Buscar

Ensaios não destrutivos - Visual

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 96 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 96 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 96 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ENSAIOS NÃO DESTRUTIVOS 
 
 
 
 
 
 
 
 
 
Silvério Ferreira da Silva Junior 
Paulo Villani Marques 
 
 
 
 
 
 
 
 
Belo Horizonte, Novembro de 2006 
 
2 
Capítulo 1 
 
Introdução aos Ensaios Não Destrutivos 
 
 
1. Conceitos Fundamentais 
 
A arte de inspecionar sem destruir evoluiu, principalmente a partir da década de 50, de simples 
curiosidade de laboratório até se tornar uma ferramenta indispensável de produção. Hoje os ensaios não 
destrutivos são largamente utilizados na indústria moderna em todo o mundo para avaliação da 
qualidade e detecção de variações na estrutura, pequenas falhas superficiais, presença de trincas e 
outras interrupções físicas, medida de espessura de materiais e revestimentos e determinação de outras 
características de materiais e produtos industriais. 
 
Classicamente, são considerados ensaios não destrutivos aqueles que quando realizados em peças 
acabadas ou semi-acabadas não interferem nem prejudicam seu uso futuro ou processamento posterior. 
Eles são usados para determinação de algumas propriedades dos materiais e para a detecção de 
possíveis descontinuidades em peças e produtos industriais. 
 
Descontinuidades são interrupções na estrutura normal de um material, em nível macro ou microscópico, 
passíveis de serem percebidas durante a realização de um END. 
 
Uma característica marcante dos END é que eles raramente medem diretamente a propriedade de 
interesse. O valor dessa propriedade geralmente é obtido a partir de sua correlação com uma outra 
grandeza que é medida durante a realização do teste. 
 
As diversas técnicas e métodos de inspeção não destrutiva serão vistos em detalhes nos capítulos a 
seguir, mas antes é conveniente saber por que se usam estes ensaios. 
 
 
2. Razões para uso dos ensaios não destrutivos (END) 
 
As principais razões para uso dos END são: 
• garantir a qualidade dos produtos e a reputação dos fabricantes; 
• prevenir acidentes e a perda de vidas humanas e a paralisação de serviços básicos; 
• aumentar os lucros dos fabricantes. 
 
O comprador de um produto tem sempre a expectativa de que poderá usufruir deste por um longo 
período, sem a ocorrência de defeitos ou necessidade de manutenção. O comprador de um automóvel 
ou o usuário de um meio de transporte público espera poder usar os veículos sem atrasos ou falhas 
devidas a defeitos mecânicos. Um industrial deseja que seus equipamentos funcionem melhor, mais 
rápido, e, se possível, automaticamente, independentemente da sua complexidade. Em outras palavras, 
a confiabilidade é indispensável. 
 
Se a probabilidade de falha de um componente é de uma em mil, isto pode ser aceitável. Contudo, a 
confiabilidade de um equipamento ou conjunto é dada pelo produto da confiabilidade de seus 
componentes críticos. Assim, a confiabilidade (R) de um produto montado a partir de, por exemplo, 100 
componentes críticos, será dada por: 
 
R = 0,999 x 0,999 x 0,999 x ...... x 0,999 = 0,999100 = 0,9048 
 
A possibilidade de falha será dada então pela diferença (1 – 0,9048) = 0,0952, ou seja, 
aproximadamente 0,1 ou uma em dez. Claro que o comprador de um produto ficará extremamente 
insatisfeito se ele falhar uma a cada dez tentativas de uso. Portanto, a confiabilidade de um componente 
precisa ser imensamente maior que a do produto montado final. 
 
Por exemplo, o motor de um automóvel de 4 cilindros possui um virabrequim, conectado a quatro bielas, 
quatro cabeças de pistão, oito válvulas, oito molas, anéis de segmento e centenas de outras partes, que 
 
3 
são críticas para seu funcionamento e qualquer falha em uma dessas partes causará a parada do motor. 
A incidência incrivelmente baixa de falhas em motores é devida à capacidade de projetistas e 
engenheiros de fabricação e de qualidade de conceber, fabricar e montar conjuntos corretamente, de 
acordo com normas de fabricação bem estabelecidas. 
 
Em geral, a ocorrência de acidentes ou falhas causa incômodo e inconveniência, mas em certos casos, 
são totalmente impensáveis ou inadmissíveis. A falha no sistema de direção de um ônibus ou trem de 
ferro a 100 km por hora ou do trem de aterrisagem de um avião durante um pouso poderá resultar na 
perda de dezenas ou centenas de vidas humanas. O vazamento de pequenas quantidades de material 
radiativo de uma usina nuclear pode matar e/ou afetar a vida de milhares ou milhões de pessoas. Nestes 
casos, não se pode contar apenas com a sorte para evitar tais ocorrências. 
 
Mas se por um lado a garantia de qualidade e confiabilidade de produtos é uma importante razão para 
uso dos END, igualmente importante é que isto gere lucro para os seus usuários. Isto pode ocorrer 
implícita ou explícitamente. A garantia de satisfação do comprador é uma fonte implícita de lucro, 
conseqüência direta da reputação do fabricante, que aumenta sua vantagem competitiva. 
 
Os END também podem contribuir para o aumento dos lucros na medida em que, quando aplicados na 
produção experimental de um lote de novos produtos, indicam aos projetistas necessidades de 
mudanças no projeto, através, por exemplo, da análise experimental de tensões, resultando em produtos 
mais leves, resistentes, confiáveis e de menor custo. 
 
Durante a fabricação, o controle dos processos produtivos é fundamental para a manutenção da 
qualidade e evitar que se produza sucata. Por exemplo, numa operação de tratamento térmico, todo o 
procedimento deve ser estabelecido de modo a se obter determinadas características para o produto. 
Assim, um END aplicado a algumas ou todas as peças pode determinar se a variabilidade da análise 
química do material pode resultar em dureza inadequada ou geração de trincas. Um outro teste aplicado 
às peças antes de entrarem para tratamento pode evitar que peças inadequadas sejam tratadas e 
produzam sucata. Um terceiro teste aplicado depois da operação poderá indicar se a dureza desejada 
está sendo atingida e indicar necessidade de mudanças na operação, economizando recursos para o 
produtor. 
 
A inspeção de lingotes antes do forjamento, por exemplo, pode detectar a presença de trincas ou 
inclusões que resultariam em peças defeituosas, evitando a utilização de recursos produtivos em 
material impróprio, reduzindo os custos de fabricação. 
 
Finalmente, um produto não precisa ser necessariamente “perfeito”, mas deve apresentar um nível de 
qualidade adequado para uma determinada finalidade. A manutenção do nível adequado de qualidade e 
uniformidade da produção pode ser mais facilmente atingida com o uso dos END, aumentando os lucros 
da empresa. A Figura 1 mostra a relação entre o custo de produção e o valor de venda de um produto 
em função de sua “perfeição”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1 – Relação entre os custos de produção e venda de produtos e seu nível de qualidade. 
Custo de 
produção 
Valor de 
venda 
Tolerância do 
Tolerância 
Tolerância de 
Máximo valor 
agregado 
Nível de perfeição 
Custo (valor 
monetário) 
 
4 
O custo de produção tende a se tornar mais alto à medida que as tolerâncias de fabricação diminuem, 
aproximando-se da perfeição, tendendo ao infinito. O valor de venda vai desde zero, para um produto 
imprestável, aumentando até um valor máximo, aceito pelo mercado, quando se aproxima da perfeição. 
O nível de qualidade ótimo para o fabricante é o que permite o maior lucro, isto é, a máxima diferença 
entre o valor de produção e o de venda. 
 
 
3. Elementos Básicos dos Ensaios Não Destrutivos 
 
Qualquer END envolve cinco elementos básicos: 
• uma fonte que fornece e distribui de forma adequada um meio de inspeção ao objeto em teste; 
• uma modificação do meio de inspeção ou sua distribuição no objeto ensaiado como resultado da 
presença dedescontinuidades ou de variações da propriedade de interesse; 
• um detector sensível a essas modificações ou variação de distribuição do meio de inspeção; 
• uma indicação ou registro das indicações do detector de forma útil para interpretação e, 
finalmente 
• um observador ou dispositivo capaz de interpretar as indicações ou registros em termos da 
propriedade de interesse ou da presença e localização de descontinuidades. 
 
O meio de inspeção geralmente é suprido por uma fonte externa, como uma fonte de raios-X ou uma 
bobina de magnetização. Ele pode ser distribuído sobre inteiramente sobre o volume do objeto em teste 
ou concentrado em uma região deste. Alguns meios podem penetrar no material a grandes 
profundidades enquanto outros são escolhidos de forma a não penetrar profundamente, ficando limitados 
a uma distância mínima abaixo da superfície. 
 
Como não é possível introduzir de forma não destrutiva um detector no objeto sob teste, a modificação 
ou variação de distribuição do meio de inspeção causada pela variação da propriedade medida ou pela 
presença de descontinuidades deve ser externa a esse e conseqüentemente deve ser diferente em 
peças homogêneas e não homogêneas. 
 
O detector deve ser sensível às modificações do meio de teste, sem contudo ser muito influenciado por 
outras fontes de modificações que não aquela de interesse ou, em outras palavras, deve apresentar 
baixo ruído. 
 
Se o sinal de saída do detector é muito baixo, algumas dificuldades quanto à calibração e estabilidade do 
sistema podem ser encontradas quando é necessária grande amplificação. Por isso, algumas condições 
de teste possíveis em laboratório não são adequadas para aplicação prática em campo. 
 
Uma maneira de contornar estas dificuldades é usar valores comparativos ao invés de valores absolutos 
ou medidas fundamentais. Assim, peças ou materiais padrão, cujas características ou propriedades são 
bem conhecidas podem ser usadas para comparação com objetos ou materiais com propriedades ou 
características desconhecidas. Contudo, esses padrões têm de ser escolhidos com bastante critério, de 
forma a não introduzir novas variáveis no ensaio. Se o objeto em teste e o padrão são sujeitos 
simultaneamente a idênticas condições de medição, efeitos causados pela instrumentação usada e pelas 
condições ambientais são cancelados. 
 
