Buscar

Elementos De Um Sistema Mecânico - Vibrações

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Elementos de um Sistema Mecânico 1
1 INTRODUÇÃO
Um sistema mecânico é composto por massas, molas e amortecedores, conectados entre si, ou a
uma estrutura fixa. O sistema mecânico mais simples, com apenas um grau de liberdade,
também denominado sistema padrão, é composto de apenas uma massa, uma mola e um
amortecedor. Tal sistema servirá de modelo, daqui por diante, para a dedução da equação
diferencial do movimento de sistemas com apenas um grau de liberdade. A seguir, vamos
estudar cada um dos componentes básicos de um sistema mecânico.
2 MOLAS
2.1 Definição
Entende-se por mola uma peça que possui flexibilidade elástica relativamente alta, isto é, que
apresenta grandes deformações quando solicitada. A rigor, no entanto, todas as peças possuem
alguma flexibilidade, já que não existe o corpo totalmente rígido. A mola opõe-se à força que a
ela está aplicada, armazenando energia potencial elástica.
2.2 Classificação
As molas podem ser classificadas, segundo o comportamento apresentado sob carregamento, em
lineares e não-lineares.
Uma mola é dita linear quando as deformações que apresenta são diretamente proporcionais às
cargas a que ela é submetida, ou seja, quando ela obedece à Lei de Hooke (o que equivale a
dizer que ela obedece ao Princípio da Superposição dos Efeitos, conforme já foi visto). É não-
linear em caso contrário. Se forem aplicadas cargas (excitações) conhecidas a uma mola e
medidas as deformações (respostas) correspondentes, o gráfico obtido ilustra bem o conceito
de linearidade, conforme mostra a fig. 1, representativa de como varia a força F (ou o torque T,
no caso de sistemas torcionais) em função do deslocamento translacional x (ou deslocamento
torcional θ).
 
 04 Elementos de um
 Sistema Mecânico
Fig. 1 Tipos de molas
Elementos de um Sistema Mecânico 2
Na fig. 1, a mola linear é representada por uma reta, ao passo que as molas não-lineares têm
dois tipos de representação. Algumas molas não-lineares "endurecem" à medida que aumenta a
solicitação, ou seja, é cada mais difícil deformá-las: são as chamadas molas duras, cuja
representação gráfica é uma curva côncava para cima. As molas não-lineares de comportamento
oposto denominam-se molas macias e sua representação gráfica é contrária à das molas duras.
Existe uma pequena faixa na qual as molas não-lineares apresentam comportamento quase igual
ao das molas lineares. É a chamada faixa linear, que ocorre em torno de um certo ponto de
equilíbrio, denominado ponto de operação. Por esse motivo, o estudo das Vibrações Lineares
assume um papel de destaque.
2.3 Rigidez. Flexibilidade
A inclinação da curva (ver fig. 1) F = F(x) ou T = T(θ) em um determinado ponto recebe o nome
de rigidez da mola:
 α=θ=α== tg d 
dTk ou tg
dx
dFk (1)
onde α é o ângulo que a tangente geométrica no ponto faz com o eixo das abcissas.
No caso particular de mola linear, a inclinação α é constante e é usual chamar a rigidez, então,
de constante da mola:
 k = F/x ou k= T/θ (2)
Quanto maior o k da mola, maior é o esforço necessário para se obter o mesmo deslocamento,
ou seja, mais rígida é a mola. A unidade SI de rigidez é [N/m], se a mola for longitudinal, ou
[N.m/rad], se a mola for torcional.
Neste trabalho serão consideradas apenas as molas lineares.
2.4 Cálculo da Rigidez
O cálculo da rigidez de uma mola pode ser feito experimentalmente ou teoricamente.
Experimentalmente, podemos aplicar sobre a mola cargas conhecidas e medir os deslocamentos
correspondentes. A seguir, aplicamos a equação (2) para cada par de carga e deslocamento e,
após, calculamos um valor médio, representativo da faixa considerada. Teoricamente, podemos
calcular a rigidez através da aplicação de conhecimentos de Resistência dos Materiais.
Exemplo 1: Barra de tração
Seja, por exemplo, uma barra submetida à tração F, apresentando uma deformação x, conforme
fig. 2. A mola tem seção constante A, comprimento l e módulo de elasticidade longitudinal
Fig. 2 Barra de tração
Elementos de um Sistema Mecânico 3
(Módulo de Young) E. Calcular a sua rigidez.
Solução:
Ao ser aplicada a força F, a barra sofre um alongamento x, dado por:
 
