Buscar

05 Regulação vascular

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Faculdade de Medicina da Universidade do 
Porto 
Serviço de Fisiologia 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aula Teórico-Prática 
 
REGULAÇÃO DO TONO VASCULAR 
 
 
Texto de Apoio 
 
 
 
Dr. Tiago Henriques Coelho 
Sílvia Marta Oliveira 
Prof. Doutor Adelino Leite Moreira 
Porto, Ano Lectivo 2002 / 03 
 
 2 
 
 
ÍNDICE 
 
INTRODUÇÃO ........................................................................................................................ Pg. 3 
VASOCONSTRIÇÃO ............................................................................................................... Pg. 6 
1. MECANISMOS SUBCELULARES ................................................................................ Pg. 6 
2. FACTORES EXTRÍNSECOS......................................................................................... Pg. 8 
ADRENALINA E NORADRENALINA ....................................................................... Pg. 8 
NEUROTRANSMISSORES NÃO ADRENÉRGICOS, NÃO COLINÉRGICOS .............. Pg. 11 
ANGIOTENSINA II................................................................................................ Pg. 12 
VASOPRESSINA .................................................................................................... Pg. 15 
3. FACTORES DERIVADOS DO ENDOTÉLIO................................................................ Pg. 16 
ENDOTELINA ....................................................................................................... Pg. 16 
OUTROS FACTORES CONSTRITORES DERIVADOS DO ENDOTÉLIO ................... Pg. 19 
VASODILATAÇÃO................................................................................................................ Pg. 21 
1. FACTORES EXTRÍNSECOS....................................................................................... Pg. 21 
ACETILCOLINA.................................................................................................... Pg. 21 
NEUROTRANSMISSORES NÃO ADRENÉRGICOS, NÃO COLINÉRGICOS .............. Pg. 23 
CININAS ............................................................................................................... Pg. 24 
2. FACTORES DERIVADOS DO ENDOTÉLIO................................................................ Pg. 26 
ÓXIDO NÍTRICO .................................................................................................. Pg. 26 
PROSTAGLANDINAS ............................................................................................ Pg. 29 
EDHF................................................................................................................... Pg. 30 
OUTROS FACTORES VASODILATADORES DERIVADOS DO ENDOTÉLIO ............ Pg. 31 
3. SHEAR STRESS ........................................................................................................ Pg. 31 
4. PEPTÍDEOS NATRIURÉTICOS……………………………………………………… Pg. 34 
5. SISTEMA DOPAMINÉRGICO……………………………………………………….. Pg.36 
6. NOVOS PEPTÍDEOS………………………………………………………………… Pg. 36 
 APELINA………………………………………………………………………... Pg. 36 
 GRELINA……………………………………………………………………….. Pg. 37 
 ADRENOMODULINA…………………………………………………………… Pg. 38 
SUMÁRIO.............................................................................................................................. Pg. 40 
SINOPSE................................................................................................................................ Pg. 41 
BIBLIOGRAFIA.......................................................................................................... Pg. 42 
 3 
 
INTRODUÇÃO 
 
The vasculature is a complex organ capable of sensing its environment, 
transducing signals to cells within the vasculature or to the surrounding tissues, 
and synthesizing local mediators that promote functional or structural responses. 
Dzau et al., 1993 
 