Por fim, as indicações ou registros produzidos num END devem ser tais que possam ser interpretados 
em termos das propriedades de interesse ou da adequação ao uso do objeto ensaiado. Em alguns casos 
isso pode ser feito automaticamente em função da amplitude ou valor do sinal de saída. Em outros, nos 
quais este sinal pode sofrer variações por múltiplas causas, é necessário um inspetor experiente para 
essa função. 
 
 
 
5 
4. Tipos de END’s 
 
Várias formas de energia e matéria podem ser usadas como meio de inspeção. Qualquer lei da natureza 
pode ser usada como base para um END se meios práticos forem desenvolvidos para propiciar cada um 
dos cinco elementos básicos dos END vistos anteriormente. De modo geral, os meios de inspeção 
envolvem: 
• movimento de matéria, 
• transmissão de energia ou 
• combinação de movimento de matéria e transmissão de energia. 
 
Matéria nos estados sólido, líquido ou gasoso é usada em muitos testes, respectivamente como 
revestimento frágil para indicação de deformações, indicação da presença de trincas superficiais ou 
detecção de vazamentos em testes de estanqueidade. 
 
Energia eletromagnética ou vibração mecânica, por exemplo, são usadas em testes para determinação 
de propriedades dos materiais como condutividade elétrica ou permeabilidade magnética ou para a 
detecção da presença de descontinuidades como trincas ou vazios. 
 
As propriedades ou características típicas medidas em ensaios não destrutivos são: 
• propriedades geométricas, tais como tamanho, forma, espessura e descontinuidades dos 
materiais como trincas, porosidades e delaminação; 
• propriedades mecânicas, como dureza, constantes elásticas e estados de tensão e deformação; 
• propriedades estruturais e composição, como tamanho de grão, inclusões, segregação e teor de 
elementos de liga; 
• propriedades de absorção, reflexão e espalhamento, como reflexão e refração de raios-x e raios-
γ, elétrons, e vibrações mecânicas sonoras ou ultrasônicas, freqüentemente relacionadas com 
densidade, espessura, espaçamento atômico, tensões, tamanho de grão e temperatura; 
• propriedades elétricas e magnéticas, como condutividade elétrica, permeabilidade magnética, 
distribuição de correntes parasitas, energia armazenada, muitas vezes relacionadas com 
composição química e teor de liga, estrutura cristalina, resultado de tratamentos térmicos, 
dureza, tensões; 
• propriedades térmicas, como condutividade e expansão térmicas. 
 
Estas propriedades podem ser medidas de forma absoluta, diferencial ou relativa, tanto em regiões 
localizadas ou de forma generalizada, usando diferentes meios de inspeção ou combinações destes. 
 
 
5. Comparação com Ensaios Destrutivos 
 
Ensaios destrutivos e não destrutivos não são concorrentes, mas complementares. Há duas maneiras 
práticas de se provar a correlação entre propriedade de interesse e propriedade medida nos testes: a 
primeira é acumular experiência em serviço, de forma adequada, com aquele material ou peça; a 
segunda é usar ambos os tipos de ensaios, destrutivos e não destrutivos, cada um sendo usado para 
verificar as suposições implícitas no outro método. Por exemplo, ensaio não destrutivo como a 
radiografia industrial pode ser usado para comparar todas as peças de um lote de produção, 
estabelecendo a similaridade entre todas as peças e algumas delas podem ser ensaiadas 
destrutivamente e as outras colocadas em serviço. Alternativamente, ensaios destrutivos podem ser 
usados para estabelecer a correlação entre a propriedade de interesse e a propriedade medida nos 
END. 
 
6 
Em relação aos ensaios destrutivos, os END apresentam vantagens e desvantagens: 
 
Ensaios Destrutivos 
Vantagens 
 
Os testes geralmente simulam uma ou mais 
condições de serviço, medindo assim 
diretamente a propriedade de interesse de 
forma confiável. 
 
Os testes usualmente medem quantitativamente 
cargas de falha, quantidade de distorção ou 
dano ou tempo de vida sob determinadas 
condições de operação; fornecendo valores 
numéricos que podem ser usados diretamente 
no projeto ou em especificações. 
 
A correlação entre as medidas feitas no ensaio 
e a propriedade de interesse é direta, de forma 
que diferentes observadores, em geral, 
concordam entre si quanto aos valores medidos 
e sua significação em termos de condições de 
uso. 
 
 
END 
Limitações 
 
Os testes envolvem medidas indiretas das 
propriedades, sem significação direta com as 
condições de serviço. 
 
 
Os testes são geralmente qualitativos e 
raramente quantitativos. Eles não medem 
diretamente cargas de falha ou vida útil, mesmo 
indiretamente. Eles podem contudo revelar 
danos ou mecanismos de falha. 
 
 
Julgamento por pessoas capacitadas ou 
experiência em serviço são geralmente 
necessárias na interpretação dos resultados. 
Quando a correlação essencial entre a 
propriedade medida e a de interesse não está 
claramente provada ou a experiência é limitada, 
pode haver discrepâncias quanto à 
interpretação dos resultados. 
 
 
Ensaios Destrutivos 
Limitações 
 
Os ensaios não são realizados nas peças que 
realmente vão ser usadas e a similaridade ou 
correlação com as que serão usadas deve ser 
provada por outros meios. 
 
Os testes só podem ser feitos em parte do lote 
de produção e podem ser pouco úteis quando a 
propriedade medida pode variar de forma 
imprevisível de uma peça para outra. 
 
Os testes não podem, em geral, ser feitos empeças finais mas apenas pedaços do material 
processado de forma similar às peças que serão 
colocadas em serviço. 
 
 
Um único ensaio pode medir apenas uma ou 
poucas propriedades críticas do material em 
condições de serviço. 
 
 
 
 
Geralmente ensaios destrutivos não são 
aplicáveis a peças durante serviço. Este precisa 
ser interrompido e as peças precisam ser 
definitivamente removidas. 
 
END 
Vantagens 
 
Os testes são feitos diretamente nas peças que 
serão colocadas em serviço, não deixando 
dúvidas quanto à sua representatividade 
 
 
Os ensaios podem ser realizados em cada peça 
produzida, se justificável economicamente e 
assim elas podem ser usadas mesmo que 
apresentem diferenças entre unidades ou lotes. 
 
Os testes podem ser feitos em toda a produção 
ou em todas as regiões críticas, de forma que a 
avaliação é feita nas peças como um todo. 
Muitas seções podem ser examinadas 
simultaneamente ou seqüencialmente. 
 
Muitos END são sensíveis a diferentes 
propriedades ou regiões do material ou peça, 
podendo ser aplicados seqüencialmente ou 
simultaneamente, sendo possível medir 
diferentes propriedades correlacionadas com o 
desempenho em serviço. 
 
Freqüentemente os END podem ser aplicados a 
peças durante o serviço, sem necessidade de 
parada e desmontagem. Não há perda da peça 
ou de suas condições de serviço. 
 
 
Ensaios Destrutivos 
Limitações 
 
Efeitos cumulativos em um certo período de 
tempo não podem ser medidos em uma única 
peça. Se várias peças de um mesmo lote são 
testadas com essa finalidade, é necessário 
verificar se essas são similares inicialmente. Se 
peças usadas são testadas após vários 
períodos de tempo de uso é necessário provar 
que cada uma delas foi submetida a condições 
de serviço equivalentes antes de validar os 
dados. 
 
O custo de reposição pode ser muito alto se as 
peças testadas tiverem alto custo de material ou 
de fabricação, o que pode ser proibitivo. 
 
 
Em geral a preparação de corpos de prova 
envolve intensa usinagem ou outros meios, às 
vezes de precisão, o que aumenta os custos ou 
limita o número de corpos de prova a serem 
ensaiados. Além disso, pode requerer muitas 
horas de trabalho de pessoal altamente 
qualificado. 
 
 
 
Os requisitos de tempo e mão de obra para 
estes ensaios são altos, o que aumenta os 
custos de produção se os ensaios são usados 
como método primário de controle de qualidade 
da produção. 
 
 
END 
Vantagens 
 
Os END permitem inspeções repetidas numa 
mesma peça ao longo do tempo, permitindo 
acompanhar a evolução do desgaste ou dano, 
facilitando estabelecer a correlação destes com 
as condições de serviço. 
 
 
 
 
 
 
Peças aceitáveis de alto custo não são perdidas 
devido ao ensaio. A repetição de testes, quando 
economicamente justificável, pode ser feita 
durante a produção ou serviço. 
 
Pouca ou nenhuma preparação é necessária 
para muitos ensaios. Alguns equipamentos de 
ensaio são portáteis. Muitos são capazes de 
testar e qualificar as peças rapidamente e, em 
algumas situações, de forma automática. Em 
muitos casos, os custos dos END são baixos, 
tanto por objeto testado quanto para toda a 
produção, em comparação com os ensaios 
destrutivos. 
 
Muitos END são rápidos e requerem menos 
mão de obra que os testes destrutivos, sendo os 
custos de inspeção de toda a produção, em 
muitos casos, equivalente ao da inspeção 
destrutiva de apenas uma parte dos lotes 
produzidos. 
 
 
6. Confiabilidade dos END 
 
Como já dito anteriormente, um END raramente mede diretamente a propriedade de interesse, mas sim 
propriedades a elas relacionadas. A confiabilidade dos END depende fortemente da correlação entre a 
propriedade de interesse e a propriedade realmente medida. A validade desta correlação não pode ser 
assumida sem uma prova convincente para cada situação específica. Esta correlação deve ser bem 
conhecida para 
• cada material específico, 
• cada método de produção ou fabricação, 
• cada método específico de teste e 
• cada aplicação ou condição de serviço do objeto inspecionado. 
 
Se qualquer um destes fatores é modificado, novas evidências da correlação entre propriedade medida e 
de interesse devem ser buscadas. 
 
Numa análise probabilística, existem quatro possíveis situações ao término de uma avaliação não 
destrutiva: 
1. a peça pode ser utilizada e o ensaio demonstrou que pode, 
2. a peça não pode ser utilizada e o ensaio demonstrou que não pode, 
3. a peça pode ser utilizada e o ensaio demonstrou que não pode e 
4. a peça não pode ser utilizada e o ensaio demonstrou que pode. 
 
