 parede de separação removendo a parede
A força “motriz” para esse processo de mistura é a tendência espontânea
para um estado de maior desordem molecular (maior entropia).
Para que ocorra o processo da dissolução é necessário que as partículas
do soluto e do solvente apresentem atrações entre si decorrentes de forças de
natureza eletrostática.
3
Em geral as forças atrativas dependem do tipo de soluto e solvente.
Se a cadeia carbônica aumenta, diminui a polaridade da molécula do álcool
e, com isso, a sua solubilidade em água, por concorrência de forças Van Der
Waals dipolo induzido – dipolo induzido.
- metanol, etanol e propanol à altamente solúveis em água;
- butanol à solubilidade 0,12 mols/100 g de água;
- pentanol à solubilidade 0,031 mols/100 g de água.
Esse mesmo tipo de interação irá ocorrer naquelas moléculas que
apresentam grupos hidroxila ou amina (O – H ou N – H), como é o caso dos
álcoois de pequena cadeia carbônica, ácidos carboxílicos, aminas e amidas. Nos
glicídios (glicose, frutose, sacarose,...) a presença dos diversos grupos hidroxila
ao longo da cadeia carbônica desses compostos também justifica a sua grande
solubilidade em água. Com exceção dos ácidos carboxílicos, nas demais
substâncias ocorre apenas o processo de dissolução, sem ionização.
O fenômeno é, portanto,
explicado pela hidratação sofrida
pelas extremidades polarizadas
da molécula.
A extremidade negativa da
molécula da água (localizada no
átomo de oxigênio) direciona-se
para a região de densidade
positiva da molécula polar e as
extremidades de carga positiva
(localizadas nos átomos de
hidrogênio) direcionam-se para a
região de densidade negativa.
Assim quando dissolvemos
etanol (C2H5 – OH) em água, em
virtude da presença do grupo O–H
na água e no etanol a força
atrativa entre essas moléculas é a
Ponte de Hidrogênio ou Ligação
de Hidrogênio.
4
Quando dissolvemos um cristal de NaCl em água, além do processo da
dissolução ocorre a dissociação iônica do soluto, sendo que os íons originados
apresentam-se, na solução, “engaiolados” por moléculas do solvente (hidratação
ou solvatação), unidos por forças atrativas do tipo íon – dipolo.
Os compostos iônicos se dissolvem na água quando as forças de atração
entre os dipolos da H2O e os íons são maiores que as forças de atração entre os
íons no cristal.
A orientação espacial das moléculas de solvatação é definida para um
determinado tipo de íon.
Por exemplo:
- o íon Na+ hidrata-se com seis moléculas de água, o mesmo
ocorrendo para o íon Cl-;
- o íon Al+3 hidrata-se com oito moléculas de água.
Nas soluções de solutos apolares em solventes polares, como é o caso de
gases (O2, CO2, etc...) justifica-se a solubilidade a partir de interações de Van Der
Waals do tipo dipolo permanente – dipolo induzido. Nesse caso temperatura e
pressão são fatores que concorrem significativamente para explicar a sulubilidade
de um gás apolar na água, o que, até certo ponto, contradiz a regra de
solubilidade de que “semelhante dissolve semelhante”.
Nas bordas e
quinas do cristal as forças
atrativas entre os íons são
menos intensas,
favorecendo a interação
com as moléculas do
solvente.
Conforme as
moléculas de água vão
retirando os íons do
cristal, novos íons são
expostos e o processo
continua, dissolvendo o
cristal iônico. A camada de
moléculas orientadas que
cercam um íon ajuda a
neutralizar a carga do
mesmo e serve para
impedir os íons de carga
oposta a se atraírem,
formando uma espécie de
blindagem.
5
1.2.2. Classificação das Soluções
As soluções podem ser classificadas segundo os critérios:
a) quanto ao estado físico:
 - sólidas: ligas metálicas (aço = Fe, C, Mn; latão = Cu e Zn; bronze = Cu e
Sn,..), medicamentos (comprimidos),...
 - líquidas: bebidas não gaseificados, bebidas alcoólicas, água mineral sem
gás, soro fisiológico,...
 - gasosas: ar (isento de poeira), GLP (vazado),..
*** misturas gasosas sempre são homogênas !!!
b) quanto à natureza do soluto:
 - moleculares: as partículas do soluto são moléculas.
 H2O
ex.: C12H22O11(sólida) £“ C12H22O11(aquosa)
 - iônicas: as partículas do soluto são íons.
 H2O
ex.: NaCl (sólido) £“ Na+(aquoso) + Cl-(aquoso)
c) quanto ao Coeficiente de Solubilidade (C.S.):
*** O Coeficiente de Solubilidade representa a maior massa que pode ser
dissolvida em certa quantidade padrão de um solvente, em determinada temperatura.
ex.: NaCl = 35,7 gramas/100 gramas de H2O à 00C.
 CaSO4 = 0,2 gramas/100 gramas de H2O à 00 C.
 AgNO3 = 122 gramas/100 gramasde H2O à 00 C.
O Coeficiente de Solubilidade varia com a temperatura e, no caso de
substâncias gasosas, varia com a pressão. A influência da temperatura sobre a
solubilidade varia de uma substância para outra. As curvas de solubilidade são
obtidas experimentalmente.
No caso de um gás a solubilidade é inversamente proporcional ao aumento da
temperatura, isto é, diminui a solubilidade com o aumento da temperatura e
diretamente proporcional à pressão.
Por esse motivo os peixes, nos dias quentes de verão preferem permanecer
na sombra, sob as pedras e em locais mais profundos.
A influência na pressão é evidenciada pela Lei de Henry:
C = k . P
6
onde:
- C é a concentração de gás dissolvido;
- k é uma constante de proporcionalidade;
- P é a pressão exercida sobre o sistema.
O gráfico a seguir mostra, para solutos sólidos, a influência da temperatura na
solubilidade.
Quanto ao C. S. as soluções podem ser:
 - insaturadas: a quantidade de soluto dissolvido é inferior ao C.S.
ex.: 3,0 gramas de NaCl/100 gramas de H2O à 00C.
 - saturadas: a quantidade de soluto dissolvido é igual ao C. S.
ex.: 35,7 gramas de NaCl/100 gramas de H2O à 00 C.
 - super-saturadas: são soluções obtidas por técnicas especiais, nas quais a
quantidade de soluto dissolvido é superior ao C. S.
 No preparo de tais soluções aquece-se a solução na qual haja corpo de fundo
do soluto até uma temperatura na qual ocorra total dissolução, resfriando-se, após,
de forma gradativa, até alcançar a temperatura de referência com o excesso de
soluto dissolvido.
Estas soluções são muito instáveis, podendo o excesso de soluto precipitar
(sedimentar) por agitação mecânica, choque brusco de temperatura ou adição de um
“germen de cristalização”.
Para a maior
parte dos sais a
solubilidade aumenta
com o aumento da
temperatura, com
exceção do Ce2(SO4)3.
De todos os
sais representados no
diagrama ao lado o
NaCl é aquele que a
variação de
temperatura exerce a
menor influência na
solubilidade e o KNO2
e CaCl2 aqueles sais
cuja solubilidade é
mais fortemente
influenciada pela
variação de
7
1.2.3. Preparação de soluções
Na atividade de laboratório, seja em nível acadêmico ou na própria
indústria, as substâncias são utilizadas, de modo geral, na forma de soluções.
Numa solução, além da proporção entre a quantidade de soluto e de
solução (ou solvente), expressa na forma de uma “concentração” , é indispensável
que se conheçam características específicas de cada soluto, na preparação
adequada dessa solução.
Dependendo da utilização da solução as mesmas devem ser consideradas
segundo duas características básicas:
a) soluções padrão: usadas para fins analíticos contendo uma quantidade
exatamente conhecida de um reagente qualquer, na unidade de volume.
Essa concentração é expressa com exatidão (quatro decimais)
ex.: 0,1538 g/L (massa/volume)
 0,8543 mol/L (número de mols/volume)
b) soluções não padronizadas: usadas para fins não analíticos sendo
sua concentração aproximada. Não é requerida a mesma exatidão, com
relação às soluções padronizadas (um ou dois decimais)
ex.: 0,5 g/L (massa/volume)
 1,0 mol/L (número de mols/volume)
O título das soluções padrão deve ser conhecido com grande exatidão. O
grau de exatidão requerido é maior do que o correspondente aos trabalhos
analíticos mais comuns. Assim sendo é desejável que o título das soluções padrão
possa ser determinado com um erro inferior a 0,1 %. Maiores detalhes serão
tratados nas disciplinas de Química Analítica Quantitativa.
A preparação de uma solução padrão requer, direta ou indiretamente, o uso
de um reagente quimicamente puro e com composição perfeitamente definida. Os
reagentes com semelhantes características são denominados, comumente,
padrões primários. São os seguintes os requisitos principais exigidos de um
padrão primário:
a) a substância deve ser de fácil obtenção, purificação, dessecação e
conservação;
b) não pode ser volátil;
c) as impurezas devem ser facilmente identificáveis com ensaios
qualitativos de sensibilidade conhecida;
d) a substância não deve ser higroscópica (absorver umidade do ambiente)
ou eflorescente;
e) deve ser bastante solúvel.
O número de padrões primários é relativamente limitado. São exemplos:
carbonato de cálcio, tetraborato de sódio, ácido benzóico, cloreto de sódio (após
dessecação a peso constante), nitrato de prata, tiocianato de potássio, ácido
oxálico, oxalato de sódio e dicromato de potássio.
8
Quando o reagente com que se tem de preparar a solução é um padrão
primário, recorre-se a técnica direta que consiste na pesagem, em balança
analítica, da massa que se requer da substância, dissolução e diluição a um
volume conhecido em balão volumétrico aferido. No rótulo deverá constar a
espécie química, seu título, a data de praparação e seu preparador, conforme
modelo.
Embora o Sistema Internacional de unidades recomende para o volume a
unidade metro cúbico utilizamos o volume expresso em litro (L).
As ilustrações a seguir indicam alguns dos equipamentos utilizados na
titulações (bureta, pipeta volumétrica, erlenmeyer,...) a técnica correta de leitura,
de transferência de alíquotas com a pipeta volumétrica e transferência de solução
para o balão volumétrico.
