Buscar

Apostila de Noções de Hidráulica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 82 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 82 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 82 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1
Apostila: Noções de Hidráulica 
 
 
Carga horária Mínima 40 horas 
Conteúdo 
1 . Fundamentos Físicos da Hidráulica 
1.1 – Massa, Força e Pressão 
1.2 - Lei de Pascal 
1.3 - Pressão Hidrostática 
1.4 - Equação d Bernoulli 
1.5 – Vazão e Velocidade 
1.5.1 - Equação da continuidade 
1.5.2 – Tipos de Escoamento 
1.5.3 – Perdas de Carga 
 
2 - Hidráulica 
2.1 - Introdução 
2.2 BOMBAS HIDRÁULICAS 
2.2.1. Princípios de Funcionamento 
2.2.2. Desempenho das Bombas 
2.2.3. Classificação das Bombas 
2.3 - Cilindros Hidráulicos 
2.4 - Motores Hidráulicos 
2.4.1- Introdução 
2.4.2 - Aplicação 
2.4.3 - Propriedades 
2.5 - Válvulas 
2.5.1 – Válvulas controladoras de pressão 
2.5.2 – Válvulas controladoras de Vazão 
2.5.2.1 - Métodos de controle da vazão 
2.5.3 – Válvulas de bloqueio 
2.5.4 – Válvulas de Controle Direcional 
2.5.4.1 - Classificação 
2.6 - ACUMULADORES HIDRÁULICOS 
2.6.1 – Acumulador tipo bexiga 
2.6.2 - Aplicação 
2.7 - TUBULAÇÕES E CONEXÕES 
2.7.1 - Canos de Aço 
2.7.2 - Tubos de Aço 
2.7.3 - Mangueiras flexíveis 
2.7.4 – Conexões 
 
CAPÍTULO 03 – NOÇOES DE MANUTENÇÃO HIDRÁULICA 
3.1 - O ÓLEO COMO FLUIDO HIDRÁULICO 
3.1.1 - Principais funções do fluido hidráulico 
3.1.2. - Principais propriedades do óleo hidráulico 
3.1.3 – Aditivos 
3.1.4 – Cuidados no uso do óleo hidráulico 
3.2 – Contaminação do Óleo X Manutenção 
3.2.1 – Cuidados com o Fluido Hidráulico 
 2
3.3 – Filtros Hidráulicos 
3.3.1 - Contaminação 
3.3.2 - Dimensões de tolerância em componentes hidráulicos 
3.3.3- Composição dos elementos filtrantes 
3.3.4 - Fator 
3.3.5- Tipos construtivos de filtro 
3.3.6 - Reservatórios 
3.4 - Como evitar a contaminação 
3.5 – Cuidados com os elementos filtrantes 
3.6 – Cuidados com as bombas 
 
CAPÍTULO 4 – Noções de Elementos Lógicos 
4.1. Tipos Construtivos 
4.2. Função Direcional 
4.3. Função Limitadora de Pressão 
4.4. Função Redutora de Pressão 
4.5. Função Controle de Vazão 
 
Prof. Dario Magno Batista Ferreira
 3
CAPÍTULO 1 – FUNDAMENTOS DA HIDRAÚLICA 
 
1.1 - MASSA, PRESSÃO E FORÇA 
 
Deve-se lembrar que massa é quantidade de matéria, e que ela é invariável, ou seja, não 
importa onde se esteja, a massa de um corpo é constante. A aceleração da gravidade é que 
pode mudar de acordo com o local. Para a hidráulica, as unidades de massa são Kg 
(kilograma) e Lbm (libra-massa) 
Segundo a Terceira Lei de Newton, 
F=ma Eq. 01 
A Terra exerce sobre os corpos uma força denominda peso P, por causa da aceleração da 
gravidade. 
Assim 
p=mg Eq. 02 
Onde g é a aceleração da gravidade dada em m/s2, m é a massa dada em kg e o peso p 
dado em N (Newton). Entretanto, a força de 1kgf é a força que a Terra exerce sobre um 
corpo de massa 1kg. Assim 
1kgf=1kg*9,8m/s2 ou 1kgf=9,8*1kg*m/s2 ou 1kgf=9,8N 
Na hidráulica as unidades de força mais usuais são kgf (kilograma-força) ou lbf (libra-força) 
A pressão, por sua vez, é a força exercida pelo fluido sobre uma certa área, ou seja, 
A
FP Eq. 03 
onde a área A pode ser dada em m2, cm2 ou in2 (polegada ao quadrado) 
Deste modo, as unidades de pressão, mais usuais, são: Pascal (PA=N/m2), Bar (10N/cm2), 
PSI ou Lbf/pol2 (ou simplesmente Libra). Não é muito usual a unidade de pressão em Pascal 
na hidráulica. 
 Pa mbar bar kgf/cm2 lbf/pol2 ou psi pé H2O 
 
m H2O 
 
Pa 1 10-2 10-5 1,01.10-5 1,45.10-4 3,3.10-4 1,01.10-4 
Mbar 102 1 10-3 1,01.10-3 0,0145 0,033 0,0102 
Bar 105 103 1 1,02 14,5 33,455 10,2 
kgf/cm2 98067 980,7 0,981 1 14,22 32,808 10,0 
lbf/pol2 ou psi 6895 68,95 0,069 0,0703 1 2,307 0,703 
pé H2O 
 
2989 29,89 0,03 0,0305 0,433 1 0,305 
m H2O 
 
9807 98,07 0,098 0,1 1,42 3,28 1 
 4
 
Em resumo, as unidades de pressão, usadas na Hidráulica, relacionam-se segundo os 
fatores de conversão abaixo: 
1atm= 1,013 Bar 1bar=1,02 kgf/cm2 
1kgf/cm2=14,22PSI 1bar=14,5PSI 
Outros fatores de conversão que podem ser úteis: 
Área 1 ft2 (pé2)= 144 in2 (pol2)= 929 cm2 ; 1 m2 = 10,76 ft2 = 104 cm2 
Massa 1 Kg = 2,2046 lb (libra massa) 
Força 1kgf = 2,2046lbf (libra força) = 9,8066N 
 
Como o êmbolo do cilindro possui seção circular, sua área é: 
2
2
2 7854,0
4
ddRA Eq. 04 
Exemplo: Qual a pressão exercida por uma carga de peso 100kgf, sobre uma superfície de 
32mm de diâmetro? (obs.: 32mm=3,2cm) 
1) Cálculo da área: A = 0,7854*3,2cm2 = 0,7854 * (10,24) A = 8,04 cm2 
2) Cálculo da Pressão P = F/A = 100/8,04 P= 12,4 kgf/cm2 ou P = 12,4bar 
 
Nota: na indústria, a unidade de medida para especificação de equipamentos é o milímetro. 
Outra observação importante que se deve fazer é quanto ao caminho percorrido pelo óleo. 
Ou seja, um comportamento intrínseco aos fluidos, é que eles percorrem os caminhos que 
oferecem menor resistência. Sendo assim, há duas possibilidades de fluxo para os líquidos 
em tubulações que são o fluxo paralelo e o fluxo em série. 
 
 
Figura 01 - Fluxo paralelo 
 
No caso da figura 01, o óleo naturalmente fluirá para a válvula que oferece menor 
resistência de abertura. Por outro lado, caso ela seja bloqueada, o óleo fluirá pela válvula 
que oferece uma resistência de 140bar para abrir. 
 5
 
Figura 02 - Fluxo em série 
 
No caso da figura 02, como o fluxo é em série, a pressão na saída da bomba será o 
somatório de pressões dos elementos que oferecem resistência ao fluxo à sua frente. Como 
são consideradas apenas três válvulas criando resistência ao fluxo, portanto, a pressão no 
manômetro próximo à bomba acusará uma pressão de 180Bar. 
 
Exercícios 
1) Calcular a área de um êmbolo cujo diâmetro é de 200mm 
 
 
2) Calcular a área de um êmbolo do lado da haste, sabendo-se que possui um diâmetro 
medido igual a 18cm e o raio da haste é de 6cm. 
 
 
3) Sabendo-se que a área do êmbolo é de 200cm2 e que a força ou carga a ser deslocada é 
de 8000kgf, determine a pressão necessária de trabalho. 
 
 
 
4) Necessitando-se elevar uma carga de 20 toneladas e sabendo-se que o sistema 
hidráulico é capaz de trabalhar folgadamente a 50kgf/cm2, pergunta-se: qual o diâmetro 
interno deverá ter o cilindro, para realizar o trabalho? 
 
 
 6
5) Que carga pode elevar um cilindro se a pressão de trabalho é 30bar e o diâmetro de seu 
êmbolo é de 40mm? 
 
 
 
 
6) Determine as pressões nos manômetros do circuito abaixo, supondo: 
a) registro III fechado e os outros abertos; 
PA= _____ PB= _____ PC= _____ PD= _____ PF= _____ PG= _____ PH= _____ 
b) registros I e III abertos e o II fechado; 
PA= _____ PB= _____ PC= _____ PD= _____ PF= _____ PG= _____ PH= _____ 
c) registros II e III abertos e o I fechado. 
PA= _____ PB= _____ PC= _____ PD= _____ PF= _____ PG= _____ PH= _____ 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.2 - LEI DE PASCAL 
 
A lei de Pascal é o “Princípio Fundamento da Hidráulica”. Ela diz que a pressão sobre um 
líquido confinado a um recipiente fechado se reparte igualmente em todas as direções 
dentro da massa fluida. Ela age perpendicularmente às paredes do recipiente, como mostra 
a figura abaixo. 
 
Figura 03- Princípio de Pascal 
Esta Lei foi enunciada pelo cientista francês Blaise Pascal, no século XVII. Somente dois 
séculos mais tarde o cientista inglês Joseph Bramah construiu a primeira prensa hidráulica, 
como mostra a figura abaixo 
 7
 
Figura 04 – prensa hidráulica 
Exercícios 
Nota: para resolver os problemas abaixo é preciso entender como os mecanismos funcionam. 
7) Baseando-se na Lei de pascal, calcule F2, sabendo que F1=30kgf,A1=10cm2 e A2=60cm2 
 
8) Calcule P2, sabendo que P1=30bar, A1=50cm2 e A2=10cm2 
 
9) Quais as vantagens das máquinas acima? Qual o “preço” que se paga pelo benefício que 
elas proporcionam? 
 