 
8 
As situações 1 e 2 são desejáveis e sua ocorrência resulta em sucesso da inspeção. A situação 3 implica 
em prejuízo desnecessário e a situação 4 implica em alto risco de falha. Assim, o sucesso da inspeção 
deve ser procurado e maximizado. 
 
Em geral, as normas de inspeção impõem regras e critérios que devem ser rigorosamente seguidos para 
se obter sucesso na inspeção, tendo como base o conhecimento acumulado ao longo do tempo e os 
novos conhecimentos adquiridos sobre as correlações entre propriedade medida e propriedade de 
interesse, considerando os diferentes fatores citados anteriormente. 
 
 
7. Descontinuidades e Defeitos 
 
Como se viu anteriormente, descontinuidades são interrupções na estrutura normal de um material, em 
nível macro ou microscópico, passíveis de serem percebidas durante a realização de um END. Defeitos 
são descontinuidades inaceitáveis em uma peça para uma determinada aplicação. Assim, todo defeito é 
uma descontinuidade, mas nem toda descontinuidade é um defeito. Descontinuidades idênticas em 
peças para aplicações diferentes podem ser consideradas defeitos num caso e em outros não. Em geral, 
as normas técnicas definem que tipo e tamanho de descontinuidade é aceitável em uma peça para uma 
determinada aplicação, ou em outras palavras, definem o que é um defeito neste caso. 
 
A seguir, serão apresentados alguns tipos de descontinuidades comuns em diferentes tipos de 
processamento de materiais. 
 
 
7.1 Descontinuidades em laminados 
 
Durante a laminação de produtos planos, os grãos dos materiais metálicos são quebrados e deformados 
na direção de laminação. As inclusões e porosidades existentes também se deformam, sendo achatadas 
e aumentando sua área em todas as direções, mas principalmente na direção de laminação, gerando o 
que se chama de delaminação. No caso de barras e tubos, as inclusões se deformam e geram costuras 
(“seams”) e estrias (“stringers”) e porosidades geram porosidade tubular (“pipes”). Estas 
descontinuidades estão ilustradas na figura 2. 
 
 
 
 (a) (b) 
 
 
 (c) (d) 
 
 
Figura 2 – Descontinuidades em laminados. (a) delaminação, (b) costuras, (c) estrias e 
(d) porosidade tubular. 
 
 
9 
 
7.2 Descontinuidades em forjados 
 
Durante o forjamento, o material metálico é deformado por martelamento ou prensagem em matrizes que 
têm o formato desejado para a peça. Se as matrizes de forjamento estão desalinhadas, dobras são 
geradas, como mostrado na figura 3. 
 
 
 
Figura 3 – Geração de dobras durante o forjamento. 
 
 
As dobras também podem ser causadas por fluxo incorreto de metal durante o forjamento, como mostra 
a figura 4. 
 
Fig.4 – Dobra causada por fluxo incorreto de metal durante o forjamento. 
 
 
Se o material é forjado a uma temperatura incorreta, “burst” podem ser formados, tanto interna quanto 
externamente,como mostra a figura 5. 
 
 
Fig. 5 – “Burst” gerado durante o forjamento. 
 
 
107.3 Descontinuidades em fundidos 
 
Vários tipos de descontinuidades são formados tipicamente em peças fundidas. As gotas frias ocorrem 
durante o vazamento do metal líquido no molde e as trincas (“hot tears”) e cavidades de contração como 
mostra a figura 6. 
 
 
 
Fig. 6 – Formação de gotas frias e problemas de contração. 
 
Bolhas de gás podem ocorrer na superfície do fundido ou internamente (“blow holes”), e porosidades, 
como mostra a figura 7. 
 
 
 
Fig. 7 – Vazios e porosidades em fundidos. 
 
 
7.4 Descontinuidades em soldas 
 
As principais descontinuidades em soldas são as trincas na cratera final do cordão, trincas de restrição, 
porosidades, inclusões de escória ou de tungstênio, falta de penetração, falta de fusão lateral e 
mordeduras, mostradas na figura 8. 
 
As trincas geradas na cratera do final de cordão podem ser longitudinais, transversas ou em múltiplas 
direções, ditas em estrela. 
 
As trincas de restrição são conseqüência das tensões de origem térmica geradas durante a soldagem e 
da incapacidade do material se deformar para absorver estas tensões. Quanto maiores as restrições 
externas à solda que impedem a peça soldada de se mover durante o processo, maior a probabilidade 
de formação de trincas. 
 
Porosidades são causadas por gases que não conseguiram escapar durante a solidificação da solda. 
 
As inclusões de escória são, em geral, devidas à limpeza insuficiente entre passes ou à manipulação 
incorreta do eletrodo durante a operação. 
 
 
11 
 
 
 
 
Fig. 8 – Principais descontinuidades de soldas. 
 
 
Inclusões de tungstênio podem ocorrer em soldas feitas pelo processo TIG quando o eletrodo toca a 
peça ou correntes muito elevadas para o tipo e diâmetro do eletrodo empregado são usadas. 
 
Falta de penetração e falta de fusão lateral são causadas por falta de energia suficiente para promover a 
fusão adequada da junta. Isto pode ser conseqüência de velocidade de soldagem muito alta, corrente 
muito baixa, manipulação incorreta do eletrodo, entre outras causas. 
 
As mordeduras são causadas por velocidade de soldagem ou comprimento de arco excessivos. 
 
 
12 
Capítulo 2 
 
A Inspeção Visual 
 
1. INTRODUÇÃO 
 
O ensaio visual é o primeiro método de ensaio que deve ser utilizado para avaliar peças ou componentes 
que deverão ser submetidos a outros métodos de ensaios não destrutivos. Isso se deve ao fato de que a 
maior parte dos métodos de ensaios não destrutivos requer, em maior ou menor grau, uma boa condição 
da superfície, Com a realização do ensaio visual como primeiro método de ensaio, qualquer condição da 
superfície da peça ou componente que possa vir a inviabilizar a realização de um determinado ensaio 
posteriormente será detectada e corrigida, evitando perdas de tempo e recursos. 
 
O ensaio visual também é utilizado em uma série de outras situações, como a inspeção de tubos em 
condensadores de vapor e geradores de vapor na região próxima aos espelhos, em regiões de difícil 
acesso em componentes em geral, como motores turbinas; para localização de partes perdidas em 
centrais termoelétricas e nucleares, bem com em tubulações de diversos diâmetros, inacessíveis para o 
ensaio visual direto, neste caso o exame sendo realizado com o auxílio de dispositivos automatizados 
para transportar a instrumentação de captura de imagem até o local. Um dispositivo desse tipo pode ser 
observado na figura 1. 
 
 
 
Fig. 1 - Inspeção visual de tubulação com auxílio de dispositivo automatizado. 
 
O ensaio visual deve ser realizado de acordo com um procedimento escrito. Este procedimento deverá 
descrever qual o processo utilizado para demonstrar a sua adequação. De uma maneira geral, uma linha 
com 0,8 mm de diâmetro ou uma imperfeição artificial localizada na superfície a ser examinada ou em 
uma superfície similar à mesma pode ser considerados como um método adequado para a 
demonstração do procedimento. O dispositivo utilizado para a simulação deve ser posicionado no local 
de mais difícil avaliação dentro da região a ser examinada para validar o procedimento. 
 
 
2. Equipamentos 
 
O equipamento utilizado nas técnicas de ensaio visual direto, remoto ou translúcido deve ser capaz de 
atender às condições especificadas no procedimento para a execução do ensaio, como condições de 
visualização, aumento, identificação, realização de medições e/ou gravação de informações de acordo 
com os requerimentos da seção específica da norma ou código de fabricação. 
 
13 
3. Aplicações 
 
O ensaio visual é utilizado geralmente para determinar a condição da superfície de um componente, o 
alinhamento de superfícies deste componente que se encontram, a forma ou evidências de vazamento. 
Adicionalmente, o ensaio visual é utilizado para determinar a condição da região sub-superficial em 
materiais compostos translúcidos. 
 
 
3.1 Exame Visual Direto 
O ensaio visual direto pode ser realizado quando o acesso é suficiente para que o examinador posicione 
os olhos a até 600 mm da superfície a ser examinada e a um ângulo não menor do que 30º. Podem ser 
utilizados espelhos para aumentar o ângulo de visão e instrumentos auxiliares como lentes de aumento 
ou outros dispositivos, para melhorar a condição da inspeção. Um instrumento para esta aplicação pode 
ser observado na figura 2. A intensidade mínima de luz na superfície examinada deve ser de 1000 lux e 
as condições de realização do exame, como a fonte de luz utilizada, técnica utilizada e intensidade de 
luz medida, devem ser registrados e guardados. Para juntas soldadas existem ainda alguns gabaritos 
que são utilizados para facilitar a avaliação das características geométricas dos cordões de solda, 
conforme pode ser observado na figura 3. 
 
 
 
 
Fig. 2 - Microscópio portátil. 
 
 
 
 
 
Fig. 3 - Gabaritos para avaliação das características geométricas de cordões de solda.. 
 
 
 
14 
3.2 Exame Visual Remoto 
Nos casos em que não for possível a realização do exame visual direto, o ensaio visual é realizado de 
maneira remota. Para a sua execução podem ser utilizados dispositivos como espelhos, telescópios, 
boroscópios, fibras óticas, câmeras ou outros instrumentos adequados. Os sistemas utilizados devem 
apresentar uma resolução pelo menos equivalente à obtida através do ensaio visual direto. Alguns 
destes instrumentos podem ser observados na figura 4. 
 
 
 
 
Fig. 4 - Boroscópio e fibroscópio para a realização do ensaio visual. 
 
Estão disponíveis no mercado, também, aparelhos de videoscopia, em que a transmissão de imagem é 
feita através de um CCD. Um esquema destes equipamentos pode ser observado na figura 5. 
 
 
 
 
Fig. 5 - Endoscópio para a realização do ensaio visual. 
 
 
3.3 Avaliação 
As avaliações devem ser realizadas de acordo com os padrões de aceitação especificados no código de 
fabricação ou norma de referência. Deve-se elaborar uma lista de verificação para o planejamento do 
ensaio visual e para verificar que as observações requeridas foram realizadas. Esta lista de verificação 
deverá conter os requisitos mínimos de exame, não indicando ou limitando a quantidade máxima de 
requisitos que devem ser avaliados. 
 
