Buscar

ED REMA Cód. 543Z RESIST DOS MATERIAIS (ESTAB)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Arquitetura e Urbanismo – 5P. 
DP - Cód. 543Z - RESIST DOS MATERIAIS (ESTAB) 
 
1 - Flexão e flambagem - É comum, mesmo entre profissionais de arquitetura, ocorrer por descuido ou imprecisão 
conceitual uma confusão entre esses dois fenômenos, flexão e flambagem. Entretanto devemos estar atentos às diferenças 
entre eles, pois a concepção do sistema estrutural de um edifício deve responder de maneira adequada, seja na forma, 
seja no dimensionamento, a esses distintos fenômenos. 
A flexão - Uma viga bi apoiada, que recebe um carregamento transversal a seu eixo longitudinal, sofre um fenômeno 
denominado flexão. A flexão decorre das ações da força transversal e das forças de reação, geradas nos dois apoios. O 
efeito mais visível desse fenômeno é a tendência ao arqueamento da viga, na direção da ação da força transversal. 
Entretanto no interior da viga ocorrem também outros fatos menos visíveis. 
As forças que agem no interior do material estrutural são denominadas tensões e elas são geradas pelas forças externas 
que atuam sobre a superfície da peça estrutural. A flexão se caracteriza por envolver um conjunto de cinco tensões: 
compressão, tração, momento fletor, cisalhamento horizontal e cisalhamento vertical. 
A verificação das tensões atuantes na viga fica mais fácil quando ela é observada sob efeito das deformações a que a 
flexão a sujeita. Ocorre compressão na parte superior e tração na parte inferior; ocorrem também cisalhamento (ou tensão 
cortante) horizontal e cisalhamento vertical e ainda o momento fletor. 
A compressão tende a encurtar a peça ao longo do eixo de sua atuação; assim a parte superior da viga fica mais curta 
do que na situação em repouso. 
A tração tende a alongar a peça ao longo do eixo de sua a atuação; assim a parte inferior da viga fica mais longa do que 
na situação em repouso. 
O cisalhamento horizontal tende a separar a viga em diversas camadas horizontais, que deslizam umas sobre as 
outras. 
O cisalhamento vertical tende a separar a viga em diversas secções verticais, que deslizam umas em relação às 
outras. 
O momento fletor é um movimento de giro que causa uma flecha, ou seja, é um movimento de giro que causa um 
arco na viga, cuja deformação é medida por sua flecha. O giro mencionado refere-se à rotação sofrida pela secção 
transversal da viga. Assim, se observarmos uma secção transversal da viga sob a ação do fenômeno da flexão, notaremos 
que ela sofre um giro e um rebaixamento, com relação à situação de repouso. 
A flambagem - A flambagem é uma deformação característica das peças sujeitas à compressão. A tendência mais comum 
de deformação de uma barra (um pilar, por exemplo) sob efeito da compressão é o encurtamento de sua dimensão 
longitudinal, associado ao aumento de sua secção transversal. Entretanto, como a compressão axial pura é um fenômeno 
difícil de ocorrer, as peças sob efeito da compressão podem sofrer flambagem, que se caracteriza pelo arqueamento da 
barra, semelhante ao que ocorre na flexão. Porém não deve haver confusão: flexão e flambagem são fenômenos distintos, 
decorrentes de ações de forças muito diferentes sobre as peças estruturais e que por isso demandam tratamento estrutural 
diferenciado. 
Tendo em vista o texto acima, considere as seguintes afirmativas: 
Resposta: B – II Flexão e flambagem são dois fenômenos distintos que demandam cuidados diferentes nas peças 
estruturais em que se manifestam. 
2 - Considere o texto anteriormente apresentado e as afirmativas abaixo para responder esta questão. 
I. Flambagem é uma deformação que decorre unicamente da ação de forças de compressão ao longo do eixo 
longitudinal de uma barra. 
II. Flexão é um fenômeno que decorre da ação de forças de ação e reação, transversais ao eixo longitudinal de uma 
barra. 
III. Flexão e flambagem são fenômenos semelhantes e decorrem da ação de um diversificado conjunto de forças 
externas e internas. 
IV. A flexão é um fenômeno que envolve cinco tensões diferentes: compressão, tração, momento fletor, 
cisalhamento horizontal e cisalhamento vertical. 
É correto o que afirma em: 
Resposta: C - I, II e IV 
 