EA
Flx = 
Substituindo x na eq. (2):
 
l
EAk =
Vemos, portanto, que a rigidez não depende da carga a que é submetida, mas do material (E) e
das dimensões (l, A).
Exemplo 2: Barra de torção
Deduzir uma expressão para a rigidez de uma mola do tipo barra de torção de comprimento l,
momento de inércia polar constante Ip, módulo de elasticidade transversal G, submetida a
um torque T.
Solução:
O ângulo de torção é dado por 
pGI
Tl=θ . Aplicando a definição de k e levando em conta essa
última equação: 
l
GI
GI
Tl
TTk p
p
==θ=
2.5 Associações de Molas
É muito comum, na prática, encontrarmos duas ou mais molas associadas em um mecanismo. A
fim de obter o sistema mecânico padrão, no qual existe apenas uma mola, há necessidade de
encontrar uma mola fictícia cuja rigidez seja equivalente à da associação dada.
As associações mais comuns são: molas em série, molas em paralelo, molas associadas com
alavancas, molas inclinadas e molas associadas com polias.
2.5.1 Associação Série
Inicialmente, serão consideradas apenas duas molas em série. A fig. 3 mostra, à esquerda, duas
molas em série de rigidezes conhecidas, k1 e k2, submetidas a uma força de tração F e, à
direita, uma mola equivalente fictícia submetida à mesma excitação.
Elementos de um Sistema Mecânico 4
 
Desejamos encontrar a rigidez equivalente k. Pelo Princípio da Superposição dos Efeitos, temos:
deflexão da mola 1, devida à carga F: x1 = F/k1
deflexão da mola 2, devida à carga F: x2 = F/k2
deflexão total: x = F/k
Logo, como x = x1 + x2:
 1/ k = 1/k1 + 1/k2 (4)
2.5.2 Associação Paralela
Aqui também serão consideradas duas molas em paralelo. A fig. 4 mostra, à esquerda, duas
molas de rigidezes conhecidas, k1 e k2, solicitadas por uma força de tração F, aplicada paralela e
eqüidistantemente das molas. Consideremos a existência de restrições laterais que obriguem as
molas a se distenderem igualmente e que não permitam a rotação da barra sem massa sobre a
qual atua a força F, assegurando ao sistema apenas um grau de liberdade. À direita, temos o
sistema equivalente.
deflexão da mola 1: x1 = F1/k1
deflexão da mola 2: x2 = F2/k2
onde F1 e F2 são as cargas nas molas k1 e k2 , respectivamente. Por outro lado, no sistema
equivalente: x = F/k
onde F = F1 + F2
Logo: kx = k1x1 + k2x2
Tendo em vista que a deflexão é a mesma, isto é: x = x1 = x2, chegamos finalmente a
 k = k1 + k2 (5)
Fig. 3 Molas em Série
Fig. 4 Molas em Paralelo
Elementos de um Sistema Mecânico 5
Observando as eq. (4) e (5), vemos que as mesmas são idênticas, respectivamente, às fórmulas
das associações série e paralelo de capacitâncias elétricas. Logo, existe uma analogia
eletromecânica entre capacitor e mola, o que não deve constituir surpresa, pois ambos são
armazenadores de energia. Tais analogias são muito úteis, sendo amplamente empregadas na
análise de sistemas dinâmicos. Podemos, pois, generalizar as equações. acima para n molas:
associação série: 
∑
=
= n
1i ik
1
1
k (6)
associação paralelo ∑
=
=
n
1i
ikk (7)
2.5.3 Associação de Molas com Alavancas
Neste tipo de associação está presente, além das molas, uma alavanca cuja massa é considerada
desprezível. A fig. 5 mostra, à esquerda, o sistema mais simples, constando de apenas uma mola
e de uma alavanca, considerada rígida e de massa desprezível, articulada no ponto O. Na
extremidadelivre está aplicada a força de excitação F.
Tal associação é muito comum em sistemas mecânicos reais. A suspensão independente de um
automóvel, por exemplo, pode ser modelada por um sistema desse tipo (a menos do
amortecedor): na fig. 5, o ponto O seria o chassis, a alavanca OA seria a peça móvel (o braço
oscilante) e a força F seria a reação do solo sobre a roda.
Desejamos obter o sistema padrão equivalente, mostrado à direita da fig. 5. Notemos que a
mola equivalente k é colocada no ponto de aplicação A da força F.
 