1.3 - PRESSÃO HIDROSTÁTICA 
 
A Terra encontra-se envolta por uma camada de ar, composta de oxigênio, nitrogênio e 
gases raros. A essa camada dá-se o nome de atmosfera. Essa camada possui peso 
determinado, e a partir disso, ao nível do mar (nível zero) ficou convencionado dizer-se que 
aí a pressão exercida pela coluna de ar é de uma atmosfera (1atm). 
Se a coluna de ar exerce uma pressão sobre a superfície terrestre, então, a coluna de um 
fluido em um recipiente exercerá pressões que variará com a altura da coluna, ou seja, 
 
gh
A
gAh
A
gV
A
FP Eq. 05 
neste caso, a força F é igual ao peso do fluido, que é proporcional ao seu volume; é 
massa específica do fluido, que pode ser dada em kg/m3, quando se usa o SI. 
 8
 
 
 
 
 
 
 
 
Figura 05 – tomadas de pressão em um recipiente 
Neste caso, P1 < P2 < P3, por causa da coluna de líquido. 
Entretanto deve-se observar que o manômetro não mede a pressão atmosférica. O aparelho 
que consegue medi-la é o barômetro. 
Assim, 
Pb=Pm + 1atm Eq. 06 
 
Onde 
Pb é a pressão barométrica ou absoluta 
Pm é a pressão manométrica ou relativa. 
Normalmente, em circuitos hidráulicos, o reservatório de óleo (ou tanque) está sujeito à 
pressão atmosférica, pois possui respiros e filtros de ar, deixando-o exposto à pressão 
atmosfera. Alguns podem ser pressurizados. 
 
1.4 - EQUAÇÃO DE BERNOULLI 
 
Para um fluido em escoamento estacionário em uma tubulação, como mostra a figura 
abaixo, o teorema do trabalho-energia cinética (W = EC) permite escrever: 
WG + WP = ( V/2)[v22 - v12] Eq. 07 
Onde é a massa específica do fluido (kg/m3) e 
m = V é a massa de fluido em um certo volume V, que entra no segmento de 
tubulação considerado, com velocidade de módulo v1 e sai com velocidade de 
módulo v2. 
 
 
 
 
 
 
figura 06 – fluxo de um fluido em uma tubulação 
Mas, 
WG = -mgh= Vg(y2- y1) Eq. 08 
WP = F2 x2 + F1 x1 = (P2 - P1)V 
P1
P2 
P3 
y1
y2 
P1
P2 
v1 
v2 
 9
representam, respectivamente, o trabalho da força gravitacional e o trabalho do resto do 
fluido sobre a porção considerada. Substituindo na primeira equação e reorganizando os 
termos obtém-se: 
P1 + gy1 + ( /2)v12 = P2 + gy2 + ( /2)v22 Eq. 09 
Esta é a equação de Bernoulli. Outra forma de apresentá-la é a seguinte: 
P + gy + ( /2)v2 = constante Eq. 10 
Esta equação, é, de certo modo, um princípio de conservação de energia. Ela é válida para 
pequenas distâncias, onde a perda de carga é desprezível. Em outras palavras, ela diz que 
a energia total do volume de controle é o mesmo em qualquer ponto em que ele é analisado. 
 
Experiência: 
 Sopro sobre uma folha de papel. 
Segure uma folha de papel na posição horizontal, na altura da boca, e sopre fortemente 
sobre a folha. Observe e tente explicar o ocorrido. 
 
1.5 – VAZÃO E VELOCIDADE 
 
Entende-se por Vazão (Q) a quantidade de fluido que escoa por uma tubulação por unidade 
de tempo. Deste modo, a vazão pode ser medida em várias unidades, mas as mais comuns, 
na hidráulica são LPM (Litro por minuto) e GPM (Galão por minuto). Deste modo, 
t
VQ Eq. 11 
Onde V é a variação de volume e t é o intervalo de tempo em que ocorre V. 
mas V=A. h. Assim, 
t
hAQ Eq. 12 
mas 
t
h
 é a velocidade v do fluido dentro da tubulação. Assim, 
AvQ Eq. 13 
As equações 11 e 13 são usadas para calcular a vazão. A velocidade deve ser fornecida em 
cm/min e a área em cm2, ou o volume em litro, onde 1litro=1000cm3. 
 
Nota: A Equação de Bernoulli mostrou uma estreita relação entre o comportamento da 
velocidade com a pressão, como se pôde observar pelo exercício 03. Por outro lado, quando 
há uma restrição, a velocidade aumenta e a pressão cai. Sempre que houver um fluxo por 
um orifício a pressão irá cair. Esta afirmação é de suma importância para entender como as 
válvulas pilotadas funcionam. 
 
1.5.1 - Equação da continuidade 
 
 10
Considerando que o fluido escoa sem variar sua massa específica e que não há fontes ou 
sumidouros, então, a vazão é sempre a mesma em qualquer ponto da tubulação. Ou ainda a 
soma das vazões dos fluidos que entram no sistema é igual a soma das vazões dos fluidos 
que saem. 
Esta equação é que explica o controle de velocidade em um sistema hidráulico, ou seja, se 
um cilindro necessita de 20LPM para avançar na velocidade requerida pelo projeto, mas a 
bomba envia 30LPM, então, a vazão excedente de 10LPM é desviada pela válvula de alívio 
para o reservatório. 
saientra QQ Eq. 14 
 
Figura 07 – Continuidade (Q1 = Q2) 
Esta equação explica porque a velocidade modifica-se quando se modifica a seção da 
tubulação. 
 
Exercício 10 
a) Calcule a vazão mínima de uma bomba, para que ela avance um cilindro 32-20-200 para 
que ele complete seu curso em 5 segundos. 
Nota: um cilindro é especificado pelo diâmetro do êmbolo, da haste e curso, em milímetros. 
 
 
 
b) caso a vazão da bomba seja superior à requerida pelo cilindro, como se controla então 
sua velocidade? 
 
 
 
 
c) calcule a vazão induzida de avanço e de retorno de um cilindro,sabendo que a vazão da 
bomba é de 30LPM, a Ahaste=30cm2 e Aanular=18cm2, como mostra a figura abaixo. 
 
 
 
 
 
 
 
 
 
Qbomba Qia Qbomba Qir 
 11
1.5.2 – Tipos de Escoamento 
 
Existem dois tipos de escoamento a serem estudados: o escoamento laminar e o 
escoamento turbulento. Um escoamento é dito laminar quando suas linhas de fluxo 
apresentam-se uniformes, correspondendo a uma influência maior da viscosidade; por outro 
lado, quando suas linhas de fluxo apresentam-se desordenadas, indicando uma 
preponderância de forças de inércia, diz-se que este escoamento é turbulento. Neste caso 
tem-se uma maior perda de carga. A figura abaixo mostra os dois tipos de escoamento. 
 
Figura 08 – Escoamento laminar e turbulento 
Em 1883, o cientista Osborne Reynolds publicou um estudo acerca do comportamento do 
escoamento dos fluidos e verificou que este comportamento depende da viscosidade e da 
velocidade do fluido, da rugosidade e do diâmetro da tubulação. 
A denominação Número de Reynolds (Re) foi atribuída pelo cientista Sommerfel em 1908 e 
é descrito pela equação abaixo: 
DvRe Eq. 15 
onde 
v = velocidade do fluido na tubulação 
D – diâmetro da tubulação – cm 
 – viscosidade do fluido em Stokes (St) 
Re- Número de Reynolds (adimensional) 
Limites de escoamento 
Escoamento Laminar Re 2000 
Escoamento indeterminado 2000 Re 2300 
Escoamento turbulento Re 2300 
Tabela 1 – limites de escoamento par Reynolds 
As velocidades recomendadas para a menor perda de carga possível e garantir um regime 
laminar estão tabuladas abaixo. 
Pressão (bar) 
Tubulações 
20 50 100 >200 
Tubulação de pressão 300 400 500 600 
Tubulação de Retorno 300 
Tubulação de Sucção 100 
Velocidade 
em 
cm/s 
Tabela 2 – velocidades recomendadas 
Tubulação de Sucção – tubulação anterior à bomba, por ela o óleo é succionado do tanque; 
 12
Tubulação de pressão – tubulação posterior à bomba,que suporta as pressões do sistema; 
Tubulação de retorno – tubulação por onde o fluido retorna para ser refrigerado. 
È possível obter as velocidades para tubulação de pressão, fazendo-se uma interpolação 
para as pressões intermediárias (de 20 a 200bar), que não constem na tabela acima, 
usando a equação abaixo: 
3,3
1
65,121 PVeloc eq. 16 
Onde P é dado em Br e V em cm/s. 
 
1.5.3 – Perdas de Carga 
 
A perda de carga é a diminuição de energia que o fluido sofre ao longo do percurso, até seu 
destino final. Ela é fruto do atrito entre as camadas de fluido, quando o escoamento é 
laminar, e fruto das singularidades, como estrangulamentos (orifícios de válvulas) e curvas. 
Por outro lado, quando o escoamento é turbulento, essa energia se perde pelo movimento 
desordenado do fluido na tubulação. 
Esta última razão nem sempre se verifica porque as tubulações já são dimensionadas para 
evitar o escoamento turbulento, a menos que o sistema hidráulico esteja operando fora dos 
requisitos estabelecidos no projeto. 
A perda de carga se manifesta pelo aquecimento do fluido, que é a forma pela qual a 
energia se dissipa. Portanto, o tanque (ou reservatório) além de alimentar o sistema com 
fluido, ainda tem a função de refrigerá-lo, entre outras. 
 13
CAPÍTULO 2 – HIDRÁULICA 
2.1 - Introdução 
A HIDRÁULICA é uma das formas de automação industrial. Esta palavra provém do grego 
“hidros”, que significa água, ou mais precisamente, água em tubos. É a ciência que estuda 
líquidos em escoamento e sob pressão. Mais especificamente, no nosso caso, o fluido é um 
óleo que tem características próprias para atender as funções necessárias ao bom 
funcionamento de um sistema hidráulico, como exposto no item 1.6. 
Como forma de automação, a hidráulica aplica-se a casos específicos, aqueles em que a 
mecânica e a elétrica não se aplicam. Portanto, assim como os outros, a hidráulica possui 
vantagens e desvantagens, como seguem a baixo: 
a) Vantagens 
 Fácil instalação dos diversos elementos, oferecendo grande flexibilidade, inclusive em 
espaços reduzidos. O equivalente em sistemas mecânicos já não apresenta 
flexibilidade. 
 Devido à baixa inércia, os sistemas hidráulicos permitem uma rápida e suave inversão 
de movimento, não sendo possível obter esse resultado nos sistemas mecânicos e 
elétricos. 
 Permitem ajustes de variação micrométrica na velocidade. Já os mecânicos e elétricos 
só permitem ajustes escalonados e de modo custoso e difícil. 
 São sistemas autolubrificados, não ocorrendo o mesmo com os mecânicos e elétricos. 
 Relação (peso x tamanho x potência consumida) muito menor que os demais 
sistemas. 
 São sistemas de fácil proteção. 
 Devido à ótima condutividade térmica do óleo, geralmente o próprio reservatório acaba 
eliminando a necessidade de um trocador de calor. 
 
b) Desvantagens 
 Elevado custo inicial, quando comparados aos sistemas mecânicos e elétricos; 
 Transformação da energia elétrica em mecânica e mecânica em hidráulica para, 
posteriormente, ser transformada novamente em mecânica; 
 Perdas por vazamentos internos em todos os componentes. Perdas por atritos 
internos e externos. 
 Baixo rendimento em função dos três fatores citados anteriormente. Perigo de 
incêndio, devido ao fato do óleo ser inflamável. 
Os sistemas hidráulicos podem ser divididos em três partes principais: 
 Sistema de geração, constituído por reservatório, filtros, bombas, motores, 
acumuladores, intensificadores de pressão e outros acessórios. 
 Sistema de Distribuição e Controle, constituído por válvulas controladoras de 
pressão, vazão e válvulas direcionais. 
 14
 Sistema de Aplicação de Energia, constituído por motores, cilindros e osciladores. 
 