 Leitura correta da bureta Transferência de solução
 Transferência de líquido para o balão Como rotular a solução !
FACULDADE DE QUÍMICA – PUCRS
HCl
M = 0, 2574 mol/ L
Linus Pauling 06/06/1966
Química Geral e Inorgânica II
9
Quando o reagente não é padrão primário (por exemplo, o ácido clorídrico,
os hidróxidos alcalinos e de amônio, o permanganato de potássio,...) a preparação
direta da solução não é possível.
Recorre-se, então, à técnica indireta, que consiste em preparar,
inicialmente, uma solução com concentração aproximada à desejada e, depois,
padronizá-la, isto é, determinar com exatidão o sei título em relação a um padrão
primário adequado ou com referência a uma outra solução padrão.
Por exemplo, o ácido clorídrico não é padrão primário e a sua solução pode
padronizada através de um padrão primário, como é o caso do carbonato de
sódio. A seguir esta solução (já padronizada) pode ser usada para titular
hidróxidos alcalinos (como por exemplo o hidróxido de sódio).
Na padronização devem ser obedecidas as seguintes condições:
a) é preciso dispor de um padrão primário adequado ou solução
padronizada;
b) o peso do padrão primário não pode ser demasiadamente pequeno, em
virtude do erro inerente ao aparelho de pesagem;
c) o volume de solução gasto na padronização não deve ser pequeno
demais, pois cada leitura na bureta está sujeita a um erro de 0,01 mL e
um erro de escoamento de 0,02 mL, podendo o erro total chegar a 0,04
mL e, portanto, para garantir uma exatidão de 0,1% é preciso que o
volume de solução gasto na titulação não seja inferior a 40 mL.
*** Obs.: como o objetivo em nossa disciplina não é esgotar o
 assunto e sim mostrar características principais no prepa –
 ro de soluções, eventualmente o critério acima poderá não
 ser verificado !!!
1.2.4. Conservação das Soluções Padrão
Como já afirmamos anteriormente as soluções não são conservadas em
balões volumétricos (são usados somente na preparação). As soluções padrão
devem ser conservadas de maneira a manter inalterado seu título tanto quanto
possível.
Algumas soluções são altamente estáveis e outras não.
Por exemplo, uma solução 0,1 eqg/L de dicromato de potássio é
indefinidamente estável. As soluções de ácido clorídrico, nítrico e hidróxido de
amônio, por serem estes solutos voláteis, tem duração limitada. As soluções de
hidróxidos alcalinos reagem com o CO2 presente no ar formando carbonatos.
Estes carbonatos solidificam no gargalo dos frascos de depósitoe se os mesmos
tiverem tampas de vidro esmerilhado, a presença de carbonatos irá emperrar as
referidas tampas, sendo aconselhável o uso de tampas com rolha de borracha ou
polietileno ou rosqueadas. Aconselha-se o frasco escuro para evitar a
decomposição fotoquímica, o que ocorre com facilidade em soluções de peróxido
de hidrogênio e permanganato de potássio.
10
1.3. Pr inc ipa is Ex pressões de Conc ent raç ão
A “concentração” de uma solução representa uma relação entre a
quantidade do soluto e, em geral, a quantidade de solução sendo que essas
quantidades podem ser expressas em massa, número de mols, volume, número
de moléculas, etc.
As principais formas de representar as concentrações são do tipo
massa/volume, massa/massa, volume/volume, número de mols/volume, número
de mols/massa e, assim, por diante.
Assim, quando analisamos a composição de uma água mineral, a qual
expressa a quantidade de um constituinte, por exemplo
Carbonato de sódio = 127 mg / L
nos indica uma relação massa / volume.
Já na composição do soro fisiológico, usado para limpeza e conservação de
lentes de contato, a composição indica 0,9 % de NaCl. Isso significa uma relação
massa / massa onde há, para cada 100 gramas de solução, 0,9 gramas do soluto
(NaCl) sendo o restante 99,1 gramas de solvente (água). Nesse caso,
especificamente, como se trata de uma solução muito diluída e aquosa o mesmo
valor percentual massa / massa também corresponde, aproximadamente, ao valor
da relação massa / volume, em virtude da massa específica do solvente (água) ser
unitário (1,0 grama / mL).
1.3.1. Concentração Comum ou Concentração ( C )
Representa a razão entre a massa do soluto (em gramas) e o volume de
solução final (em litros).
 
 C = Vm1
Aplicação
œ Que massa de bicarbonato de sódio há em 750 mL de uma solução que
apresenta uma concentração de 107 mg / L ?
1.3.2. Concentração em Massa ou Título em Massa ou Título ( t )
Representa a razão entre a massa do soluto (gramas) e a massa da
solução (gramas).
 t = 
mm
m
m
m
21
11
+= ( não tem unidades = adimensional )
É comum expressar o Título em Massa sob a forma percentual. Assim
( Unidades: gramas/litro )
11
t % = t . 100
Aplicação
œ Uma solução aquosa de ácido sulfúrico apresenta Título percentual 15
%. Que massa dessa substância há em ½ quilograma dessa solução ?
Qual a massa de solvente presente ?
1.3.3. Relação entre C e t
Lembrando que:
 C = Vm1 e t = mmmmm 21 11 +=
dividindo uma expressão pela outra resulta:
C / t = m1/ V / m1/m
que simplificando torna-se
C / t = m / V = m (massa específica)
ou, então
C = m . t
Usualmente expressa- se a massa específica (ou densidade absoluta) em
grama / cm3 ou grama / mL e a Concentração em grama / litro. Portanto para que
a expressão acima represente “Concentração” a mesma deverá ser multiplicada
pelo fator de conversão 1000 mL / L, na forma
C = m . t . 1000 (mL/L)
e dessa forma a Concentração terá como unidade resultante grama / litro.
1.3.4. Concentração em Volume ou Título em Volume (tv )
Representa a razão entre o volume de solvente e o volume de solução.
Historicamente essa forma de concentração tem sido expressa como o G L (graus
Gay-Lussac) utilizada para representar a percentagem volumétrica de etanol em
bebidas alcoólicas.
tv = V1 / V = V1 / V1 + V2 (adimensional)
Aplicação
œ Que volume de etanol há numa garrafa de 750 cm3 de Jack Daniel´s ?
12
1.3.5. Concentração em “partes por milhão” (ppm)
Corresponde a uma forma de Concentração Comum (gramas/litro) aplicada
para soluções muito diluídas, em geral aquosas, cujo significado equivale a 1
grama de soluto para cada 106 gramas de solução.
Assim uma solução, na qual a quantidade de soluto seja de 15 ppm
significa que há 15 gramas da substância para cada 106 gramas de solução.
Demonstre que: 1 ppm = 1 mg / litro !!!
1.3.6. Concentração em fração molar ( x1 )
Corresponde a razão entre o número de mols de um componente qualquer
e o número de mols total da mistura.
Essa expressão de concentração é muito utilizada para misturas de gases
como, por exemplo, para definir a composição da atmosfera. Assim
X1 = 
nnn
n
321
1
++ = n
n1
 onde n1 = 
M
m
1
1
 ( X1 = adimensional )
Aplicação
œ Uma solução aquosa de NaOH tem fração molar 0,15 . Qual seu Título
em massa ?
1.3.7. Concentração em Quantidade de Matéria ou em Molaridade ( M )
Corresponde à razão entre o número de mols do soluto e o volume total da
solução.
M = 
M
1000..
M
C
VM
m
V
n
11
11
.
tm=== ( Unidade: mol / L = molar = M)
A expressão de concentração expressa em molaridade é a mais empregada
dentre todas as formas usadas na Química.
Aplicação
œ A solução dos líquidos de baterias de automóveis consiste de água e
ácido sulfúrico em concentração 3,95 mol / litro, aproximadamente.
Sabendo que numa bateria comum a quantidade de solução é de 800
mL, que massa desse ácido estará ali contida ?
13
1.3.8. Concentração em Molalidade ( W ) W = weight = peso
Corresponde à razão entre o número de mols do soluto e a massa, em
quiligramas, de solvente. Observe que a molalidade é a única expressão de
concentração que relaciona a quantidade de soluto com a quantidade de solvente
e não de solução.
W = 
mM
 1000m
mM
m
m
n
21
1
21
1
2
1
.
.
== ( Unidades: mol/quilo ou molal)
 Ä Ä Ä
 em quilo em quilo em grama
Na última expressão o valor numérico 1000 na realidade corresponde ao
fator de correção 1000 g / quilograma, quando a massa do solvente for dada em
grama.
A concentração expressa em Molalidade é comumente empregada no
estudo dos efeitos coligativos das soluções.
Aplicação
œ Uma solução de ácido sulfúrico apresenta título em massa igual a 15 %.
Qual a sua Molalidade ?
Para soluções aquosas diluídas M = W .
J ust if ique !!!
1.3.9. Concentração para espécies iônicas
Como podemos determinar as concentrações molares dos íons Na+ e SO4-2
para uma solução de concentração 27,2 gramas / Litro desse sal ?
Idem para as concentrações dos íons H+ e SO4-2, numa solução 0,75 mol / L
desse ácido, supondo um grau de dissociação (a) igual a 85 % do ácido ?
14
1.4. Di lu iç ão e Mist uras de Soluç ões
1) Diluição: diluir uma solução consiste em adicionar solvente, sem modificar
a quantidade de soluto.
 Solução inicial Solução final
 m1, V, C + Vágua m1, V 
�
, C 
�
 Ä Ä
 m1= C.V m1= C 
�
. V 
�
Como a massa do soluto é a mesma, conclui-se que:
 C . V = C ‡. V ‡
De modo semelhante, pode ser demonstrado que:
 M . V = M ‡. V ‡
 t . m = t ‡ . m ‡
Na Concentração de uma solução o solvente é “removido “ por evaporação,
mantendo constante a quantidade de soluto. As expressões são as mesmas da
Diluição. A diferença ocorre no volume final:
Diluição: V 
�
 > V ; V 
�
 
= V + Vágua
Concentração: V 
�
 
 < V ; V 
�
 = V - Vágua
2) Mistura (mesmo soluto): na mistura de soluções do mesmo soluto não há
reação entre as soluções misturas.