3 - A denominação “Flexão Composta Normal” refere-se à seção transversal de uma barra sujeita concomitantemente a um 
Momento de Flexão (ou Momento Fletor) e a uma força Normal, ou Axial, que pode ser de tração ou de compressão. 
No caso da Flexão composta, calcula-se as tensões normais 
devidas à flexão (M) e soma-se às tensões normais devidas 
ao esforço Normal (N). 
O Momento Fletor M provoca tensões cujo valor varia em 
função da altura da seção, sendo que seus valores 
extremos são nas extremidades da seção, como pode ser 
observado no diagrama de m. Já a força Normal N 
provoca tensões constantes em toda a seção, n. 
Se na estrutura da figura abaixo, ao calcularmos as tensões 
na seção de engastamento da barra vertical no ponto A, as tensões de Flexão nas bordas da seção valem 30 kN/cm2 e as 
tensões de compressão devidas à força de compressão valem 15 kN/cm², sabendo que o material possui resistência de 40 
kN/cm², tanto à tração quanto à compressão, pode-se concluir que: 
 
Resposta: D - a barra não tem capacidade de resistir à tensão máxima de compressão embora 
tenha capacidade de resistir à tensão máxima de tração no ponto A, portanto não tem segurança 
estrutural. 
 
 
 
4 - Treliças 
As treliças são elementos estruturais constituídos por barras ligadas nas extremidades, formando uma figura fechada. Cada 
barra é articulada nas extremidades, onde são aplicadas as forças externas. Esses pontos são denominados “nós ‘da treliça. 
Como nas articulações, o momento é zero, pois a barra gira e não resiste a nenhum momento, uma barra articulada nas 
extremidades e solicitada por uma força aplicada na extremidade articulada acaba tendo uma solicitação axial 
obrigatoriamente na direção da barra. 
Ou seja, as barras de uma treliça estão sujeitas apenas a esforços normais, que podem ser de compressão ou de tração. 
Na denominação dos elementos de uma treliça, as barras horizontais são comumente chamadas de ‘banzos’, enquanto as 
barras verticais são chamadas de ‘montantes’ e as barras inclinadas de ‘diagonais’. 
Na treliça abaixo esquematizada é possível afirmar que: 
 
Resposta: C - os banzos inferiores estão tracionados e as diagonais estão tracionadas. 
5 - As pontes estaiadas apresentam na sua concepção estrutural tabuleiros sustentados por cabos de aço (também 
denominados ‘estais’) inclinados pendurados em torres, dando assim uma impressão de leveza ao conjunto. A Ponte 
estaiada Octavio Frias de Oliveira, em São Paulo, tornou-se um marco na arquitetura da cidade. Ela possui uma 
concepção única no mundo, sendo formada por dois tabuleiros curvos, suspensos por 144 estais, ligados a uma torre 
central, em forma de ‘X”, de 138 metros de altura. 
Supondo que em uma ponte concebida como estaiada a força a ser suspensa por cada estai seja 
de 200 tf, e a sua resistência seja de 5.000 kgf/cm², pergunta-se qual deveria ser a área mínima 
da seção transversal do estai? 
 
