Buscar

apoll analise matematica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 6 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 6 páginas

Prévia do material em texto

Questão 1/5 - Análise Matemática
O primeiro fato a destacar sobre uma série de potências ∑∞nan(x−x0)n∑n∞an(x−x0)n é que o conjunto de valores de xx para os quais ela converge é um intervalo de centro x0x0. Esse intervalo  pode ser limitado (aberto, fechado ou semi-aberto), igual a RR  ou até mesmo reduzir-se a um único ponto.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p.159.
Considere a expansão da série de potências ex=∑∞n=0xnn!=1+x1!+x22!+x33!+⋯(x∈R)ex=∑n=0∞xnn!=1+x1!+x22!+x33!+⋯(x∈R)
Assinale a alternativa que contém os valores para x=1.
	
	A
	e=∑∞n=01n!=1−11+12−16+⋯e=∑n=0∞1n!=1−11+12−16+⋯
	
	B
	e=∑∞n=01n!=1+11+12+16+⋯e=∑n=0∞1n!=1+11+12+16+⋯
	
	C
	e=∑∞n=01n!=1+13+15+⋯e=∑n=0∞1n!=1+13+15+⋯
	
	D
	e=∑∞n=01n!=1−13+15−⋯e=∑n=0∞1n!=1−13+15−⋯
	
	E
	e=∑∞n=02nn!=1+23+34+⋯e=∑n=0∞2nn!=1+23+34+⋯
Questão 2/5 - Análise Matemática
Consideremos a função f:R→Rf:R→R dada por f(x)={x2+1, x≤12x, x>1f(x)={x2+1, x≤12x, x>1.
Com base nos conteúdos do livro-base Análise Matemática a respeito de funções contínuas e deriváveis, é correto afirmar que:
 
	
	A
	Em x=1x=1, ff é contínua, mas não é derivável.
	
	B
	Em x=1x=1, ff é derivável, mas não é contínua.
	
	C
	Em x=1x=1, ff possui limites laterais, mas são diferentes.
	
	D
	Em x=1x=1, ff é contínua e é derivável.
	
	E
	Em x=1x=1, ff não é contínua nem é derivável.
 
Questão 3/5 - Análise Matemática
Observe o gráfico de uma função f(x)=(1+1x)xf(x)=(1+1x)x representado na figura a seguir.
 
 
 
 
 
Com base no gráfico da função f(x)=(1+1x)xf(x)=(1+1x)x  e nos conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir.
I. limx→∞f(x)=∞limx→∞f(x)=∞ e limx→−∞f(x)=−∞limx→−∞f(x)=−∞
II. limx→∞f(x)=elimx→∞f(x)=e e limx→−∞f(x)=−∞limx→−∞f(x)=−∞
III. limx→0+f(x)=1limx→0+f(x)=1 e limx→0−f(x)=∞limx→0−f(x)=∞
IV. limx→0+f(x)=−∞limx→0+f(x)=−∞ e limx→0−f(x)=∞limx→0−f(x)=∞
V. limx→0+f(x)=1limx→0+f(x)=1 e limx→∞f(x)=elimx→∞f(x)=e
São corretas apenas as afirmativas:
	
	A
	III e V
	
	B
	I e III
	
	C
	I e IV
	
	D
	II e V
	
	E
	II, III e V
Questão 4/5 - Análise Matemática
“Se alguém me perguntasse o que é que todo estudante de Ensino Médio deveria saber de matemática, sem sombra de dúvida, o tema Indução figuraria na minha lista.
É com o conceito de Indução que se estabelece o primeiro contato com a noção de infinito em Matemática, e por isso ele é muito importante; porém, é, ao mesmo tempo, sutil e delicado”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: HEFEZ, A. Indução Matemática. Programa da Iniciação Científica OBMEP, v. 4. 2009. p. iii. 
Tendo em vista a citação dada e de acordo com os conteúdos do livro-base sobre o Princípio da Indução Finita, analise as seguintes asserções: 
I. A soma dos nn primeiros números ímpares é n2, n≥1n2, n≥1.
 
PORQUE
 
II. Dados os números ímpares: 1,3,5,7,9,11,⋯2n−1 (n natural n>0)1,3,5,7,9,11,⋯2n−1 (n natural n>0), 
se tivermos dois ímpares n=2n=2 a soma será S=1+3=4=22S=1+3=4=22 e se tivermos
55 números ímpares a soma será S=1+3+5+7+9=25=52S=1+3+5+7+9=25=52 
 
A respeito dessas asserções, assinale a alternativa correta:
	
	A
	As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da primeira.
	
	B
	As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa  correta da primeira.
	
	C
	A asserção I é uma proposição verdadeira , e a II é uma proposição falsa.
	
	D
	A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
	
	E
	As asserções I e II são proposições falsas.
Questão 5/5 - Análise Matemática
Leia o trecho de texto a seguir:
“Quando limxn=alimxn=a, diz-se que a sequência (xn)(xn) converge para aa, ou tende para aa e escreve-se xn→axn→a. Uma sequência que possui limite chama-se convergente. Do contrário, ela se chama divergente. Explicitamente, uma sequência (xn)(xn) diz-se divergente quando, para nenhum número real aa, é verdade que se tenha limxn=alimxn=a”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
Lima, E. L. Curso de Análise. v. 1. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada,  2013. p. 108-109.
Levando em consideração o fragmento de texto dado e os conteúdos do livro-base Análise Matemática sobre a convergência de sequências numéricas, analise as afirmativas que seguem e marque V para as afirmativas verdadeiras e F para as afirmativas falsas.
 
I.  Toda sequência que é crescente e limitada é convergente.
II. Existem sequências que não são limitadas, mas são convergentes.
III. Toda subsequência de uma sequência limitada é convergente. 
IV. Existem sequências limitadas que possuem subsequências convergentes.
 
Agora marque a sequência correta:
	
	A
	F – V – F – V
	
	B
	V – F –V – F
	
	C
	V – F – F – V
	
	D
	F – V – V – F
	
	E
	F – F – V – V

Outros materiais