 
 
 
 
 
 
 
 
 
 
Figura 09 – Sistemas de um circuito hidráulico 
 
2.2 BOMBAS HIDRÁULICAS 
 
2.2.1. Princípios de Funcionamento 
 
As bombas hidráulicas são dispositivos utilizados para converter energia mecânica em 
energia hidráulica. Uma bomba é capaz de fornecer vazão, porém não pode por si mesma 
produzir pressão pois, não poderá proporcionar resistência a sua própria vazão. As 
bombas podem ser dimensionadas para fornecerem vazão até um determinado valor 
máximo da pressão. 
Isto se consegue realizar basicamente de duas maneiras: em primeiro lugar, sua ação de 
succionamento faz com que na tubulação de sucção (entrada), a pressão caia abaixo da 
pressão atmosférica e esta então, empurra o fluido para dentro da bomba. Em segundo 
lugar, a ação mecânica força o liquido para a tubulação de recalque. 
 
2.2.2. Desempenho das Bombas 
 
Normalmente os índices que avaliam as bombas são o rendimento total, a vazão (descarga 
volumétrica) e a pressão de trabalho (ou a manométrica). 
A vazão, também chamada de descarga ou capacidade da bomba, corresponde à 
quantidade de fluido que ela descarrega em sua saída, na unidade de tempo, em litros por 
minuto (LPM); metros ou centímetros cúbicos por minuto, a uma determinada rotação. Como 
a velocidade influi na descarga, muitas vezes avaliam-se as bombas pelo deslocamento. 
Sistema de Aplicação 
de Energia 
Sistema de Distribuição 
e Controle 
Sistema de geração 
 15
O Deslocamento é a quantidade de fluido que a bomba entrega por ciclo. Nas rotativas é 
dado em centímetros cúbicos por rotação e nas alternativas, é dado em centímetros cúbicos 
por cilindrada. 
A resistência à vazão, geralmente é causada por uma restrição ou obstrução no percurso 
do fluido, seja esta um cilindro de trabalho, um motor hidráulico, válvula, conexão, ou 
linha. Quanto menor for a resistência fornecida, menor será a pressão desenvolvida na 
saída da bomba. 
No entanto, a pressão na linha de recalque da bomba tem efeito negativo sobre sua 
vazão. À medida que a pressão aumenta, observa-se uma redução na descarga. Esta 
redução é causada por um aumento da quantidade de vazamento interno ou seja, da 
linha de recalque para a sucção da bomba. 
 
2.2.3. Classificação das Bombas 
 
Quanto ao deslocamento, as bombas podem ser classificadas como: 
a) - bombas de deslocamento não positivo 
b) - bombas de deslocamento positivo 
a) bombas de deslocamento não positivo 
 
Este tipo de bomba, produz uma vazão contínua porém, sua vedação não é tão eficiente 
quanto ao outro tipo. Devido ao fato de não proporcionarem uma vedação interna contra o 
deslizamento, têm a sua vazão diminuída consideravelmente quando aumenta a pressão. 
Neste tipo, se for obturada a sua salda, a pressão aumentará e a vazão diminuirá até que a 
força resistente igualar-se-á à força da bomba. Embora a ação mecânica da bomba 
continuasse, o fator de deslizamento permitiria que o fluido escoasse totalmente do recalque 
para a tubulação de sucção da própria bomba. 
Elas são : radiais (centrífugas), as axiais (ou de hélice) e as diagonais (ou de vazão mista). 
 
 
 
 
 
 
 
 
 
Figura 11 - Bombas de deslocamento não-positivos 
A característica da bomba centrifuga é admitir o fluido pelo seu centro e aprisioná-lo entre 
as pás do rotor. A força centrífuga agindo então sobre o fluido, fornece-lhe uma energia de 
velocidade jogando-o para fora do rotor. O difusor direciona o fluxo através da saída. 
 
 16
Estas bombas não recomendadas para uso em sistemas hidráulicos. Apenas para 
sistemas de circulação interna do óleo, para filtragem offline. 
 
b - bombas de deslocamento positivo 
Por conseqüência de seu aspecto construtivo, este tipo de bomba produz uma vazão 
pulsativa. Como proporciona uma vedação interna positiva contra o deslizamento, sua 
descarga não é grandemente afetada pela variação de pressão da linha de recalque. 
Exemplo: Bomba G2 (engrenagens) que fornece 4.10LPM a 10bar e 3.5LPM a 250bar. 
Deslocamento (Vg): vazão entreguepela bomba a cada rotação, dado me cm3/rpm. 
Deste sua vazão é: 
1000
Vg
B
nV
Q
 
O deslocamento teórico de uma bomba é função do tamanho de suas câmaras. Entretanto, 
o deslocamento real é menor em função das folgas que eram vazamentos internos e da 
pressão de trabalho. A relação entre o deslocamentos real e teórico, fornece o rendimento 
volumétrico da bomba ( v). 
A vazão de uma bomba, portanto, pode ser modificada ao se modificar seu deslocamento ou 
sua rotação. Alterar a rotação da bomba implica alterar a rotação do motor elétrico, 
interferindo no seu fator de potência, o que não é desejável. Portanto, sua vazão pode ser 
alterada, ao se alterar o tamanho de suas câmaras. Aquelas que o permitem são do tipo 
deslocamento variável, enquanto, as outras são de deslocamento fixo. 
 
Podem ser divididas em Bombas Rotativas - de engrenagens, de lóbulos, de palhetas, de 
rosca, de pistões radiais e de pistões axiais - e em Bombas Alternativas, que constam de um 
sistema biela manivela acoplado a um êmbolo. As alternativas do tipo triplex são muito 
utilizadas para bombeamento do fluido de perfuração, na indústria petrolífera. 
Bomba de engrenagens de dentes externos 
Um vácuo parcial é criado na câmara de entrada da bomba pelo movimento do par de 
engrenagens. O fluido é introduzido nos vãos dos dentes e transportado, junto à carcaça, 
até a câmara de saída. O engrenamento dos dentes força o fluido para a abertura de 
saída. 
Sua câmara é composta pelos vãos dos dentes, a carcaça e as placas laterais (de 
desgaste ou pressão). A pressão gerada gera uma carga nos eixos das engrenagens e 
nos rolamentos. 
 17
 
Figura 12 – bomba de engrenagens de dentes externos 
Bomba de engrenagens de dentes internos 
O afastamento entre os dentes da engrenagem motriz e a engrenagem louca (interna) 
gera um vácuo parcial. 
As câmaras de bombeamento formam-se entre os dentes das engrenagens. Uma vedação 
em forma de lua crescente localiza- se entre a abertura de entrada e saída, onde existe 
maior folga entre os dentes das engrenagens 
 
Figura 13 – bomba de engrenagens de dentes internos 
 
A maioria das bombas de engrenagens possui deslocamento fixo e podem mover de 
pequenos e grandes volumes. São do tipo não balanceado, geralmente unidades de baixa 
pressão. Por outro lado, existem bombas de engrenagens que suportam até 200 kg/cm2 de 
pressão. 
 
Bomba de Lóbulos 
Possuem o mesmo princípio de funcionamento das bombas de engrenagens de dentes 
externos, com a diferença de que seu deslocamento é maior. 
 
Figura 14 – bomba de lóbulos 
Bomba Gerotor 
Funcionamento semelhante às bombas de engrenagens internas. Porém a vedação não é 
mais feita pela meia lua, mas pelas pontas dos dentes da engrenagem motriz (gerotor) 
com o rotor externo, onde se formam suas câmaras. 
 18
 
Figura 14 – bomba gerotor 
 
Bomba de Palhetas 
Consiste num rotor provido de ranhuras, onde estão as palhetas, que, preso ao eixo, gira 
dentro de um anel excêntrico. 
As palhetas encostam-se na carcaça pela ação da força centrífuga, formando com ela e as 
placas de desgaste as câmaras da bomba. A pressão de saída provoca desbalanceamento 
da bomba, e portanto, maior desgaste, porém as unidades duram razoavelmente e toleram 
impurezas no óleo, melhor que outros tipos. Há ainda, as do tipo balanceadas e de 
deslocamento variável. 
 
Figura 15 – bomba de palhetas 
 
Bomba de Pistões radiais 
 
Pistões dispostos radialmente. Uma excentricidade ou uma pista ondulada, aliada a um movimento 
circular do rotor que contem os pistões, gera neles um movimento alternado. Este movimento, por 
sua vez, gera a sucção e o recalque na bomba, durante uma rotação do rotor. 
 
Figura 16 – bomba de pistões radiais 
 
 
 19
Bomba de Pistões axiais 
Pistões dispostos paralelamente entre si e ao eixo. São do tipo eixo inclinado (fixo) e placa inclinada 
(variável). A inclinação do eixo ou da placa fornece o movimento alternado dos pistões e o 
comprimento de seus cursos. A vazão depende do curso dos pistões. 
São bombas que resistem a altas pressões (700bar) e possuem alto rendimento ( 95%) 
 
 
 
(a) (b) 
 
Figura 17 – bomba de pistões axiais de (a) eixo inclinado e (b) de disco inclinado 
A tabela abixo mostra a simbologia das bombas de deslocamento positivo. 
Sentido da Rotação 
Deslocamento 
unidirecional bidirecional 
fixo 
 
 
 
variável 
 
Tabela 03 – simbologia de bombas 
 
2.3 - CILINDROS HIDRÁULICOS 
 
São atuadores lineares, ou seja, transformam a energia hidráulica em energia mecânica, 
executando movimentos lineares, elevando, descansando, bloqueando e deslocando 
cargas. 
 
Compõem-se de um tubo de aço sem costura ou aço fundido; haste de aço altamente 
polida, cromada, normalmente sustentada por uma bucha *, ou então a haste desliza num 
orifício usinado num dos tampões; 
 
A bucha pode funcionar como um distanciador para suportar o efeito da flexão. 
 
A haste recebe pelo menos dois vedadores: um faz limpeza externa no retorno, e o outro, 
mais interno, evita vazamentos; o pistão, que separa as duas câmaras, possui vários 
vedadores instalados em suas ranhuras para impedir vazamentos internos. Os cilindros 
possuem ainda amortecedores. A figura abaixo mostra as partes de um cilindro. 
 