+ Vágua
15
 (1) (2) (3)
 Solução 1 + Solução 2= Solução final
 m1, V , C m1
�
, V 
�
, C 
�
 
 m1
� �
, V 
� �
, C
� �
 Ä Ä Ä
 m1= C.V m1
�
= C 
�
.V 
�
 
 m1
� �
= C 
� �
.V
� �
A massa de soluto na solução final é a soma das massas nas soluções 1 e 2,
portanto:
m1 + m1
�
 = m1
� �
logo:
C.V + C ‡.V ‡ = C ‡‡.V‡‡
De modo semelhante pode ser demonstrado que:
M . V + M ‡ . V ‡ = M ‡‡. V ‡‡
t . m + t ‡. m ‡ = t ‡‡ . m ‡‡
A relação anterior pode ser aplicada para uma mistura de qualquer número de
soluções. Generalizando:
Cx . Vx = S C . V
M x . Vx = S M . V
tx . mx = S t . m
 +
16
3) Mistura (solutos diferentes): neste caso ocorre reação entre os
constituíntes.
ex.: solução de HCl misturada com solução de NaOH.
Neste caso, para que a reação seja completa entre os solutos os volumes
misturados devem obedecer à relação estequiométrica corresponde à reação.
HCl + NaOH £“ NaCl + H2O
1 mol 1 mol 1 mol 1 mol
Portanto, no ponto final dessa reação:
nácido = nbase à Ma . Va = Mb . Vb
ex.: solução de H3PO4 misturada com solução de NaOH.
H3PO4 + 3 NaOH £“ Na3PO4 + 3 H2O
1 mol 3 mols 1 mol 3 mols
No ponto final dessa reação:
nbase = 3 nácido à Mb . Vb = 3 Ma . Va
ex.: solução de H2SO4 misturada com solução de KOH.
H2SO4 + 2 KOH £“ K2SO4 + 2 H2O
 1 mol 2 mols 1 mol 2 mols
No ponto final dessa reação:
nbase = 2 nácido à Mb . Vb = 2 Ma . Va
O principio acima descrito consiste de um método volumétrico de
determinação da concentração de bases através do volume gasto de ácido, de
molaridade conhecida e vice-versa.
Este processo é denominado Titulação ou Padronização.
O ponto final das reações de neutralização pode ser visualizado através da
adição de indicadores ácido-base (fenolftaleína, tornassol, azul de bromo timol, ...)
Este principio não é válido somente para reações ácido-base, mas para
qualquer tipo de reação, desde que se conheça a equação química correspondente e
seu respectivo ajuste (coeficientes).
17
1.5. Ex erc íc ios
1.5.1. Propriedades dos líquidos.
1) Em função das forças interativas moleculares como se pode explicar:
1.1. a elevada tensão superficial da água.
1.2. a dilatação anormal (anômala) do gelo.
2) Como toda a criança, você, provavelmente, já deve ter enchido um copo acima
da sua borda. Como se explica o fato do mesmo não transbordar?
3) A acetona (CH3COCH3) é um líquido muito mais volátil do que a água, fato
esse comprovado pelo seu ponto de ebulição ser bastante inferior (53,6o C).
Como esse fenômeno pode ser explicado ?
4) Porque a água quente evapora mais rapidamente do que a água fria ?
5) A miscibilidade (solubilidade) do etanol (CH3CH2OH) é infinita, em água. A
solubilidade é decorrente de forças atrativas entre as moléculas das
substâncias envolvidas. Nesse caso qual é o tipo de força atrativa ?
6) Valendo-se de qualquer bibliografia de Química Geral, investigue a respeito do
diagrama de fases da água pura bem como do significado do ¨ponto triplo da
água¨.
A figura ao lado mostra como pode ser
determinada a concentração de uma solução
usando-se a sua reação com outra, de molaridade
conhecida.
Na bureta coloca-se a solução de
concentração conhecida, a qual é adicionada a
uma alíquota (porção) de solução de concentração
a determinar (em geral 25 mL).
No ponto final da reação o indicar muda de
coloração e pelo volume gasto na bureta podemos
estabelecer as quantidades , em mols, que
reagiram entre sí, através das expressões acima
mencionadas.
18
7) A solubilidade de gases em líquidos não mostra o mesmo comportamento do
que a dos sólidos. Varia diretamente com a pressão (Lei de Henry) e
inversamente com a temperatura. Em função disso explique porque os peixes
procuram os lugares mais profundos e sombrios durante as tardes de verâo ?
8) O que ocasiona a d¨escompressão ¨em mergulhadores ?
1.5.2. Preparação de soluções
1) Na preparação de uma solução, quando é que um soluto pode ser considerado
um padrão primário ?
2) Enumere algumas características de um padrão secundário, citando, pelo
menos, 5 exemplos de solutos que mostrem essas características ?
3) Porque as soluções, mesmo as de padrões secundários, devem ser
preparadas em balões volumétricos e não em bequer graduado ?
4) Investigue a respeito de duas soluções que devem ser obrigatoriamente
conservadas em frasco escuro, ao abrigo da luz, justificando tal procedimento
em cada caso.
5) Qual a diferença entre uma pipeta graduada e uma pipeta volumétrica,
ambas de mesma capacidade ?
1.5.3. Concentração das soluções
1) Procure estabelecer o significado para as expressões de concentração
encontradas em algumas soluções de nosso cotidiano:
œ Soro fisiológico : NaCl a 0,9 %
œ Água oxigenada a 10 volumes
œ Graduação alcoólica do conhaque 380 GL.
2) Sabendo-se que a solubilidade do NaCl, a 100o C é de 39,0 g/100 g de água e,
a 20o C é de 36,0 g/100 g de água, calcule qual a massa de água necessária
para dissolver 780 g de NaCl à 100o C e qual é a massa de NaCl que
permanecerá dissolvida quando essa solução for resfriada até 20o C ?
Resposta: mágua = 2000 g ; mNaCl = 720,0 g
3) A fração molar do ácido sulfúrico é 0,10, numa solução aquosa. Qual a
Concentração em massa (Título) da mesma ?
Resposta: 37,6 %
19
4) O álcool hidratado usado como combustível apresenta em média cerca de 3,7
% em massa de água dissolvida no álcool. Qual o valor da fração molar do
soluto nessa solução ?
Resposta: 0,089
5) O ácido sulfúrico para acumuladores (baterias) de automóveis tem 32 % em
massa de ácido; o resto é água. A massa específica dessa solução é 1,2 g/mL.
Qual a Molaridade de ácido sulfúrico na solução ?
Resposta: 4,0 mol/L
6) Formalina é uma solução para preservação usada em biologia. Ela contém 40
cm3 de formaldeído (H-CHO), massa específica 0,82 g/cm3, por 100 gramas de
água. Qual a Molalidade dessa solução ?
Resposta: 10,93 mol/kg de água
7) A graduação alcoólica do “ whiskey “ bourbon (destilado de malte e milho),
produzido, principalmente, nos estados do Tenessee e Kentucky (USA),
corresponde ao dobro da porcentagem em volume de álcool (C2H5OH). Para
uma graduação 120 do whiskey bourbon, qual a molalidade do álcool etílico ?
(massa específica do etanol = 0,80 g/mL)
Resposta: 26,08 mol/kg
8) Qual a massa de cloreto de cálcio (CaCl2) que deve ser dissolvida em 400
gramas de água para produzir uma solução de título 20% ?
Resposta: 100 g
9) O bactericida permanganato de potássio, KmnO4, pode ser usado em água
dissolvido na proporção em massa de 1 : 40.000. Que volume de água será
necessário dissolver 1 comprimido de 0,1 gramas de permanganato para
produzir a solução acima ?
Resposta: 4 l de água
10) Em média, as cervejas apresentam teor alcoólico (etanol) de 4% (40 GL). Qual
o volume, em litros, de etanol, existente num tonel de 10.000 L de cerveja ?
Resposta: 400 mL
11) Uma solução cuja densidade é 1,15 g/mL foi preparada dissolvendo-se 160 g
de NaOH em 760 mL de água. Determine a massa e o volume da solução
obtida.
Respostas: m = 920 gramas ; V = 0,8 L
12) Segundo os padrões modernos de controle ambiental, uma água natural de
superfície não pode conter mais de 0,78 mg de cromo por litro. Qual a
concentração limite para o cromo em mol/L ?
Resposta: 1,5 . 10-5 mol/L
20
13) O rótulode uma solução de ácido clorídrico comercial indica HCl 37,4 % em
peso e massa específica 1,18 g/mL. Qual a molaridade do HCl nessa solução?
Resposta: 12 mol/L
14) Um mL de solução 1,0 M de ácido clorídrico equivale a 20 gotas. Qual o
número de mols de HCl presentes em 1,0 gota ?
Resposta: 5,0 . 10-5 mol
15) Certa massa de sulfato férrico foi dissolvida para perfazer 1,0 litro de solução.
O número total de partículas dispersas na solução, considerando o soluto
totalmente dissociado, foi igual a 6,02 . 1022 (0,1 N0). Qual a Molaridade da
solução em função do Fe2(SO4)3 ?
Resposta: 2,0 . 10-2 mol/L
16) A solução aquosa de cloreto de sódio, vendida no comércio e usada como
colírio ou para limpar lentes de contato, apresenta Título igual a 0,9 %. Qual a
massa de NaCl contida em 1,0 litro dessa solução ?
Resposta: 9,0 gramas
17) Um analgésico em gotas deve ser ministrado em quantidade de 3 mg por
quilograma de massa corporal, não podendo, entretanto, exceder a 200 mg por
dose. Sabendo-se que cada gota contém cerca de 5 mg do analgésico,
quantas gotas deverão ser ministradas a um paciente de 70 quilogramas ?
Resposta: 40 gotas
18) O rótulo de uma água mineral distribuída para o consumo informa que ela
contém principalmente 696,35 mg de bicarbonato de sódio (NaHCO3), além de
outros componentes. Qual a concentração do bicarbonato de sódio, expressa
em mol/litro dessa água mineral ?
Resposta: 0,008 mol/L
19) Uma solução de Cr2(SO4)3, apresenta uma concentração de 0,2 mol/L.
Supondo o sal totalmente dissociado, qual a molaridade em relação aos íons
presentes ?
