Buscar

Trabalho Hidráulica Seccionamento Ficticio Hardy Cross Aluno Espartano UFBA 2012.2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

UNIVERSIDADE FEDERAL DA BAHIA
ESCOLA POLITÉCNICA
DEPARTAMENTO DE ENGENHARIA SANITÁRIA E AMBIENTAL
 	
 
CÁLCULO HIDRÁULICO DE REDE DE DISTRIBUIÇÃO DE ÁGUA 
- PARTE 1 -
Salvador
Março– 2013
ESPÁRTANO SILVA DOS SANTOS
JAIR DOS SANTOS SILVA
CÁLCULO HIDRÁULICO DE REDE DE DISTRIBUIÇÃO DE ÁGUA 
 Trabalho apresentado ao Professor Jorge Eurico, Disciplina ENG 136–Hidráulica, da turma T-01, turno Matutino.
Salvador
Março– 2013
SUMÁRIO
PARTE I
1 - INTRODUÇÃO.....................................................................................................................5
Redes
Redes ramificadas..........................................................................................5
 1.1.2 Redes malhadas..............................................................................................6 
Distribuição de vazões em marcha em redes.............................................................6
Procedimento para o cálculo da perda de carga contínua.........................................7
Condições hidrodinâmicas e hidrostáticas................................................................7
 2 - MÉTODOS DE DIMENSIONAMENTO DE REDES......................................................8
 2.1 Seccionamento Fictícios............................................................................................8
 2.2 Hardy-Cross..............................................................................................................8
 2.3 Cálculos hidráulicos de redes de distribuição ramificadas e aneladas.......................9
 2.3.1 Rede ramificada............................................................................................9
 2.3.2 Rede malhada...............................................................................................10
3 – SISTEMA DE ABASTECIMENTO EM ESTUDO ..........................................................11
3.1 Planta topográfica da localidade .............................................................................12
3.2 Condições de projeto ...............................................................................................12
4 - DEFINIÇÃO DAS VAZÕES DE PROJETO E VAZÕES POR TRECHO .....................12
	4.1 Vazão de distribuição...............................................................................................13
	4.2 Vazão unitária distribuída........................................................................................13
5 – DIMENSIONAMENTO HIDRÁULICO DA REDE E DEFINIÇÃO DO NÍVEL DE
 ÁGUA MÍNIMO REQUERIDO PARA O RESERVATÓRIO ELEVADO..................13
5.1 Rede ramificada.....................................................................................................14
5.2 Rede malhada........................................................................................................19
5.3 Nível de Água Mínimo requerido para o Reservatório Elevado...........................24
7 - DIMENSIONAMENTO DO RESERVATÓRIO PARA ABASTECIMENTO DA 
 REDE...................................................................................................................................25
PARTE II
8 - CÁLCULO DO SISTEMA DE RECALQUE POÇO-RESERVATÓRIO…....................29
8.1.1 Adutora, conexões e acessórios ….......................................................................31
8.1.4 Escolha conjunto Motor bomba…........................................................................32
8.1.4 Curvas características das bombas …...................................................................33
8.1.4 Curvas características do sistema ….....................................................................34
8.1.4 NPSH…................................................................................................................36
9 – CONCLUSÃO.....................................................................................................................38
10 – REFERÊNCIAS …............................................................................................................40
11 – ANEXOS ….......................................................................................................................41
APRESENTAÇÃO
O presente trabalho tem como objetivo a demonstração prática o dimensionamento de redes hidráulicas – REDE DE DISTRIBUIÇÃO DE ÁGUA e de um SISTEMA DE RECALQUE / ADUÇÃO de água visando atender a rede. Serão apresentados metodologias e memorial de cálculo que descreve bem o objetivo deste trabalho.
1 INTRODUÇÃO
 Segundo a NBR 12218 NB 594 pode-se definir rede de distribuição o conjunto de peças especiais destinadas a conduzir a água até os pontos de tomada das instalações prediais, ou os pontos de consumo público, sempre de forma contínua e segura. Logo é necessário dimensiona-lo levando em consideração melhor condição de funcionamento, economia e condições de manutenção aplicáveis ao sistema. No geral o dimensionamento de uma rede é de certa forma simples, mas a depender da complexidade do sistema pode ser tornar uma atividade não tão simplória, alguns fatores que contribuem podem ser citados abaixo:
Topografia, relevos acidentados.
Disponibilidade hídrica;
Contorno entre obstáculos;
Entre outros.
Sendo assim 	antes de iniciar o dimensionamento deve-se sabe qual o tipo de rede a ser utilizada.
REDES:
 Uma rede de abastecimento de água é um sistema projetado com componentes hidrológicos e hidráulicos incluindo: a bacia ou área geográfica para coleta de água; um reservatório de água não tratada (acima ou debaixo da terra) tais como um lago, um rio ou lençol freático de um aquífero subterrâneo; um meio de transportar a água da fonte para o tratamento, tal como canalização subterrânea, aquedutos e/ou túneis, geralmente denominada de adutora; purificação de água; transmissão do tratamento, por canos para armazenamento de água tratada e distribuição através de canos do reservatório até o consumidor (casas, indústrias, etc.)
 Como já descrito acima fatores geométricos definem o tipo de rede a ser projetada, além do porte da cidade a ser abastecida, essa rede é composto de condutos que se cruzam da melhor forma possível esses condutos por sua vez são classificados como condutos ou tubulações principais da rede de distribuição, verificadas por cálculo hidráulico, mediante concentração das vazões máximas de dimensionamento em seus nós e Condutos ou tubulações secundárias, as demais tubulações da rede de distribuição. Sendo assim a rede pode ser classificada com:
Rede ramificada;
Rede malhada.
1.1.1 Rede ramificada
Neste tipo de rede o sentido da vazão é conhecida uma vez que o abastecimento é realizado a partir de uma tubulação principal por meio de um reservatório de montante. No geral esse tipo de rede é utilizado em pequenas comunidade, um dos seus principais inconveniente é que se por ventura ocorrer rompimento num trecho inicial a montante toda a rede ficará prejudicada.
Figura 1 – Rede de distribuição ramificada (Fonte: Porto, 2006)
1.1.2 Rede malhada:
Já este caso é amais conveniente para o abastecimento de grandes cidades, pois se trata de uma rede constituída por tubulações troncos que forma em anéis, essa condição permite a reversibilidade de fluxo uma vem a solicitação dos condutos secundários irá definir o sua solicitação, assim um rompimento no trecho principal não causará paralisação total na rede.
Figura 2 – Rede de distribuição malhada (Fonte: Porto, 2006)
DISTRIBUIÇÃO DE VAZÕES EM MARCHA EM REDES
Ao longo da canalização a vazão vai sendo distribuída aos usuários epor esse motivo a vazão de montante será sempre maior que a vazão de jusante em um trecho da canalização, obedecendo assim o movimento permanente gradualmente variado. Devida a dificuldade em determinar as perdas de cargas e vazões entre as derivações, que em geral em sistemas de distribuição de água em redes urbanas são elevadas, considera-se a relação entre a vazão total consumida no percurso e seu comprimento, como vazão unitária de distribuição considerando uniforme em todo percurso, onde esta tem as dimensões de litros/metro/segundo. 
 