O Tónus Vascular, i.e., o grau de contracção sustentada do sistema vascular, regula a resistência 
vascular periférica e contribui para a carga contra a qual o coração tem que bombear (Pós-Carga). Podemos 
afirmar que “o coração é o órgão de ejecção enquanto que o sistema vascular é o órgão de recepção”. 
O Sistema Vascular Periférico, para além de conduzir o sangue do coração para os capilares e destes 
novamente para o primeiro, desempenha funções de regulação do tónus arterial, da resistência vascular 
periférica (RVP) e do fluxo sanguíneo. Responde com vasoconstrição e hemóstase ao trauma e com 
hipertrofia e crescimento à hipertensão luminal. A circulação periférica é regulada por dois mecanismos 
principais: um central, o Sistema Nervoso e um periférico, mediado por Factores Humorais. A importância 
relativa de cada um difere tendo em conta a região anatómica. A regulação nervosa predomina nas 
circulações cutânea e esplâncnica, enquanto que os factores humorais são os principais agentes reguladores 
das circulações cerebral e coronária. A interface entre os mecanismos neuronais e humorais é o Endotélio. 
As células endoteliais desempenham um papel crucial na regulação do tónus vascular, através da libertação 
de substâncias vasoconstritoras e vasodilatadoras, bem como de factores de crescimento e de diferenciação 
de células da parede. 
A regulação do sistema vascular periférico está dependente da modificação do diâmetro (diminuição 
ou aumento) dos vasos de resistência (predominantemente as arteríolas), i.e., da vasoconstrição e da 
vasodilatação, respectivamente. Estes processos conhecem um estrito controlo a vários níveis. 
A regulação sistémica tem como efectores os nervos que enervam as arteríolas e os factores 
vasoactivos circulantes. Na parede dos vasos sanguíneos (à excepção dos capilares e das vénulas) há células 
musculares lisas que possuem receptores específicos sobre os quais actuam directamente os 
neurotransmissores do Sistema Nervoso Autónomo (SNA). Os factores vasoactivos circulantes são 
hormonas que modificam o Sistema Vascular Periférico (SVP) e têm acção vasodilatadora ou 
vasoconstritora. Quanto ao seu modo de acção classificam-se em dependentes ou independentes do 
endotélio concorde o factor actue directa ou indirectamente (via endotélio) sobre as células musculares lisas 
da parede vascular (Fig.1). 
 
 4 
a
s
f
i
m
Factores Circulantes 
Vasodilatadores 
(Dependentes do Endotélio)
Factores Relaxantes 
derivados do Endotélio 
R
R 
VASODILATAÇÃO 
CE 
CML
Neurotransmissores 
 
 
 
 
 
Localmente, o endotélio pode induzir vasodilatação ou vasoconstrição pela secreção (parácrina ou 
utócrina) dos denominados factores relaxantes ou constritores derivados do endotélio em resposta ao shear 
tress e a variados factores circulantes, modulando o controlo neuronal e humoral do tónus vascular. Os 
actores derivados do endotélio actuam, por sua vez, sobre a musculatura vascular lisa estimulando ou 
nibindo as proteínas contrácteis. 
Da intensa investigação dos mecanismos fisiológicos que regulam a circulação periférica e das 
odificações que ocorrem durante estados patológicos (hipercalcemia, acidemia, etc.), surgiram vários 
Factores Circulantes 
Vasoconstritores 
Factores Constritores 
derivados do Endotélio 
Neurotransmissores 
R 
R 
VASOCONSTRIÇÃO 
CE 
CML 
R 
Figura 1 – Mecanismos gerais dos fenómenos de vasoconstrição e de vasodilatação. CE – célula endotelial; CML
– célula muscular lisa; R – receptor. 
 5 
grupos de fármacos capazes de mimetizar ou de bloquear a acção de substâncias endógenas que participam 
no normal controlo da circulação periférica. 
O Endotélio assume uma posição anatómica estratégica na parede vascular uma vez que se localiza 
entre o sangue circulante e a musculatura lisa vascular,ocupando uma área de 1000 m2. De facto, mais do 
que uma presença estática é uma entidade dinâmica, produzindo substâncias vasoactivas, factores de 
crescimento e citocinas. Por estas razões é considerado um verdadeiro órgão endócrino. O endotélio funciona 
como um mecanotransdutor que é sensível ao fluxo e à pressão e modula o tónus vascular em conformidade. 
De particular importância é o facto do endotélio ser uma fonte de inúmeros mediadores que modulam o 
estado contráctil e as respostas proliferativas das células musculares lisas, a função plaquetária, a coagulação 
e a adesão de monócitos (Quadro I). A produção de substâncias pelo endotélio pode ser estimulada por 
células como os leucócitos e as plaquetas e também por forças físicas como o shear stress. 
O endotélio vascular está funcionalmente perturbado na Aterosclerose, na Diabetes Mellitus, na 
Hipercolesterolémia, na Hipertensão Arterial (HTA), na Menopausa, na Senescência e no Tabagismo. Esta 
disfunção endotelial contribui para a vasoconstrição, adesão das plaquetas e leucócitos, proliferação e 
migração das células musculares lisas, fenómenos implicados no desenvolvimento da aterosclerose. 
 