Respostas: Cromo = 0,4 mol/L ; Sulfato = 0,6 mol/L
20) A água potável pode ter no máximo 1,0 ppm de chumbo. Qual a maior massa
de chumbo que pode existir em 0,50 L de água potável ?
Resposta: 5,0 . 10-4 gramas
21
1.5.4. Diluição e Misturas de Soluções
* Diluição
1) A 50 gramas de uma solução de ácido sulfúrico de 63% em massa são
adicionados 400 g de água. Qual a porcentagem de ácido na solução diluída
obtida ?
Resposta: 7 %
2) Que volume de água, em mL, deve ser adicionado a 80 mL de solução aquosa
0,1 M de uréia, para que a solução resultante seja 0,08 M ?
Resposta: 20 mL
3) Que volume de ácido sulfúrico 20% em massa e densidade 1,139 g/mL é
necessário para preparar 50 mL de solução a 5% em massa e densidade 1,032
g/mL ?
Resposta: 3,40 mL
4) Que volume de ácido clorídrico 0,25 mol/L poderemos obter pela diluição de 50
mL de HCl de massa específica 1,185g/mL e que apresenta 36,5 de ácido
clorídrico, em massa ?
Resposta: 2,37 L
5) Foi adicionado certo volume de água a 100 mL de solução 1,0 M de NaOH, de
modo que a sua concentração ficou reduzida a 1/5 do valor inicial. Qual o
volume de água adicionado ?
Resposta: 400 mL
* Mistura de Soluções
1) Misturando-se 280 mL de uma solução 1/2 M de HCl com 200 mL de uma
segunda solução do mesmo ácido contendo 14,6 g de HCl puro num volume
de 500 mL, qual a Molaridade resultante ?
Resposta: 0,625 mol/L
2) Misturando-se 250 mL de ácido fosfórico, com massa específica 1,12 g/mL,
que contém 24,5% em massa de H3PO4, com 1/2 L de solução 0,2 mol/L do
mesmo ácido, qual a Molaridade resultante ?
Resposta: 1,06 mol/L
3) Uma solução aquosa 2 M de NaCl, de volume 50 mL, foi misturada a 100 mL
de outra solução do mesmo sal, de molaridade 0,5 M. Qual a molaridade da
mistura resultante ?
Resposta: 1,0 mol/L
22
4) Volumes iguais de duas soluções aquosas de NaOH de molaridades iguais a
0,4 e 0,8 mol/L, respectivamente, foram misturados e deram origem a uma
nova solução. Qual a molaridade e a concentração em g/L dessa nova solução
?
Respostas: 0,6 mol/L ; 24,0 g/L
5) Em um balão volumétrico de 1000 mL juntaram-se 250 mL de uma solução 2,0
M de ácido sulfúrico com 300 mL de solução 1,0 M do mesmo ácido e
completou-se o volume até 1000 mL, com água destilada. Qual a Molaridade
da solução resultante ?
Resposta: 0,80 mol/L
1.5.5. Soluções que Reagem entre si
1) Uma remessa de soda cáustica está sob suspeita de estar adulterada.
Dispondo de uma amostra de 0,5 gramas, foi preparada uma solução aquosa
de 50 mL. Essa solução foi titulada sendo consumidos 20 mL de uma solução
0,25 M de ácido sulfúrico. Qual a percentagem de impurezas da amostra de
soda, considerando-se que o ácido não reage com as impurezas.
Resposta: 20 %
2) Juntou-se 300 mL de solução HCl 0,4 mol/L à 200 mL de NaOH 0,8 mol/L. A
solução resultante será ácida, básica ou neutra ? (a) Qual a Molaridade em
relação ao reagente em excesso ? (b) Qual a Molaridade em relação ao sal
formado ?
Respostas: a solução resultante será básica; (a) 0,08 mol/L ; (b) 0,24 mol/L
3) 100 mL de solução de ácido sulfúrico 0,1 mol/L são adicionados a 500 mL de
NaOH 0,5 mol/L. Para que valor ficará reduzida a molaridade da solução
básica?
4) 30 mL de uma solução de H2SO4 quando misturados com uma solução de
BaCl2 produzem uma precipitado branco (sulfato de bário) que, lavado e seco
pesou 0,466 gramas. Qual a Molaridade da solução ácida ?
Resposta: 0,065 mol/L
5) Uma indústria adquiriu hidróxido de sódio como matéria-prima para a
fabricação de sabão, a qual apresentava impurezas inertes ao HCl. Certa
amostra de 3,0 gramas da base foi completamente neutralizada por 20 mL de
HCl 3,0 mol/L. Determine (a) a percentagem de pureza da base e (b) a massa
de material necessário para a preparação de 1,0 L de solução 1,0 mol/L ?
Respostas: (a) 80 % ; (b) 50 g
23
*** Testes de nivelamento (não serão corrigidos ou comentados)
1 - O limite máximo de “ingestão diária aceitável” (IDA) de ácido fosfórico, usado
como aditivo em alimento, é de 5 mg/kg de peso corporal. O volume de
refrigerante, em litros, contendo ácido fosfórico na concentração de 588 mg/L que
uma criança de 20 kg pode ingerir para atingir o limite máximo de IDA é
A) 0,10
B) 0,17
C) 0,25
D) 0,50
E) 1,00
2 - Um laboratorista possui um frasco contendo 200 mL de uma solução 0,4 M de
ácido nítrico. Para prosseguir em sua análise, ele necessita de uma solução 0,1 M
do mesmo ácido.
O volume de água, em mililitros, que deve adicionar a sua solução ácida para
obter a solução de concentração desejada é
A) 100 B) 400 C) 500
D) 600 E) 800
3 - Para neutralizar, exatamente, uma certa quantidade de um monoácido, foram
gastos 4,0 g de NaOH quimicamente puro. O mesmo efeito seria obtido pelo
emprego de
A) 2,9 g de hidróxido de magnésio.
B) 4,0 g de hidróxido de potássio.
C) 5,8 g de cloreto de sódio.
D) 7,4 g de hidróxido de cálcio.
E) 34,2 g de hidróxido de bário.
4 - Foi mergulhado 1,116 g de esponja de ferro (bombril) em 500 mL de uma
solução 0,1 M de CuSO4. Pode-se afirmar que ao final do processo
A) praticamente todos os íons Cu++ foram consumidos, sobrando ainda ferro.
B) todo o ferro foi consumido, sobrando íons Cu++ em solução.
C) todo o ferro foi oxidado a íons férrico e todos os íons Cu++ foram reduzidos a
Cu0.
D) a concentração de íons cúprico era igual à de íons férrico. não sobrando mais
esponja de ferro.
E) nada pôde ser observado, pois o íon Cu++ não oxida o ferro.
5 - Para neutralizar uma solução de ácido nítrico, contendo 12,6 g do ácido em
500 mL de solução, o volume necessário de solução de hidróxido de sódio 1,0 M é
A) 2 mL
B) 125 mL
C) 200 mL
D) 1250 mL
E) 2000 mL
24
6 - Misturam-se volumes iguais de duas soluções A e B de NaOH, de
concentração 1,0 mol/L e 2 mols/L, respectivamente, resultando uma solução C.
Adicionando-se 200 mL de água à solução C, obtém-se a solução D.
Sobre essas soluções pode-se afirmar que
A) C e D apresentam diferentes quantidades de soluto.
B) B e D tem concentrações iguais.
C) a concentração de C é 1,5 mols/L e a de D é maior do que 1,5 mols/L.
D) a concentração de C é 1,5 mols/L e a de D é menor que 1,5 mols/L.
E) A e B apresentam a mesma quantidade de soluto.
7 - Para preparar uma solução de hidróxido de sódio 2 M, deve-se
A) diluir, aproximadamente, 33 mL desolução de hidróxido de sódio 6 M com água
e completar a 100 mL.
B) diluir, aproximadamente, 50 mL de solução de hidróxido de sódio 3 M com água
e completar a 100 mL.
C) dissolver 100 g de hidróxido de sódio puro em água e completar a 1,0 litro.
D) dissolver 60 g de hidróxido de sódio puro em água e completar a 250 mL.
E) dissolver 4 g de hidróxido de sódio puro em água e completar a 100 mL.
8 - O vinagre é uma solução aquosa de ácido acético. Qual a concentração de
ácido no vinagre se foram gastos 30 mL de uma solução de NaOH 0,2 M para
titular 20 mL de vinagre?
A) 0,2 mols/L.
B) 0,3 mols/L.
C) 0,3 mols/mL.
D) 0,4 mols/mL.
E) 0,4 mols/L.
9 - Necessita-se preparar uma solução 0,02 M de NaCl, partindo-se de 20 mL de
uma solução 0,1 M do mesmo sal. O volume de água, em mL, que deve ser
adicionado para obter-se a solução com a concentração desejada é
A) 25 B) 40 C) 65 D) 80 E) 100
10 - Uma solução aquosa de ácido sulfúrico, para ser utilizada em baterias de
chumbo de veículos automotivos, deve apresentar concentração igual a 4,0 mol/L.
O volume total, em litros, de uma solução adequada para se utilizar nestas
baterias, que pode ser obtido a partir de 500 mL de solução de ácido sulfúrico de
concentração 18 mol/L, é igual a
A) 0,50 B) 2,00 C) 2,25 D) 4,50 E) 9,00
11 - 50 mL de uma solução 0,2 M de NaOH seriam completamente neutralizados
com
A) 20 mL de H2SO4 0,1 M
B) 25 mL de H2SO4 0,2 M
C) 25 mL de HNO3 0,2 M
D) 25 mL de HCl 0,1 M
E) 50 mL de HCl 0,1 M
25
12 - O volume, em mililitros, de solução de ácido clorídrico a 37% em massa de
densidade igual a 1,9 g/mL necessário para preparar 10,0 litros de solução 0,4
mol/L é, aproximadamente
A) 50
B) 78
C) 146
D) 208
E) 2.000
13 - O suco gástrico produzido pelo estômago durante o processo da digestão
apresenta ácido clorídrico numa concentração molar de 1,0 . l0-2 mol/L. Sabendo-
se que durante a digestão são produzidos cerca de 100 mL de suco gástrico, qual
a massa, expressa em gramas, de ácido contido nesse volume ?
A) 73,0.
B) 36,5.
C) 3,65.