Resposta: A - 40 cm² 
 
 
 
 
6 - Enunciado: A Ponte Akashi Kaikyo , localiza-se noEstreito de Akashi, ligando a cidade de Kobe e a Ilha Awaji, e possui 
uma extensão de quase quatro quilômetros, sendo por isso a ponte suspensa mais longa do mundo. Foi inaugurada em 
1998. Suas as torres principais possuem cerca de 283m de altura, e contam com acesso ao público para visitação, 
contando com torre de observação. 
Na foto apresentada a seguir observa-se o tabuleiro da ponte pela parte 
lateral e inferior, e uma de suas torres principais. 
Pode-se notar que a estrutura do tabuleiro é formada por treliças que 
recebem tirantes. Esses tirantes se penduram no cabo principal que corre ao 
longo da ponte. As torres principais, quedão suporte aos cabos são 
compostas por pares de pilares, estes interligados por estruturas de 
travamento lateral, em forma de ‘X’. 
A estrutura possui as seguintes características principais: 
Resposta: D - Os tirantes estão tracionados e as barras da treliça estão sujeitas a esforços de compressão e tração. 
 
7 - A figura a seguir representa o diagrama de momentos fletores ao longo de uma viga bi apoiada sujeita a carga 
uniformemente distribuída em todo o seu vão. O valor do momento fletor máximo no meio do vão pode ser obtido pela 
expressão: 
M = p l² / 8, onde p é a carga distribuída, e l é o vão entre apoios. 
Se analisarmos a viga da figura abaixo, isostática, notamos que ela está bi apoiada nos 
pilares denominados como “apoio1” e “apoio2”. Ela deverá ser feita de um material 
cujo peso específico é de 25 kN/m³. Dessa forma o valor da carga distribuída devido ao 
seu peso próprio é gviga = 0,18 x 0,60 x 25 = 2,70 kN/m 
Sobre toda a extensão da viga está apoiada uma parede de alvenaria. No esquema 
abaixo o valor dessa carga de alvenaria está indicado como galv. 
Dessa forma, a carga distribuída que solicita a viga é a soma do seu peso próprio com o peso da parede de alvenaria, 
ou seja p = gviga + galv. Suponha que o valor de galv seja 6,30 kN/m. 
 
Resposta: E - 28,1 kNm 
 
8 - Na comparação entre estruturas compostas por vigas simplesmente apoiadas em pilares e estruturas apor ticadas, 
compostas por vigas rigidamente ligadas a pilares, pode-se afirmar que: 
 
 
Resposta: D - As estruturas compostas por vigas apoiadas não transferem momentos aos pilares, e apresentam maior 
flecha no vão. 
 
9 - A estrutura abaixo esquematizada indica uma treliça espacial, semelhante à utilizada na cobertura do Pavilhão de 
Exposições do Parque Anhembi, no projeto de Miguel Juliano, que, por muitos nãos foi o detentor do título de maior 
cobertura do mundo, com 67.500m². 
Dentre entre as características das treliças, pode-se afirmar que: 
Resposta: D - As barras são articuladas nas extremidades, e estão sujeitas apenas a 
esforços de tração e compressão. 
 
 
 
10 - Duas tipologias estruturais formadas por elementos lineares que possuem configurações semelhantes sob o aspecto 
estético, porém possuem comportamento estrutural dos elementos diferentes: as treliças e as vigas Vierendeel. Ambas 
apresentam um sistema estrutural formado por barras que se encontram em pontos denominados nós, e a semelhança 
acaba aqui. 
Na comparação entre estruturas formadas por treliças e por vigas Vierendeel, pode-se 
afirmar que: 
Resposta: C - As barras da viga Vierendeel estão sujeitas não só a esforços normais, 
como também a esforços fletores e cortantes. 
 