Quadro I – Funções propostas para o Endotélio Vascular. 
Função Exemplos 
Libertação de Factores Vasoconstritores Endotelina-1 
Libertação de Factores Vasodilatadores Óxido Nítrico, Prostaciclina 
Efeito Anticoagulante Superfície resistente à formação de trombos 
Efeito Antiagregante NO e Prostaciclina 
Função Imune Secreção de Interleucina I 
Actividade Enzimática Enzima de Conversão da Angiotensina 
Protecção do músculo liso vascular 
Libertação de Factores de Crescimento Vascular 
 
 6 
VASOCONSTRIÇÃO 
 
Os factores circulantes vasoconstritores incluem as catecolaminas (como a Adrenalina, a 
Noradrenalina e a Dopamina), a Angiotensina II (AII) e a Vasopressina. A Noradrenalina é o 
neurotransmissor vasoconstritor por excelência. As Endotelinas, o Tromboxano A2, a Prostaglandina E2 
e D2 e o Ião Superóxido são os factores constritores derivados do endotélio descritos até ao momento. 
 
 
3. MECANISMOS SUBCELULARES 
Os estímulos para a vasoconstrição actuam sobre receptores presentes na membrana da célula muscular 
lisa, como a angiotensina II ou a endotelina. Estes receptores são os responsáveis pela transdução do sinal em 
resposta mecânica e têm em comum o facto de utilizarem o sistema do fosfatidilinositol como segundo 
mensageiro (Fig. 2). 
 O trifosfato de inositol (IP3) e o tetrafosfato de inositol (IP4) actuam intracelularmente no sentido de 
aumentarem a concentração de cálcio citosólica, de modo a iniciar o ciclo de contracção no músculo liso 
vascular. Pensa-se que actuam através de um receptor específico presente no retículo sarcoplasmático. 
 O diacilglicerol (DAG) forma-se também quando o fosfatidilinositol é degradado pela fosfolípase C. 
Estimula a proteína cínase C (PKC) a qual induz uma contracção tónica, provavelmente pela fosforilação 
das proteínas contrácteis caldesmona e calponina. A caldesmona liga-se à actina e à calmodulina, 
provocando inibição da interacção actina-miosina por competição com a cabeça de miosina. Esta inibição é 
revertida aquando da fosforilação da caldesmona. A fosforilação da calponina remove a sua inibição sobre a 
ATPase da miosina. 
A contracção necessita de ser sustentada para permitir que o tónus do músculo liso vascular tenha 
efeito na regulação da pressão arterial. Deste modo, a contracção vascular é do tipo tónico e pode ser 
explicada pelo mecanismo de formação das latchbridges. Após a ligação inicial da miosina com a actina, 
estas proteínas têm que se manter unidas e só relaxam quando é enviado outro sinal. Deste modo, a geração 
da tensão inicial requer cerca do dobro do nível de cálcio citosólico do necessário para manter a tensão 
subsequente. À medida que aumenta o ião cálcio citosólico, vai-se ligando, na razão de 4/1, à proteína 
calmodulina. Esta sofre alterações conformacionais e activa a cínase de cadeia leve de miosina, que permite 
a interacção entre a actina e a miosina. A activação desta cínase é revertida por acção da fosfatase da 
miosina de cadeia leve. 
 As células musculares lisas vasculares possuem dois tipos de canais da cálcio sujeitos a diferentes 
estímulos. Os canais de cálcio dependentes da voltagem (VOC) operam em resposta à estimulação 
adrenérgica, à despolarização induzida pelo potássio e à automaticidade espontânea. Os canais de cálcio 
dependentes de receptores (ROC) respondem à estimulação dos receptores da endotelina, da angiotensina II 
e α1. De salientar o mecanismo de acção duplo destes agonistas (via IP3 e via ROC). Por fim há que 
considerar um padrão de contracção vascular que ocorre sem elevação do cálcio intracelular . A denominada 
 7 
contracção independente do cálcio parece ocorrer pela acção da fosfolípase C sobre precursores 
membranares diferentes do fosfatidilinositol que libertam DAG sem formação de IP3. Interessante é a 
hipótese de que o estiramento do músculo vascular sensibilize a maquinaria contráctil à PKC. 
Os Bloqueadores dos Canais de Cálcio inibem os canais de cálcio dependentes da voltagem (ou 
VOC) presentes no músculo liso vascular, causando vasodilatação periférica. A nível coronário têm também 
um papel importante na medida em que aumentam o fluxo sanguíneo e diminuem as resistências vasculares 
coronárias. A nível cardíaco têm um efeito inotrópico negativo. A Hipertensão Arterial é uma das possíveis 
aplicações terapêuticas deste grupo de fármacos. 
 