D) 0,0365.
E) 0,073.
14 - O “soro caseiro” recomendado para evitar a desidratação infantil consiste de
uma solução aquosa de cloreto de sódio, 3,5 g/L, e de sacarose 11,0 g/L. A
concentração, em mol/L, do cloreto de sódio nessa solução e, aproximadamente
A) 0,03.
B) 0,04.
C) 0,06.
D) 0,10.
E) 0,15.
15 - Um aluno do curso de Química necessita preparar uma solução 0,20 M em
NaOH para ser utilizada em uma reação de neutralização. A forma correta de
preparação dessa solução seria dissolver _______g de NaOH em ______ L de
solução.
A) 2,0 0,50
B) 4,0 0,25
C) 4,0 0,50
D) 8,0 0,75
E) 8,0 1,50
16 - Foram adicionados 35,00 mL de água destilada a 15,00 mL de uma solução
0,50 M em KMnO4 . A molaridade desta nova solução é
A) 0,050.
B) 0,075.
C) 0,100.
D) 0,150.
E) 0,175.
26
17 - Um técnico necessita preparar uma solução aquosa de hipoclorito de sódio,
NaClO, 0,5 M, para o branqueamento de um tecido de algodão. No laboratório
foram encontrados somente 10,0 gramas do soluto e, portanto, o volume, em
litros, de solução obtida com a molaridade desejada é de, aproximadamente,
A) 0,27.
B) 0,50.
C) 2,70.
D) 3,70.
E) 5,00.
18 - Necessita-se preparar uma solução de fluoreto de sódio de concentração
igual a 12,6 g/L, aproveitando 200 mL de uma solução 0,9 M do mesmo sal. Para
isso deve se adicionar
A) 400 mL de água.
B) 600 mL de água.
C) 200 mL de água.
D) 0,3 mols do sal.
E) 6,3 g do sal.
19 - Solução salina normal é uma solução aquosa de cloreto de sódio, usada em
medicina porque a sua composição coincide com aquela dos fluídos do
organismo. Sabendo-se que foi preparada pela dissolução de 0,9 g do sal em 100
mL de solução, podemos afirmar que a molaridade da solução e,
aproximadamente,
A) 1,25.
B) 0,50.
C) 0,45.
D) 0,30.
E) 0,15.
20 - O Conselho Nacional do Meio Ambiente (CONAMA), através da resolução no
20 de 18 de Junho de 1986, apresenta como limite para o cromo trivalente em
efluentes líquidos, 2 ppm, ou seja, 2 mg de Cr+3 por litro de efluente. A
concentração aproximada, em mols/L, desse metal é
A) 1,8 . 10-3.
B) 3,8 . 10-5.
C) 5,9 . 10-7.
D) 7,6 . 10-3.
E) 9,1 . 10-5.
21 - O soro fisiológico é uma solução de cloreto de sódio a 0,9 %. A quantidade
aproximada, em mol(s) de cloreto de sódio consumidos por um paciente que
recebeu 1.500 mL de soro fisiológico é
A) 0,12.
B) 0,23.
C) 0,46.
D) 1,35.
27
E) 13,5.
22 - 50,00 mL de uma solução 2,0 mols/L de MgCl2 são diluídos a 1,0 litro. A
concentração, em mol/L, de íons cloreto na nova solução é
A) 0,1.
B) 0,2.
C) 1,0.
D) 2,0.
E) 4,0.
23 - O ácido sulfúrico concentrado é um líquido incolor, oleoso, muito corrosivo,
oxidante e desidratante. No almoxarifado de um laboatório há disponível o ácido
sulfúrico de densidade 1,8 g/mL, contendo 90% de H2SO4, em massa. A massa de
ácido sulfúrico presente em 100 mL desse ácido concentrado é
A) 1,62 g.
B) 32,4 g.
C) 162 g.
D) 324 g.
E) 1620 g.
24 - Uma solução de ácido ascórbico (vitamina C), de fórmula C6H8O6, foi
preparada pela dissolução de 17,6 g em água suficiente para obter-se 2,0 litros de
solução. É correto afirmar que, nesta solução,
A) a concentração é de 0,10 mol/L.
B) em 10 mL estão contidos 5 . 10-4 mols do ácido.
C) para neutralizar 0,5 litros dessa solução, seria necessário 1,0 g de cloreto de
amônio.
D) adicionando mais 0,5 L de água, a concentração passaria para 0,4 molar.
E) evaporando-se parte do solvente, de forma que o volume fosse reduzido para
0,5 L, a concentração ficaria igual a 0,02 molar.
25 - Um químico preparou uma solução contendo os seguintes sais, com suas
respectivas concentrações em mols/L: cloreto de potássio 0,10, cloreto de
magnésio 0,20 e cloreto de cromo III 0,05. A concentração de íons cloreto, em
mol/L, nessa solução é
A) 0,35.
B) 045.
C) 0,55.
D) 0,65.
E) 0,75.
26 - A adição de 90 mL de água destilada a 10 mL de uma solução contendo KCl
e MgCl2 em concentrações iguais a 1,0 mol/L e 0,50 mol/L, respectivamente,
resulta numa mistura na qual
A) a concentração de íon cloreto é 1,5 mol/L.
B) a concentração do cátion magnésio e a de ânio cloreto são, respectivamente,
de 0,05 mol/l e 0,20 mol/L.
28
C) a concentração de cátion potássio e a de ânio cloreto são iguais a 0,10 mol/L.
D) a concentração de cátion potássio e a de cátion magnésio são,
respectivamente, de 0,90 mol/L e de 0,45 mol/L.
E) a concentração de cátion magnésio, a de ânion cloreto e a de cátion potássio
são iguais.
27 - Dissolveram-se 8 gramas de NaOH em uma quantidade de água suficiente
para preparar 200 mL de solução. Indique o volume de solução assim preparada
que será necessário para neutralizar 50 mL de uma solução de HNO3 0,1 mol/L.
A) 1 mL.
B) 5 mL.
C) 10 mL.
D) 25 mL.
E) 50 mL.
28 - Um aditivo para radiadores de automóveis é composto de uma solução
aquosa de etilenoglicol. Sabendo que em um frasco de 500 mL dessa solução
existem 5 mols de etilenoglicol (C2H6O2), a concentração comum dessa solução,
em g/L , é
A) 0,010.
B) 0,62.
C) 3,1.
D) 310.
E) 620.
29 - Em uma determinada amostra contendo ácido palmítico gastou-se 4m,0 mL
de NaOH 0,250 mol/L para neutralizá-lo.
Dados: Ácido palmítico = CH3(CH2)14COOH
 Massa molecular = 256,00 u
A quantidade, em gramas, de ácido encontrada é de
A) 0,13
B) 0,26
C) 1,28
D) 2,56
E) 6,40
30 - Soluções de uréia, (NH2)2CO, podem ser utilizadas como fertilizantes. Uma
solução foi obtida pela mistura de 210 g de uréia e 1000 g de água. A densidade
da solução final é 1,05 g/mL. A concentração da solução em percentual de massa
de uréia e em mol/L, respectivamente, é
Percentagem em massa Concentração em mol/L
A) 17,4% 3,04
B) 17,4% 3,50
C) 20,0% 3,33
D) 21,0% 3,04
E) 21,0% 3,50
29
Os Efeitos ou Propriedades Coligativas são modificações produzidasem
determinadas propriedades físicas dos solventes quando neles dissolvemos solutos
não voláteis.
Estas propriedades modificadas são: tensão ou pressão de vapor, ponto de
ebulição, ponto de congelamento e pressão osmótica.
Estas modificações só dependem do número de partículas dissolvidas e não
de sua natureza, isto é:
- um mol de moléculas de glicose (C6H12O6) exerce o mesmo efeito que um
mol de íons cloreto (Cl-) ou um mol de íons sódio (Na+).
Estes efeitos são explicados pela intensificação das forças interativas
moleculares, que modificam as energias envolvidas nos processos de evaporação,
ebulição e congelamento das soluções e, também, pela modificação da relação entre
o número de partículas do soluto e solvente, na interface de separação líquido-vapor.
1) Efeito Tonométrico ou Tonometria: mede o abaixamento relativo da
pressão de vapor do solvente, quando nele dissolvemos um soluto não-volátil.
A pressão de vapor pode ser entendida como aquela exercida pelas moléculas
do líquido em seu movimento espontânea e caótico, contra a interface de separação
líquido-vapor.
2. EFEITOS COLIGATIVOS
30
A pressão de vapor depende da temperatura e do tipo de solvente.
O quadro da página anterior mostra os valores das pressões de vapor para
diferentes tipos de líquidos, na temperatura de 25oC, tomando-se como referência a
pressão atmosférica normal.
No gráfico seguinte observa-se a variação da pressão de vapor de diferentes
líquidos, usados como solventes, em função da temperatura.
Num gráfico detalhado percebe-se como T influi na Pv da água.
31
Como já foi dito, a adição do soluto:
a) acentua ou intensifica as forças atrativas moleculares
b) diminui a superfície de evaporação do solvente, na interface
Num frasco fechado o líquido evapora até o momento em que ocorre um
estado de equilíbrio entre as moléculas que deixam a fase líquida para a de vapor e
as moléculas da fase de vapor que se condensam no líquido.
Num frasco aberto tal equilíbrio não ocorre mas a presença de moléculas do
líquido na atmosfera determina a velocidade dessa evaporação.
Considerando que:
 P0 = pressão de vapor do solvente
P = pressão de vapor da solução ( < P0)
D P = abaixamento absoluto da pressão de vapor
D P / P0 = abaixamento relativo da pressão de vapor
o efeito tonométrico será:
32
D P / P0 = Kt . W
onde: Kt = constante tonométrica (depende do solvente)
 W = molalidade da solução (mol/kg)
* Kt = M2 / 1000 (massa molar expressa em kg/mol)
2) Efeito Ebuliométrico ou Ebuliometria: estuda o aumento na temperatura
de ebulição do solvente quando nele dissolve-se um soluto não volátil.