 20
 
Figura 18 – aspectos construtivos de um cilindro 
 
1 - Cabeçote 2 - Tubo 3- Êmbolo 4 - base 
5 - Bucha adaptadora 6 - Bucha de amortecimento 7 - Ponta da haste 8 - Tirante 
9 - Haste 10 - Parafuso de desaeração 11 - Tampa de segurança 12 - Porca 
13 - Jogo de vedações: raspador, vedação da haste, vedação do êmbolo, O-ring, guia do êmbolo, 
anel antiextrusão 
 
Suas vantagens são: 
 Bom rendimento ao transformar movimentos; 
 Força máxima constante ao longo do curso; 
 Controle fácil da força no atuador; 
 Velocidade constante se vazão é constante; 
 Velocidade constante ao longo do curso; 
 As forças podem ser de tração e compressão; 
 Acionamentos de grande potência com cotas reduzidas de montagem. 
 
Tipos 
 
Os cilindros são classificados, quanto à sua ação, em: 
- simples ação ou simples efeito 
- dupla ação ou duplo efeito 
Simples efeito: possui uma só tomada de pressão. O movimento em sentido contrário ao 
da pressão dá-se por meio de mola ou pela ação do próprio peso ou carga externa. A mola 
pode ser interna ou externa, e pode promover o avanço ou o retorno do êmbolo. 
 
 21
 
Retorno pelo peso Retorno por mola telescópico Marcha rápida 
 
Figura 19 – cilindros de simples efeito 
 
Duplo efeito: possui duas tomadas de pressão. A inversa do movimento ocorre quando se 
troca a tomada de pressão. 
 
 
 
Haste simples Haste dupla Telescópico Marcha rápida 
Figura 20 –cilindros de duplo efeito 
 
Nota: Os cilindros tandem têm por função multiplicar a pressão do sistema, a partir de onde 
ele atua. Ou seja, apenas parte do sistema passa a ter uma pressão mais elevada, 
enquanto o restante opera em pressões normais (comerciais). 
 
Figura 21 – Cilindro Tandem 
 22
2.4 - MOTORES HIDRÁULICOS 
 
2.4.1- Introdução 
 
Assim como os cilindros, os motores hidráulicos transformam a energia hidráulica em 
energia mecânica, entretanto, são atuadores rotativos. Os motores hidráulicos, fazem o 
inverso das bombas, ou seja, recebem o óleo a pressões superiores, absorvem sua energia 
no eixo e o descarrega pressões inferiores. Portanto, algumas bombas podem funcionar 
também como motores hidráulicos, são chamados de motor-bomba. 
 
Os motores hidráulicos podem ser classificados como: 
 Marcha rápida: de 500 a 1000RPM; 
 Marcha lenta: de 0 a 500RPM 
 
Nota: algumas sondas de completação utilizam motores hidráulicos para girar a coluna de 
tubos e a broca. 
 
2.4.2 – AplicaçãoAssim como os motores elétricos e motores de combustão interna, os motores hidráulicos 
têm suas áreas de atuação. Deve-se lembrar que o uso de um não exclui o uso do outro. 
Pelo contrário a energia transformada por um motor hidráulico poderá ter sido gerada por 
um motor elétrico ou de combustão interna que girou o eixo de uma bomba hidráulica. 
Enfim, os motores hidráulicos encontram aplicação em situações que exigem: 
 elevado torque e potência com rotações relativamente baixas; 
 reversões rápidas no sentido de rotação; 
 controle apurado de velocidade. 
 em situações em que o motor elétrico não é adequado, pois implicariam em grandes 
dimensões ou peso; além do uso de redutores. 
 
Os Motores Hidráulicos possuem rendimento entre 70 e 80%, enquanto os Motores Elétricos 
entre 90 e 95%. Um motor elétrico de corrente contínua precisaria de um reostato para 
controlar sua velocidade, elevando o custo do projeto; enquanto um de corrente alternada 
precisaria de um redutor, cujas velocidades ficariam escalonadas, e não variariam 
continuamente. Num motor hidráulico, basta usar uma válvula reguladora de vazão.
 
2.4.3 – Propriedades 
 
Assim como nas bombas hidráulicas, nos motores hidráulicos o deslocamento é uma 
propriedade importante. Outras propriedades suas são rotação, pressão de operação, 
torque e potência. A tabela abaixo mostra como uma propriedade interfere nas outras: 
 
 23
Variável Mudança RPM Pressão de operação Torque disp. 
Aumento Sem efeito Sem efeito Aumenta Pressão 
(Ptb) Redução Sem efeito Sem efeito Reduz 
Aumento Aumenta Sem efeito Sem efeito Vazão 
(Q) Redução Reduz Sem efeito Sem efeito 
Aumento Reduz Reduz Aumenta Deslocamento 
(Vg) 
Tabela 04 – Considerando uma carga constante 
 
Os motores hidráulicos podem ser de vazão fixa (engrenagens, palhetas, pistões axiais e 
radiais) ou de vazão variável (palhetas, pistões axiais e radiais). Podem ainda ser 
unidirecionais ou bidirecionais. 
A tabela 05 mostra a relação de símbolos de motores hidráulicos 
 
Sentido da Rotação 
Vazão 
unidirecional bidirecional 
fixa 
 
variável 
 
Tabela 05 – simbologia de motores hidráulicos 
 
2.5 - VÁLVULAS 
 
As válvulas são os meios pelos quais os sistemas hidráulicos são controlados. Elas podem 
ser classificadas quanto ao modo como são operadas ou quanto à sua função. 
 
operadas-pré ou pilotadas ou piloto por Operadas
direta ação de ou operadas eDiretament
 operação à Quanto 
 Vazãode Controle
Direção de Controle
Pressão de Controle
 função à Quanto 
 As válvulas diretamente operadas são aquelas em que a pressão age diretamente 
sobre uma mola interferindo na abertura da válvula. 
 24
 As válvulas pilotadas possuem uma válvula que auxilia a abertura da válvula 
principal, normalmente são utilizadas em situações de maiores vazões e maiores 
pressões. 
 
2.5.1 – Válvulas controladoras de pressão 
 
As Válvulas controladoras de pressão têm por função básica limitar ou determinar a pressão 
do sistema hidráulico para a obtenção de uma determinada função do equipamento 
acionado. Podem ser encontradas trabalhando em qualquer uma das cinco seguintes 
situações: 
 Limitando a pressão do sistema 
 Determinando um nível de pressão de trabalho 
 Determinando dois níveis diferentes de pressão 
 Determinando ao mesmo tempo dois níveis de pressão distintos 
 Descarregando a bomba. 
 
Elas são classificadas pelo seu tamanho, pelo tipo de conexões, e pela faixa de pressão de 
trabalho. 
O funcionamento destas válvulas baseia-se na resistência de uma mola contra pressão do 
óleo. Para simplificar, considere uma bomba de deslocamento fixo bombeando óleo para 
uma válvula de pressão. Ou seja, a vazão desta bomba mantém-se constante independente 
da resistência ao fluxo do óleo. Neste caso, a resistência ao fluxo é a compressão da mola 
por um obturador, de um lado, e um parafuso do outro. Esta resistência será tanto maior 
quanto mais a mola estiver sendo pressionada pelo parafuso. 
Deste modo, a pressão no óleo aumenta e força o obturador contra a mola, e esta por sua 
vez comprime-se cada vez mais, abrindo gradativamente o fluxo ao tanque. 
 
A Figura 22 dá uma noção dos princípios de funcionamento das válvulas de pressão 
 
Figura 22 – (a) Válvula de assento e (b) de carretel deslizante 
 
Deve-se observar que na figura 22 (b) o obturador é um carretel deslizante que se 
movimenta livremente, ou seja, lubrificado, no interior da válvula. Como a lubrificação gera 
pequenos vazamentos internos, deve-se ter um dreno no volume logo acima do carretel, 
para se evitar calço hidráulico. 
 
 25
De acordo com suas posições e configurações, as válvulas de controladoras de pressão 
podem ser: 
 
a) Válvulas de alívio 
 
As válvulas de alívio e segurança têm duas funções: limitar a pressão de um circuito ou em 
parte dele, a um nível pré-selecionado, e proteger o sistema e os diversos equipamentos 
que o compõem contra sobrecarga. Podem de ser de ação direta ou pilotada. 
Elas caracterizam-se por estarem logo após a bomba e por terem sua saída ligada a tanque. 
Já a pilotada tem seu dreno ligado à saída. 
Nota: nas válvulas de alívio que possuem carretel o dreno é ligado interna ou externamente 
à saída que está conectada ao tanque, ou seja, sem pressão. 
 
Figura 23 – Válvula de alívio 
b) Válvulas de Descarga 
 
A válvula de descarga, nada mais é que uma válvula de alívio de piloto externo, isto é, ao 
invés de ter o piloto interno como a de alívio, ela o possui externamente. Em outras 
palavras, a linha de pressão, é a mesma que opera a válvula de alívio, enquanto que na 
válvula de descarga, esta linha é remota. 
 
 
 
 
 
Válvula de alívio ação direta Válvula de alívio pilotada Válvula de descarga 
Figura 24 – símbolos das válvulas controladoras de pressão 
 26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 25 – Circuito regenerativo, que passa a normal pela válvula de descarga 
 
 
c) Válvulas de contrabalanço 
É utilizada para evitar a descida livre pela força da gravidade, de um cilindro vertical. Ela 
funciona de modo análogo à válvula de descarga, ou seja, seu piloto é externo, o dreno é 
interno, porque a saída da válvula envia fluxo para tanque. Porém ela possui uma válvula de 
retenção incorporada que permite o fluxo livre do óleo, quando se eleva o pistão. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 26 - Circuito com contrabalanço 
 
 
 
 
 
M 
M 
 27
d) Válvulas de Seqüência 
 
A válvula de seqüência difere da anterior, por dois aspectos: sua saída é uma linha de 
pressão, e, por conseqüência, seu dreno, caso exista, deve ser externo. O dreno não pode 
mais ser ligado à saída da válvula porque causaria em calço hidráulico, e a válvula deixaria 
de funcionar. 
A saída é uma linha de pressão porque ela irá gerar um movimento posterior. A conclusão 
do primeiro movimento gera um aumento da pressão, que abre a válvula, para executar o 
próximo movimento. 
 