PROCEDIMENTO PARA O CÁLCULO DA PERDA DE CARGA CONTÍNUA
Para o calculo da perda de carga continua ao longo do trecho com consumo de vazões em marcha é necessário o seguinte procedimento:
-Calcula-se a vazão de consumo ao longo do trecho através da vazão unitária de distribuição multiplicado pelo comprimento total do trecho. 
Qc = q x L.
-Conhecendo-se a vazão de montante do trecho, encontra-se a sua vazão de jusante subtraindo-se a vazão de montante da vazão de consumo.
Qj = Qm – Qc
-Agora calcula a vazão fictícia fazendo a média aritmética entre a vazão de montante e a vazão de jusante.
Qf = (Qm + Qj)/2
Para o caso de ponta seca, a vazão fictícia devera ser calcula pela seguinte equação:
Qf = Qm/√3
Tendo em mãos a vazão fictícia, o coeficiente de rugosidade, o comprimento da canalização do trecho e o respectivo diâmetro, o qual seja mais eficiente para o sistema, calcula-se a perda de carga distribuída através da equação universal ou da equação de Hazen-Williams, utilizaremos a primeira por ser mais confiável que a segunda, e para ela utilizaremos o fator de atrito da tubulação.
CONDIÇÕES HIDRODINÂMICAS E HIDROSTÁTICAS REQUERIDAS
A norma 12218 NB 594 faz as seguintes definições de interesse: 
Pressão estática refere-se ao nível do eixo da via pública, em determinado ponto da rede, sob condição de consumo nulo.
Pressão dinâmica refere-se ao nível do eixo da via pública, em determinado ponto da rede, sob condição de consumo não nulo.
Para atender aos limites de pressão, a rede deve ser subdividida em zonas de pressão.
Zona de pressão é área abrangida por uma subdivisão da rede na qual as pressões estática e dinâmica obedecem os limites prefixados.
A pressão estática máxima nas tubulações distribuidoras deve ser de 500 kPa, ou 50 m.c.a., e a pressão dinâmica mínima de 100 kPa, alguns autores recomendam utilizar o mínimo de 15 m.c.a. para pressão dinâmica.
 Os valores da pressão estática superiores à máxima e da pressão dinâmica inferiores à mínima podem ser aceitos, desde que justificados técnica e economicamente.
 MÉTODOS DE DIMENSIONAMENTO DE REDES
 Os métodos de dimensionamento de redes de distribuição de água potável. Há quatro tipos que são considerados os mais clássicos: o Método dos Seccionamentos Fictícios, o Método de Hardy-Cross de Iteração de Vazões, o Método Nodal com Convergência por Iteração de Pressões e o Método Nodal com Convergência pela Técnica de Newton-Raphson, porem os métodos mais simples e adequados para serem utilizados no dimensionamento e analise pratico do trabalho, são os métodos de dimensionamento de redes malhadas e ramificadas, respectivamente Hardy-Cross e o Seccionamento fictício.
SECCIONAMENTO FICTÍCIO
 O princípio deste método consiste em seccionar alguns pontos da rede, de forma que esta se torne uma rede ramificada equivalente, simplificando-se assim os cálculos necessários para a determinação dos valores das incógnitas. 
 Para definir os sentidos dos escoamentos nesta última, e procurando-se maximizar o aproveitamento da topografia do terreno, os cortes fictícios são feitos em locais onde minimizem o trajeto da água desde os pontos de abastecimento até os de consumo. 
 Calcula-se a pressão estática nos dois lados de cada corte, segundo diferentes caminhos, e os resultados devem ser aproximadamente iguais. É importante notar que os seccionamentos fictícios não devem diminuir a importância dos condutos principais. 
Este método é bastante limitado porque não pode ser aplicado a todo tipo de rede malhada, já que nem sempre é possível transformá-las em redes simplificadas equivalentes.
HARDY-CROSS
 Este é um método iterativo. Toma-se uma rede como um conjunto de circuitos fechados, com ramos comuns, e assumem-se vazões para todas as tubulações. A rede então deve satisfazer às duas hipóteses seguintes: 
 I – A equação da continuidade é satisfeita em todas as junções. 
 II – A circulação da pressão é nula em todos os circuitos. 
 A hipótese I diz que há conservação de massa e energia em um nó. 
 A hipótese II diz que partindo de qualquer ponto de um circuito e calculando ou conhecendo as pressões e as perdas de carga sobre um circuito fechado, a circulação da pressão sobre o mesmo é nula. Isso significa que a partir do ponto escolhido, percorre-se o circuito determinando-se pressões em pontos desse caminho e, ao voltar ao ponto de partida, a pressão é a inicialmente conhecida. Em essência, a hipótese II quer dizer que a circulação da pressão, que é propriedade intensiva (ou seja, de ponto) é nula, pois o modelo de rede é conservativo. 
 A perda de pressão (perda de carga) entre dois nós consecutivos ligados é dada pela lei do escoamento entre ambos. Perdas menores, como as devidas a singularidades não são consideradas. A perda de pressão h no escoamento em uma tubulação funcionando como conduto forçado
CÁLCULOS HIDRÁULICOS DE REDES DE DISTRIBUIÇÃO RAMIFICADAS E ANELADAS
Redes Ramificadas:
Nesse tipo de rede, pelo fato de se conhecer o sentido da vazão, o processo de calculo é determinado, podendo ser elaborado com o auxilio da planilha, conforme anexo (planilha para cálculo de rede ramificada) onde as colunas são descritas abaixo:
Coluna 1 – Corresponde ao numero do trecho que devem ser numerados por critérios racionais, sendo o trecho mais afastado do reservatório numero 1, o anterior a esse numero 2 e assim sucessivamente.
Coluna 2 – Extensão L do trecho, medido em metros.
Coluna 3 – Vazão de jusante Qj, onde esta deve ser calculada subtraindo da vazão de montante, a vazão consumida no trecho, e quando for ponta seca, esta será igual a zero.
Coluna 4 – Vazão em marcha igual a q x L, na qual q e a vazão unitária de distribuição em marcha (l/m/s). Onde q será constante em todos os trechos da rede e igual à relação entre a vazão de distribuição e o comprimento total da rede.
Coluna 5 – Vazão a montante do trecho Qm = Qj + qL.
Coluna 6 – Vazão fictícia, Qf = (Qm + Qj)/2 se Qj ≠ 0 ou Qf = Qm/√3 se Qj = 0, isto e, se a extremidade de jusante for uma ponta seca.
Coluna 7 – Diâmetro D determinado pela vazão de montante obedecendo os limites da tabela abaixo.
Vmáx (m/s) = 0,60 + 1,5 D (m) e Vmáx=< 2,0 m/s
Tabela 01 – Velocidades e vazões máximas em rede de abastecimento
Coluna 8 – Perda de carga unitária J (m/100m) determinada para o diâmetro D e a vazão fictícia.
Coluna 9 – Perda de carga total no trecho.
Coluna 10 e 11 – Cotas topográficas do terreno, obtida pelas plantas e relativa aos nós de montante e jusante do trecho.
Coluna 12 e 13 – Cotas piezométricas de montante e jusante.
Coluna 14 e 15 – Carga de pressão disponível em cada nó.
Redes malhadas
Já o cálculo do escoamento em redes malhada se torna mais complexo do que a rede ramificada. Sua solução é semelhante ao método anterior, pois se baseiam nas mesmas equações. A implementação de algumas equações vem a satisfazer duas condições básicas para o equilíbrio do sistema:
O somatório das vazões nos nó é igual a zero. 
O somatório das perdas de carga em qualquer circuito fechado é igual a zero.
Convenciona-se:
O sentido horário, como positivo;
As vazões que afluem do nó são positivas
As vazões que derivam do nó são negativas 
As perdas de cargas são positivas se coincidirem com o sentido das vazões e negativascaso contrário;
Para aplicação do método há alguns pressupostos a ser considerados:
Distribuição em marcha nos trechos dos anéis devem ser substituídas por vazão constante;
Deve-se conhecer os pontos de entrada e saída e seus respectivos valores;
Atribui-se partindo dos pontos de alimentação, uma distribuição de vazão hipotética Qa pelos trechos dos anéis, obedecendo em cada nó à equação da continuidade;
Calcula-se o somatório das perdas de carga em todos os anéis;
Se para todos os anéis o somatório da perda de carga for igual à zero, a vazão estabelecida estará correto e a rede é dita equilibrada;
Se em pelos menos um dos anéis o somatório das perdas de carga for diferente de zero , deveram serem feitas algumas interações, que serão demonstradas nas tabelas 08, 09 e 10 das paginas 20 a 23;
Caso não seja verificado as condições, deve-se realizar iterações considerando os diferentes sentidos de fluxo até realizar o equilíbrio da rede conhecendo os posteriores cotas piezométricas e cargas de pressão nos diversos pontos da rede. 
O método de Hardy Cross se torna exaustivo por se tratar de um método de aproximações sucessivas, neste caso é sugerido realizar as iterações com o auxilio de um programa computacional.
 