RECEPTOR 
αααα1
Ext 
MC 
Cit 
Ca2+ 
Gq 
PIP2 
IP3 
Ca2+ 
Ca2
Cínase da 
cadeia leve 
da Miosina 
Calmodulina 
DAG 
 
ΑΙΙΑΙΙΑΙΙΑΙΙ ET ............
Ca2+ 
Actina 
Miosina 
P 
P 
Fosfatase 
PLC 
Figura 2 – Mecanismos subcelulares da vasoconstrição. 
 8 
 
2. FACTORES EXTRÍNSECOS 
 
ADRENALINA E NORADRENALINA 
O controlo neuronal da circulação depende essencialmente do Sistema Nervoso Autónomo (SNA) que 
funciona independentemente da consciência. Tem duas grandes divisões, cujas funções se opõem. O componente 
Simpático (SNS) ou adrenérgico liberta adrenalina e noradrenalina, em simpatia com estados excitatórios, como o 
exercício físico e o pânico. O sistema Parassimpático (SNP) ou colinérgico actua paralelamente ao Simpático, 
libertando acetilcolina. 
 
Síntese e receptores 
A adrenalina e a noradrenalina (ambas da família das catecolaminas) são os mediadores do SNS. 
A classificação e propriedades dos diferentes tipos de receptores adrenérgicos reveste-se de particular 
importância para a compreensão dos diversos efeitos das catecolaminas. Os receptores adrenérgicos 
constituem uma família de proteínas relacionadas estrutural e funcionalmente com outros hormonas e 
neurotransmissores associados a proteínas G. Todos os subtipos de receptores adrenérgicos encontram-se 
associados a proteínas G. 
 Três subtipos de receptores β estão actualmente clonados no Homem. Genericamente, os receptores 
β1 localizam-se no miocárdio e a sua activação tem efeitos inotrópicos, cronotrópicos, dromotrópicos e 
lusitrópicos positivos, i.e., aumentam a força de contracção, a frequência cardíaca, a velocidade de condução 
e a velocidade de relaxamento. Localizam-se também nas células justaglomerulares renais onde aumentam a 
secreção de renina. Os receptores β2 distribuem-se ao músculo liso vascular, brônquico, gastrointestinal e 
genitourinário, causando vasodilatação. Os receptores β3 localizam-se no tecido adiposo onde promovem a 
lipólise. 
 Os receptores α subdividem-se em dois grandes grupos: α1 e α2. Os receptores α1 localizam-se nas 
células musculares lisas (são pós-sinápticos) e a sua activação causa vasoconstrição. Os receptoresα2 podem 
ser pós-sinápticos ou pré-sinápticos e reduzem a libertação basal da própria NA. 
 
Quadro II – Receptores adrenérgicos envolvidos na regulação do tónus vascular. 
Receptores Localização Resposta Efectores 
αααα1 Músculo liso vascular Constrição Gq → ↑ fosfolípase C 
Músculo liso vascular Constrição αααα2 
Terminais nervosos pré-sinápticos ↓ da libertação de NA 
Gi → ↓ adenilcíclase 
 
ββββ1 Músculo cardíaco (+++) 
Músculo liso vascular (+) 
 
ββββ2 Músculo liso vascular (+++) 
Músculo cardíaco (+) 
Dilatação 
 
Gs → ↑ adenilcíclase 
 
 
 
 
 
 9 
Transdução do sinal 
Os receptores β estimulam a adenilcíclase pela interacção com a proteína Gs, conduzindo à formação 
de AMPc. Segue-se a inibição da cínase de cadeia da cadeia leve de miosina por intermédio da cínase ª 
 Os receptores adrenérgicos α1 actuam essencialmente por activação da fosfolípase C (com formação 
de IP3 e de DAG) via proteína Gq. No músculo liso vascular, são capazes de activar canais de Ca2+ através de 
uma proteína G, aumentando a concentração intracelular de Ca2+ e activando a calmodulina e a cínase da 
cadeia leve da miosina. 
 Os receptores adrenérgicos α2 associam-se a vários sistemas efectores sendo o principal a inibição da 
adenilcíclase via proteína Gi. A inibição dos canais de K+ via proteína Gi, a inibição dos canais de Ca2+ 
dependentes da voltagem via proteína G0 e a estimulação das fosfolípases C e A2 são vias de sinalização 
alternativas cuja importância não está ainda totalmente determinada. 
 