Para a dedução da rigidez equivalente, consideremos a fig. 6, na qual aparece o sistema já
deformado:
 
Fig. 5 Sistema Mola e
 alavanca articulada
Fig. 6 Sistema na posição deformada
Elementos de um Sistema Mecânico 6
Tomando momentos em relação ao ponto O: FL = k1xa
Sendo k a rigidez da mola equivalente: F = kx = k AA1
Por outro lado, a semelhança de triângulos permite escrever: 
L
a
AA
x
1
=
Combinando as expressões acima, chegamos a:
 k = (a/L)2k1 (8)
A expressão acima pode ser melhor compreendida se levarmos em conta que a é a distância da
mola dada ao centro de rotação e L é a distância da mola equivalente ao centro de rotação.
No caso geral de um sistema articulado possuir uma barra e n molas ki distantes ai (i = 1, 2, ..., n)
do centro de rotação, podemos aplicar o Princípio da Superposição dos Efeitos e obter a
fórmula geral:
 i
n
1i
2
i k
L
a
k ∑
=


= (9)
2.5.4 Associação Inclinada (ou Concorrente ou Radial)
Consideremos um sistema com uma mola inclinada de um ângulo α com a direção do movimento da
massa m, conforme mostra a fig. 7 (a):
 
Desejamos achar uma mola equivalente k, a ser colocada na direção x do movimento. Logo, a
força nesta direção é
 Fx = kx
enquanto que na direção xm da mola a força vale
 F = k1xm
Do triângulo hachurado da fig. 7(a): F = Fx/cosα
Observando a fig. 7(b), podemos considerar que, para pequenos deslocamentos x, o ângulo α
praticamente não sofre modificação, o que permite escrever
 x = xm/cosα
Fig. 7 Associação Inclinada
Elementos de um Sistema Mecânico 7
Combinando as equações acima, podemos concluir que
 k = k1 cos2 α
Caso existam n molas inclinadas ki de ângulos αi (i = 1, 2, ..., n) com a horizontal, podemos aplicar
o Princípio da Superposição dos Efeitos e obter a fórmula geral:
 ∑
=
α=
n
1i
i
2
icoskk (10)
Observações importantes:
(1) As fórmulas (4) a (10), deduzidas para molas translacionais, podem também ser usadas para
molas torcionais, se utilizarmos a correspondência abaixo.
Mola longitudinal (translação) Mola torcional (rotação)
área da seção reta S Momento de inércia polar Ip
massa m Momento de inércia J
deslocamento retilíneo x Deslocamento angular θ
força F Torque T
módulo de Young E Módulo de elasticidade transversal G
(2) Existem tabelas que fornecem as rigidezes para vários tipos de molas, como ilustra a Tab. 1,
abaixo.
Tab. 1 Rigidezes de Molas
Elementos de um Sistema Mecânico 8
Exemplo 3: Achar a rigidez equivalente do sistema da fig. 8.
 Fig. 8 Sistema de molas em série e em paralelo
Solução:
Este tipo de problema deve ser resolvido por passos. Assim, podemos começar substituindo as
molas em paralelo por suas equivalentes:
A seguir, podemos combinar as molas em série de ambos os lados da massa, obtendo:
Finalmente, combinamos essas duas últimas molas, que se encontram em paralelo:
3 AMORTECEDORES
3.1 Definição
Chama-se amortecimento o processo pelo qual a energia é retirada do sistema elástico. A
energia é consumida por atrito entre as peças móveis do sistema e/ou pelo atrito interno entre
as moléculas das peças do sistema, havendo uma dissipação de energia mecânica sob forma de
calor e/ou som. Um amortecedor, pois, é o componente do sistema mecânico que dissipa energia
mecânica do mesmo, assim como o resistor é o componente do sistema elétrico que dissipa
energia elétrica do mesmo. Na modelagem consideramos que o amortecedor não tem nem massa
e nem rigidez.
Elementos de um Sistema Mecânico 9
3.2 Tipos de Amortecimento
O amortecimento pode ser classificado em três tipos:
3.2.1 Amortecimento viscoso
É o que mais ocorre na prática da Engenharia. Ele resulta do atrito viscoso, isto é, aquele que
acontece entre um sólido (uma peça) e um fluido viscoso (um óleo lubrificante, por exemplo)
interposto entre as peças móveis do sistema mecânico. Assim, o atrito que ocorre entre um eixo
e o seu mancal de deslizamento, quando há lubrificação, é um atrito viscoso.
A força de atrito viscoso (ou resistência viscosa) é diretamente proporcional à velocidade
relativa entre sólido e fluido. Matematicamente, a resistência viscosa, Fv, é dada por:
 xcF
.
v = (11)
onde x
.
 é a velocidade relativa entre sólido e fluido, e c é o coeficiente de proporcionalidade,
denominado coeficiente de amortecimento viscoso. A unidade SI de cv é [N.s/m]. No caso de
movimento de rotação, o torque de resistência viscoso Tv é dado por
 