3. SISTEMA DE ABASTECIMENTO DE ÁGUA EM ESTUDO:
3.1 Planta topográfica da localidade:
Figura 3 – Planta topográfica da localidade a ser estudada
3.2 Condições de Projeto
Tabela 2 – Condições de projeto
	CONDIÇÕES DE PROJETO
	População (hab)
	4800
	Consumo per capita (l/hab/dia)
	200
	K1
	1,2
	k2
	1,5
	Trecho mais desfavorável
	33
	Trecho mais favorável 
	16
	Captação do Rio
	SIM
	Pressão estática máxima (m.c.a)
	50
	Pressão dinâmica mínima (m.c.a)
	15
	Coeficiente de Hazen Williams PVC
	150
	Vazão do campo l/s
	20
	Bairro Nova Irundiara (l/s)
	1,2
De acordo com os pré-requisitos, o reservatório está localizado no ponto de cota topográfica 740 m. 
4. DEFINIÇÃO DAS VAZÕES DE PROJETO E VAZÕES POR TRECHO
4.1 Vazão de distribuição.
Vazão de demanda deve ser calculada antes de tudo, pois com base neste cálculo saberemos a vazão para que a população seja atendida, com o auxilio da seguinte equação:
Qd = P x q x K1 x K2 
 3600 x h
Onde,
P = população a ser abastecida
q = taxa ou cota de consumo per capita média da comunidade em l/hab/dia
h = horas de operação do sistema, consideraremos 24 h.
K1 = Vazão de consumo num ano
K2 = Vazão de consumo em um dia
Com os valores de projeto obtemos que a vazão média anual necessária é:
Qd = 4.800 x 200 x 1,2 x 1,5=> Qd = 20 l/s
 3600 x 24
4.2 Vazão unitária distribuída 
A vazão unitária distribuída é a relação entre a vazão total de distribuição e o comprimento total da rede, logo temos:
Lt = 3182,59 m.
Qd = 0,02 m³/s.
qu = Qd = => qu = 0,0006284 l/sm.
 Lt
5. DIMENSIONAMENTO HIDRÁULICO DA REDE E DEFINIÇÃO DO NÍVEL DE ÁGUA MÍNIMO REQUERIDO PARA O RESERVATÓRIO ELEVADO
Conforme anexo, para abastecer a localidade foi realizado um traçado das canalizações usou-se os dois métodos, porem no Hardy-Cross o sistema passa ser misto, pois possui anéis e redes ramificadas. Q = 
Figura 4 – Lançamento das canalizações, seccionamento e sentido de fluxo
5.1 Rede ramificada
Em primeira instância foi utilizado o método do seccionamento fictício para calculo e dimensionamento da rede, onde os anéis foram seccionados com intuído de transformar os trechos de rede malhadas em redes ramificadas, a extensão de todos os trechos da rede, nomeando-os da seguinte forma (01, 02, 03...), obtendo uma extensão total de 3182,59 m, conforme mencionado no item 3.4 a vazão unitária é 0,006284 l/sm, a vazão em marcha em cada trecho é calculada da seguinte forma:
Vazão em Marcha = qu x L
Consideramos as pontas secas como vazão de jusante igual a zero, e a partir desses pontos calculamos a vazão de montante, sendo esta a vazão consumida no trecho em análise. Em seguida calculamos a vazão de jusante do trecho anterior que será igual à vazão de montante do trecho posterior, obedecendo assim a condição de que a vazão que entra em um nó é igual à vazão que sai. Todo esse processo foi repetido nos outros trechos, considerando o método do seccionamento, no qual um nó será seccionado e considerado como ponta seca e daí então o anel se torna uma ramificação normal, o processo foi repetido até chegar ao inicio da rede e assim encontrar nesse ponto a vazão de distribuição calculada anteriormente que foi igual a 21,2 l/s, esse valor devido a vazão de 1,2 l/s que abastecera o Bairro Nova Irundiara. Tendo as vazões de montante e jusante de cada trecho, foi encontrada a vazão fictícia através das formulações apresentadas no item 2.3 como também os diâmetros obedecendo à tabela 1. Pode-se apresentar a seguinte tabela abaixo.
Tabela 3 – Vazões e extensões por trechos
	Trecho N°
	Rua
	Extensão (m)
	Vazão (l/s)
	
	
	