Figura 27 - Circuito sequencial 
 
e) Válvulas redutoras de pressão 
 
É a única válvula controladora de pressão normalmente aberta. Na indústria do petróleo, 
esta válvula é também conhecida, como reguladora de pressão. Ela age fechando quando a 
pressão na sua saída atinge a pressão de regulagem. 
A válvula redutora de ação direta, usa um carretel acionado por uma mola, que controla a 
pressão na saída. Quando aquela pressão for superior à de regulagem, a força da mola é 
vencida, movimenta o carretel e fecha a mola. O seu dreno é externo. 
Na válvula redutora de pressão pilotada, a pressão de fechamento é regulada no estágio 
piloto, localizado no corpo superior. O Carretel, no corpo inferior funciona do mesmo modo 
que na válvula de ação direta. Este carretel está em equilíbrio, em funçãode um orifício no 
seu centro, e através de uma mola fraca que a mantém aberta. 
 
Figura 28 - (a) Válvula redutora pressão de ação direta e (b) símbolos 
 
 28
 
Figura 29 - (a) Válvula redutora pressão de ação indireta (pilotada) e (b) símbolos 
 
 
Figura 30 – Circuito seqüencial, e circuito com redutora de pressão 
 
f) Válvulas supressoras de choque 
 
Há dois tipos diferentes de choque hidráulico: por compressão e por, pressão. O 
choque hidráulico deve ser evitado sempre que possível pois, quando existe, é maior 
suspeito responsável por uma quebra eventual. 
A maior causa da origem de choque hidráulico é a elevação rápida e excessiva da 
pressão no circuito, combinada com a resposta lenta de uma válvula de controle de 
pressão. A figura abaixo, mostra um esquema de uma válvula supressora de choque. 
 
 
Figura 31 – válvula Supressora de choque 
 
Mola de baixa resistência 
Mola de alta resistência Pistão do acumulador 
Válvula de 2 vias com orifício 
 29
Como se pode observar, o espaço onde se encontra a mola forte funciona como um 
acumulador hidráulico. Este assunto será estudado posteriormente. 
 
2.5.2 – Válvulas controladoras de Vazão 
 
As válvulas deste tipo têm a função de regular a velocidade dos atuadores (cilindros, 
motores e alternadores). Como se sabe, a velocidade é função da vazão e da seção por 
onde ocorre o fluxo. Portanto, pode-se fazer o controle da velocidade modificando a vazão 
da bomba. Isto é possível quando a bomba é de vazão variável. Entretanto, seu custo é 
maior, e seu controle mais complicado quando se tem mais de um atuador no circuito. Por 
outro lado pode-se controlar a velocidade através de válvulas de controle proporcionais, 
porém seu custo é muito elevado. Por fim, o modo mais fácil de se fazer aquele controle 
seria alterando a seção por onde o fluido passa, através de uma válvula controladora de 
vazão. 
É bom lembrar que todas as soluções acima têm suas vantagens e desvantagens. Portanto, 
não se pode dizer que uma seja melhor que outra. Depende da complexidade do projeto, 
flexibilidade, entre outros fatores. 
A figura abaixo mostra os meios como estas válvulas regulam a vazão. 
 
Figura 32- tipos de válvulas: a) de agulha; b) haste com orifício crescente; c) carretel ranhurado 
 
Estas válvulas são classificadas em: 
 Redutoras de vazão: dependentes da pressão e da viscosidade, 
ou dependentes da pressão e independentes da viscosidade 
 Reguladoras de vazão: independentes da pressão e dependentes da viscosidade, 
ou independentes da pressão e da viscosidade 
Ambos os tipos podem ser com ou sem retenção integral, ou seja, quando a válvula de 
retenção está integrada ao corpo da válvula reguladora de vazão. 
a) Redutoras de vazão: não são compensadas à pressão, portanto, sua vazão varia,à 
medida que se variam as cargas. Ou seja, o controle da velocidade fica comprometido 
quando se variam as pressões. Portanto, ela é usada onde este controle não necessita ser 
tão preciso. 
 30
b) Reguladoras de vazão: são compensadas à pressão. Ou seja, se a pressão varar, a 
vazão não varia. Entretanto, a vazão pode variar com a variação da temperatura, quando ela 
não possui esta forma de compensação. 
Abaixo segue um esquema de uma válvula redutora de vazão com retenção incorporada, 
sem compensação de pressão. 
 
Figura 33 – Válvula redutora de vazão 
 
Tabela 05 – símbolos das válvulas controladoras de fluxo 
 
Todas as válvulas acima permitem controlar a vazão (seta inclinada), ou seja, o controle 
dela pode ser mudado de acordo com a necessidade da operação. 
 
2.5.2.1 - Métodos de controle da vazão 
METER IN – quando o controle é feito na entrada do atuador. É recomendado quando a 
carga oferece uma resistência positiva à vazão, durante o curso controlado, sem tendências 
a saltos por queda eventuais da resistência. 
 
Estranguladora Redutora com retenção Compensada à P e T, com retenção 
 31
 
Figura 34 – Circuitos METER IN 
METER OUT – quando o controle é feito na saída do atuador. É recomendado para 
aplicações com cargas negativas, ou seja, quando ela tende a puxar o atuador, ou ainda, 
quando há queda na resistência, como por exemplo um vazio num bloco de ferro que está 
sendo furado. 
É adequado, portanto, para máquinas de furar, escavar, perfurar, rosquear, serrar, tornear, 
etc. É também recomendado, quando não se deseja ter problemas de interferência no 
funcionamento de válvulas de seqüência, pressostatos e similares. 
 
Figura 35– Circuitos METER OUT 
Nos dois métodos acima, o excesso de fluxo é desviado pela válvula de alívio e a pressão 
de trabalho da bomba é maior que a do atuador. 
 
 32
BLEED OFF – é colocada em “bypass”, antes ou depois da direcional, conforme se queira 
ou não vazão regulada nos dois sentidos ou regulagens diferentes em cada sentido. 
Neste método, o excesso de óleo é desviado pela própria válvula redutora de vazão, 
diminuindo o seu aquecimento, e a bomba trabalha à mesma pressão do atuador. 
 
Figura 36 – Circuitos BLEED OFF 
2.5.3 – Válvulas de bloqueio 
 
São válvulas que permitem o fluxo de um fluido em um determinado sentido, mas não o 
permite em sentido contrário. 
Classificam-se em: 
 Válvula de retenção simples 
 Válvula de retenção com desbloqueio Hidráulico ou pilotada 
 Válvula de retenção pilotada geminada 
 Válvula de sucção e preenchimento 
 
a) Válvula de retenção simples 
 
Modelo em linha – é assim chamada porque o óleo flui por ela em linha reta. O corpo dessa 
válvula é rosqueada diretamente à tubulação, e o interior dela forma uma sede para um 
pistão móvel ou para uma esfera. Esses modelos não devem ser utilizados para bloqueio do 
fluxo reverso em altas velocidades, devido ao choque hidráulico. 
Modelo em ângulo reto - é uma unidade mais robusta. É composta de um pistão de aço 
e uma sede temperada prensada num corpo de ferro fundido. A passagem do fluxo da 
entrada para a saída está em ângulo reto. Pode operar em sistemas com alta velocidade em 
que possa ocorrer golpe de aríete. 
 
b) Válvula de Retenção com Desbloqueio Hidráulico 
Características 
 33
• São válvulas que possuem um pórtico de pilotagem (X). Atuando o pórtico, é possível o 
fluxo no sentido oposto (B A). 
• São aplicadas em sistemas em que se exige segurança na operação, mantendo o siste-
ma bloqueado sob pressão, impedindo o retorno da carga. 
 
c) Válvula de Retenção Pilotada Geminada 
 
 São válvulas modulares do tipo "pilotagem interna". 
 Possuem dois elementos de pilotagem, simulados nas linhas A e B. 
 A abertura da retenção é feita por um êmbolo central, que atua uma outra válvula de 
acordo com o lado pressurizado. 
 São construídas para montagem por encadeamento ou empilhamento 
 Aplicações: Prensa, siderurgia na linha móbil e máquinas operatrizes. 
 
d) Válvulas d e Sucção ou Preenchimento 
São do tipo retenção com desbloqueio hidráulico e foram projetadas para diminuir a potência 
instalada do sistema, garantindo alta velocidade de aproximação em prensas, extrusoras, 
máquinas injetoras, etc. 
São utilizadas também como válvulas anticavitação, complementando o óleo na câmara do 
cilindro. 
São normalmente de grande porte. Utilizadas para preenchimento do volume em cilindros de 
grandes dimensões, e para o fechamento quando o circuito principal de trabalho é 
submetido à pressão, como, por exemplo, prensas. 
 
Figura 37 – Válvulas de retenção simples e pilotada 
e) símbolos 
 
 
Retenção simples Retenção geminada Retenção pilotada Sucção e preenchimento 
 
Tabela 06 – símbolos da das válvulas de retenção 
 
 34
2.5.4 – Válvulas de Controle Direcional 
 
Também conhecidas como "distribuidores", são responsáveis pelo direcionamento do 
fluido dentro do sistema,possibilitando a extensão ou retração de atuadores lineares, 
acionamento ou inversão de atuadores rotativos, enfim, desviando e direcionando o fluxo 
para onde ele seja necessário. 
As denominações das válvulas direcionais referem-se ao número de conexões úteis 
(vias) e de posições de acionamento. As conexões são as tomadas de fluxo das válvulas; o 
número de posições é representado pela quantidade de retângulos do símbolo da válvula. 
 
Figura 38 – Válvula direcional 4/3vias (4 vias e 3 posições) 
 
Figura 39 – Outros símbolos de válvulas direcionais 
 
Observação: A representação de válvulas direcionais em um sistema hidráulico é sempre 
feita a partir da posição de descanso (não acionada): posição ao centro quando o número 
de posições é impar ou à direita, quando o número de posições é par. 
 
2.5.4.1 - Classificação 
Quanto aos elementos internos de controle: 
 Tipo pistão ou esfera : possuem internamente um pistão (poppet) ou esfera 
apoiada contra uma sede, e possuem boa vedação. As válvulas de retenção são 
deste tipo. 
 Tipo carretel deslizante: possuem um carretel (cilindro) com ranhuras e 
rebaixamentos que comunicam as diversas tomadas de fluido, determinando a 
direção do fluxo. O carretel desliza com folga mínima. 
 Tipo carretel rotativo: consiste em um rotor que gira com folga mínima dentro de 
um corpo. O fluido entra por uma conexão central. O giro do rotor direciona o fluxo. 
 Tipo proporcional: o carretel possui infinitas posições, à medida que se movimenta 
a abertura do orifício de passagem, o fluxo é controlado. Esta válvula funciona como 
controladora de vazão. Utiliza solenóides de corrente contínua para permitir o 
posicionamento infinito do carretel. 
 35
 
Figura 40 – Válvula de carretel rotativo (rotary spool) 
 
Quanto ao tipo de acionamento 
 Manual: alavanca, pedal 
 Automático: elétrico (solenóide), hidráulico ou pneumático 
 Retorno: manual (quando possui detente) ou por mola 
 
 
Figura 41 – tipos de acionamento 
 
 
Figura 42 – esquema de acionamento elétrico 
 36
 
A tabela abaixo mostra algumas combinações de tipos de acionamentos 
 
Acionamento Símbolo 
Acionamento por alavanca e retorno 
por mola 
 
Acionamento e retorno manuais (por 
alavanca) . O detente mantém a 
posição da válvula. 
 