 
 
15 
Capítulo 3 
 
O Ensaio Radiográfico 
 
1 INTRODUÇÃO 
 
O ensaio radiográfico baseia-se na absorção diferenciada da radiação pela matéria. Consiste, 
basicamente, em fazer passar um feixe de radiação X, radiação γ ou nêutrons através do objeto em 
estudo e registrar as características da radiação emergente do objeto utilizando um meio adequado, 
como um filme radiográfico, uma tela fluorescente ou dispositivos eletrônicos de detecção da imagem 
radiográfica. 
 
Dependendo das características do objeto em exame, comoa sua geometria e o tipo de 
descontinuidades apresentadas pelo mesmo, o feixe de radiação sofrerá uma maior ou menor absorção, 
sensibilizando em maior ou menor grau o meio utilizado para o registro da imagem radiográfica. 
 
O arranjo básico utilizado para a realização do ensaio radiográfico pode ser observado na figura 1, 
referente à radiografia de uma peça com diferentes espessuras e com dois tipos de descontinuidades 
comuns de serem encontradas em uma inspeção radiográfica. Na figura também é apresentada a 
radiografia obtida, com a aparência radiográfica das diversas regiões da peça. 
 
 
 
 
 
Fig. 1 – Arranjo básico utilizado para a realização do ensaio radiográfico. 
 
 
A porção do feixe de radiação que atravessa as regiões da peça com maior espessura sofre uma maior 
absorção, o contrário ocorrendo com as regiões com menor espessura. Na imagem radiográfica, 
portanto, as regiões mais espessas da peça apresentarão uma tonalidade mais clara do que as regiões 
menos espessas. A porção do feixe de radiação que atravessa a região onde se localiza o poro também 
sofrerá uma menor absorção. Consequentemente a imagem radiográfica resultante apresentará uma 
tonalidade escura. O mesmo ocorre com a inclusão de um material pouco absorvedor, como por 
Peça Cassete 
contendo o filme 
radiográfico 
Poro 
Inclusão de 
material pouco 
absorvedor 
Fonte de 
Radiação 
 
16 
exemplo, uma escória. Caso a inclusão seja de um material mais absorvedor do que o material base, a 
imagem radiográfica correspondente apresentará uma tonalidade tanto mais clara quanto maior for a 
absorção da radiação. Um exemplo é o de uma inclusão de tungstênio em uma junta soldada de aço 
inoxidável. Na figura 2 é apresentada a imagem radiográfica obtida para a peça da figura1, indicando o 
aspecto das regiões de maior e menor espessura, bem como o aspecto radiográfico do poro e da 
inclusão. 
 
 
 
 Fig. 2 – Imagem radiográfica da peça apresentada na Figura 1.1.1. 
 
Apesar de ser baseado em princípios simples, o ensaio radiográfico deve ser realizado de acordo com 
metodologias que assegurem uma sensibilidade adequada para a detecção das descontinuidades de 
interesse, bem como o estabelecimento de uma fácil correlação entre a localização de uma determinada 
descontinuidade na radiografia e a sua respectiva localização na peça examinada, de forma a facilitar a 
realização dos reparos, quando necessários ou possíveis. 
 
O ensaio radiográfico pode ser aplicado, a princípio, a qualquer tipo de material. A única limitação é a 
capacidade de absorção apresentada por alguns materiais, como o chumbo e o urânio, utilizados como 
blindagens, que pode inviabilizar a realização deste tipo de ensaio. 
 
 
2 PRINCÍPIOS FÍSICOS DO ENSAIO RADIOGRÁFICO 
 
2.1 Natureza da Radiação Penetrante 
2.1.1 O espectro eletromagnético 
Os raios-X e a radiação gama são radiações eletromagnéticas, como a luz visível, as microondas, as 
ondas de rádio. Elas não possuem carga ou massa, não são influenciadas por campos elétricos e 
magnéticos e se propagam em linha reta. Sua posição no espectro eletromagnético pode ser observada 
na figura 3. 
 
 
 
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 103102101100
106 105 104 103 102 101 10-1 10-2 10-610-510-410-3
Radio Infravermelho
Vi
sí
ve
l
Ultravioleta
Gama
Raios-X
Raios Cósmicos
Energia dos Fótons (MeV)
Comprimento de Onda da Radiação (nm)
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 103102101100
106 105 104 103 102 101 10-1 10-2 10-610-510-410-3
Radio Infravermelho
Vi
sí
ve
l
Ultravioleta
Gama
Raios-X
Raios Cósmicos
Energia dos Fótons (MeV)
Comprimento de Onda da Radiação (nm)
 
 
Fig. 3 – Espectro eletromagnético. 
 
Radiografia Aparência de 
um poro na 
radiografia 
Aparência de uma 
inclusão na 
radiografia 
Região mais 
espessa da peça 
Região menos 
espessa da peça 
 
17 
2.1.2 Características das radiações X e gama 
Os raios-X e a radiação gama podem ser caracterizados por sua freqüência, comprimento de onda e 
velocidade. Devido ao seu pequeno comprimento de onda, eles possuem energia suficiente para 
penetrar a matéria, sendo o grau de penetração dependente do tipo de matéria e da energia da radiação 
X ou gama. Os raios-X e a radiação gama apresentam as seguintes características: 
 
� Deslocam-se em linha reta, à velocidade da luz; 
� Não são detectados pelos sentidos humanos; 
� Suas trajetórias não são afetadas pela presença de campos elétricos e magnéticos; 
� Eles podem ser difratados de forma semelhante à luz; 
� A sua capacidade de penetrar a matéria depende de sua energia e das características de 
absorção do material através do qual se deslocam; 
� Tem a capacidade de ionizar a matéria e podem danificar ou destruir células vivas. 
 
 
2.2 Raios-X 
Raios-X são gerados quando elétrons acelerados interagem com o campo elétrico de núcleos de um 
material de número atômico elevado ou com a eletrosfera, com a conseqüente alteração de sua direção 
e redução em sua energia cinética, sendo a diferença de energia entre o início e o término da interação 
emitida sob a forma de ondas eletromagnéticas denominadas de raios-X de frenamento e raios-X 
característicos. 
 
A energia dos raios-X de frenamento depende da energia dos elétrons incidentes no material. Sendo o 
processo de interação dependente da energia, intensidade e trajetória do elétron incidente, a energia da 
radiação X produzida pode variar de zero até um valor máximo, definido pela energia cinética do elétron 
antes da interação, dando origem a um espectro contínuo de energia. Os raios-X característicos gerados 
se sobrepõem ao espectro dos raios-X contínuos. A forma final do espectro da radiação gerada pode ser 
observada na figura 4. 
 
 
 
 
Fig. 4 – Espectro típico de emissão de raios-X contínuos e característicos. 
 
 
3 Equipamentos de Raios-X 
 
Os raios-X são produzidos a partir da interação de elétrons acelerados com a matéria. Portanto, para 
que haja a produção de raios-X é necessário: 
 
 
18 
a) Uma fonte de elétrons 
b) Um meio para acelerar os elétrons 
c) Um alvo de um material adequado para receber o feixe de elétrons 
 
Os raios-X são normalmente produzidos em um dispositivo denominado ampola de raios-X. Uma ampola 
de raios-X consiste, basicamente, de um recipiente normalmente de vidro, contendo dois eletrodos em 
seu interior, um positivo e outro negativo, denominados anodo e catodo, respectivamente. O interior 
deste recipiente é mantido sob vácuo. O catodo consiste de um filamento de tungstênio, circundado por 
uma cúpula de focalização, que atua como uma lente eletrostática e controla a forma do feixe de elétrons 
emitido pelo filamento, fazendo com que ele atinja o anodo em uma pequena região denominada região 
focal. O anodo é construído de um metal com uma alta condutividade térmica, normalmente o cobre, no 
qual está inserido o alvo metálico, que receberá o impacto do feixe de elétrons. A face do alvo metálico 
não é paralela ao filamento, apresentando um ângulo com relação ao mesmo. O conjunto anodo/catodo 
pode ser observado na figura 5. 
 
 
 
Fig. 5 – Conjunto anodo/catodo de um equipamento de raios-X típico. 
 
O filamento atua como uma fonte de elétrons, o primeiro requisito para a geração de raios-X. Uma 
corrente elétrica circulando pelo mesmo provoca o seu aquecimento e, quanto maior o seu aquecimento 
maior a sua capacidade de emitir elétrons (emissão termiônica). 
 
A aceleração dos elétrons em direção ao anodo do tubo, onde se encontra o alvo metálico, é obtida pela 
aplicação de uma diferença de potencial entre o anodo e o catodo. Quanto maior a diferença de 
potencial aplicada, maior a energia cinética adquirida pelos elétrons, maior a energia dos raios-Xgerados e, consequentemente, maior o seu poder de penetração. Assim o segundo requisito para a 
geração de raios-X é atendido. 
 
A corrente que se estabelece entre o anodo e o catodo é denominada corrente do tubo. Ela é controlada, 
principalmente, pelo aquecimento do filamento. Quanto maior o aquecimento do filamento maior a 
quantidade de elétrons disponíveis para serem acelerados em direção ao anodo. 
 
A maior parte da energia dos elétrons é transformada em calor na região focal, no alvo, razão da alta 
condutividade térmica necessária aos materiais do anodo. O material do alvo, por sua vez, deve 
apresentar características especiais, como um alto ponto de fusão e um elevado número atômico. O 
material mais utilizado como alvo é o tungstênio. Ele apresenta um elevado número atômico, o que 
aumenta a quantidade de raios-X gerados durante a interação feixe de elétrons/material e um elevado 
ponto de fusão, o que possibilita suportar o aquecimento gerado durante as interações na região focal 
sem que ocorra a fusão. Desta forma, o terceiro requisito para a geração de raios-X é atendido. 
 