	Jusante
	Marcha
	Montante
	Fictícia
	RESERVATÓRIO
	 
	 
	21,2
	0
	21,2
	21,2
	01
	 
	17,51
	0,000
	0,110
	0,110
	0,055
	02
	 
	61,56
	1,143
	0,387
	1,530
	1,336
	03
	 
	191,26
	18,358
	1,202
	19,560
	18,959
	04
	 
	181,85
	0,000
	1,143
	1,143
	0,571
	05
	 
	70,07
	10,061
	0,440
	10,501
	10,281
	06
	 
	21,07
	7,725
	0,132
	7,857
	7,791
	07
	 
	173,48
	0,369
	1,090
	1,459
	0,914
	08
	 
	58,7
	0,000
	0,369
	0,369
	0,184
	09
	 
	65,83
	5,852
	0,414
	6,266
	6,059
	10
	 
	52,9
	4,126
	0,332
	4,458
	4,292
	11
	 
	168,95
	0,332
	1,062
	1,394
	0,863
	12
	 
	52,9
	0,000
	0,332
	0,332
	0,166
	13
	 
	166,83
	0,000
	1,048
	1,048
	0,524
	14
	 
	95,23
	2,479
	0,598
	3,077
	2,778
	15
	 
	177,81
	1,200
	1,117
	2,317
	1,759
	16
	 
	25,67
	0,000
	0,161
	0,161
	0,081
	17
	 
	15,18
	0,000
	0,095
	0,095
	0,048
	18
	 
	203,74
	0,095
	1,280
	1,376
	0,736
	19
	 
	129,91
	1,376
	0,816
	2,192
	1,784
	20
	 
	60
	3,190
	0,377
	3,567
	3,379
	21
	 
	109,09
	0,313
	0,686
	0,999
	0,656
	22
	 
	49,82
	0,000
	0,313
	0,313
	0,157
	23
	 
	19,85
	0,873
	0,125
	0,998
	0,936
	24
	 
	138,99
	0,000
	0,873
	0,873
	0,437
	25
	 
	62,32
	4,566
	0,392
	4,958
	4,762
	26
	 
	27,9
	4,958
	0,175
	5,133
	5,045
	27
	 
	58,05
	0,000
	0,365
	0,365
	0,182
	28
	 
	39,12
	5,498
	0,246
	5,744
	5,621
	29
	 
	69,28
	0,000
	0,435
	0,435
	0,218
	30
	 
	20,59
	6,179
	0,129
	6,308
	6,244
	31
	 
	102,16
	0,000
	0,642
	0,642
	0,321
	32
	 
	55,42
	6,950
	0,348
	7,299
	7,124
	33
	 
	117,16
	0,000
	0,736
	0,736
	0,368
	34
	 
	55,3
	8,035
	0,348
	8,382
	8,209
	35
	 
	88,15
	1,124
	0,554
	1,678
	1,401
	36
	 
	118,15
	0,000
	0,742
	0,742
	0,371
	37
	 
	60,79
	0,000
	0,382
	0,382
	0,191
5.1.1 Diâmetros da canalização
Como já mencionado no item 2.3, com o auxilio da tabela 1, comparando a vazão de montante em cada trecho na condição de ser imediatamente menor que a vazão máxima, em seguida foi verificada velocidade no trecho, que deveria atender a velocidade máxima tabelada, assim pode-se apresentar a seguinte tabela:
Tabela 4 – Diâmetros em rede ramificada
	Trecho N°
	Rua
	Extensão (m)
	Vazão (l/s)
	Diâmetro (mm)
	
	
	
	Fictícia
	
	RESERVATÓRIO
	 
	__
	21,2
	200
	01
	 
	17,51
	0,055
	50
	02
	 
	61,56
	1,336
	75
	03
	 
	191,26
	18,959
	200
	04
	 
	181,85
	0,571
	50
	05
	 
	70,07
	10,281
	150
	06
	 
	21,07
	7,791
	125
	07
	 
	173,48
	0,914
	50
	08
	 
	58,7
	0,184
	50
	09
	 
	65,83
	6,059
	125
	10
	 
	52,9
	4,292
	100
	11
	 
	168,95
	0,863
	50
	12
	 
	52,9
	0,166
	50
	13
	 
	166,83
	0,524
	5014
	 
	95,23
	2,778
	75
	15
	 
	177,81
	1,759
	75
	16
	 
	25,67
	0,081
	50
	17
	 
	15,18
	0,048
	50
	18
	 
	203,74
	0,736
	50
	19
	 
	129,91
	1,784
	75
	20
	 
	60
	3,379
	100
	21
	 
	109,09
	0,656
	50
	22
	 
	49,82
	0,157
	50
	23
	 
	19,85
	0,936
	50
	24
	 
	138,99
	0,437
	50
	25
	 
	62,32
	4,762
	100
	26
	 
	27,9
	5,045
	100
	27
	 
	58,05
	0,182
	50
	28
	 
	39,12
	5,621
	100
	29
	 
	69,28
	0,218
	50
	30
	 
	20,59
	6,244
	125
	31
	 
	102,16
	0,321
	50
	32
	 
	55,42
	7,124
	125
	33
	 
	117,16
	0,368
	50
	34
	 
	55,3
	8,209
	125
	35
	 
	88,15
	1,401
	75
	36
	 
	118,15
	0,371
	50
	37
	 
	60,79
	0,191
	50
5.1.2 Cálculo da perda de carga distribuída
De acordo com as condições de projeto, a canalização será em PVC, assumindo um Coeficiente de Hazen-Williams (C) igual a 150. Pode-se calcular a perda de carga distribuída em cada trecho com o auxilio da seguinte equação:
J = 10,65 x Qf ^ 1,85 
 C^1,85 x D^4,87
∆ H = JxL
Onde,
J = Perda de carga unitária.
Qf = Vazão fictícia
D = Diâmetro
C = Coeficiente de Hazen-Williams
L = Comprimento do trecho.
∆ H = Perda de carga distribuída do trecho.
Podendo assim apresentar a seguinte tabela abaixo:
Tabela 5 – Perda de carga em rede ramificada
	Trecho N°
	Perda Unitária J (m/100m)
	Perda Total H (m)
	
	
	