Considera-se:
t0 = temperatura de ebulição do solvente puro
t = temperatura de ebulição da solução ( > t0)D te = aumento da temperatura de ebulição
O efeito ebuliométrico será:
D te = Ke . W
onde: Ke = constante ebuliométrica (depende do solvente)
 Ä
 numericamente corresponde à diferença no ponto de ebulição
 quando a Molalidade é 1,0 mol/kg de solvente
* Ke = R Te2 / 1000 Le
onde
R = constante dos gases, Te = temperatura de ebulição do solvente
puro e Le = calor latente de evaporação do solvente.
3) Efeito Criométrico ou Criometria: estuda a diminuição no ponto de
congelamento de um solvente quando nele dissolvemos um soluto não volátil.
Considerando que:
t0 = temperatura de congelamento do solvente puro
t = temperatura de congelamento da solução ( < t0)D tc = abaixamento no ponto de congelamento da solução
O efeito criométrico será
D tc = Kc . W
onde: Kc = constante criométrica (depende do solvente)
 Ä
 numericamente corresponde à diferença no ponto de congelamento
 da solução quando a Molalidade é 1,0 mol/kg de solvente
33
* Kc = R Tc2 / 1000 Lv
onde:
R = Te = temperatura de ebulição do solvente e Le = calor latente da
evaporação.
4) Efeito Osmométrico ou Osmometria : estuda a pressão osmótica de uma
solução separada de outra (ou de um solvente) por uma membrana semi-
permeável (m.s.p.).
A Osmose consiste na migração espontânea de solvente através da m.s.p.,
sempre que houver diferença de concentração entre as soluções, ocorrendo do meio
mais diluído (hipotônico) para o meio mais concentrado (hipertônico) até o momento
em que as duas concentrações se igualam.
A passagem de moléculas do solvente “pressionam” a m.s.p. e para evitar
esta passagem deve-se aplicar uma pressão igual e contrária, para evitar a osmose.
 O diagrama de fases
ao lado mostra como a
adição de um soluto
afeta simultaneamente
a temperatura de
ebulição e a de
congelamento do
solvente, pela adição de
um soluto não volátil.
A figura ao lado mostra
que, para se estabelecer um
estado de equilíbrio entre as
duas soluções separadas pela
membrana semi-permeável
deverá ocorrer migração de
moléculas do solvente, de mais
acentuado, da solução diluída
para a concentrada.
Perceba-se que há
movimento de moléculas do
solvente para ambos os lados,
num processo dinâmico, até o
estabelecimento de um estado
de equilíbrio (isotonia).
34
A passagem de solvente através da m.s.p. pode ser evidenciada na
representação abaixo.
Esta pressão exercida é numericamente igual à Pressão Osmótica (p), a qual
depende da concentração e, também, da temperatura absoluta. A migração de
solvente só se interrompe quando as duas soluções se tornarem isotônicas.
A figura acima mostra como pode ser feita a medida experimental da pressão
osmótica, numa câmara osmométria.
A pressão osmótica, em analogia à pressão dos gases, pode ser calculada
pela expressão:
equação dos gases ideais pressão osmótica
 P = 
V
n
 RT p = M RT
onde: R = constante universal dos gases
 T = temperatura absoluta
35
 M = molaridade da solução
 Ä
 pode ser usada a Molalidade (W) se a solução for diluída
Para solutos iônicos (ácidos, bases e sais) os efeitos coligativos deverão ser
corrigidos de um “fator iônico”, chamado fator de Vant
�
 Hoff (i), o qual depende do
número de íons produzidos por molécula (q) e do grau de dissociação (a) da
substância e que pode ser calculado pela expressão:
i = 1 + a(q - 1)
*** se o soluto é molécular: a = 0 Ã i = 1
 se o soluto é um sal : a = 1 Ã i = q
Portanto, se o soluto for iônico cada efeito coligativo deve ser multiplicado pelo
fator i resultando as seguintes expressões.
Ex erc íc ios
1) Relacionando com o fenômeno da osmose explique quais os efeitos sobre um
peixe de água do mar se o colocarmos num aquário de água “doce” ?
2) Quando se adiciona açúcar a uma salada de frutas, aumenta o volume do
“caldo” . Explique o fenômeno ocorrido.
3) Porque em países muito frios é costume adicionar sal grosso sobre a neve
acumulada nas estradas ?
4) Pesquise sobre as aplicações da “osmose reversa” .
5) Porque uma salada de alface murcha, após algum tempo, se for temperada
com sal ?
6) Colocando-se duas amostras líquidas de igual volume para evaporação
espontânea, sendo a primeira de água pura e a segunda de salmoura (água e
cloreto de sódio), em qual das duas se observará maior redução de volume,
por evaporação da água ? Porque ?
 Tonometria DP / P0 = Kt . W . i Ebuliometria D te = Ke . W . i
 Criometria D tc = Kc . W . i Osmometria p = M . R . T . i
36
7) Na preparação do charque, o gaúcho adiciona considerável quantidade de sal
grosso sobre a carne, com o intuito de conservá-la. Justifique porque esse
procedimento auxilia na conservação da carne.
8) A utilização de calda para a conservação de frutas (compotas) vale-se do efeito
osmótico. Investiguecomo funciona esse princípio de conservação.
*** Sugestão: consulte um professor que atue na área de Química Biológica.
9) Considerando-se mesma temperatura, qual o sistema que apresenta maior
velocidade de evaporação: a água do mar ou de um lago ? Porque ?
10) A superfície do Oceano Antártico freqüentemente se apresenta líquida, apesar
de sua temperatura estar bem abaixo de 0o C. Como se explica esse fenômeno
?
11) Qual o abaixamento relativo da pressão máxima de vapor de uma solução que
apresenta 10-3 mol de um soluto não iônico , por quilograma de água ?
Resposta: 1,8 . 10-5
12) Qual a massa molar de um certo glicídio, sabendo que em certa temperatura a
dissolução de 20,0 gramas do mesmo em 500 gramas de água causa um
abaixamento relativo na pressão máxima de vapor igual a 0,004 ?
Resposta: 180 g/mol
13) O sangue humano tem pressão osmótica 7,8 atm à 37o C. Qual a massa
aproximada de cloreto de sódio que deve ser dissolvida em água, suficiente
para preparar 4 litros de solução, para que seja isotônica com o sangue ?
Resposta: 36 gramas
14) Eventualmente s solução 0,30 M de glicose é utilizada como injeção
intravenosa, pois tem pressão osmótica próxima do sangue. Mostre que a
mesma apresenta valor próximo ao referido no exercício anterior, à 37o C.
15) Dentre as soluções abaixo, qual a que congela à temperatura mais baixa ?
œ 1,0 mol de glicose em 1000 g de água;
œ 1,0 mol de HCl em 1000 g de água;
œ 1,0 mol de ácido acético em 1000 g de água;
œ 1,0 mol de cloreto de cálcio em 1000 g de água;
œ 0,5 mol de cloreto ferroso em 1000 g de água.
Resposta: 1,0 mol de cloreto de cálcio em 1000 g de água.
16) Considere cinco soluções aquosas de concentração 0,1 mol/L, das seguintes
substâncias: glicose, NaCl, KCl, K2SO4 e ZnSO4. Qual a que apresenta o
menor ponto de congelamento ?
Resposta: K2SO4
37
17) Considere uma solução contendo 17,1 g de sacarose (C12H22O11) em 180 g de
água. Sabendo que a pressão de vapor da água pura, à 20oC, é 17,5 mm Hg,
qual a pressão de vapor da solução ?
Resposta: 17,4 mm Hg
18) Calcule o abaixamento relativo da pressão máxima de vapor de uma solução
0,01 mol/kg de CaCl2, cujo grau de dissociação aparente é 0,80.
Resposta: 4,68 . 10-4
19) Um polímero de fórmula geral (C2H4)n abaixou o ponto de congelamento do
benzeno em 0,36o C, quando 1,0 grama do mesmo foi dissolvido em 5,0
gramas de benzeno. A constante criométrica do benzeno vale 5,04o C.mol-1.kg.
Determine o valor de “ n “ na fórmula geral do polímero.
Resposta: 100
20) Uma solução aquosa de cloreto de sódio, na qual se admite o sal totalmente
dissociado, ferve a uma temperatura de 101,3o C, ao nível do mar. Qual o seu
ponto de congelamento ?
Resposta: - 4,65o C
21) Se uma solução de um soluto não dissociado congela a – 1,30o C, qual a sua
temperatura de ebulição ?
Resposta: 100,36o C
22) Isolou-se uma proteína de uma amostra de soro sangüíneo. Uma dispersão
coloidal de 685 mg da referida proteína dissolvida em água suficiente para
formar 10 mL tem uma pressão osmótica de 0,28 atm a 7o C. Sendo a proteína
um composto covalente típico, não dissociado, qual a massa molecular,
aproximada, da proteína ?
Resposta: 5,6 . 103 u
23) Verifique se existe isotonia entre uma solução aquosa de NaCl 0,01 M e uma
solução aquosa de sacarose (soluto não dissociado) 0,02 M, ambas na
temperatura de 20o C ?
24) Para que uma solução aquosa de glicose tenha a mesma pressão osmótica
que a solução salina fisiológica (NaCl 0,15 M), qual deverá ser a concentração,
em mol/L da solução de glicose ?
Resposta: 0,30 M
25) Uma solução de concentração 30 g/L de um soluto não iônico, de massa
molar 90 g/mol, é isotônica com uma solução de sulfato férrico que contém 20
g desse soluto em 600 ml de solução. Qual o grau de dissociação aparente do
sulfato férrico ?
Resposta: 0,75 ou 75 %
38
*** Testes de nivelamento (não serão corrigidos ou comentados)
1 - Qual das soluções aquosas abaixo apresenta a menor pressão de vapor a 250
C?
A) CaCl2 0,02 mol/L
B) NaCl 0,02 mol/L
C) K2SO4 0,01 mol/L
D) KCl 0,01 mol/L
E) C12H22O11 0,03 mol/L
2 - O sangue humano tem uma pressão osmótica de 7,8 atm a 370 C. A
concentração, aproximada, expressa em molaridade de uma solução de glicose
que seja isotônica com o sangue, sabendo que R = 0,082 atm.L/mol.K, é
A) 0,1
B) 0,3
C) 1,0
D) 3,0
E) 5,0
3 - Um dos segredos descobertos pelos químicos, no processo de mumificação, é
a desidratação dos cadáveres através da utilização de soluções salinas de alta
concentração e viscosidade. A desidratação é possível e explicada pelo fenômeno
da
A) salinização.