 
 
 
 
 
 
11 - As treliças são estruturas comumente utilizadas para vencer vãos e receber estruturas de cobertura, por sua leveza 
estrutural, e economia de material. Na foto abaixo está apresentada uma foto de estrutura de cobertura já executada. 
Essa estrutura é formada por tesouras treliçadas que recebem terças, onde vão se apoiar 
as telhas de cobertura. 
Pode-se afirmar que: 
 
Resposta: A - Às terças dessa cobertura não estão posicionadas de forma correta, pois não 
estão se apoiando nos nós das tesouras de cobertura. 
12 - Na estrutura esquematizada abaixo, pode-se afirmar que: 
 
 
 
 
Resposta: C - O valor da força de tração no fio alcança seu valor mínimo quando a = 900 
 
 
13 - Na treliça esquematizada, para uma dada carga P aplicada no nó C, pode-se afirmar que: 
 
Resposta: A - A barra AB está tracionada e a barra AC está comprimida 
 
14 - Na treliça abaixo, para h = 4m, l = 5m, e P = 10tf, o valor da força na barra AC é: 
 
Resposta: C - 8,0 tf de compressão 
 
15 - Na estrutura abaixo esquematizada, pode-se afirmar que: 
 
Resposta: B - A barra 1 está sujeita a esforços de tração 
 
16 - A estrutura abaixo esquematizada mostra uma rede de vôlei e seu funcionamento. A rede é suportada por um fio, 
que fixa nas laterais da quadra, fazendo um ângulo a com o solo, se equilibrando graças a existência de dois postes. Se 
analisarmos o comportamento dessa estrutura, podemos afirmar que: 
 
Resposta: E - Os postes estão comprimidos e os fios tracionados, e quanto maior for o ângulo a menor será a força de 
tração no fio. 
 
17 – Na treliça esquematizada abaixo, as reações de apoio verticais em A e B são, respectivamente. 
 
 
 
 
 
 
 
Resposta: E - 5 kN e 10 Kn 
 
18 – O esforço normal na barra AB da treliça abaixo esquematizada vale 
 
 
 
 
 
 
 
Resposta: B - 7,49 kN 
 
19 – O esforço normal na barra AC da treliça abaixo esquematizada vale 
 
Resposta: C - 9,00kN, de compressão. 
 
20 – Um dos processos para se calcular os esforços nas barras de uma treliça se baseia no equilíbrio dos nós, conhecido 
também como método dos nós. Ele se baseia nas considerações a respeito do equilíbrio dos nós da treliça, tanto na 
direção horizontal, quanto na vertical, onde os esforços inclinados podem ser decompostos nessas duas direções. 
 
Resposta: C - Todos os nós da treliça devem estar equilibrados. 
 
21 – Na treliça abaixo, o valor da reação de apoio vertical no apoio da esquerda é aproximadamente 
 
Resposta: D - 4,9 tf 
 
22 – Numa treliça isostática, o equilíbrio de um nó é estudado por meio de: 
Resposta: E - Soma de forças horizontais e soma de forças verticais. 
 
23 – Na comparação entre os esforços e reações das treliças abaixo, é possível afirmar que: 
 
Resposta: D - as reações de apoio nas 2 alternativas são iguais, e os esforços de tração nas barras dos banzos inferiores 
da alternativa 1 são maiores que na alternativa 2. 
24 – O momento de engastamento em A da figura abaixo será: 
 
 Resposta: E - 0,12 tfm 
25 – A força normal de compressão na barra AB será: 
 
Resposta: B - 1,16 tf 
26 – Dada afigura abaixo, se desprezarmos o peso específico da barra, pode-se afirmar que: 
 
Resposta: B - O momento no engastamento é 28 kNm, a cortante no engastamento é 4 kN e a normal no engastamento 
é 16 Kn. 
 