	RESERVATÓRIO
	0
	0
	01
	5,02E-06
	0,0005018
	02
	0,000895
	0,0895184
	03
	0,003169
	0,3168674
	04
	0,003957
	0,3956853
	05
	0,001519
	0,1518888
	06
	0,000664
	0,0664452
	07
	0,009001
	0,9000924
	08
	0,000158
	0,0157683
	09
	0,001304
	0,1303781
	10
	0,001641
	0,1641067
	11
	0,007888
	0,7887874
	12
	0,000117
	0,0117224
	13
	0,003095
	0,3094912
	14
	0,005363
	0,5362962
	15
	0,004298
	0,4298391
	16
	1,49E-05
	0,0014929
	17
	3,34E-06
	0,000334
	18
	0,007074
	0,7073526
	19
	0,003224
	0,3224303
	20
	0,001196
	0,1195809
	21
	0,003063
	0,3063261
	22
	9,88E-05
	0,0098802
	23
	0,001076
	0,1075893
	24
	0,001839
	0,1839374
	25
	0,002343
	0,2343129
	26
	0,001167
	0,1167439
	27
	0,000153
	0,0152758
	28
	0,001999
	0,1998932
	29
	0,000253
	0,0252871
	30
	0,000431
	0,043108
	31
	0,000765
	0,0764923
	32
	0,001481
	0,1481153
	33
	0,00113
	0,1130286
	34
	0,001921
	0,1920729
	35
	0,0014
	0,1400066
	36
	0,001158
	0,1157719
	37
	0,000174
	0,0174216
5.1.3 Cálculo das cotas piezométricas e de pressão.
Considerando que o trecho mais crítico é o Trecho 33, por ser o trecho que possui cota de terreno mais alto, considera-se que a carga de pressão neste ponto deverá ser 15 m.c.a. (pressão dinâmica mínima), assim calcula-se a cota piezométrica de jusante deste trecho com o auxílio da seguinte fórmula:
Cp = Cg + Cpres. (4.1.3)
Onde,
Cp = Cota piezométrica.
Cg = Cota geométrica.
Cpres = Carga de pressão.
Partindo da cota piezométrica do ponto de jusante do trecho mais desfavorável, determina-se a cota piezométrica do ponto de montante somando-se a perda de carga do trecho, e assim sucessivamente em todos dos outros trechos. A carga de pressão nos demais trechos pode ser calculada utilizando a equação 4.1.3.
Tabela 6 – Cotas geométricas, piezométricas e de pressão - Ramificada.
	Trecho N°
	Cota do Terreno (m)
	Cota Piezométrica (m)
	Pressão Disponível (mca)
	
	Montante
	Jusante
	Montante
	Jusante
	Montante
	Jusante
	RESERVATORIO
	740
	740
	756,77
	756,77
	16,77
	16,77
	01
	740
	740
	756,77
	756,77
	16,77
	16,77
	02
	740
	741
	756,77
	756,68
	16,77
	15,68
	03
	740
	733
	756,77
	756,46
	16,77
	23,46
	04
	741
	735
	756,68
	756,29
	15,68
	21,29
	05
	733
	735
	756,46
	756,31
	23,46
	21,31
	06
	733
	733
	756,46
	756,39
	23,46
	23,39
	07
	733
	732
	756,39
	755,49
	23,39
	23,49
	08
	732
	729
	755,49
	755,47
	23,49
	26,47
	09
	733
	728
	756,39
	756,26
	23,39
	28,26
	10
	728
	724
	756,26
	756,10
	28,26
	32,10
	11
	728
	729
	756,26
	755,47
	28,26
	26,47
	12
	729
	727
	755,47
	755,46
	26,47
	28,46
	13
	724
	727
	756,10
	755,79
	32,10
	28,79
	14
	724
	717
	756,10
	755,56
	32,10
	38,56
	15
	717
	721
	755,56
	755,13
	38,56
	34,13
	16
	717
	715
	755,56
	755,56
	38,56
	40,56
	17
	715
	715
	754,22
	754,22
	39,22
	39,22
	18
	732
	715
	754,93
	754,22
	22,93
	39,22
	19
	732
	732
	755,25
	754,93
	23,25
	22,93
	20
	730
	732
	755,37
	755,25
	25,37
	23,25
	21
	730
	730
	755,37
	755,06
	25,37
	25,06
	22
	730
	733
	755,06
	755,05
	25,06
	22,05
	23
	732
	730
	755,25
	755,14
	23,25
	25,14
	24
	730
	734
	755,14
	754,96
	25,14
	20,96
	25
	733
	730
	755,61
	755,37
	22,61
	25,37
	26
	733
	733
	755,72
	755,61
	22,72
	22,61
	27
	733
	736
	755,72
	755,71
	22,72
	19,71
	28
	733
	733
	755,92
	755,72
	22,92
	22,72
	29
	733
	730
	755,92
	755,90
	22,92
	25,90
	30
	733
	733
	755,96
	755,92
	22,96
	22,92
	31
	733
	738
	755,96
	755,89
	22,96
	17,89
	32
	733
	733
	756,11
	755,96
	23,11
	22,96
	33
	733
	741
	756,11
	756,00
	23,11
	15,00
	34
	735
	733
	756,31
	756,11
	21,31
	23,11
	35
	735
	733
	756,31
	756,17
	21,31
	23,17
	36
	733
	727
	756,17
	756,05
	23,17
	29,05
	37
	733
	732
	756,17
	756,15
	23,17
	24,15
Observando as colunas de carga de pressão verifica-se que não há valores de carga de pressão abaixo de 15 m.c.a, o que significa dizer que as pressões na rede esta dentro limite aceitável, pressão estática máxima de 50 m.c.a., e a pressão dinâmica mínima de 15 m.c.a. 
5.2 Rede Malhada 
A rede foi dividida em 03 (três) anéis conforme figura 5. 
 Figura 5 – Anéis para dimensionamento pelo método Hardy-Croos
5.2.1 Método do Hardy Cross
Para o cálculo dos anéis adotou-se o método de Hardy-Cross, já descrito no item 2.2. Como já conhecíamos a vazão de entrada e de saída em cada trecho dos anéis, calculadas através do método do seccionamento, foi feito o balanço da distribuição dessa vazão através do anel, obedecendo ao critério de que a vazão que entra em cada nó tem que ser igual à vazão que sai. Em cada trecho foi encontrado o consumo e com este foi então calculada a vazão de montante, jusante e fictícia. Em seguida encontramos os respectivos diâmetros, obedecendo à tabela 1, para daí então, calcular as perdas de carga em cada trecho. Foi feito o somatório de perdas de carga em todo o anel seguindo uma trajetória no sentido horário e obedecendo ao critério de que as perdas de carga no mesmo sentido da vazão serão positivas e no sentido contrario à vazão, estas perdas de cargas serão negativas, esse somatório no entanto não foi igual a zero, condição de que o sistema não está equilibrado e necessita-se fazer uma nova distribuição de vazão. Foi então calculado um ∆Q através da equação apresentada no item 2.3.2, e esse então foi adicionado em um sentido de distribuição de vazão e subtraído no outro sentido, fazendo assim uma nova distribuição ao longo do anel. Feito isso, novamente foi calculada as novas perdas de cargas, e o novo ∆Q, e o processo foi repetido até que esse ∆Q fosse menor que 0,1 l/s, condição para que o balanço de vazões no anel esteja equilibrado.
 