.
v cT θ= (12)
onde θ. é a velocidade angular relativa entre sólido e fluido, e cv é o coeficiente de
amortecimento viscoso. A unidade SI de c, nesse caso, é [N.m.s/rad]. O coeficiente de
amortecimento viscoso c é o parâmetro característico de um amortecedor viscoso, do mesmo
modo que a rigidez k é o parâmetro característico da mola. Cada amortecedor viscoso tem o seu
c característico. Como o coeficiente de amortecimento viscoso está intimamente relacionado
com a viscosidade do fluido, ele sofre a influência da temperatura: aumentos de temperatura
implicam em queda do coeficiente de amortecimento viscoso. Por esse motivo, verificamos que,
no verão, os carros apresentam uma suspensão mais "macia", ao passo que no inverno,
principalmente em dias muito frios, a suspensão do carro se apresenta mais "dura". Dados
práticos de c podem ser encontrados em obras especializadas sobre amortecedores.
3.2.2 Amortecimento seco
Também denominado amortecimento constante ou de Coulomb. É o que ocorre quando o atrito
é seco, isto é, quando atritam entre si dois sólidos sem lubrificação. Matematicamente, a força
de atrito seco (também denominada força de Coulomb), Fd, é dada por:
 Fd = µN (13)
onde µ é o coeficiente de atrito dinâmico entre as superfícies em contato e N é a força
normal entre as superfícies. Obviamente, µ é adimensional. Conforme podemos verificar
facilmente, a força de atrito é constante, daí o nome de amortecimento constante.
Elementos de um Sistema Mecânico 10
3.2.3 Amortecimento estrutural (ou histerético)
É o que ocorre pelo atrito interno entre moléculas quando o sólido é deformado, fazendo com
que a energia seja dissipada pelo material. A medida do amortecimento estrutural é dada pela
amplitude da tensão reinante durante a deformação. Como exemplo de amortecimento
estrutural pode-se citar o que acontece na estrutura de uma prensa mecânica logo após a
pancada do martelo: parte da energia é consumida pelo atrito intermolecular na estrutura da
máquina.
3.2 Cálculo do Coeficiente de Amortecimento Viscoso
O cálculo do coeficiente de amortecimento viscoso pode ser feito experimentalmente ou
teoricamente. Experimentalmente, podemos aplicar sobre o amortecedor cargas conhecidas e
medir os deslocamentos correspondentes, bem como os intervalos de tempo necessários para as
cargas percorrerem os ditos deslocamentos. A seguir, aplicamos a eq. (11) ou (12) e tiramos um
valor médio para c, representativo da faixa considerada. Teoricamente, podemos calcular o
coeficientede amortecimento através da aplicação de conhecimentos de Estática e de Mecânica
dos Fluidos, conforme ilustra o exemplo a seguir.
Exemplo 4: Consideremos a fig. 9, na qual um disco circular de raio R gira em um recipiente
contendo óleo, estando separado do fundo do mesmo por uma camada de fluido de viscosidade
absoluta µ e espessura t, sendo ω a velocidade de rotação do disco em relação ao recipiente
estacionário. Desejamos calcular o coeficiente de amortecimento do sistema.
Solução:
Para calcular o coeficiente de amortecimento viscoso c, suporemos o perfil de velocidades como
linear, sendo a velocidade angular do fluido nula no contato com o fundo do recipiente e
constante e igual a ω no contato com o disco. Consideremos uma coroa circular elementar,
distante r do centro (e, portanto, com comprimento 2πr) e de largura dr. Logo, sua área vale dA
= 2πrdr. A tensão de cisalhamento existente na superfície de contato sólido-fluido é, então:
 