Acionamento elétrico (por solenóide) 
e retorno automático por mola. 
 
Acionamento elétrico (por solenóide) 
e retorno automático por mola. Esta 
válvula possui uma válvula auxiliar 
(por) solenóide para movimentar o 
carretel principal 
 
Tabela 07 – exemplos de acionamento 
Quanto ao tipo de centro 
 
Figura 43 – tipos de centro 
 
 37
 
Figura 44– Centro fechado e símbolo 
 
No apêndice A estão mostrados outros tipos de centro de válvulas direcionais 
Algumas válvulas, as de grande vazão, teriam dificuldades em serem acionadas diretamente 
por solenóides, porque a seção transversal do carretel é grande, necessitando de grande 
esforço para movimentá-lo. Por isso elas utilizam uma válvula direcional auxiliar de tamanho 
menor acionada por solenóide, que direciona o fluxo de óleo que irá movimentar o carretel 
maior. O último símbolo da figura 29 é uma representação desta válvula. 
 
 
 
Figura 45 – foto em corte de uma válvula direcional acionada por solenóide 
 
 
 (a) (b) 
Figura 46 – Válvulas direcionais acionadas por solenóide 
 38
A figura 43 (b) mostra uma válvula de controle direcional geminada, ou seja, duas válvulas 
direcionais fazendo o papel de uma única válvula. Este tipo de construção é utilizado para o 
caso de grandes vazões e/ou grandes pressões. Para tais situações as válvulas de controle 
direcional são de maior porte, e, portanto, seu acionamento torna-se mais difícil caso ele 
aconteça diretamente sobre o carretel da válvula, uma vez que a mola para centralizar a 
válvula é mais rígida. A válvula principal é aquela de maior dimensão, por onde o fluxo do 
óleo é direcionado para as conexões de trabalho. A válvula que compõe o pórtico superior, é 
uma válvula de menor dimensão e auxilia no acionamento da primeira. Ou seja, ela 
direciona o óleo do próprio sistema cuja pressão aciona o carretel da válvula principal. 
Sendo a válvula auxiliar de menor porte, sua mola é mais flexível e seu carretel pode ser 
acionado por meio de solenóides, sem comprometer o consumo de energia. 
Enfim, com um consumo normal de energia elétrica pode-se acionar uma válvula de controle 
direcional geminada. 
Exercício 01 
Um cilindro de dupla ação tem a função de abrir e fechar a porta de uma caldeira e deverá ser 
controlado por uma válvula direcional com retorno por mola , sendo que , no acionamento 
promove-se o avanço , no desacionamento, o retorno . 
Projetar o circuito hidráulico para o dispositivo descrito acima 
 
 Figura 47 - Porta de Caldeira 
 
 39
Exercício 02 
Um Atuador comanda a operação de descarga de um silo para armazenagem. Deve-se poder 
comandar a abertura e o fechamento da porta do silo, sabendo-se que o produto armazenado 
pode fluir em maior ou menor quantidade , em função da posição do cilindro que controla a 
abertura. 
Projetar o esquema de comando hidráulico para o dispositivo descrito acima . 
 
 
 Figura 48 - Silo 
 40
Exercício 03 
Um Elevador de carga deverá transportar volumes de grande peso da linha de produção 
da plataforma A, para o estoque B ou C . Durante a retirada do material a plataforma 
deve ficar hidraulicamente fixada 
Projetar o esquema de comando hidráulico para o dispositivo descrito. 
 
 Figura 49 - Elevador 
 41
Exercício 04 
Numa morsa são fixadas peças de diferentes materiais para posterior furação. A pressão de 
fixação deverá ser regulada em função do material da peça. 
Projetar o circuito hidráulico para o dispositivo descrito acima . 
Figura 50 - Morsa Hidráulica 
 42
Exercício 05 
Em um forno para tratamento térmico ,, o movimento de abertura e fechamento da porta é 
realizado por meio de um cilindro de dupla ação . A Abertura da porta deve ser em 
velocidade normal e o fechamento , executado lentamente , de forma a não promover 
impacto durante o processo. 
Projetar o esquema de comando hidráulico para o dispositivo descrito acima. 
 
 
Figura 51 - Forno de Tratamento Térmico 
 43
Exercício 06 
Uma retífica tem o movimento da mesa realizado por um cilindro hidráulico. No 
processo não poderá existir alteração de velocidade em função da resistência 
oferecida pela peça no momento da usinagem . Por este motivo , as velocidades de 
avanço e retorno deverão ser compensadas quanto a pressão . 
Projetar o esquema de comando hidráulico para o dispositivo descrito acima. 
 
 
Figura 52 - Retífica 
 44
Exercício 07 
 
Em um dispositivo, um cilindro de dupla ação está acoplado a uma esteira para executar 
o transporte de carga de uma plataforma à outra. A esteira é comandada por um motor 
hidráulico que gira em sentido único . Os movimentos se dão através de uma válvula 4/2 
vias, sendo que o motor funcionará somente quando o cilindro estiver totalmente 
avançado. 
Projetar o esquema de comando hidráulico para o dispositivo descrito acima . 
Figura 53 - Plataforma Automática 
 45
2.6 - ACUMULADORES HIDRÁULICOS 
 
São elementos acumuladores de energia potencial, através da compressão do fluido 
hidráulico, para restituí-la em momento oportuno e com a rapidez desejada. O fluido entra 
no acumulador pressionando uma mola, levantando um peso, ou comprimindo um gás. 
Qualquer queda de pressão na abertura, fará com o fluido saia do acumulador pela reação 
do elemento deslocado por ele.Afigura abaixo mostra os tre tipos básico de acumulador. Os acumuladores que utilizam gás 
podem ser divididos por terem ou não separação. Quanto aos que têm separação, podem 
ser do tipo: pistão, diafragma e tipo bexiga. 
 
Figura 54 – tipos de acumuladores 
 
2.6.1 – Acumulador tipo bexiga 
Este é o mais utilizado, pois: 
- Garante uma perfeita separação entre a câmara de líquido e a de fluido 
- O elemento separador (bexiga de borracha) não apresenta praticamente inércia 
alguma. 
- Como não existe nenhum deslizamento recíproco entre elementos mecânicos, 
como nos tipos de mola, de peso e de pistão, não é necessário dado particular 
quanto ao mecanismo interno 
- Alta eficiência volumétrica, chegando a 75% do volume da garrafa. 
 
2.6.2 - Aplicação 
- Compensador de vazamentos; 
- Fonte de potência auxiliar; 
- Compensador de expansão térmica; 
- Fonte de potência para emergência; 
- Compensador de volume; 
- Eliminador de pulsações e absorvedor de choques; 
- Fonte de potência em circuito de duas pressões; 
- Dispositivo de sustentação; 
 46
- Dispositivo de transferência; 
- Fornecedor de fluido. 
Alguns circuitos abaixo, demonstram aplicações de acumuladores hidráulicos. 
 
(a) (b) 
Figura 55 – Circuitos: (a) com retorno de emergência e (b) supressor de choque 
 
O primeiro circuito faz o pistão retornar, caso falte energia, pois o solenóide desliga-se e a 
válvula direcional retorna à sua posição inicial, conectando a câmara posterior do cilindro ao 
tanque. A pressão no acumulador faz fluido entrar na câmara do lado haste, retornando o 
pistão. 
O segundo circuito absorve o choque quando a válvula direcional é posicionada no centro, 
para frear o motor. Estes choques poderiam danificar a bomba, ou causar vazamentos. É 
um circuito usado em escavadeiras ou gruas. 
 47
2.7 - TUBULAÇÕES E CONEXÕES 
São os componentes responsáveis pela condução do óleo nos sistemas hidráulicos. 
Existem principalmente 03 (três) tipos de condutores: 
- canos de aço 
- tubos de aço ou de cobre 
- mangueiras flexíveis 
2.7.1 - Canos de Aço 
 
Os primeiros condutores empregados em sistemas hidráulicos industriais foram os canos de 
ferro e aço, que ainda o são devido ao seu baixo custo. Nos sistemas hidráulicos, 
recomenda-se o uso de canos de aço sem costura, com seu interior livre de ferrugem, es-
camas ou sujeira. 
 
0 encanamento e as conexões são classificadas conforme a bitola nominal e a espessura 
da parede. Atualmente, os canos são fabricados com várias espessuras de parede, 
classifcadas como: padrão, extra pesada e extra pesada dupla. 
 
Para aumentar a espessura da parede, foi modificado o diametro interno, enquanto o 
externo não sofreu alteração. Assim, a bitola nominal indica somente a bitola da rosca para 
conexões. 
 
2.7.2 - Tubos de Aço 
 
Uma instalação feita com tubos de aço sem costura proporciona maiores vantagens em 
relação à que utiliza canos padrão ou extra-pesados. Esses tubos podem ser dobrados em 
qualquer forma, são fáceis de trabalhar e são montados e desmontados frequentemente, 
sem problema de vedação. Normalmente, a quantidade de conexões é reduzida. Assim, nos 
sistemas de pequena vazão esses tubos suportam pressões elevadas e conduzem o fluxo 
em menos espaço e peso. Entretanto, os tubos e suas conexões são mais caros. 
Os tubos de aço sem costura são especificados de acordo com o diãmetro externo. Para 
cada tamanho, existem diversas espessuras de parede, sendo que o diâmetro interno é 
igual ao externo menos duas vezes a espessura da parede. 
As linhas, tanto de pressão como de sucção, devem ser conservadas tão curtas e livres de 
curvas quanto possível. No entanto, quando forem bastante curtas a ligação deve ser tal 
como na figura 33, sendo justificada esta ligação, por ser uma curva absorvedora de 
vibrações e expansões térmicas, eliminando os esforços. 
 48
 