Para cada anel, nos trechos comuns com outros anéis (aqui é o trecho L3 e L17) a correção de vazão em cada interação será a diferença entre a correção do anel percorrido e calculado para o trecho comum. A correção no trecho L3 é ∆I - ∆II e no trecho L17 ∆II - ∆III . Isto significa que se tivermos "n" anéis em dimensionamento, cada correção só poderá ser efetuada após o cálculode todas as correções da mesma interação, ou seja, nas "n planilhas simultaneamente".
Observamos que com a primeira interação já alcançamos os limites no "anel I", sendo ∑hf = -0,2126 < 1,00m e ∆Qo = 0,08501 < 0,50 l/s, no “anel III” temos ∑hf = -0,09199 < 1,00m e ∆Qo = -0,07562 < 0,50 l/s, mas como no "anel II" a somatória das perdas ainda é superior ao limite estipulado, ∑hf = 1,36715 > 1,00m, bem como ∆Q = 0,670384 > 0,50, temos que calcular mais uma interação para todos os anéis.
Tabela 7 – Método de Hardy-Cross Interações 
5.2.2 Diâmetros das canalizações
De forma análoga ao item 4.1 os diâmetros foram obtidos através das vazões Q e Vmáx. O sinal (-) negativo, representa o sentido do fluxo das vazões. 
Tabela 8 – Diâmetros
5.2.3 Cotas piezométricas e de pressão
De maneira análoga ao cálculo das cotas piezométricas e das pressões na rede ramificadas item 5.1.3, procede-se da mesma forma, obtendo as cotas abaixo. 
Como o equilíbrio da rede deve ser conjunta, ou seja a rede ramificada e malhada devem atender os requisitos de pressão máxima e mínima, em ambos a pressão dinâmica mínima não deverá ser abaixo de 15m.c.a. 
Tabela 9 – Pressão disponível em cada trecho
5.3 Nível de Água Mínimo requerido para o Reservatório Elevado. 
Para o trecho inicial, que conecta os trechos 01, 02 e 03 ao reservatório temos:
Tabela 10 – Trecho inicial
Como esse trecho é utilizado apenas para conduzir água até os trechos 01, 02 e 03, ou seja, não há consumo, a vazão nele será constante, a extensão será desprezível em relação a rede, o seu diâmetro foi encontrado como no item 5.1.1. Calculamos a velocidade e também a perda de carga neste trecho.
Tabela 11 – Trecho inicial – Cotas 
O nível de água mínimo no reservatório para atender as condições da rede, deverá ser a cota piezométrica de montante, ou seja, 756,77 m.
O reservatório está localizado na cota 740,00 m, a pressão no reservatório mínima = 756,77 – 740, 00 =16,77 m.c.a. 
Cota Piezométrica Rede Ramificada 
O ponto mais baixo da rede está na jusante do trecho 17, nesse trecho esta localizada a maior pressão, igual 39,22 m.c.a, Para obtermos o NA máxima, temos que;
X = 50 m.c.a – 39,22 m.c.a = 10,78m
Portanto os níveis de água em relação à cota do terreno são:
NA máx = 756,77 + 10,78 -740 = 27,55 m
NA min = 756,77 – 740 = 16,77 m
Cota do terreno = 740 m
Cota Piezométrica Rede Malhada
Após as correções e ajustes dos diâmetros nos anéis, o trecho onde esta localizada o valor de maior pressão passou a ser a jusante do L15, sendo igual a 43,9 m.c.a, Para obtermos o NA máxima, temos que;
X = 50 m.c.a – 43,9 m.c.a = 6,1m
Portanto os níveis de água em relação à cota do terreno são:
NA máx = 756,00 + 6,10 -740 = 22,10 m
NA min = 756,00 – 740 = 16,00 m
Cota do terreno = 740 m
Comparando os resultados das pressões obtidos pela rede seccionada e pela rede malhada, vemos que houve nos seus valores houve uma diferença significante. Essa diferença comprova que o método Hardy-Cross é mais eficaz para dimensionamento de redes.
	
7. DIMENSIONAMENTO DO RESERVATÓRIO PARA ABASTECIMENTO DA REDE.
Os reservatórios de distribuição são dimensionados para satisfazer as condições seguintes:
Funcionar como volantes da distribuição atendendo a variação horária do consumo.
Assegurar uma reserva de água para combate a incêndio.
Manter uma reserva para atender a condições de emergência (acidentes, reparos nas instalações etc.) 
 Atender a demanda no caso de interrupção de energia elétrica (sistemas com recalques)
Manutenção de pressões na rede distribuidora.
Assim considerou-se a capacidade do reservatório de 1/5 do volume consumido em 24 horas.
*PERÍODO DE ARMAZENAMENTO - 1 DIA
*POPULAÇÃO PREVISTA – 4.800 PESSOAS
*CONSUMO/DIA = K1 x q x P = 1,2 x 201,2 x 4.800 = 1 158 912 L/d 
*QUANTIDADE DE ÁGUA FLUTUANTE = 1/5 X 1 158 912 = 231 782,4 L 
 = 231,78 M³
*COMBATE A INCÊNDIO = 250 M³
*RESERVA ADICIONAL = 33% X (231,78 + 250) = 158,98 M³ 
*VOLUME DO RESERVATÓRIO = (231,78 + 250 + 158,98) = 640,76 M³
SISTEMA DE RECALQUE
- PARTE 2 –
8.0 INTRODUÇÃO
Na maioria das distribuições e transporte das águas se dão por gravidade, onde se aproveita a energia potencial com intuito de abastecimento de uma rede qualquer. Em muitos casos, não há disponibilidade de cotas topográficas, sendo necessário transferir energia para o líquido através de um sistema eletromecânico.
Um sistema de recalque ou elevatório é o conjunto de tubulações, acessórios, bombas e motores necessário para transportar uma certa vazão de água ou qualquer outro líquido de um reservatório inferior, para um reservatório superior. Nos casos mais comuns de sistemas de abastecimento de água, ambos os reservatórios estão abertos para a atmosfera e com níveis constantes, o que permite tratar o escoamento como permanente.
Um sistema de recalque é composto, em geral, três partes:
Tubulação de sucção, que é constituída pela canalização que liga o reservatório inferior a bomba, Incluindo os acessórios necessários, como válvula de pé com crivo, registro, curvas, redução excêntrica etc.
Conjunto elevatório, que é constituído por uma ou mais bombas respectivos motores elétricos ou a combustão interna.
Tubulação de recalque, que é constituído pela canalização que liga a bomba ao reservatório superior, incluindo registros, válvula de retenção, manômetros, curvas e equipamentos para o controle de afeitos do golpe de aríete.
A instalação de uma bomba em um sistema de recalque pode ser feita de duas formas distintas:
Bomba afogada, quando a cota de instalação do eixo da bomba está abaixo da cota do nível d’água no reservatório inferior.
 
Bomba não afogada, quando a cota de instalação do eixo da bomba está acima da cota do nível d’água no reservatório inferior.
Muitas vezes, como em projetos de abastecimento urbano, a vazão no final do plano, quando a população atingir o limite de projeto, é maior que a vazão no inicio de plano. Portanto haverá ao longo dos anos um acréscimo de demanda e seria antieconômico dimensionar a bomba para a situação de vazão máxima. Nesta e em outras aplicações, recorre-se associação de duas ou mais bombas em série ou em paralelo. 
 