Os tubos de raios-X podem ser direcionais ou panorâmicos. Anodos com formatos especiais são 
projetados para a obtenção de feixes panorâmicos. Um anodo típico para gerar este tipo de feixe possui 
 
19 
a forma de um cone, de maneira que, quando o feixe de elétrons o atinge, são gerados raios-X em um 
ângulo de 360°ao redor do alvo. Este tipo de equipamento pode ser utilizado para a radiografia 
panorâmica de soldas circunferenciais em tubos e componentes cilíndricos. Um equipamento de raios-X 
típico pode ser observado na figura 6. 
 
 
 
 
Fig. 6 – Equipamento de raios-X típico, constituído de ampola, unidade de controle e dois 
transformadores de alta tensão. 
 
Outros dispositivos utilizados como fontes de raios-X são os aceleradores lineares, os Betatrons e 
geradores Van de Graff. Equipamentos de raios-X com potencial constante, com tensão máxima de 450 
kV, possibilitam a inspeção de peças de aço de até 110 mm de espessura. 
 
 
4 Fontes de Radiação Gama 
 
Fontes radioativas utilizadas em radiografia industrial são produzidas em reatores nucleares. Os 
materiais utilizados como matéria prima para a obtenção destas fontes são introduzidos em reatores 
nucleares, onde são submetidos a um alto fluxo de nêutrons, Quando os núcleos dos átomos destes 
materiais capturam um nêutron, estes átomos se tornam instáveis, tendendo a recuperar a sua 
instabilidade pela emissão de partículas e de energia sob a forma de radiação gama. A radiação gama 
emitida por estes átomos é utilizada para a obtenção de radiografias. Na Tabela 1.2.1 podem ser 
observados alguns os principais materiais utilizados como fontes radioativas em radiografia industrial e 
suas características principais. 
 
 
Tabela 1 – Principais radioisótopos utilizados em radiografia industrial. 
 
Elemento Meia-Vida Energia da Radiação γγγγ Faixa de Espessuras para Aço (mm) 
Césio 137 30,1 anos 0,66 MeV 25 a 87 
Cobalto 60 5,27 anos 1,33 e 1,17 MeV 65 a 225 
Irídio 192 74,3 dias 0,310 – 0,470 – 0,600 keV 19 a 65 
Itérbio 169 32 dias 49 a 308 keV 2,5 a 15 
Selênio 75 120 dias 279,5 keV 5 a 40 
Túlio 160 129 dias 84 e 52 keV Até 13 
 
 
20 
 
4.1 Atividade de uma Fonte Radioativa 
A atividade A de uma fonte radioativa é a taxa de mudança dos átomos instáveis da fonte em um 
determinado instante, seja: 
 
dt
dNA = , onde: 
 
A é a atividade da fonte, 
N é o número de átomos que ainda não decaiu, ou seja, de átomos radiativos, e 
t é o tempo. 
 
A atividade de uma fonte, no Sistema Internacional, é medida em unidades de transformação por 
segundo, denominada Becquerel (Bq), sendo 1 Bq = 1/s, ou seja, uma desintegração por segundo. 
 
A unidade anterior utilizada para representar a atividade é o Curie (Ci). Esta unidade ainda é encontrada 
em equipamentos antigos e é definida por; 
 
1 Ci = 3,7 . 1010 desintegrações por segundo = 3,7 . 1010 Bq 
 
 
4.2 Constante de Decaimento 
Em uma amostra de material radioativo, a constante de decaimento (λ) expressa a probabilidade de 
decaimento por átomo por segundo, sendo uma característica de cada material. 
 
 
4.3 Cálculo da Atividade 
A atividade A de um determinado material radioativo, em um determinado instante, pode ser determinada 
através da equação: 
 
teAA λ−= 0 , onde 
 
A0 – é a atividade inicial do material 
A – é a atividade em um determinado instante t 
λ – é a constante de decaimento 
t – tempo de decaimento 
 
O cálculo da atividade no instante de uso da fonte é importante para se determinar o tempo de exposição 
que deverá ser utilizado para se radiografar uma determinada peça. Para uma mesma fonte radioativa e 
um determinado objeto, quanto menor a atividade da fonte maior o tempo de exposição necessário para 
a obtenção da radiografia. Uma curva de decaimento típica pode ser observada na figura 7. 
 
 
21 
0 25 50 75 100 125 150 175 200 225 250 275
0
10
20
30
40
50
60
70
80
90
100
 
At
iv
id
ad
e 
re
m
an
es
ce
n
te
 
(%
)
Tempo decorrido (dias)
 Irídio 192 
 A = A0.e
-λλλλ t
 
 
Fig. 7 – Curva de decaimento para o Irídio 192. 
 
 
4.4 Meia-vida de um material radioativo 
Corresponde ao intervalo de tempo contado a partir de um certo instante, necessário para que metade 
dos átomos radioativos decaiam. A relação entre a meia-vida e a constante de decaimento é dada por: 
 
T1/2 = 0,693/λ, onde 
 
T1/2 – é a meia-vida do elemento e 
λ - é a constante de desintegração. 
 
 
4.5 Irradiadores 
Para serem utilizadas com segurança nos trabalhos de radiografia industrial, as fontes radioativas são 
armazenadas em equipamentos chamados irradiadores. Os irradiadores possuem uma blindagem, 
normalmente de chumbo ou de urânio exaurido, envolta por uma carcaça de um material resistente a 
impactos. Quando não estão sendo utilizadas, as fontes permanecem armazenadas nos irradiadores. 
Como cada tipo de fonte, dependendo do material (como cobalto 60 ou irídio 192, por exemplo), emite 
radiação gama com diferentes energias, eles são projetados para armazenar com segurança um 
determinado tipo de fonte, com uma determinada atividade. Assim, existem irradiadores apropriados 
para armazenar fontes de cobalto 60, outros para armazenar fontes de Irídio 192 e assim por diante, não 
devendo o irradiador destinado a um certo tipo de fonte (radioisótopo e atividade) ser utilizado para 
armazenar outros tipos de fonte. 
 
Para que a exposição seja feita de forma segura, as fontes radioativas são encapsuladas em recipientes 
cilíndricos de aço inoxidável. Na figura 8 pode ser observada uma fonte selada de Irídio 192 antes de ser 
encapsulada. São mostrados dois discos de Irídio 192, o recipiente cilíndrico no interior do qual os discos 
de material radioativo serão encapsulados e a mola que mantém estes discos fixos no interior do 
mesmo. 
 
 
 
 
 
 
 
 
 
 
Fig. 8 – Fonte selada de Irídio 192 antes de ser encapsulada. 
 
22 
Este recipiente é então acoplado à extremidade de um cabo de aço que tem, em sua outra extremidade, 
um engate para possibilitar a retirada e introdução da fonte no irradiador para a execução de 
radiografias. O conjunto montado pode ser observado isoladamente na figura 9 e montado no irradiador 
na figura 10. Para a realização da radiografia, a fonte é retirada do irradiador, como pode ser observado 
na figura 11. 
 
 
Fig. 9 – Fonte selada montada. 
 
 
 
 
Fig. 10 – Corte de um irradiador mostrando o tubo em S e a fonte encapsulada montada. 
 
 
 
 
 
Fig. 11 – Irradiador em posição para a realização de uma radiografia. 
Cabo de 
Controle 
Cabo de 
ControleDispositivo 
de Trava 
Saída da 
Fonte 
Blindagem Tubos Guia 
 
Suporte 
Fonte Selada 
Irradiador 
Cabo de 
Controle 
 
23 
5 Formação da Imagem Radiográfica 
 
A geometria utilizada para a realização do ensaio radiográfico é de extrema importância para a obtenção 
de bons resultados no ensaio radiográfico. Dependendo da posição e das dimensões da fonte de 
radiação utilizada, da distância entre a fonte de radiação e objeto radiografado e entre o objeto e o filme, 
podem ser obtidas imagens radiográficas com grandes diferenças, com conseqüência direta na 
sensibilidade radiográfica. 
 
Os princípios geométricos que regem a formação da imagem radiográfica são semelhantes aos da 
formação de sombras com a luz comum, podendo ocorrer efeitos como a ampliação e distorção da 
imagem e formação de penumbra geométrica. Considerando-se uma fonte de radiação puntiforme, 
alguns dos fatores que afetam a imagem radiográfica formada é a distância entre a fonte de radiação e o 
objeto radiografado e entre o objeto radiografado e o filme, como pode ser observado na figura 12 e 
figura 13, respectivamente. 
 
 
Fonte
Fonte
Fonte
Objeto Objeto Objeto
 
 
Fig. 12 – Efeito da variação da distância entre a fonte e o objeto. 
 
 
 
 
 
Fonte Fonte
Objeto
Objeto
Objeto
Fonte
 
 
Fig. 13 – Efeito da variação da distância entre o objeto e o filme. 
 
24 
Caso o plano do filme não seja perpendicular ao feixe de radiação incidente, pode ocorrer ainda o efeito 
de distorção da imagem formada. 
 
 
5.1 Penumbra Geométrica 
A penumbra geométrica consiste na perda de definição da imagem radiográfica devido aos fatores 
geométricos presentes no ensaio, tanto relativos ao equipamento quanto à geometria de exposição. Ela 
é provocada, basicamente, pelo fato da fonte de radiação não ser puntiforme, ou seja, a radiação se 
origina de uma área e não de um ponto. O efeito da penumbra geométrica na imagem radiográfica pode 
ser observado na figura 14. 
 
 
 
Fig. 14 – Penumbra geométrica. 
 
 
Como pode ser observado pela análise da figura 14, o valor da penumbra geométrica é função das 
dimensões da fonte (F), da distância fonte-objeto (DFO) e da espessura do objeto (e), relacionados da 
seguinte forma: 
 
DFO
eFPg
.
= ou 
gP
eFDFO .= 
 
 
Ou ainda 
 
gg P
eF
e
P
eF
eDFODFF )1(. +=+=+= , onde 
 
DFF = distância fonte-filme 
DFO = distância fonte-objeto 
e = espessura do objeto 
F = tamanho efetivo do foco emissor de radiação 
Pg = penumbra geométrica 
 
 
25 
A distância fonte-filme (DFF) mínima utilizada para o ensaio radiográfico deve ser tal que limite a 
penumbra geométrica a valores que não prejudiquem a avaliação da radiografia. O Código ASME 
(Seção V, Artigo 2) define os valores máximos permissíveis para a penumbra geométrica, em função da 
espessura do objeto radiografado, conforme indicado na Tabela 2. 
 