rdr2.r
dT
dA
dF
π==τ
Fig. 9 Cálculo do Coeficiente de
Amortecimento
Elementos de um Sistema Mecânico 11
onde dT = rdF é o torque elementar atuando sobre o elemento de área elementar dA. Por outro
lado, sabemos da Mecânica dos Fluidos que a tensão de cisalhamento é dada por:
 
t
r
t
v
dz
dv ωµ=µ=µ=τ
onde dv/dz é o gradiente de velocidades ao longo da espessura do fluido, considerado constante
e igual a v/t, devido à linearidade assumida para o perfil de velocidades. Igualando as duas
equações acima:
 
t
r
drr2
dT
2
ωµ=π
ou
 dr
t
r2dT
3πµω=
Integrando entre os limites 0 e R, chegamos a
 R2t
T 4µπω=
Para o caso de amortecedor viscoso torcional, c = T/ω, logo:
 R2t
c 4µπ=
3.2 Associações de Amortecedores
Do mesmo modo que as molas, também os amortecedores podem estar dispostos em série, em
paralelo, articulados ou inclinados. Podemos demonstrar, de maneira semelhante à que foi feita
para as molas, que os coeficientes de amortecimento viscoso equivalentes são dados por
fórmulas análogas às das rigidezes equivalentes das molas, isto é:
associação série: 
∑
=
= n
1i ic
1
1
c (14)
associação paralela: ∑
=
=
n
1i
icc (15)
associação articulada: cL
a
c i
n
1i
2
i∑
=


= (16)
associação inclinada: ∑
=
α=
n
1i
i
2
icoscc (17)
Elementos de um Sistema Mecânico 12
4 MASSAS E INÉRCIAS
4.1 Introdução
O terceiro e último componente de um sistema elástico é a massa (ou a inércia dessa massa, no
caso de movimento torcional). No nosso sistema padrão a massa (ou a inércia) é considerada
como um corpo rígido, podendo ganhar ou perder energia cinética conforme sua velocidade
aumente ou diminua. Os problemas que normalmente surgem são:
(1) existem várias massas no sistema e há necessidade de se encontrar uma massa equivalente,
de modo a se obter o sistema padrão, com apenas uma massa;
(2) existem vários eixos ligados entre si por engrenagens, correias ou correntes, etc., e há
necessidade de reduzir o sistema original a um sistema padrão, constando de apenas um eixo
de rigidez, amortecimento e inércia equivalente, isto é, há necessidade de transferir
rigidezes, amortecimentos e inércias de um eixo para outro;
Para resolver tais problemas, devemos levar em conta que a massa ou inércia equivalente deverá
desenvolver a mesma energia cinética do sistema original, ou, em outras palavras, vamos usar o
Princípio da Conservação da Energia.
A energia cinética de um sistema massa-mola translacional é dada pela expressão
 
2.
xm
2
1T = (18)
onde m é a massa, em kg, e .x é a velocidade de translação da massa em m/s. No caso de um
sistema torcional, a energia cinética é dada por
 
2.
J
2
1T θ= (19)
onde J é o momento de inércia da massa, em kg.m2 e 
.θ é a velocidade angular da massa, em
rad/s.
A seguir, serão estudados os dois problemas citados.
4.2 Equivalência de Massas
Cada caso deve ser tratado separadamente, porém sempre a partir da aplicação do Princípio da
Conservação da Energia. A destreza em simplificar sistemas complexos dependerá da resolução
de um número razoável de exercícios. O método será ilustrado através de exemplos.
Exemplo 5 - Em muitos casos, a massa da mola é desprezível na presença da massa do sistema.
Entretanto, em algumas situações, tal fato não é verdadeiro, devendo-se, então, calcular a
massa equivalente à massa da mola que deve ser acrescentada à massa principal do sistema.
Elementos de um Sistema Mecânico 13
Seja determinar a massa equivalente à massa da mola a ser adicionada à massa m do sistema da
fig. 10:
Consideremos um elemento de mola dms, de espessura dy e distante y da extremidade fixa da
mola. Então, a energia cinética desse elemento de mola será dada por
 
2.
s ydm2
1dT =
Considerando a velocidade do elemento de massa, 
.
y , variando linearmente com y, então
 
..
x
L
yy =
onde L é o comprimento instantâneo da mola. Levando na expressão da energia cinética e
integrando, obtemos
 