Figura 56 – instalações de tubos de aço 
DE do 
Tubo 
Espes. 
Parede 
(mm) 
DI. do 
Tubo 
(mm) 
DE do 
Tubo 
Espes. 
Parede 
(mm) 
DI do 
tubo 
(mm) 
DE do 
Tubo 
Espes. 
Parede 
(mm) 
DI. do 
Tubo 
(mm) 
 0,711 1,753 0,889 14,097 1,245 2,926 
1/8 0,813 1,549 1,067 13,741 1,473 2,880 
 0,889 1,397 1,245 13,386 1,651 2,845 
3/16 0,813 3,137 5/8 1,473 12,929 1 1/4 1,828 2,809 
 0,889 2,985 1,651 12,573 2,108 2,753 
 0,899 4,572 1,828 12,217 2,413 2,692 
 1,067 4,216 2,108 11,659 2,769 2,621 
1/4 1,245 3,861 2,413 11,049 3,048 2,565 
 1,473 3,404 1,245 16,561 1,651 3,480 
 1,651 3,048 1,473 16,104 1,828 3,444 
 0,889 6,160 1,651 15,748 2,108 3,388 
 1,067 5,804 3/4 1,828 15,392 1 1/2 2,413 3,327 
5/16 1,245 5,448 2,108 14,834 2,769 3,256 
 1,473 4,991 2,413 14,224 3,048 3,200 
 1,651 4,636 2,769 13,513 3,404 3,129 
 0,889 7,747 1,245 19,736 1,651 4,115 
 1,067 7,391 1,473 19,279, 1,828 4,079 
3/8 1,245 7,036 1,651 18 ;923 2,108 4,023 
 1,473 6,579 7/8 1,828 18,667 1 3/4 2,413 3,962 
 1,651 6,223 2,108 18,009 2,769 3,891 
 0,889 10,922 2,413 17,399 3,048 3,835 
 1,067 10,566 2,769 16,688 3,404 3,764 
 1,245 10,211 1,245 22,911 1,651 4,750; 
1/2 1,473 9,754 1,473 22,454 1,828 4,714 
 1,651 9,398 1,651 22,098 2,108 4,658 
 1,828 9,042 1 1,828 21,742 2 2,413 4,597 
 2,108 8,484 2,108 21,184 2,769 4,526 
 2,413 7,874 2,413 20,574 3,048 4,470 
 2,769 19,863 3,404 4,399 
 3,048 19,304 
Tabela 08- Diâmetros dos tubos de aço 
 
 49
2.7.3 - Mangueiras flexíveis 
A mangueira flexível é empregada onde as linhas hidráulicas estão sujeitas a movimento, 
por exemplo, as linhas ligadas ao cabeçote de uma furadeira. A mangueira é fabricada em 
camadas de borracha sintética e trançados têxteis ou em fios de aço (Figura 34), sendo que 
esta última permite pressões mais elevadas. 
A camada interna da mangueira deve ser adequada ao fluido usado, e a externa de 
borracha para proteger a trança. A mangueira deve possuir no mínimo 3 camadas sendo 
uma delas trançada ou, ainda, camadas múltiplas de fio de aço, dependendo da pressão do 
sistema. Entretanto quando existirem várias camadas em fio de aço, elas podem ser 
alternadas com camadas de borracha ou simplesmente montadas umas sobre as outras. 
 
 
figura 57 – mangueira flexível 
Um dos cuidados na instalação de mangueiras flexíveis é evitar que elas fiquem torcidas 
segundo sua direção axial. Outra regra é instalá-las com um tamanho um pouco maior que o 
necessário e não permitir que elas rocem uma nas outra ou em partes metálicas. 
 
Figura 58 - instalações de mangue iras flexíveis 
 
2.7.4 – Conexões 
 
Os canos utilizam roscas cônicas, ao contrário das dos tubos e mangueiras, que são 
paralelas. 
Os tubos não são vedados por roscas, mas por conexões de diversos tipos e algumas 
vedam pelo contato do metal com metal (conexões de compressão) e podem utilizar tubos 
com ponta biselada ou não. 
Outra, no entanto, usam anéis do tipo “O” ou então retentores. 
Além das conexões rosqueadas utilizam-se, também, flanges soldados aos tubos de 
dimensões maiores. 
 50
Entretanto, a conexão biselada de 37 graus é a mais comum para tubos que possam ter 
extremidades moldadas para esse ângulo. As conexões da Figura 36 são vedadas pela 
compressão da extremidade do tubo, previamente aberto em forma de funil e apertado por 
meio de uma porca sobre a superfície cônica, existente na extremidade do corpo da 
conexão. Nesse caso, uma luva ou extensão da porca suporta o tubo, para diminuir a 
vibração. 
Já a conexão biselada padrão 45º é utilizada para pressões bem altas, e possui o mesmo 
desenho com roscas macho na porca de compressão. 
Para os tubos que não que não possam ser biselados ou, ainda, para evitar que que 
precisem ser afuniladas existem várias conexõesde compressão com anel penetrante, e 
por juntas de compressão, vedadas por anéis “O”. 
 
Figura 59 – conexões standard 
 
 
Figura 60 - conexões antes e depois do aperto 
 
 51
 
Figura 61 - conexões e adaptadores rosqueados usados com tubos 
 
 52
CAPÍTULO 03 – NOÇOES DE MANUTENÇÃO HIDRÁULICA 
 
3.1 - O ÓLEO COMO FLUIDO HIDRÁULICO 
 
3.1.1 - Principais funções do fluido hidráulico 
 
0 fluido hidráulico para ser utilizado em sistemas deve atender principalmente á 4 
finalidades: 
 
a - transmitir energia 
0 fluido deve transmitir energia instantaneamente para tanto deve fluir livremente pelas 
linhas e passagens do sistema e ser o mais incompressível possível. A compressibilidade do 
óleo está em torno de 0,5% do volume a 70 bar de pressão. 
 
b - lubrificar as peças móveis 
0 fluido hidráulico deve formar uma película entre as superfícies evitando que haja contato 
metal com metal amenizando o desgaste e a geração de calor pelo atrito. 
 
c - vedar as folgas entre as peças móveis 
Muitos componentes hidráulicos não possuem qualquer elemento de vedação sendo o 
índice de vazamento interno controlado pelo ajuste mecânico e a viscosidade- do fluido 
hidráulico. Esses vazamentos ocorrem nas passagens de alta para baixa pressão. 
 
Figura 62 – vazamento interno no carretel de uma válvula 
d- resfriar ou dissipar o calor 
O atrito do próprio fluido com as paredes dos tubos ou válvulas, etc. gera aquecimento, que 
somado às grandes resistências ao fluxo geram temperaturas às vezes indesejáveis. O 
fluido hidráulico tem como função dissipar rapidamente o calor circulando pelas linhas 
através do reservatório. 
 
Figura 63 – Reservatório refrigerando o fluido hidráulico 
 
O fluido até hoje amplamente utilizado em sistemas hidráulicos é o óleo mineral ou sintético 
tendo ainda preferência ao mineral pelo seu baixo custo. 
 53
3.1.2. - Principais propriedades do óleo hidráulico 
 
a - Viscosidade: é a propriedade do fluido que mede sua resistência ao fluxo. Uma 
viscosidade elevada mantém uma melhor vedação entre as peças móveis. A tabela abaixo 
mostra os efeitos da viscosidade nos sistemas hidráulicos quando ela é muito elevada ou 
muito baixa. 
 
Elevada Muito baixa 
- alta resistência ao fluxo - o vazamento interno aumenta 
- aumento do consumo de energia devido 
a perdas por atrito 
- gasto excessivo ou talvez engripamento 
sob carga pesada 
- maior queda de pressão devido a 
resistência 
- pode reduzir o rendimento da bomba com 
uma operação mais lenta do atuador 
- dificuldade em separar o ar do óleo no 
reservatório 
- aumento da temperatura devido a perdas 
por vazamento. 
- possibilidade de operação vagarosa 
- alta temperatura causada pelo atrito 
 
b - Índices de viscosidade (IV): é um numero empírico que relaciona a variação da 
viscosidade de um óleo com a variação de temperatura. Quanto maior o IV tanto menos 
sensível às oscilações de temperatura será a viscosidade do óleo. 
O óleo hidráulico deve possuir um alto IV, ou seja, variar muito pouco de viscosidade com as 
variações de temperatura, conseguindo-se assim uma viscosidade adequada mesmo com o 
equipamento em início de operação. 
 
c - Ponto de fluidez: indica a temperatura mínima a qual o óleo ainda flui. É um dado 
importante pois muitos sistemas hidráulicos trabalham em locais de temperaturas ex-
tremamente baixas. 
 
d - Resistência à oxidação: a oxidação é a reação química do óleo com a água, formando 
ácido e borra, vernizes, que aumentam a viscosidade do óleo, entopem orifícios, aumentam 
o desgaste e prendem as válvulas. Altas temperaturas e impurezas são um dos principais 
catalisadores da oxidação. 
Os óleos hidráulicos devem possuir aditivos anti-oxidantes que retardam o processo de 
oxidação. 
 
e. Anti-emulsificação (Densibilidade): que tem a capacidade de separar-se da água 
(proveniente da umidade do ar, condensação e vazamentos em trocadores de calor). 
Pequenas quantidades de água podem ser toleradas na maioria dos sistemas hidráulicos. O 
óleo hidráulico entretanto deve possuir aditivos capazes de isolar ou separar a água. 
 
f. Prevenção contra ferrugem e corrosão (nº de neutralização): A ferrugem é o resultado 
da oxidação do ferro, em contato com o oxigênio presente na água e no ar, é uma forma de 
corrosão dos materiais ferrosos. A corrosão propriamente dita é a reação química entre o 
metal e um produto químico, geralmente ácido. 
 54
As consequências da ferrugem e da corrosão podem ser: arrancamento de partículas 
metálicas, vazamento excessivo engripamento dos componentes afetados. 
O número de neutralização mede a acidez do óleo. Sua variação é, no máximo, de 0,5% de 
seu valor original. 
 
3.1.3 – Aditivos 
 
São produtos adicionados ao óleo para modificar suas propriedades, ou ainda adicionar 
outras. Entre eles estão os aditivos antioxidantes, antiespumantes, antidesgastante e os 
detergentes. Estes últimos não são recomendados na hidráulica porque ao dissolverem as 
impurezas permitem que elas atravessem o filtro de sucção, atingindo a bomba. 
 
3.1.4 – Cuidados no uso do óleo hidráulico 
 
O uso de aditivos são uma forma de cuidar do óleo, entretanto, outros cuidados devem ser 
observados como: 
- utilize o óleo recomendado pelo fabricante 
- ao completar o nível não misturar diferentes marcas de óleos 
- cuidados devem ser, tomados com o armazenamento do óleo hidráulico 
- na hora da troca faça escoar todo o óleo do sistema 
- limpe o reservatório com jatos de óleo diesel à alta pressão secando-o em seguida com 
panos secos que não soltem fiapos 
- limpar todos os elementos com óleo diesel ou querosene ou ainda trocá-los se necessário 
 
Abaixo segue uma tabel de tipos de óleo hidráulico ecomendados pela RACIUNE 
VISCOSIDADE 32cSt (150 SSU) (ISO VG 32) 
46cSt (217 SSU) 
(ISO VG 46) 
65cSt (315 SSU) 
(ISO VG 68) 
MARCA 
SISTEMA FRIO 
(até 359C) 
SISTEMA MEDIO 
(359 a 509C) 
SISTEMA QUENTE 
(509C a 659C) 
CASTROL Hypsin AWS32 Hypsin AWS46 Hypsin AWS68 
ESSO Teresso 32 Teresso 46 Teresso 68 
SHELL Tellus 32 Tellus 46 Tellus 68 
MOBIL OIL DTE 24 DTE 25 DTE 26 
TEXACO Rando Oil HD 32 Rando Oil HD 46 Rando Oil HD 68 
VALVOLINE ETC Oil Light ETC Oil nº 10 EIC oil Mediun 
PROMAX BARDAL Maxlub – MA-10 Maxlub MA-15 Maxlub MA-20 
PETROBRAS Lubrax Ind. (HR-43EP) Lubrax Ind. (HR-48EP) Lubrax ind. (HR-56EP) 
IPIRANGA IPITUR AW 32 IPITUR AW.46, IPITUR AW 6 
RENOLUB (FUCHS) Renolin B5 Renolin 10 Renolin B15 
RENOLUB (FUCHS) Renolin MR 5 Renolin MR 10 Renolin MR 15 
HOUGHTON Hidro-dríve (HP 32 CA) Hidro-drive (HP 46-) Hidro-drive (HP 68) 
ATLANTIC DURO AW OLI 32 DURO AW OLI 46 DURO AW OLI 68 
Tabela 09 – óleos recomendados 
 55
3.2 – Contaminação do Óleo X Manutenção 
A tabela abaixo mostra como se divide a freqüência de defeitos em equipamentos dos 
sistemas hidráulicos. 
 