Duas bombas são colocadas em série quando se quer recalcar uma mesma vazão, para uma altura manométrica maior. 
Duas bombas são colocadas em paralelo, quando se quer aumentar a vazão em um sistema.
8. CÁLCULO DO SISTEMA DE RECALQUE 
8.1 Dados do projeto:
Tabela 13 – condições para dimensionamento do sistema de recalque. 
	CONDIÇÕES DE PROJETO
	Vazão de adução Q (m³/s)
	0,0212
	Cota nível Rio: Z (m)
	716,00
	Cota nível reservatório: Z2 (m)
	756,00
	Cota nível Superfície Rio: Z1 (m)
	715,00
	Altura Geométrica: Hg (m)
	41,00
8.1.1 Vazão de adução
Como já calculado na parte 1, a vazão de adução, ou seja, a vazão que a bomba deverá mandar para o reservatório será :
Qd = P x q x K1 x K2 
 3600 x h
Onde,
Qd = 4.800 x 200 x 1,2 x 1,5=> Qd = 20 l/s + 1,2 l/s (vazão consumida pelo bairro. Irundiara) 
 3600 x 24
Qd = 21,2 l/s
8.1.2 Diâmetro de recalque e sucção
Para dimensionamento do diâmetro de recalque nos baseamos na fórmula de Bress.
D(m) = K √Q (m³/s)
Onde:
D = Diâmetro dado em metros
K= Uma constante que depende, entre outras coisas, do custo de material, mão-de-obra, etc. Essa constante varia entre 0,7 a 1,3.
Q= Vazão de recalque, expresso (m³/s).
 Considerando que o sistema de recalque funcionara 24 horas por dia pode-se calcular o diâmetro pela seguinte equação de acordo com a NBR-5626, pode-se usar a seguinte fórmula:
D(m) = 1,3 4√X √Q(m³/s)Em que X é a fração do dia, isto é, o número de horas de funcionamento do sistema dividido por 24. Em que qualquer caso, o diâmetro encontrado deve ser aproximado para diâmetro comercial mais conveniente. 
Temos:
D(m) = 1,3 4√X √Q(m³/s)
D(m) = 1,3 4√24 √0,0212(m³/s)
24
D(m) = 1,3 4√1 √0,0212(m³/s)
D(m) = 0,190 
Para um diâmetro comercial temos: 200 mm.
O diâmetro da canalização se sucção deve ser imediatamente superior ao diâmetro de recalque, neste caso equivale a 250 mm.
8.1.3 Altura Total de elevação e Altura Manométrica
Sabemos que o reservatório encontra-se na cota de terreno (curva de nível) 740 m, e rio da onde será retirado a água, na cota de 716 m, a diferença entre o nível do eixo da bomba e a superfície livre do rio é de 1,00 m, a altura manométrica de sucção, ou seja, a carga de pressão relativa disponível na saída da bomba, em relação ao plano horizontal de cota do eixo da bomba, esse valor será igual (Hs = Z + Hs ), onde Hs perda de carga total na tubulação de sucção.
- Cáculo da perda de carga distribuída e localizada.
Material da canalização da adutora será em Ferro Fundido:
Tabela 14 – Informações das canalizações
	Informações das canalizações
	Coeficiente de Hazen-Willians
	130
	Comprimento da canalização de Recalque(m)
	347,00
	Comprimento da canalização de Sucção(m)
	3,00
	Comprimento da canalização Total (m)
	350,00
	Diâmetro de Recalque (m)
	0,250
	Diâmetro de Sucção (m)
	0,200
Perda de carga para o recalque
- Perdas distribuídas pela equação de Hazem-William.
ΔHr = (10,643 x Q^1,85 x L) = 
 (C^1,85 x D^4,87)
ΔHr = (10,643 x 0,0212^1,85 x 347,00) = 0,31 m
 (130^1,85 x 0,25^4,87)
- Perdas localizadas 
Tabela 15 – Acessórios do Recalque
	Coeficiente de perda de carga localizada
	K
	02 Curvas 90 graus raio longo
	0,9
	01 Registro de gavetas
	0,5
	01 válvula de retenção tipo pesada
	3
V= Q = 0,0212 x 4 => V=0,432 m/s
 A (π . 0,25²)
Hs loc. = k V²
 2g
 
Hs = ((2x0,9) + 0,5 + 0,3) x 0,432² = 0,0212 m
 2 x 9,81
 
Perda Total no Recalque
ΔHs = hdist. + hloc. =0,31 + 0,0604
ΔHs = 0,312 m
Perda de carga para de Sucção
Perdas distribuídas pela equação de Hazem-william.
ΔHr = (10,643 x Q^1,85 x L) = 
 (C^1,85 x D^4,87)
ΔHr = (10,643 x 0,0212^1,85 x 3,00) = 0,02 m
 (130^1,85 x 0,20^4,87)
- Perda Localizada
Na sucção temos:
Tabela 3 – Acessórios
	Coeficiente de perda de carga localizada
	Válvula de pé com crivo
	10
	Curva de 90° raio longo
	0,6
	Válvula de ângulo aberta
	5
V= Q = 0,0212 x 4 => V=0,675 m/s
 A (π . 0,20²)
Hs loc. = k V²
 2g
 
Hs = (10 + 0,6 + 5) x 0,675² = 0,36m
 2 x 9,81
Perda Total Na Sucção
ΔHs = hdist. + hloc. =0,02 + 0,36
ΔHs = 0,38 m
- Altura Total de Elevação
A altura total de elevação, ou seja, altura manométrica total, é a altura geométrica mais o valor das perdas de cargas na sucção e no recalque do sistema.
H = Hg + H
H = Hg + H = 41 + 0,312 + 0,38
H = 41,692 m Para a cota NA min
H = Hg + H = 47,1 + 0,312 + 0,38
H = 47,792 m Para a cota NA máx
8.1.4 Escolha do Conjunto Motor-Bomba para o Sistema
A partir dos dados acima, obtivemos a vazão e altura manométrica que a bomba deverá recalcar para o reservatório que abastecerá a rede da cidade. O ponto de trabalho da bomba para que a pressão na rede seja mínima, deverá ser (76,32 m³/h ; 40,69m.
Com o mosaico de utilização das bombas KBS – Meganorm (em anexo), para n= 1750 rpm , traçamos o ponto de trabalho e selecionamos a bomba KSB- Merganorm 65-315.
- Curva Característica da Bomba 
Figura 6 – Curva característica bombas KBS – Meganorm, para n= 1750 rpm
Para o ponto de funcionamento (76,32 m³/h ; 40,68m), na figura 6 , uma bomba com o diâmetro do rotor igual a 308 e n (rendimento) aproximadamente 62 %. 
Se o ponto cair entre duas curvas, deve-se adotar o rotor de diâmetro maior e verificar, traçando-se a curva característica do sistema de tubulações, o novo ponto de funcionamento que terá vazão e altura de elevação ligeiramente maior que as iniciais.
- Curva Característica da Instalação 
Figura 7 – Curva característica do sistema 
A curva traçado do sistema, obedecendo a seguinte equação:
H = Hg + H
Onde;
H - Altura manométrica do sistema
Hg - Altura Geométrica
H - Perdas de cara do sistema
Então temos que:
H = 41 + 397,6 x Q ^1,85 + 861,48 x Q^2
Com base no gráfico, observamos que com a curva do sistema, haverá um novo ponto de trabalho para a bomba (90 m³/h; 42 m), onde a vazão será maior e altura aumentaram ligeiramente maiores do que as iniciais, o rendimento passa a ser n = 61%.
A vazão que chegará no reservatório poderá ser regulada pelo registro de gaveta existentes na tubulação de recalque do sistema.
- Curva Característica da Instalação com Duas Bombas em Paralelo
 