2.
s x
3
m
2
1T =
ou seja, a mola colabora com 1/3 da sua massa na formação da massa efetiva do sistema.
Exemplo 6 - Seja reduzir o mecanismo de comando de válvula de um motor de combustão
interna, ilustrado na fig. 11, a um sistema simples, constando apenas de uma massa, isto é, achar
o valor da massa mA que, colocada no ponto A, represente todas as massas e inércias do sistema.
A energia cinética do sistema é dada pela expressão seguinte, na qual também está considerada
a massa da mola:
2.
2s2
v
2
.
s2
.
v
2.
)b
3
m
bm(J
2
1)(b
3
m
2
1)(bm
2
1J
2
1T θ++=θ+θ+θ=
Fig. 10
Fig. 11
Elementos de um Sistema Mecânico 14
onde temos, em seqüência, a energias cinéticas de rotação do balancim, de translação da massa
da válvula e de translação da massa da mola. Portanto, a massa equivalente mA a ser colocada no
ponto A, considerando que 
..
ax θ= , vale
 
2
2s2
v
A a
b
3
mbmJ
m
++
=
Exemplo 7 - Consideremos o sistema da fig. 12 (a), onde uma barra articulada na extremidade O
possui três massas colocadas nos pontos A, B e C. Ao girar o sistema em torno do ponto O, as
velocidades das três massas são as indicadas na figura. Achar uma massa equivalente que,
colocada no ponto A, tenha o mesmo efeito das três massas, conforme mostra a fig. 12 (b).
Solução
Igualando a energia cinética das três massas à do sistema equivalente:
 
2
1
.
eq
2
3
.
3
2
2
.
2
2
1
.
1 xm2
1xm
2
1xm
2
1xm
2
1 =++
Por outro lado, podemos expressar as velocidades das massas m2 e m3 em função da velocidade
da massa m1:
1
.
1
3
3
.
1
.
1
22
.
x
l
lx e x
l
lx ==
as quais, substituídas na expressão acima, conduz, após simplificações, a
 2
1
3
3
2
1
2
21eq )l
l(m)
l
l(mmm ++=
Exemplo 8 - Seja o sistema pinhão-cremalheira da fig. 13, em que o pinhão de momento de
inércia J0 gira com velocidade angular 
.θ acionando a cremalheira de massa m a uma velocidade
linear 
.
x. Achar:
(a) massa equivalente translacional meq;
(b) massa equivalente rotacional Jeq.
Fig. 12
Fig. 13
Elementos de um Sistema Mecânico 15
Solução
(a) Queremos um sistema com uma só massa equivalente translacional. Igualando as energias
cinética do sistema original e do sistema equivalente:
2.
eq
2.
0
2.
xm
2
1J
2
1xm
2
1 =θ+
Entretanto, 
..
Rx θ= . Logo, substituindo na expressão acima e simplificando:
2
0
eq R
Jmm +=
(b) Queremos, agora, um sistema com uma só inércia equivalente rotacional. Igualando as
energiascinética do sistema original e do sistema equivalente:
 
2.
eq
2.
0
2.
J
2
1J
2
1xm
2
1 θ=θ+
Entretanto, 
..
Rx θ= . Logo, substituindo na expressão acima e simplificando:
2
0eq mRJJ +=
4.3 Acoplamento de Rotores
Muitos mecanismos empregam eixos com massas girantes (engrenagens, discos, polias, etc),
acoplados entre si por meio de engrenagens, correias, correntes, etc. Nesses casos, há
necessidade de referir as inércias, os amortecimentos e as rigidezes a um dos eixos de rotação,
o qual constituirá a coordenada para o sistema padrão.
Um exemplo bastante familiar é o redutor de velocidades ilustrado na fig. 14 (a). Na fig. 14 (b)
aparece o sistema padrão correspondente. Por simplicidade, vamos considerar que as
engrenagens têm inércias desprezíveis em comparação com as inércias do motor (J1) e da carga
(J2). As velocidades de rotação dos eixos do motor e da carga valem, respectivamente, ω1 e ω2.
As engrenagens têm número de dentes z1 e z2, conforme mostra a fig. 14(a). Queremos referir
todo o sistema em relação ao eixo do motor.
Fig. 14
Elementos de um Sistema Mecânico 16
A fig. 14(b) ilustra o sistema padrão baseado no eixo do motor. A inércia do motor, J1, pelo fato
de já estar localizada nesse eixo, não sofre alteração. Já a inércia da carga, J2, deverá ser
transferida para o eixo do motor. Quanto às rigidezes à torção, a rigidez k1 não sofre
alteração, pois o eixo correspondente já está no eixo do motor, mas a rigidez k2 deverá ser
transferida para o eixo do motor.
As expressões que permitem a transposição das rigidezes e das inércias são deduzidas,
também, a partir do Princípio da Conservação da Energia.
Para o caso das inércias, aplicamos o Princípio da Conservação da Energia Cinética. Em geral,
dados dois eixos acoplados, 1 e 2:
 T1 = T2 ⇒ 222211 J2
1J
2
1 ω=ω
logo
 