 
Tabela 2 – Valores máximos para a penumbra geométrica em função da espessura do objeto 
radiografado. 
 
Espessura do Objeto (mm) Valor Máximo da Penumbra Geométrica (mm) 
Abaixo de 50 0,51 
De 50 até 75 0,76 
De 75 até 100 1,02 
Maior que 100 1,78 
 
 
5.2 Lei do Inverso do Quadrado da Distância 
A intensidade da radiação emitida por uma fonte de pontual diminui, à medida que aumenta a distância 
da fonte emissora, de acordo com a lei do inverso do quadrado da distância. Como pode ser observado 
na figura 15, a uma distância (d) da fonte emissora, a radiação emitida pela mesma, colimada através de 
um diafragma, atinge uma determinada área no plano1. A uma distância duas vezes maior (2d), a 
mesma quantidade de radiação atinge uma área quatro vezes maior, no plano 2, ou seja, com a 
duplicação da distância a intensidade se tornou quatro vezes menor. 
 
 
 
 
Fig. 15 – Representação da Lei do Inverso do Quadrado da Distância. 
 
26 
Chamando-se a distância d na figura 15 de d1 e a distância 2d de d2, a Lei do Inverso do Quadrado da 
Distância pode ser escrita como: 
 
 
2
1
2
2
2
1
d
d
I
I
= , onde 
 
I1 – é intensidade da radiação no plano 1, a uma distância d1 da fonte emissora 
I2 – é intensidade da radiação no plano 2, a uma distância d2 da fonte emissora 
d1 – é distância da fonte emissora ao plano 1 
d2 – é distância da fonte emissora ao plano 2. 
 
 
Em radiografia industrial, a exposição radiográfica é definida como o produto da corrente do tubo pelo 
tempo de exposição (quando se utilizam equipamentos de raios-X) ou como o produto da atividade da 
fonte pelo tempo de exposição (quando se utilizam fontes de radiação gama), ou seja: 
 
tiEr .= , onde 
 
Er = exposição radiográfica 
i = corrente no tubo em mA - miliamperes 
t = tempo de exposição em minutos ou segundos 
 
ou 
 
tAEr .= , onde 
 
Er = exposição radiográfica 
A = atividade da fonte radioativa em GBq 
t = tempo de exposição em horas 
 
 
A intensidade de radiação que atinge o objeto durante a realização de uma radiografia é proporcional ao 
valor da exposição radiográfica utilizada. Uma radiografia executada com uma determinada distância 
fonte filme apresentará uma determinada densidade ótica. Caso a distância fonte-filme seja duplicada, a 
intensidade de radiação que atinge o filme será quatro vezes menor do que na condição anterior. Para 
que a radiografia obtida apresente o mesmo valor de densidade ótica da radiografia original, o valor da 
exposição radiográfica deverá ser quatro vezes maior, ou seja, a corrente do tubo ou o tempo de 
exposição deverão ser quatro vezes maior (quando se utilizam equipamentos de raios-X ) ou o tempo de 
exposição deverá ser quatro vezes maior (quando se utilizam fontes de radiação gama). 
 
Este fato deve ser considerado quando se aumentar ou diminuir, por um motivo qualquer, a distância 
fonte-filme para a realização de uma determinada radiografia, de forma a não resultar em tempos 
excessivos de exposição. 
 
 
6 Diagramas de Exposição 
 
Os diagramas de exposição possibilitam a determinação dos parâmetros de teste mais adequados para 
a execução da radiografia de uma determinada peça, de um determinado material. Eles são construídos 
para um determinado material, para um determinado tipo de filme, para um determinado conjunto de 
telas intensificadoras, para condições de processamento padronizadas, para uma distância fonte-filme 
fixa e para uma determinada densidade ótica. Embora sejam fornecidos quando se adquire um 
equipamento de raios-X, normalmente o laboratório radiográfico deve elaborar os diagramas para cada 
 
27 
um dos equipamentos de raios-X com os quais trabalha. Um diagrama de exposição típico para 
equipamentos de raios-X pode ser observado na figura 16. 
 
Para que o diagrama contendo as curvas de exposição possa ser utilizado com eficiência, as condições 
de exposição para a realização de uma radiografia devem ser as mesmas utilizadas para a elaboração 
das curvas, sendo possível, entretanto, corrigir o valor das exposições para diferentes tipos de filmes ou 
diferentes distâncias fonte-filme. 
 
5 10 15 20 25 30 35 40
1
10
100
100 kV
220 kV
260 kV
240 kV
200 kV140 kV 180 kV160 kV120 kV
 
 
Ex
po
siç
ão
 
(m
A
.
m
in
)
Espessura da Peça (mm)
 
 
Fig. 16 – Diagrama típico contendo curvas de exposição para um equipamento de raios-X para tensões 
entre 100 kV e 260 kV e as seguintes condições: aço, filme Classe 2, tela dianteira de chumbo com 
0,125 mm de espessura, tela traseira de chumbo com 0,250 mm de espessura, revelação 5 minutos a 
20°C, distância fonte-filme de 700 mm, densidade ótica igual a 2,0. 
 
 
De posse do diagrama, a radiografia de uma peça de aço com 25 mm de espessura, utilizando-se um 
filme classe2, telas dianteiras e traseiras com espessuras de 0,125 e 0, 250 mm respectivamente, uma 
distância fonte-filme de 700 mm, utilizando-se uma tensão de 180 kV, deverá ser feita com uma 
exposição radiográfica de 50 mA.min, para que a radiografia obtida tenha uma densidade ótica igual a 
2,0. Isto significa que, se utilizarmos uma corrente do tubo igual a 5 mA, o tempo de exposição 
necessário será de 10 minutos. Caso a corrente seja de 10 mA, o tempo de exposição necessário será 
de 5 minutos. 
 
 
7 O Filme Radiográfico 
 
Os filmes de raios-X consistem de uma base de poliéster, revestida em ambos os lados por um substrato 
sobre o qual é depositada uma camada de emulsão, composta principalmente de cristais de haletos de 
prata, como o brometo de prata ou o cloreto de prata. O substrato tem como finalidade assegurar a 
 
28 
aderência da emulsão à base de poliéster. Sobre a emulsão é depositada uma camada de gelatina 
endurecida, que tem como finalidade proteger a mesma. Ao todo, portanto, o filme radiográfico é 
formado por sete camadas, como pode ser observado na figura 17. 
 
 
 
Fig. 17 – Constituição de um filme radiográfico. 
 
Na maior parte dos filmes radiográficos, a emulsão é depositada em ambos os lados da base, dobrando, 
portanto, a quantidade de haletos de prata que pode ser sensibilizada, tendo como conseqüência um 
aumento da velocidade do filme. Estas camadas são finas o bastante para serem processadas em um 
tempo razoável. Em alguns filmes especiais, a emulsão é depositada em apenas um lado da base, o que 
torna o filme mais lento, aumentando, entretanto, a definição da imagem radiográfica. 
 
Quando a radiação X, gama ou a luz atingem a emulsão, as regiões do filme que recebem uma 
quantidade suficiente de radiação sofrem uma mudança. Alguns íons de Br- são liberados e capturados 
por íons de Ag+, Esta mudança é tão pequena que não é perceptível sem um processamento posterior 
do filme e é chamada de imagem latente. Os grãos expostos tornam-se mais sensíveis ao processo de 
redução quando em contato com uma solução química chamada revelador e a reação que ocorre 
durante o processo de revelação resulta na formação de prata metálica, de coloração preta. Esta prata, 
em suspensão na gelatina em ambos os lados da base, dá origem à imagem radiográfica. A quantidade 
de partículas de prata metálica produzida é maior nas regiões da emulsão que receberam maiores 
quantidades de radiação e menor naquelas que receberam uma quantidade menor. A distribuição da 
prata metálica no filme, em maior ou menor quantidade, dá origem à imagem radiográfica. 
 
7.1 Processamento 
O processamento do filme radiográfico compreende um conjunto de operações em que o filme é 
colocado em contato com uma série de substâncias químicas. O processamento envolve as seguintes 
etapas: 
 
Revelação - é o tratamento pelo qual a imagem latente é convertida em uma imagem visível, pela 
redução seletiva dos cristais de haleto de prata da emulsão em prata metálica. O tempo de revelação 
deve ser cuidadosamente controlado, de forma permitir a conversão dos cristais expostos em prata 
metálica enquanto mantém os cristais não expostos como haletos de prata. O tempo de revelação é 
função da temperatura do revelador e, normalmente, são fornecidos pelos fabricantes de filmes e 
soluções de processamento tabelas que indicam o tempo de exposição adequado para uma determinada 
faixa de temperaturas. 
 
Banho de parada - o banho de parada tem como objetivo interromper a ação do revelador, retirando o 
mesmo da superfície do filme. Pode ser utilizada a água comum, corrente, devendo todo o excesso de 
revelador ser retirado antes de o filme ser colocado no banho fixador. 
 
Fixação - é o tratamento pelo qual os cristais de haleto de prata não expostos são removidos do filme. O 
fixador remove os cristais de haleto de prata, não reagindo com a prata metálica formada. 
 
29 
Lavagem final - a lavagem final tem como objetivo eliminar resíduos das soluções de processamento da 
superfície do filme, de forma a evitar a sua degradação e possibilitar o seu posterior arquivamento pelo 
tempo necessário. 
 
Secagem - realizada em secadoras apropriadas e executada de forma a não produzir manchas que 
possam prejudicar a análise posterior. 
 
Após estas operações, a radiografia é guardada em um envelope apropriado e está pronta para ser 
analisada. 
 
O processamento pode ser realizado manualmente ou em processadora automática. Em qualquer uma 
das situações, o processo deve ser realizado sob condições controladas e padronizadas. 
 
7.2 Densidade ótica 
Durante a avaliação de uma radiografia em um negatoscópio, pode-se observar que as imagens 
presentes na mesma são formadas por regiões com diferentes graus de escurecimento, resultantes da 
moior ou menor sensibilização do filme durante a exposição. O grau de escurecimento apresentado pela 
radiografia é denominado densidade ótica ou densidade fotográfica, definida por: 
 
t
i
I
ID log= , sendo 
D = densidade ótica da radiografia em uma determinada região 
Ii = intensidade de luz incidente na radiografia 
It = intensidade de luz transmitida pela radiografia. 
 