27 – Uma estrutura possui um pilar, cuja seção transversal é retangular, medindo 18cm x 25 cm. Esse pilar está 
sujeito a uma carga de compressão de 300 kgf. A tensão de compressão aplicada no pilar vale: 
Resposta: C - 0,67 kgf/cm² 
 
28 – O esquema apresentado abaixo mostra um pilar, de seção transversal circular, de diâmetro D1, que transfere a 
carga de compressão nele aplicada ao solo por meio de uma sapata, cuja seção transversal também é circular, mas cujo 
valor é D2. A sapata recebe os esforços do pilar e os transfere ao solo de apoio, configurando assim uma fundação 
direta. 
No esquema, pode-se notar que D2 é maior que D1, embora não estejam apresentados os seus valores. 
Essa configuração é verificada na prática, nas estruturas apoiadas diretamente no 
solo, pois há uma relação entre as tensões de compressão no pilar e as tensões 
que a sapata aplica no solo: 
A justificativa de D2 ser maior que D1 é explicada por que: 
 
Resposta: A - as tensões máximas de compressão suportadas pelo material do pilar são 
maiores que as do solo. 
 
 
29 – O esquema apresentado abaixo mostra um pilar, de seção transversal quadrada, de lado "a", se apoiando em 
uma sapata, de seção retangular, de lados "A" e "B". A sapata recebe os esforços do pilar e os transfere ao solo de 
apoio, configurando assim uma fundação direta. 
Os valores das dimensões são: a=30cm, A=130cm e B=90cm. 
 
Resposta: B - 16,67 kgf/cm² e 1,28 kgf/cm² 
 
 
 
 
 
 
30 – A estrutura apresentada mostra um pilar circular se apoiando em uma sapata, de seção quadrada. A sapata recebe 
os esforços do pilar e os transfereao solo de apoio, configurando assim uma fundação direta. A tensão limite de 
compressão do material do pilar é de 80 kgf/cm², e a tensão admissível no solo é 3 kgf/cm². 
 
Resposta: D - o pilar e o solo têm condições de resistir aos esforços aplicados, pois ambos 
estão sujeitos a tensões de compressão inferiores aos seus limites. 
 
 
 
 
 
 
 
 
 
31 – A figura esquematizada acima mostra uma viga em balanço engastada em uma parede estrutural através de 
uma chapa com chumbadores. O comprimento do balanço é de 4 metros. Se desprezarmos o peso próprio da 
viga, sabendo que a carga concentrada aplicada na ponta é de 200 kgf, e as dimensões da seção transversal da barra 
são b=10 cm e h= 30cm, pode-se dizer que as tensões máximas no engastamento são: 
 
Resposta: D - 53,3 kgf/cm² 
 
 
 
 
32 – A figura esquematizada acima mostra uma viga em balanço engastada em uma parede estrutural através de uma 
chapa com chumbadores. O comprimento do balanço é de 4 metros. Se considerarmos que o peso próprio da viga é 
de 150 kgf/m, e que a carga concentrada aplicada na ponta é de 800 kgf, e as dimensões da seção transversal da 
barra são b=10 cm e h= 30cm, pode-se dizer que as tensões máximas no engastamento são: 
 
Resposta: A - 293,3 kgf/cm² 
 
 
 
33 – A figura esquematizada acima mostra uma viga bi apoiada, sujeita a uma carga uniformemente distribuída p, 
sustentada por um pilar em uma extremidade e por um fio na outra extremidade. O vão que a viga vence l é de 4 
metros, e o valor da carga distribuída é p = 3 tf/m. O diâmetro do fio é de 16 mm. 
Nessas condições a tensão de tração que solicita o fio vale: 
 
Resposta: A - 3.000 kgf/cm² 
 
 
 
 
34 – Para a estrutura acima esquematizada, se for desprezado o peso próprio dos materiais, pode-se afirmar que 
o esforço normal resultante na seção A-A, no engastamento, independe da altura da coluna, e vale: 
 
Resposta: N=650 kgf e M=400 kgfm 
 
 
 
 
 
 
 
35 – Para a estrutura acima esquematizada, se for desprezado o peso próprio dos materiais, pode-se afirmar que a 
tensão máxima de compressão na seção A-A, no engastamento, independe da altura da coluna, e seu valor é: 
 
Resposta: 2,58 kgf/cm²

Outros materiais