B) neutralização.
C) osmose.
D) hidrólise.
E) umidificação.
4 - Considere o quadro abaixo.
soluto solvente Concentração em mols/L
I MgBr2 H2O 1,5
II Al(NO3)3 H2O 1,0
III Ca(NO3)2 H2O 2,0
IV NaCl H2O 3,0
V CuCl2 H2O 2,5
As soluções que apresentam, respectivamente, a maior temperatura de ebulição e
a maior temperatura de congelamento são
A) II e IV.
B) III e I.
C) III e IV.
D) V e I.
39
E) V e II.
5 - A seguir são arroladas algumas soluções aquosas de solutos iônicos ou
moleculares com suas respectivas concentrações em mol/L.
I - NaCl 0,20 mol/L
II - glicose 0,30 mol/L
III - Al(NO3)2 0,25 mol/L
IV - sacarose 0,50 mol/L
V - Ca(NO3)2 0,40 mol/L
A ordem crescente de ponto de congelamento das soluções, admitindo-se
ionização total dos compostos iônicos, corresponde à sequência
A) I - III - II - V - IV.
B) II - IV - I - III - V.
C) IV - V - II - III - I.
D) V - IV - II - I - III.
E) V - III - IV - I - II.
6 - Analise as soluções aquosas abaixo discriminada:
I - C12H22O11 0,040 mol/L
II - AgNO3 0,025 mol/L
III - Na2CO3 0,020 mol/L
IV - MgCl2 0,010 mol/L
Qual das afirmações abaixo é correta, considerando que as espécies iônicas estão
100% ionizadas?
A) A pressão de vapor da solução III é mais alta que a pressão de vapor da
solução IV.
B) O ponto de congelamento da solução IV é o mais alto de todas as soluções
acima.
C) A pressão osmótica da solução II é maior do que a pressão osmótica da
solução III.
D) A solução I tem ponto de ebulição mais elevado do que o ponto de ebulição da
solução II.
E) O ponto de ebulição da solução I é o mais baixo de todas as soluções acima.
7 - Qual das seguintes soluções aquosas apresenta maior ponto de ebulição ?
A) uréia 2,0 molar.
B) glicose 1,5 molar.
C) NaCl 1,5 molar.
D) CH3COOH 1,0 molar.
E) sacarose 2,5 molar.
8 - Qual das substâncias abaixo, quando em solução aquosa de idênticos graus
de dissociação e concentração, apresenta maior pressão osmótica ?
A) K3PO4.
B) NaCl.
C) NH4Cl.
40
D) C6H12O6.
E) CaCl2.
9 - No quadro abaixo estão fornecidas as temperaturas de ebulição de soluções
aquosas de mesma concentração molar de nitrato de amônio, sulfeto de sódio e
glicose,
Solução
 NH4NO3 Na2S C6H12O6
Temperatura. T1 T2 T3
A relação entre estas temperaturas é
A) T1 > T2 > T3
B) T2 > T3 > T1
C) T3 > T1 > T2
D) T1 > T3 > T2
E) T2 > T1 > T3
010 - Duas soluções, uma de glicose e outra de cloreto de sódio, serão isotônicas
quando tiverem a mesma
A) temperatura.
B) concentração em mols por litro.
C) concentração e a mesma temperatura.
D) concentração e mesmo fator de Vant’Hoff.
E) temperatura e mesmo número de partículas dissolvido.
41
3.1. In t roduç ão
A Termodinâmica ocupa-se, basicamente, com as trocas de energia que
acompanham os processos químicos e físicos.
Historicamente ela se desenvolveu sem um conhecimento detalhado das
estrutura da matéria, sendo esse um dos seus pontos fortes.
Nosso tratamento do assunto será de maneira mais informal e
fenomenológica, evitando o formalismo matemático complexo.
A linguagem termodinâmica não dispensa o uso e a interpretação correta
de certos termoscomo:
- sistema: qualquer porção isolada do universo, selecionada para
investigação de propriedades;
- meio externo ou ambiente: corresponde ao restante de universo,
excluído o sistema;
- variáveis ou funções de estado: grandezas que caracterizam um
determinado estado (pressão, temperatura, volume, número de mols, etc...);
- estado: conjunto de condições que caracterizam um sistema;
- processo: meio através do qual as variáveis de um estado podem ser
alteradas (isotérmico, isobárico, isométrico, adiabático, etc...);
- mudança de estado: situação na qual alguma variável de estado sofre
uma alteração (compressão, resfriamento,..);
As inter-relações que se pode estabelecer entre as variáveis de estado
chamamos de equação de estado. Por exemplo, para um gás ideal, as inter-
relações entre as grandezas pressão, volume, temperatura e massa gasosa estão
expressas na equação geral dos gases
P V = n R T
onde R é uma constante.
A termodinâmica é fundamentada em poucos conceitos e princípios
simples:
a) conservação da energia;
b) aumento da entropia;
c) espontaneidade dos processos e equilíbrio.
Na evolução dos processos termodinâmicos nada se cogita em relação à
velocidade com a qual os mesmos ocorrem.
3. INTRODUÇÃO À TERMODINÂMICA
42
3.2. Tem perat ura, Calor e Trabalho
A temperatura é uma propriedade ou grandeza que independe da massa
ou extensão do sistema e está relacionada com o grau de agitação (energia
cinética) molecular.
2
3RT
2
mvE
2
==C
Como escala adota-se a termodinâmica ou absoluta (Kelvin) na qual
T (K) = T (oC) + 273,15
O Calor e o Trabalho (termelástico), por sua vez relacionam-se num
princípio fundamental conhecido como 1o Princípio ou 1a Lei da
Termodinâmica.
œ Calor = quantidade de energia que se transmite de um corpo para outro,
devido unicamente à diferença de temperatura entre ambos.
Portanto:
Qtrocado a DT
ou
onde C· é a capacidade calorífica do sistema.
œ Capacidade calorífica e a quantidade de calor que deve ser trocada por certa
massa do sistema, para proporcionar a variação de temperatura de 1 grau.
A capacidade calorífica pode ser determinada pelo produto da massa do
sistema e seu calor específico. Por exemplo, considerando que o calor específico
da água seja 1,0 cal /g . o C ou 4,18 J / g . o C, a capacidade calorífica de 1
quilograma de água será
C = c . m = 1000 (g) . 4,18 J /g . o C = 4180 J / o C
o que significa que devem ser fornecido 4180 Joule de energia para que 1000
gramas de água variem a sua temperatura em 1 grau. Se a massa considerada
for aquela correspondente a 1,0 mol então a capacidade calorífica será molar.
Assim, a capacidade calorífica molar da água será 18,0 cal / mol.grau ou 75,24
J/mol.grau.
Algebricamente considera-se o calor trocado como sendo positivo quando
o sistema recebe energia do meio externo e negativo quando o sistema perde
energia para o meio externo.
Q > 0 à sistema recebe calor (T ’)
Q = C . DT
43
Q < 0 à sistema perde calor (T ”)
Um processo no qual o sistema recebe calor do meio externo chama-se
Endotérmico e aquele em que o sistema perde calor para o meio externo chama-
se Exotérmico.
œ Trabalho = energia trocada como conseqüência de uma força que atua
entre o sistema e o meio externo ou energia que se transmite por qualquer
outro modo que não seja a diferença de temperatura entre eles.
A maior parte das transformações termodinâmicas são aquelas nas quais o
trabalho provém de uma variação de volume do sistema ao qual denominamos de
termelásticas, sendo que as demais formas de trabalho (elétrico, magnético,
etc...) não são consideradas em tais transformações.
Quando um gás expande num cilindro, à temperatura constante, contra
uma pressão (P) que se opõe, a energia trocada com o meio externo produz o
trabalho de expansão, que pode ser calculado através de:
Wexpansão = F . d
mas
P = F / A
donde
F = P . A
e, portanto,
Wexpansão = P . A . d
 Ä
 D V
Logo
Wexpansão = P . D V
Para que seja realizado
trabalho é necessário ocorrer
variação de volume, como no
exemplo da figura ao lado, na
qual o gás contido no interior do
pistão sofre um deslocamento (d)
em relação à posição inicial,
contra uma pressão oposta
externa (atmosférica), ocorrendo
uma variação de volume
ocupado pelo referido gás.
44
Quando um gás, contido no interior de um cilindro dotado com um êmbolo
móvel (como na figura anterior), troca calor com o meio externo, a energia se
distribuirá da seguinte forma:
- uma parcela irá provocar aumento na temperatura do gás (DT),
fazendo variar o grau de agitação das moléculas ou Energia Interna
(D U), a qual corresponde ao somatório de todas as formas de
energia associadas ao movimento das moléculas;
- outra parcela irá provocar a expansão do gás, ou seja, irá realizar
um Trabalho ( W ).
A relação entre essas duas grandezas conduz à 1a Lei ou 1o Princípio da
Termodinâmica, isto é,
Como a variação da Energia Interna corresponde a calor trocado, a mesma
pode ser calculada pela expressão
D U = C D T
onde C é a capacidade calorífica da substância.
Aplicação
œ Um mol de CO2 é expandido de um volume inicial de 5 para 15 litros,
contra uma pressão externa de 2 atm, ocorrendo uma variação na
temperatura de 27 para 87o C. Sabendo que a capacidade calorífica do
CO2 é 96,5 J / mol . K, calcule a quantidade de calor trocada por esse gás
nessa transformação.
3.3. Term oquím ic a
3.3.1. Introdução
A Termoquímica tem por objetivo o estudo das variações de energia que
acompanham as reações químicas.
Esta energia, em geral, manifesta-se sob a forma de calor, embora a luz
(energia eletromagnética) também esteja presente em alguns processos
(combustão e fotossíntese).
A energia envolvida nas reações químicas é decorrente de um rearranjo das
ligações químicas quando reagentes transformam-se em produtos.
Esta energia “armazenada”, principalmente sob forma de ligações,
denominamos de ENTALPIA (do grego, enthalpein = calor) e simbolizamos por H
(Heat = calor).