A densidade ótica de uma radiografia ou de um filme fotográfico exposto e processado é determinada 
utilizando-se um equipamento denominado densitômetro. Ele possui uma fonte emissora de luz e um 
sensor fotoelétrico. Quando a radiografia é posicionada entre a fonte emissora de luz e o sensor, a 
densidade ótica da mesma pode ser determinada pelo equipamento. 
 
Como exemplo, um valor de densidade ótica em uma determinada região de uma radiografia, igual a 1, 
significa que naquela região, somente 10% da luz incidente foi transmitida. Para uma densidade ótica 
igual a 2 este valor cai para 1%. Em geral, os negatoscópios disponíveis para a avaliação de radiografias 
industriais possibilitam a avaliação de radiografias com densidades óticas até 4. 
 
 
7.3 Curvas Características 
Os diferentes tipos de filmes radiográficos comportam-se de forma diferente quando expostos e 
processados nas mesmas condições. Para caracterizar o comportamento de um determinado filme, são 
elaboradas curvas que associam a exposição à qual um determinado filme foi submetido e a densidade 
ótica correspondente. Estas curvas são chamadas curvas características. A forma típica de uma curva 
característica pode ser observada na figura 18. Em geral, no eixo horizontal são apresentados os valores 
das exposições relativas e no eixo vertical os valores das densidades óticas correspondentes, para um 
filme em particular ou para um conjunto de diferentes filmes. 
 
As curvas apresentadas na figura18 se referem a dois filmes hipotéticos A e B. No eixo horizontal estão 
representados os valores referentes ao logaritmo das exposições relativas e no eixo vertical os valores 
das densidades óticas correspondentes. As curvas características possibilitam o cálculo da exposição 
necessária para produzir uma radiografia com uma determinada densidade ótica para um filme 
específico. Podem também ser utilizadas para o cálculo da exposição necessária para produzir 
radiografias com a mesma densidade ótica em filmes diferentes. 
 
 
30 
1,0 1,5 2,0 2,5 3,0
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
Filme BFilme A 
De
n
si
da
de
 
Ót
ic
a
log exposição relativa
 
 
Fig. 18 – Curvas características de dois filmes hipotéticos A e B. 
 
 
As curvas características são fornecidas preparadas pelos fabricantes de filmes. Dois exemplos de sua 
utilização são apresentados a seguir. 
 
a) Uma radiografia de uma peça de aço, realizada, com 150 Kv, 5 mA e 1 minuto utilizando-se o Filme 
A, apresentou uma densidade ótica, na região de interesse, igual a 1,5. Deve-se elevar este valor 
para 2,0. Qual deve ser o novo valor da exposiçãopara se obter o novo valor de densidade? 
 
Utilizando-se como referência a FIG. 3.6, curva referente ao filme A, verifica-se que para um 
valor de densidade ótica igual a 1,5 o logaritmo da exposição relativa é igual a 2. Para uma 
densidade ótica igual a 2,0 o logaritmo da exposição relativa é igual a 2,12, ou seja: 
 
Filme A 
 
Para D = 1,5 → log da exposição relativa = 2 
Para D = 2,0 → log da exposição relativa = 2,12 
 
A diferença entre os logaritmos das exposições relativas, é igual a: 
 
∆ log Er = (2,12 - 2) = 0,12 ou seja Er = 10 0,12 ∴ Er = 1,3 
 
 
31 
Isto significa que a relação entre as duas exposições, para as densidades óticas iguais a 2 e 1,5, é igual 
a 1,3. Dessa forma, para que a densidade ótica da radiografia possa ser elevada de 1,5 para 2 é 
necessário que o valor da exposição inicial seja 1,3 vezes maior, ou seja, igual a 6,5 mA.min. 
 
b) Uma radiografia de uma peça de aço, realizada, com 150 Kv, 1 mA e 6,5 minutos utilizando-se o 
Filme A, apresentou uma densidade ótica, na região de interesse, igual a 2,0. Deve-se realizar a 
radiografia da mesma peça utilizando-se o filme B, devendo-se obter o mesmo valor de densidade 
ótica. Qual deve ser o novo valor da exposição? 
 
Utilizando-se como referência a FIG. 3.6, curva referente ao filme A, verifica-se que para um 
valor de densidade ótica igual a 2, o logaritmo da exposição relativa é igual a 2,12. Para o filme 
B e um valor de densidade ótica igual a 2, o logaritmo da exposição relativa é igual a 2,67, ou 
seja: 
 
Filme A - para D = 2,0 → log da exposição relativa = 2,12 
Filme B - para D = 2,0 → log da exposição relativa = 2,67 
 
A diferença entre os logaritmos das exposições relativas, é igual a: 
 
∆ log Er = (2,67 - 2,12) = 0,55 ou seja Er = 10 0,55 ∴ Er = 3,5 
 
Isto significa que a relação entre as duas exposições, para as densidades óticas iguais a 2 em ambos os 
filmes, é igual a 3,5, Dessa forma, para que a densidade ótica da radiografia possa ser mantida ao se 
mudar do filme A para o filme B, é necessário que o valor da exposição inicial seja 3,5 vezes maior, ou 
seja, aproximadamente 23 mA.min. 
 
 
8 Indicadores da Qualidade da Imagem 
 
Os Indicadores da Qualidade da Imagem (IQI) ou penetrâmetros são dispositivos utilizados para a 
avaliação da qualidade da imagem radiográfica. Eles são fabricados a partir de materiais idênticos ou 
radiograficamente similares aos materiais a serem radiografados e são posicionados, em geral, sobre a 
peça em exame, voltados para a fonte de radiação, sendo sua imagem formada na radiografia, junto com 
a imagem da peça. Existem indicadores com diferentes configurações geométricas, dependendo de sua 
origem. Entretanto, o objetivo da sua utilização é o mesmo: possibilitar a avaliação da qualidade da 
imagem radiográfica obtida e, consequentemente, da sensibilidade do ensaio para a detecção de 
descontinuidades. Dentre os indicadores mais utilizados podem-se citar os indicadores ASTM (tipo placa 
ou tipo fio) e os indicadores DIN (tipo fio), apresentados a seguir. 
 
 
8.1 Indicadores da Qualidade da Imagem ASTM 
8.1.1 Indicador ASTM Tipo Placa 
Estes indicadores consistem de uma lâmina de um material radiograficamente similar ao material a ser 
radiografado, com uma espessura definida T, contendo três furos. Os furos possuem diâmetros iguais a 
1T, 2T e 4T e são identificados como furos 1T, 2T e 4T, respectivamente. Em cada um destes 
indicadores existe uma identificação, feita com letras de chumbo, que indica a sua espessura em 
milésimos de polegada. O grupo de materiais ao qual pertence o IQI, ou seja, para o qual ele pode ser 
utilizado, é indicado através de entalhes existentes no corpo do IQI, sendo previstos indicadores para 
oito grupos de materiais. Um IQI tipo placa, para aço carbono e aço inoxidável, com uma espessura T de 
vinte milésimos de polegada, pode ser observado na figura 19. 
 
32 
 
 
Fig. 19 – Indicador da Qualidade da Imagem ASTM tipo placa. 
 
 
Para a avaliação da qualidade da imagem são estabelecidos diferentes níveis de qualidade da imagem. 
Estes níveis são designados por dois números. O primeiro indica a espessura percentual do IQI com 
relação à espessura do material radiografado e o segundo o diâmetro do fio que deverá ser observado 
na radiografia. Os níveis típicos da qualidade da imagem podem ser observados na Tabela 3. 
 
 
Tabela 3 – Níveis típicos da qualidade da imagem ASTM. 
 
Níveis de Qualidade da Imagem Espessura do IQI Furo perceptível na radiografia 
Níveis de Qualidade de Imagem Padrões 
2 – 1T 1T 
2 – 2T 2T 
2 – 4T 
 
2% da espessura do objeto 
4T 
Níveis de Qualidade de Imagem Especiais 
1 – 1T 1T 
1 – 2T 
1% da espessura do objeto 
2T 
4 – 2T 4% da espessura do objeto 2T 
 
 
Como exemplo, quando um nível de qualidade 2 – 2T é especificado para o ensaio, isto significa que o 
furo com diâmetro 2T, em um IQI com espessura equivalente a 2% da espessura do objeto examinado, 
deve ser perceptível na radiografia. 
 
Para a realização da radiografia de juntas soldadas, este tipo de IQI deve ser posicionado sobre a peça, 
ao lado do cordão de solda, não devendo ser posicionado sobre o cordão. Neste caso, a espessura total 
do material radiografado corresponde à espessura nominal da peça mais a sobre espessura do cordão 
de solda de ambos os lados. Para que o IQI possa ser utilizado para a avaliação da sensibilidade 
radiográfica, ele deverá ser posicionado sobre um calço de material radiograficamente similar ao metal 
base, com espessura igual à sobre espessura do cordão de solda de ambos os lados. 
 
 
8.1.2 Indicador ASTM Tipo Fio 
Consiste de um conjunto de fios com diferentes diâmetros, de um material radiograficamente similar ao 
material a ser radiografado, inseridos em um invólucro de plástico transparente. Os fios deste tipo de IQI 
são numerados de 1 a 21, em ordem crescente de seus diâmetros. Eles são montados em grupos de 6, 
formando 4 conjuntos distintos, denominados A, B, C e D, respectivamente. Os conjuntos A, B, C e D 
compreendem os fios de número 1 a 6; 6 a 11; 11 a 16 e 16 a 21, respectivamente. Como no caso do IQI 
Furo 4T Furo 1T Furo 2T 
Número do IQI – espessura T 
em milésimos de polegada 
 
33 
tipo placa, existem indicadores para oito grupos de materiais, indicados pelos números 1 a 3 e 01 a 05. 
Um IQI tipo fio, para aço carbono e aço inoxidável, pode ser observado na figura 20. Nele pode-se 
observar o número de identificação da classe de materiais a que o IQI se aplica (1), a norma (ASTM), o 
conjunto de fios (A). O número 6 representa o último fio do conjunto. 
 