ω
ω= 2
1
2
2
21 JJ (20)
Portanto, dado o momento de inércia J2 da massa situada no eixo 2 e conhecidas as velocidades
de rotação dos eixos 1 e 2, podemos calcular o momento de inércia J1 da massa que, colocada
no eixo 1, equivale ao momento de inércia J2.
Para o caso das rigidezes, consideremos que o eixo 2 tenha rigidez à torção k2 e gire com
velocidade de rotação ω2. Para calcular a rigidez à torção equivalente k1 no eixo 1 (girando com
velocidade de rotação ω1) acoplado ao eixo 2, aplica-se o Princípio da Conservação da Energia
potencial elástica armazenada nos eixos:
V1 = V2
 θ=θ 222211 k2
1
k2
1 logo
 θ
θ= 2
1
2
2
21 kk
onde θ1 e θ2 são os ângulos de deformação por torção dos eixos 1 e 2, respectivamente.
Admitindo uma proporção entre os ângulos de deformação e as velocidades de rotação, podemos
escrever:
 ω
ω= 2
1
2
2
21 kk (21)
Assim, dada a rigidez à torção do eixo 2 (que gira com velocidade ω2), podemos calcular a
rigidez à torção que, colocada no eixo 1 (que gira com velocidade ω1), é equivalente à rigidez à
torção k2.
Embora no exemplo acima não tenha sido considerado o amortecimento, podemos mostrar que as
fórmulas acima são válidas para os coeficientes de amortecimento, isto é, dado o coeficiente
Elementos de um Sistema Mecânico 17
de amortecimento do eixo 2 (que gira com velocidade ω2), pode-se calcular o coeficiente de
amortecimento que, colocada no eixo 1 (que gira com velocidade ω1), é equivalente ao coeficiente
de amortecimento c2:
ω
ω= 2
1
2
2
21 cc (22)
EXERCÍCIOS
1 Determinar a rigidez à torção do eixo oco da figura.
Resp.: 3,05 x 104 Nm/rad
2 Achar a rigidez de uma viga horizontal bi-apoiada de comprimento l, momento de inércia da
seção reta constante I, módulo de Young E, submetida a uma carga vertical concentrada F,
no meio do vão.
Resp.: 
3l
EI48k =
3 Idem Exercício 2, porém agora a viga está engastada e sendo submetida a uma carga
vertical concentrada F, na extremidade livre.
Resp.: 
l3
3EI
4 Achar a rigidez de uma mola hel
médio da espira R, módulo de ela
axial F.
Obs.: obter o valor da deformaçã
Elementos de Máquinas.
Resp.: 
3
4
nR64
Gdk =
icoidal com N espiras ativas, diâmetro do arame d, raio
sticidade transversal G, quando submetida a uma carga
o da mola em livros de Resistência dos Materiais ou de
Elementos de um Sistema Mecânico 18
5 A figura mostra um acoplamento flexível: um anel de borracha (espessura t, raio externo
ro, raio interno ri, módulo de rigidez transversal G) unindo dois eixos. Calcular a rigidez do
 
R
6
 
7
 
8
 
R
 
es
 
 
 
 
 
 
es
Re
Re
acoplamento.
p.: 
[ ]
t2
rrG
k
4
i
4
o −π=
Achar a rigidez equivalente do sistema da figura.
 
Achar a rigidez equivalente do sistema da figura.
 
Achar a rigidez equivalente do sistema da figura.
 
p.: k = 30972 Nm/rad
sp.: k = k1 + k2(a/b)
2
sp.: 3
1
1
Lk48EI
48EIkk +=
Dado: barras de torção de aço, módulo de
elasticidade transversal = 8,275 x 1010 N/m2
Elementos de um Sistema Mecânico 19
9 A figura mostra um tipo de acoplamento bastante usado (embreagem seca, por exemplo), o
qual consiste de n molas helicoidais de rigidez k, colocadas a uma distância r dos eixos
acoplados. Calcular a rigidez total do acoplamento, keq.
 