Figura 8 – Curva associação das bombas em paralelo
A adição de duas ou mais bombas em paralelo é útil nos sistemas em que se requer vazões variáveis. As bombas ajustam suas vazões de tal maneira que mantém constante as diferenças de pressão entre os pontos dos reservatórios. Essas bombas devem fornecer alturas praticamente iguais.
Em geral em um sistema de recalque, coloca-se uma bomba em paralelo com intuito de que quando haja uma manutenção em uma das bombas, a outra fique em funcionamento para que a rede não fique sem abastecimento.
- Potência do Conjunto Elevatório 
Pot = 9,8 x Q x H (KW)
 n 
Pot = 9,8 x 0,03 m³/s x 42 m (KW)
 0,61
Pot = 20,25 Kw = 27,16 Hp
O motor deve ter uma potência elétrica superior à absorvida pela bomba, cujo acréscimo, em relação à potência da bomba, depende do tipo e tamanho desta. Os acréscimos na potencia da bomba, recomendados, são dados na tabela abaixo.
	Potência da Bomba
	Acréscimo
	Até 2 Hp
	50%
	2 a 5 Hp
	30%
	5 a 10 Hp
	20%
	10 a 20 Hp
	15%
	Maior que 20 Hp
	10%
Portanto, o motor elétrico recomendável, no caso, deverá ter uma potência de:
Pot = 27,16 Hp x 1,10 = 29,89 Hp
Não muito diferente do motor elétrico comercial de 30 Hp.
- Rotação Específica 
Ns = 3,65 n √Q(m³/s)
 H^3/4(m)
Ns = 3,65 x 1750 x √0,03
 42^3/4(m)
Ns = 67,05 rad
Como o valor de Ns < 90, trata-se de uma bomba Radial centrífuga lenta.
- NPHS ( Net Positive Suction Head ) Disponível
O NPSH é uma característica de instalação, definida como a energia que o líquido possui em um ponto imediatamente antes do flange de sucção da bomba acima de sua pressão de vapor. É a disponibilidade de energia que faz com que o liquido consiga alcançar as pás do rotor.
 
NPSH = Pa-Pv - Z - Hs
 y
Onde:
 Pa - Pressão atmosférica,na qual varia com a altitude e condições climáticas, para lugares 
 y acima do nível do mar e até 2000 m, pode-se estimar pela equação 1.0
Pv - Pressão vapor
 y
Z - É a diferença de cota entre o eixo da bomba e a superfície livre do rio
Equação 1 .0
 Pa = 9,55 (mH20) 
 y
Pv = 0,32 é em função da temperatura de 25º C
 y
Temos;
NPSH = Pa-Pv - Z - Hs
 y
NPSH = 9,55 - 0,32 - 1 - 0,38
NPSH = 7,85 m
- NPHS ( Net Positive Suction Head ) Requerido 
É uma característica da bomba, fornecida pelo fabricante. definida como a energia requerida pelo líquido para chegar, a partir do flange de sucção e vencendo as perdas de carga dentro da bomba, ao ponto onde ganhará energia e será recalcado.Figura 9 – Curva NPSH Requerido da Bomba
Para a vazão recalcada pela bomba, Q= 90 m³/h, o NPSH requerido é igual a 2,5 m
- Cavitação
Quando um líquido em escoamento, em uma determinada temperatura passa por uma região de baixa pressão, chegando a atingir o nível correspondente a sua pressão de vapor, naquela temperatura, forma-se bolhas de vapor que provocam de imediato uma diminuição da massa especifica do liquido, estas bolhas ou cavidades sendo arrastadas no seio do escoamento atingem regiões em que a pressão reinante é maior que a pressão existente na região onde elas se formam. Esta brusca variação de pressão provoca o colapso das bolhas por um processo de implosão. Este processo de criação e colapso das bolhas, chamado de cavitação. é extremamente rápido, chegando a ordem de centésimo de segundo.
A cavitação, uma vez estabelecida em uma instalação de recalque, acarreta queda de rendimento da bomba. ruídos, vibrações e erosão. o que pode levar até o colapso do equipamento. A cavitação provoca desgaste excessivo no rotores da bomba, exigindo manutenção periódica e dispendiosa. Algumas vezes o problema fica difícil de ser sanado, pois exigiria profundas alterações na montagem, como, por exemplo, o rebaixamento da cota de instalação da bomba, diminuindo a altura estática de sucção.
No caso, para os parâmetros do sistema aqui apresentado, o NPHS disponível > NPSH requerido. A folga entre os dois para a vazão de 90m³/h é de 5,35m, para essa faixa de segurança não ocorrerá cavitação, pois para efeito pratico a folga entres o NPSH d e NPSH r é de 0,50m para a vazão recalcada.
10. Conclusão
O projeto e dados aqui apresentados, estão de acordo com as necessidades e características da rede. Dos métodos empregado para dimensionamento das tubulações da rede, ficou comprovado que o Hardy - Cross é mais preciso, pois nele é possível corrigir, vazões, pressões e diâmetros na rede, no qual o seccionamento fictício é mais propicio a erros, por trabalhar com uma vazão fictícia.
No dimensionamento do sistema de recalque, observou-se que todos os parâmetros imposto pelas características da localidade, não foram desfavoráveis, pois a escolha e dimensionamento do sistema foi a atendido, bem como o NPSH disponível foi favorável, evitando assim, o fenômeno de cavitação na bomba. 
10. REFERÊNCIAS BIBLIOGRÁFICAS
PORTO, Rodrigo M.; HIDRÁULICA BÁSICA. São Paulo, EESC-USP, 4ª Edição, 2006.
NBR 12218 NB 594 - - Projeto de rede de distribuição de água para abastecimento público, julho 1994. 
Manual de Curvas Características - KSB 
Manual de Hidráulica Azevedo Netto, 8ª Edição, 1998. 	 	
11. Anexo
Figura 9 -Mosaico de utilização de bombas centrifugas, KSB - MEGANORM, para n = 1750 rpm
� EMBED opendocument.CalcDocument.1 ���
�PAGE �
�PAGE �34�
�
_138542536.unknown

Outros materiais