 
 
 
Fig. 20 – Indicador da Qualidade da Imagem ASTM tipo fio. 
 
 
8.1.3 Seleção 
A seleção dos Indicadores da Qualidade da Imagem ASTM deve ser feita em função da posição do IQI 
em relação a fonte de radiação e da espessura de material radiografada. Deve-se utilizar como 
referência a Tabela 4. 
 
 
Tabela 4 – Seleção de indicadores da Qualidade da Imagem tipo placa e tipo fio. 
Indicador da Qualidade da Imagem ASTM 
Lado da Fonte Lado do Filme 
Espessura Nominal de uma Parede do Material 
Tipo Tipo 
Polegadas Milímetros Placa Fio Placa Fio 
Até 0,25 inclusive Até 6,4 inclusive 12 5 10 4 
Acima de 0,25 até 0,375 Acima de 6,4 até 9,5 15 6 12 5 
Acima de 0,375 até 0,50 Acima de 9,5 até 12,7 17 7 15 6 
Acima de 0,50 até 0,75 Acima de 12,7 até 19,0 20 8 17 7 
Acima de 0,75 até 1,00 Acima de 19,0 até 25,4 25 9 20 8 
Acima de 1,00 até 1,50 Acima de 25,4 até 38,1 30 10 25 9 
Acima de 1,50 até 2,00 Acima de 38,1 até 50,8 35 11 30 10 
Acima de 2,00até 2,50 Acima de 50,8 até 63,5 40 12 35 11 
Acima de 2,50 até 4,00 Acima de 63,5 até 101,6 50 13 40 12 
Acima de 4,00 até 6,00 Acima de 101,6 até152,4 60 14 50 13 
 
34 
Tabela 4 – Seleção de indicadores da Qualidade da Imagem tipo placa e tipo fio (continuação). 
Indicador da Qualidade da Imagem ASTM 
Lado da Fonte Lado do Filme 
Espessura Nominal de uma Parede do Material 
Tipo Tipo 
Polegadas Milímetros Placa Fio Placa Fio 
Acima de 6,00 até 8,00 Acima de 152,4 até 203,2 80 16 60 14 
Acima de 8,00 até 10,00 Acima de 203,2 até 254,0 100 17 80 16 
Acima de 10,00 até 12,00 Acima de 254,0 até 304,8 120 18 100 17 
Acima de 12,00 até 16,00 Acima de 304,8 até 406,4 160 20 120 18 
Acima de 16,00 até 20,00 Acima de 406,4 até 508,0 200 21 160 20 
 
 
 
8.2 Indicadores da Qualidade da Imagem DIN 
Os indicadores da qualidade da imagem DIN consistem de um conjunto de fios com diferentes 
diâmetros, de um material radiograficamente similar ao material a ser radiografado, inseridos em um 
invólucro de plástico transparente. Os fios deste tipo de IQI são numerados de 1 a 16, em ordem 
decrescente de seus diâmetros. Eles são montados em grupos de 7, formando 3 conjuntos distintos. O 
primeiro conjunto compreende os fios de 1 a 7, o segundo os fios de 6 a 12 e o terceiro os fios de 10 a 
16, identificados pela designação 1 ISO 7, 6 ISO 12 e 10 ISO 16, respectivamente. Como no caso dos 
indicadores ASTM, existem indicadores para diferentes tipos de materiais. Um IQI DIN, para aço carbono 
e aço inoxidável, pode ser observado na figura 21. Nele pode-se observar a identificação da norma de 
referência (DIN), o número 62 (indicativo do ano em que este tipo de IQI passou a ser utilizado) e o 
símbolo FE, indicando o grupo de materiais para o qual o IQI pode ser utilizado. Na parte inferior, a 
designação 10 ISO 16 indica que o conjunto compreende os fios de números 10 a 16. 
 
 
 
 
 
Fig. 21 – Indicador da Qualidade da Imagem DIN. 
 
 
 
35 
8.2.1 Seleção 
A seleção dos Indicadores da Qualidade da Imagem DIN deve ser feita de acordo com a Tabela 5, em 
função da espessura do material a ser radiografada e da sensibilidade do ensaio. 
 
 
Tabela 5 – Seleção de indicadores da Qualidade da Imagem DIN. 
 
Índice da Qualidade da Imagem (BZ) 
Categoria de Qualidade da Imagem 
I II 
Espessura do Material 
 em Exame (mm) 
Índice da Qualidade 
 da Imagem (BZ) 
Espessura do Material 
 em Exame (mm) 
Índice da Qualidade 
 da Imagem (BZ) 
 Até 6, inclusive 16 Até 6, inclusive 14 
 Acima de 6 até 8 15 Acima de 6 até 8 13 
 Acima de 8 até 10 14 Acima de 8 até 10 12 
 Acima de 10 até 16 13 Acima de 10 até 16 11 
 Acima de 16 até 25 12 Acima de 16 até 25 10 
 Acima de 25 até 32 11 Acima de 25 até 32 9 
 Acima de 32 até 40 10 Acima de 32 até 40 8 
 Acima de 40 até 50 9 Acima de 40 até 60 7 
 Acima de 50 até 80 8 Acima de 60 até 80 6 
 Acima de 80 até 150 7 Acima de 80 até 150 5 
 Acima de 150 até 200 6 Acima de 150 até 170 4 
 Acima de 170 até 180 3 
 Acima de 180 até 190 2 
 Acima de 190 até 200 1 
 
 
9 Técnicas Radiográficas 
 
9.1 Técnicas de Redução do Espalhamento 
Quando um feixe de radiação passa por um determinado objeto, parte dessa radiação é absorvida, parte 
sofre um espalhamento e parte continua a sua trajetória sem alteração de direção. A radiação 
espalhada, devido aos seus maiores comprimentos de onda, é menos penetrante que a radiação 
primária. Ela produz uma redução no contraste das imagens registradas no filme, diminuindo a qualidade 
da imagem radiográfica, devendo, portanto, ser reduzida. 
 
Após passar pelo material e pelo cassete onde se encontra armazenado o filme, o feixe de radiação 
continua sua trajetória. Qualquer objeto no caminho do feixe, como outros objetos, paredes, piso, pode 
promover o espalhamento da radiação, que pode, inclusive, retornar ao filme, atingindo a parte traseira 
do cassete. Esta radiação é denominada radiação retro-espalhada e produz uma redução apreciável na 
imagem radiográfica original. 
 
 
36 
Assim, a radiação espalhada pode atingir o filme radiográfico de duas formas. A partir do objeto sendo 
radiografado e a partir de objetos próximos ao filme. A redução da radiação espalhada pode ser obtida 
de diversas formas, como indicado a seguir. 
 
a) A utilização de máscaras de chumbo acompanhando os contornos da peça - impede que a 
radiação espalhada atinja a parte superior do cassete. 
b) A utilização de diafragmas ou colimadores para restringir a abertura do feixe de radiação à área 
de interesse na peça. 
c) A utilização de filtros entre a fonte de radiação e o objeto radiografado, que reduz a quantidade 
de radiação com maiores comprimentos de onda (menor energia), mais suscetíveis de sofrerem 
espalhamento. 
d) A utilização de telas de chumbo na parte traseira do cassete, que blindam a radiação retro-
espalhada, impedindo que a mesma atinja o filme. 
 
 
9.2 Técnicas de Exposição 
O ensaio radiográfico deve ser planejado de forma a permitir a obtenção de uma imagem radiográfica de 
qualidade adequada, que possibilite uma rápida associação entre a posição de uma descontinuidade 
detectada na radiografia e a posição da mesma no objeto em exame e que assegure o exame total das 
áreas de interesse. A seguir são apresentadas algumas técnicas de exposição normalmente utilizadas 
para a execução do ensaio radiográfico em soldas de tubulações (Código ASME, Seção V, Artigo 2) e 
peças em geral. 
 
 
9.2.1 Técnica Radiográfica de Parede Simples – Vista Simples 
A técnica radiográfica de parede simples vista simples consiste em se posicionar a fonte de tal forma que 
o feixe de radiação atravesse apenas uma parede do material sob exame (parede simples) e somente a 
imagem da região de interesse junto ao filme seja avaliada (vista simples). Sempre que possível, esta 
deve ser a técnica utilizada para a realização do ensaio. Algumas variações na aplicação desta técnica 
podem ser observadas nas figuras 22 e 23, para tubos soldados e figura 24, esta última para 
componentes planos. Uma situação especial, que possibilita a realização da radiografia de toda a região 
de interesse pode ser observada na figura 25, onde a distância fonte-filme é igual ao raio do componente 
e na figura 26, onde um conjunto de peças é posicionado eqüidistante da fonte de radiação e a 
radiografia de todas as peças é realizada ao mesmo tempo. 
 
 
 
 
 
 
 
 
Fig. 22 – Técnica radiográfica de parede simples - vista simples com o filme posicionado no interior do 
componente cilíndrico e a fonte posicionada externamente . 
 
 
37 
 
 
Fig. 23 – Técnica radiográfica de parede simples - vista simples com a fonte posicionada no interior do 
componente cilíndrico e o filme posicionado externamente, sendo a distância fonte-filme maior que o raio 
do componente. 
 
 
 
 
 
 
 
 
Fig. 24 – Técnica radiográfica de parede simples - vista simples para componentes planos. 
 
 
 
 
 
 
 
 
 
Fig. 25 – Técnica radiográfica de parede simples - vista simples com exposição panorâmica: a fonte 
posicionada no interior do componente cilíndrico e os filmes posicionados externamente, sendo a 
distância fonte-filme igual ao raio do componente. 
 
 
38 
 
 
Fig. 26 – Técnica radiográfica de parede simples - vista simples com exposição panorâmica: a fonte 
posicionada no interior do componente cilíndrico e os filmes posicionados externamente, sendo a 
distância fonte-filme igual ao raio do componente. 
 
 
9.2.2 Técnica Radiográfica de Parede Dupla – Vista Simples 
A técnica radiográfica de parede simples vista simples consiste em se posicionar a fonte de tal forma que 
o feixe de radiação atravesse duas paredes do material sob exame (parede dupla) e somente a imagem 
da região de interesse junto ao filme seja avaliada (vista simples). Esta técnica é utilizada quando não

Outros materiais