Qtrocado = D U + W
45
Numa reação química, portanto, ocorre uma variação de entalpia (DH), sendo
as reações classificadas em dois tipos, segundo o calor liberado ou absorvido:
 (H1) ...C2H6O + 3 O2 (H2) ...................................... C6H12O6 + 6 O2
 Ó Ñ
 (H2) .................................. 2 CO2 + 3 H2O (H1) ..6 CO2 + 6 H2O
 ( DH = H2 - H1 < 0 ) ( DH = H2 - H1 > 0 )
 reação EXOTÉRMICA reação ENDOTÉRMICA
3.3.2. Medida de D H e unidades de energia
A variação da entalpia de uma reação química pode ser medida, para um
certo número de reações, pelo calor liberado ou absorvido durante o processo. Esta
medida experimental (calorimétrica) é feita utilizando-se Calorímetros ou Bombas
Calorimétricas (para reações de combustão), empregando-se a equação:
Q = m.c.Dt
O número de reações cuja entalpia (calor de reação) pode ser determinada
diretamente em bombas calorimétricas e calorímetros é muito reduzido. A maior
parte das reações tem a sua entalpia calculada, valendo-se das leis da
Termoquímica, principalmente a LEI DE HESS, como será visto mais adiante.
A unidade mais comum é a caloria (cal), que equivale a quantidade de
energia absorvida por uma grama de H2O, para que a temperatura varie de 1,00 C,
ou seu múltiplo quilocaloria (kcal)
 A bomba calori –
métrica é um equi –
pamento própriopara determinar a
energia (calor) das
reações de
combustão e
algumas reações de
formação.
46
1,0 kcal = 1.000 cal
1,0 cal = 4,18 Joules
1,0 kcal = 4,18.103 Joules
3.3.3. Equações Termoquímicas
Uma equação termoquímica deve conter:
a) a equação química devidamente ajustada;
b) os estados físicos de cada componente, sendo esta referência importante
porque as mudanças de estado físico envolvem variações de energia (entalpia):
ex.: H2(g) + 1/2 O2(g) “ H2O(g) (libera 57,8 kcal/mol)
 H2(g) + 1/2 O2(g) “ H2O(l) (libera 68,3 kcal/mol)
 H2(g) + 1/2 O2(g) “ H2O(s) (libera 70,0 kcal/mol)
c) os estados alotrópicos, quando for o caso:
ex.: C(grafite) + O2(g) “ CO2(g) (libera 94,05 kcal/mol)
 C(diamante) + O2(g) “ CO2(g) (libera 94,51 kcal/mol)
d) as condições de medida da variação de entalpia:
- a variação de entalpia (DH) depende da temperatura e da pressão
em que foi feita a medida. A maior parte das variações de entalpia que constam em
tabelas foram medidas nas chamadas Condições Padrão ou Standard (1 atm e
250C). A indicação de que uma entalpia foi medida em Condições Padrão é feita
através do expoente “0” junto ao valor da mesma:
ex.: H2(g) + 1/2 O2(g) “ H2O(l) DH0 = - 68,31 kcal/mol
 C(graf.) + O2(g) “ CO2(g) DH0 = - 94,05 kcal/mol
 C(graf.) + 2 H2(g) “ CH4(g) DH0 = - 17,81 kcal/mol
 1/2 N2(g) + 1/2 O2(g) “ NO(g) DH0 = + 11,0 kcal/mol
3.3.4. Entalpias de Reação
1) Entalpia de Formação (DH0f):
- corresponde ao calor envolvido na formação de 1,0 mol de
substância a partir de seus elementos formadores (substâncias simples).
ex.: C(graf.) + 2 H2(g) “ CH4(g) D H0 = - 17,81 kcal/mol
 2 C(graf.) + 3 H2(g) + 1/2 O2(g) “ C2H6O(l) D H0 = - 66,70 kcal/mol
H2(g) + ½ O2(g) “ H2O(l) D H0 = - 68,31 kcal/mol
½ N2(g) + ½ O2(g) “ NO(g) D H0 = + 11,0 kcal/mol
C(graf.) + O2(g) “ CO2(g) D H0 = - 94,01 kcal/mol
Obs.: considera-se nula a Entalpia de Formação de substâncias simples .
47
Algumas entalpias de formação podem ser medidas diretamente em bombas
calorimétricas enquanto outros somente são possíveis através de determinações
algébricas (cálculo).
Outros exemplos no quadro a seguir.
SUBSTÂNCIA
 
� H0f (kcal/mol) SUBSTÂNCIA � H0f (kcal/mol) SUBSTÂNCIA � H0f (kcal/mol)
 C(diamante) 0,453 CaCO3(arag.) - 288,45 NH3(g) - 11,02
 CO(g) - 26,41 CaCO3(calc.) - 288,49 NO(g) + 21,57
 CO2(g) - 94,05 CaO(s) - 151,90 NO2(g) + 7,93
 C2H6(g) - 20,24 Ca(OH)2(s) - 235,80 N2O4(g) + 2,19
 CCl4(g) - 24,61 H2O(g) - 57,79 NaCl(s) - 98,23
 CHCl3(l) - 32,14 H2O(l) - 68,31 Na2O(s) - 99,40
 C2H6O(l) - 66,37 H2O2(l) - 44,88 NaOH(g) - 101,99
CH3COOH(l) - 115,80 HCl(g) - 22,06 O3(g) + 34,10
2) Entalpia de Decomposição:
- corresponde ao inverso da Entalpia de Formação.
3) Entalpia de Combustão:
- corresponde ao calor envolvido na reação de um mol de substância
combustível com O2 puro. Se o combustível for orgânico (C,H,O) a combustão
completa origina como produtos CO2(g) e H2O(l) (chama azul). Na combustão
incompleta ainda ocorre a formação de fuligem, carbono (chama amarela).
ex.: CH4(g) + 2 O2(g) “ CO2(g) + 2 H2O(l) D H0 = - 212,78 kcal/mol
 C2H6O(l) + 3 O2(g) “ 2 CO2(g) + 3 H2O(l) D H0 = - 326,70 kcal/mol
 C6H12O6(s) + 6 O2(g) “ 6 CO2(g) + 6 H2O(l) D H0 = - 670,00 kcal/mol
4) Entalpia de Neutralização:
- corresponde ao calor envolvido na reação de formação de um mol de
água a partir de um mol íons H+ com um mol de íons OH-, provenientes de um ácido
e uma base, respectivamente, ambos em solução aquosa e diluída.
Para ácidos e bases fortes a reação que ocorre é sempre a mesma e a sua
variação de entalpia é constante:
H+(aq) + OH-(aq) £“ H2O(l) D H0 = - 13,20 kcal/mol
Se o ácido ou a base for fraco a variação de entalpia será diferente do valor
acima, devido à dissociação do ácido ou da base devido ao deslocamento do
equilíbrio ocorrido na neutralização.
48
5) Entalpia de Dissolução
- corresponde ao calor envolvido na dissolução (por vezes
acompanhada de dissociação) de um mol de determinado soluto em quantidade tal
de solvente de modo que a adição do mesmo, após determinada quantidade limite,
não envolva variação de energia.
 H2O
HCl(g) HCl(aquoso)
O quadro abaixo mostra a variação de calor envolvida em relação à
quantidade de solvente (água) adicionado.
n1(H2O) / n2(HCl)
 10 25 40 80 150
- DH0(kcal/mol)
 16,608 17,272 17,453 17,735 17,960
6) Entalpia de mudança de fase
Corresponde ao calor envolvido na mudança de estado físico ou fase
cristalina.
Assim,
H2O(s) “ H2O(l) DH0273 = + 1,438 kcal/mol
H2O(l) “ H2O(g) DH0 = + 10,514 kcal/mol
C(grafite) “ C(damante) DH0 = + 0,451 kcal/mol
S(rômbico) “ S(monoclínico) DH0 = + 0,071 kcal/mol
7) Entalpia ou Energia de Ligação:
- corresponde a quantidade de calor absorvida na quebra de 1,0 mol
(6,02.1023) de determinada ligação, supondo todas as substâncias no
estado gasoso, a 250C e 1,0 atm.
- 
A quebra de ligações sempre é endotérmica, enquanto a formação de
ligações é sempre exotérmica.
ex.: H2(g) “ 2 H(g) D H = + 104,2 kcal/mol de moléculas
 O2(g) “ 2 O(g) D H = + 119,1 kcal/mol de moléculas
Por vezes utiliza-se a metade desse valor como sendo a Entalpia de
Atomização por mol de átomos formados.
Hidrogênio: + 52,1 kcal/mol de átomos
Oxigênio: + 59,5 kcal/mol de átomos
49
A tabela abaixo mostra algumas ligações mais importantes e suas entalpias
 
 LIGAÇÃO ENERGIA (kcal/mol) LIGAÇÃO ENERGIA(kcal/mol)
 C - C 83,2 C - H 98,8
 C = C 146,8 C - O 85,5
 C Ÿ C 200,6 C = O 178,0
 H - H 104,2 O - H 110,6
 O = O 119,1 H - F 135,0
 Cl - Cl 57,9 H - Cl 103,1
Numa reação química, enquanto a energia é absorvida na quebra de
ligações, nos reagentes, a energia é liberada nos produtos (formação de ligações).
Assim:
 Reagentes £“ Produtos
 DH1 > 0 DH2 < 0
 D HRQ = DH1 + DH2
Exercicio: determinar a Entalpia de formação da água (gasosa) através das
entalpias de ligação, da tabela acima e comparar com o valor informado
anteriormente.
3.3.5. Determinação da Entalpia e Lei de Hess.
A Entalpia de uma reação pode ser obtida de dois modos diferentes:
a) por medida calorimétrica experimental (aplicável a um pequeno número de
reações);
b) por cálculos algébricos, aplicando-se a Lei de Hess.
A Lei de Hess, também chamada Lei da Soma dos Calores de Reação,
permite prever a Entalpia mesmo daquelas reações de difícil execução
experimental. Segundo Hess a Entalpia de uma reação não depende do modo
(caminho) como a mesma é executada, mas somente do estado inicial (reagentes)
e do estado final (produtos).
Genericamente:
 DH1
A + B L + M
 DH4 DH2
 C + D E + F
 DH3
50
Segundo a Lei de Hess:
 DH1 = DH2 + DH3 + DH4
ou, ainda:
DHREAÇÃO = DH(f)PRODUTOS

Outros materiais