10 A figura mostra duas placas paralelas, de área A, separadas por uma película de óleo de
viscosidade absoluta µ e espessura t. A velocidade relativa entre elas é v. Calcular o
coeficiente de amortecimento c.
 
Resp.: 
t
Ac µ=
11 Um amortecedor é composto por um pistão de diâmetro D e comprimento L, que se desloca
dentro de um cilindro. A folga radial entre pistão e cilindro é t e entre eles existe um óleo
de viscosidade µ. Calcular o coeficiente de amortecimento do amortecedor.
Resp.: c = πDLµ/t
Resp.: 
[ ]
t2
rrG
k
4
i
4
o −π=
Elementos de um Sistema Mecânico 20
12 Considere o amortecedor da figura. Sendo µ a viscosidade do fluido, calcular o coeficiente
de amortecimento viscoso devido apenas à parte lateral do amortecedor.
Resposta.: 
h
lr2c
3πµ=
13 Determinar a massa mo que, colocada ponto O, equivale à barra cuja massa é m, conforme
figura.
 Solução
2
..
o
2.
o
2
cg
2.
2
1)nl(m
2
1xm
2
1T
)nl
2
l(mJ[
2
1J
2
1T
=θ==
−+=θ=
logo, simplificando:
)n
2
1(
12
1[ 
n
mm 2
2o
−+=
14 Um motor, de inércia J1 = 1 kg.m2, aciona um compress
de um redutor de velocidades cuja inércia é despr
Calcular a rigidez e as inércias do sistema, em relação 
Dados: eixo 1: aço, G = 8,4 . 1010 N/m2, diâmetro 
eixo 2: aço, G = 8,4 . 1010 N/m2, diâmetro 
velocidade de rotação do eixo 2 (compre
(motor).
Dado: Jcg = mL2/12
2.
22
o
2.
lnm
]
θ
θ
]
or, de inércia J2 = 2,4 kg.m2, através
ezível, conforme figura 14 do texto.
ao eixo do compressor.
40 mm, comprimento 1m;
50 mm, comprimento 0,75m;
ssor) = 1/2 da velocidade do eixo 1
Elementos de um Sistema Mecânico 21
Solução
22
1
12
2
1
1
'
1
2
2
2
1
12
2
1
12eq2
4
10
2
4
10
1
kg.m 4)
2/
(x1)(JJ
2) eixo no está (já kg.m 4,2J
Nm/rad 153200)
2/
( x 2111068720)(KKK
Nm/rad 68720
75,0
32
050,0x10x4,8
K
Nm/rad 21110
1
32
040,0x10x4,8
K
=ω
ω=ω
ω=
=
=ω
ω+=ω
ω+=
=
π
=
=
π
=
15 O acionamento turbina-gerador abaixo tem as seguintes características:
Momento de inércia da turbina: 3500 kg.m2
Momentode inércia do pinhão: 50 kg.m2
Momento de inércia da coroa: 2700 kg.m2
Momento de inércia do gerador: 5400 kg.m2
Rigidez do eixo da turbina: 1,2 x 106 N.m/rad
Rigidez do eixo do gerador: 1,8 x 106 N.m/rad
Velocidade de rotação do eixo
 da turbina: 5400 rpm
Velocidade de rotação do eixo
 do gerador: 1800 rpm
Achar um sistema equivalente em relação ao eixo da rbina.
Resp.: Da esquerda para a direita: inércias: 35
rigidezes: 
16 Sendo J o momento de inércia da polia em
 relação ao seu eixo de rotação, calcular a
 massa, a rigidez e o coeficiente de amorte-
 cimento equivalentes, em relação à coordenada x.
Resp.: m + J/9r2; c/9; 3k
tu
00 kg.m2; 350 kg.m2; 600 kg.m2
1,2 x 106 N.m/rad; 0,2 x 106 N.m/rad
Elementos de um Sistema Mecânico 22
17 Com relação ao exercício 16, calcular a inércia, a rigidez e o coeficiente de amortecimento
equivalentes, em relação à coordenada θ.
Resp.: I + 9mr2; cr2; 27kr2

Outros materiais