Equipamento Percentual 
Bomba 35% 
Atuadores 15% 
Controladoras de pressão 15% 
Válvulas direcionais 10% 
Tubulações 10% 
Outros 5% 
Tabela 10 – Distribuição de defeitos 
 
A próxima tabela mostra como se distribuem as causas de falhas nos equipamentos 
mostrados anteriormente. 
 
Equipamento Percentual 
Fluido hidráulico 80% 
Fatores mecânicos 10% 
Outros 5% 
desconhecidos 5% 
Tabela 11 – Distribuição das causas de falhas em equipamentos hidráulicos 
Portanto, conclui-se que a maior causa de manutenção corretiva em sistemas hidráulicos 
provém da contaminação do óleo. Portanto, este texto, irá se concentrar nos cuidados com o 
fluido hidráulico, com os elementos filtrantes e com as bombas, a fim de orientar quais os 
procedimentos necessários para aumentar a vida útil dos sistemas hidráulicos, minimizar 
manutenções corretivas e aumentar a disponibilidade desses sistemas. 
 
3.2.1 – Cuidados com o Fluido HidráulicoQuanto à hora de troca. 
 
Não se pode dizer que existe uma hora exata para a troca do fluido hidráulico. 
Quando se tratar de fluido resistente ao fogo, consulte o fabricante do equipamento 
hidráulico. 
Com relação ao óleo mineral, teoricamente, em um ciclo de trabalho leve, far-se-ia a 
troca a cada 4.000 horas de uso. Caso contrário, para ciclo de trabalho pesado, 2.000 
horas. 
 56
 Na prática, isso não se verifica, pois de acordo com o ciclo de trabalho muitos 
aditivos introduzidos no sistema são perdidos na evaporação ou deixam de atender as 
características a que foram determinados. Existe a possibilidade de se estar trabalhando 
com o sistema hidráulico em locais de alta contaminação, seja ela corrosiva, alcalina, 
úmida ou saturada de poeira (neste caso, a troca de elementos filtrantes deveria ser mais 
acentuada). Conclui-se, então que, de maneira geral, não existe regra fixa para o 
momento da troca, porém, podem ser estabelecidas algumas normas que poderiam ser 
seguidas de acordo com diversos fatores, como por exemplo: 
- 1.500 a 2.000 horas: para ciclos de trabalho leve, sem contaminação; 
- 1.000 a 1.500 horas: para ciclos de trabalho leve, com contaminação, 
ou ciclos de trabalho pesado, sem contaminação; 
- 500 a 1.000 horas: para ciclos de trabalho pesado, com contaminação. 
Outro item importante a ser considerado é a quantidade de óleo a ser trocada. 
Quando se tratar de um grande volume de óleo, é preferível se optar por uma filtragem 
mais acurada e observar condições acima, introduzindo os novos aditivos por 3 a 4 vezes 
antes de efetuar a troca propriamente dita. 
As recomendações acima são difíceis de serem executadas, dada à necessidade de 
contagem de tempo de operação do sistema. Se isso depender da ação de algum 
funcionário, maior o risco de se perder o prazo de troca do óleo. 
 
Enfim, para que se tenha certeza da hora de troca do óleo, o melhor meio é instalar filtros 
que contenham indicadores de sujeira, ou instalar indicadores independentes. Estes 
indicadores são manômetros que medem a diferença de pressão entre a entrada e a saída 
do óleo para filtros de pressão e de trabalho, ou simplesmente a pressão na entrada dos 
filtros de retorno. Eles indicam, para cada caso, através do visor do manômetro, sinais 
elétricos, sonoros ou de dados o momento da troca do filtro. 
 
 Procedimento de troca 
a) procure sempre utilizar o óleo recomendado pelo fabricante do equipamento 
hidráulico; 
b) nunca misture diferentes marcas de óleo, pois os aditivos e inibidores de um, 
podem não combinar com os do outro; 
c) Armazene o óleo a ser utilizado em latas limpas, fechadas e longe da poeira; 
d) Marque todas as latas para evitar enganos; 
e) No momento da troca, drene o óleo usado em ambos os lados do cilindro; 
f) drene o óleo do tanque; 
g) limpe o reservatório com um jato de alta pressão diesel e seque-o com panos 
secos até ficar limpo (não use estopa!); 
h) se houver filtro de sucção limpe-o; 
i) coloque um novo elemento filtrante no filtro de retorno, encha o reservatório com 
óleo novo; 
Todo óleo novo deve ser filtrado previamente, porque ele vem “sujo” do fabricante. 
 57
j) dê a partida na máquina e faça o óleo circular da bomba diretamente para o 
tanque durante 20 minutos; 
k) preencha o sistema com o óleo novo e termine de encher o reservatório; 
l) faça o óleo circular através de todo o circuito, sem carga, durante 30 minutos; 
m) instale um novo elemento filtrante no filtro de retorno e pode começar a operar a 
máquina. 
 
3.3 – Filtros Hidráulicos 
Os filtros são aparatos utilizados para separar substâncias sólidas ou gases de líquidos, e 
para tal, empregam-se meios fibrosos ou granulados, que são a essência do filtro! A 
substância retida denomina-se resíduo. 
Para a separação de partículas empregam-se diversos procedimentos de filtração. A 
escolha dos procedimentos depende da finura de filtro exigida, como mostra a tabela 
abaixo. 
 
Procedimento 
de filtração 
OR 
Osmose 
Reversa 
UF 
Ultrafiltração 
MF 
Microfiltração, 
filtração p/ 
membrana 
FF até GF 
Filtração 
finíssima a 
grossa 
Finura de 
filtro ( m) 0 a 0,001 0,001 a 0,1 0,1 a 3,0 3 a 1000 
Aplicação 
Substâncias 
dissolvidas 
(sais) 
Partículas muito 
pequenas e 
colóides 
Separação de 
partículas de 
fluidos 
Separação de 
partículas de 
fluidos 
Campo de 
emprego 
Dessalinização 
de água do 
mar, 
eliminação de 
metais 
pesados 
Técnica ecológica, 
separação de 
macromoléculas e 
emulsões, ex.: 
óleo-água 
Técnica de 
semicondutores, 
indústria 
farmacêutica e 
alimentícia 
Tratamento de 
água, 
hidráulica, 
lubrificação. 
Meio filtrante Membrana Membrana Membrana 
Filtro de 
profundidade, 
de malha ou 
metal perfurado 
Tipos Membrana tubular e plana 
Membrana tubular 
e plana e capilar 
Membrana tubular 
e plana 
Fibras 
orgânicas e 
inorgânica, de 
metal, ciclones 
Tabela 12 - Procedimento de filtração 
 
Embora o gás também seja filtrado, seus procedimentos não serão citados neste capítulo. 
Enfim, os procedimentos citados na tabela anterior dão uma idéia das técnicas de filtragem 
e suas aplicações. Entretanto, apenas as técnicas FF e GF, na última coluna, são de 
interesse porque são próprias da hidráulica. 
 
3.3.1 - Contaminação 
 58
Uma das condições par o serviço sem falhas de uma instalação hidráulica é a filtração do 
fluido hidráulico e do ar que se encontra em contato com o tanque. 
A sujeira a eliminar com o filtro vem desde o meio ambiente ao sistema hidráulico através 
dos tubos de abastecimento e também passando por juntas. Este tipo de contaminação 
denomina-se de contaminação externa. 
 
O grau de contaminação a esperar depende exclusivamente da contaminação do meio 
ambiente e da operação do sistema e dos componentes. 
As peças móveis no sistema hidráulico, como por exemplo, bombas, pistões e válvulas, 
também produzem partículas (abrasão). Este tipo de contaminação denomina-se de 
contaminação interna. 
 
Em especial, no momento em que é dada a partida da instalação, existe o risco de que 
certos componentes se deteriorem como conseqüência de partículas de sólidos que 
ingressaram no sistema durante a montagem. 
Grande parte de problemas de serviço em sistemas hidráulicos se origina por fluidos sujos. 
O fluido hidráulico novo que se introduz na instalação hidráulica, freqüentemente, apresenta 
uma contaminação inadmissivelmente elevada. 
 
Origens da contaminação 
- Durante a fabricação de componentes 
- Durante a montagem da instalação 
- Durante o serviço da instalação hidráulica 
 
3.3.2 - Dimensões de tolerância em componentes hidráulicos 
 
Com o fim de garantir o funcionamento de componentes hidráulicos entre as peças móveis, 
deve existir um espaço também chamado de jogo de tolerância. 
As partículas com tamanhos similares aos do jogo produzem falhas no serviço e desgaste. 
Os tamanhos críticos de jogo de diversos componentes vão desde 0,7 m (engrenagem e 
placa lateral, ponta do dente e carcaça, em bombas de engrenagens) até 10000 m (orifícios 
de válvulas reguladoras). 
Partículas menores que 15 m aceleram especialmente o desgaste. 
 
As normas mais comumente empregadas para a classificação do grau de contaminação, 
atualmente, são NAS 1638 e ISO 4406. 
 
a) Classificação NAS 1638 (National American Standard) 
 
Esta norma dispõe de 14 classes. Em cada classe se indica um determinado número de 
partículas (em 100ml) em cada uma das cinco faixas de tamanho. 
 
 59
Tamanho de partícula em m Classe de 
pureza 5-15 15-25 25-50 50-100 >100 
00 125 22 4 1 0 
0 250 44 8 2 0 
1 500 89 16 3 1 
2 1000 178 32 6 1 
3 2000 356 63 11 2 
4 4000 712 126 22 4 
5 8000 1425 253 45 8 
6 16000 2850 506 90 16 
7 32000

Outros materiais