 O número de receptores por unidade de área do sarcolema, ou densidade de receptores, bem como a 
sua actividade não são fixos e variam em resposta a situações fisiológicas ou patológicas particulares. A 
Dessensibilização refere-se à diminuição da actividade dos receptores sem alteração do seu número total. A 
Downregulation implica diminuição da densidade de receptores e pode resultar da internalização com 
destruição lisossómica, da diminuição da síntese ou da degradação não-lisossómica de receptores. Desta 
forma, a exposição contínua a catecolaminas ou a agonistas simpáticos leva a uma dessensibilização dos 
receptores. A estimulação β prolongada activa a cínase do receptor dos agonistas β (ββββ-ARK) que fosforila o 
receptor, desconectando-o funcionalmente da proteína Gs (os receptores podem ser ressintetizados por acção 
de uma fosfatase). Alternativamente, o receptor pode sofrer internalização por sequestração (i.e., formação 
de uma vesícula interna a partir de uma porção membranar que contém o receptor) ou por downregulation 
verdadeira (com degradação do receptor). 
 
Efeitos vasculares 
 A estimulação adrenérgica tem efeitos complexos sobre o sistema vascular que diferem com o 
subtipo de receptores activado e com a região vascular considerada. Os efeitos vasoconstritores da NA via 
receptores α1 são contrabalançados pela adrenalina circulante que estimula os receptores β2 e causa 
vasodilatação. As arteríolas esplâncnicas são uma excepção, uma vez que a adrenalina é sinérgica com a NA 
e estimula os receptores α1, causando vasoconstrição e condicionando uma redistribuição do sangue de áreas 
não-musculares para áreas musculares. Apesar da NA poder estimular os receptores β2, o seu efeito global é 
vasoconstritor porque os receptores α1 são em maior número e estão anatomicamente mais próximos do local 
de libertação da NA do que os β2 (Quadro III). 
 
Quadro III – Efeitos da adrenalina e da NA no tónus vascular. 
NORADRENALINA 
Libertada pelos terminais nervosos Vasoconstrição 
 10
Circulante Vasoconstrição cutânea, esplénica e renal 
Venoconstrição 
ADRENALINA CIRCULANTE 
Efeito β2 Vasodilatador Arteríolas musculares 
Efeito α Vasoconstritor Outros vasos de resistência e veias 
 
A angiotensina II, vasoconstritor circulante que participa no controlo da circulação arterial, tem o 
efeito neuromodulador positivo mais potente sobre a libertação de NA pelo terminal pré-sináptico, para além 
do seu efeito directo sobre o músculo liso vascular. Os neuromoduladores negativos diminuem a libertação 
de NA pelo terminal sináptico e incluem o óxido nítrico e a adenosina. O aumento da actividade 
parassimpática (ex. durante a noite), diminui a libertação de NA por intermédio de receptores muscarínicos 
pré-sinápticos M2, presentes na varicosidade nervosa. 
 
Correlações clínicas 
Os Agonistas αααα são fármacos que mimetizam a actividade simpática sobre os receptores 
adrenérgicos α e o seu principal interesse clínico prende-se com os seus efeitos ao nível do músculo liso 
vascular. A sua utilidade clínica é limitada mas de grande interesse em situações de hipovolémia ou de 
choque, uma vez que aumenta a RVP e mantém ou eleva a pressão arterial. A fenilefrina é um exemplo de 
um vasoconstritor directo com actividade selectiva α1. Alguns agonistas selectivos α2 (ex. clonidina), são 
usados no tratamento da Hipertensão Sistémica. Este parece incongruente com a existência de receptores α2 
nos vasos sanguíneos associados a vasoconstrição. Esta propriedade resulta principalmente da activação de 
receptores adrenérgicos α2 a nível do tronco cerebral onde suprime o fluxo simpático. Exerce também um 
efeito de feedback negativo sobre a libertação de NA no terminal pré-sináptico. 
 Os agonistas ββββ são utilizados quase exclusivamente no tratamento da broncoconstrição dos doentes 
com asma. A Isoprenalina é um potente agonista adrenérgico β com baixa afinidade para os receptores α 
Deste modo, reduz a RVP e a pressão arterial. 
 Os Bloqueadores ββββ (ou antagonistas dos receptores β-adrenérgicos), receberam uma enorme atenção 
devido à sua eficácia no tratamento da Hipertensão, da Doença Cardíaca Isquémica e de certas Arritmias. O 
Propranolol é o protótipo deste grupo. Actua sobre receptores β1 e β2, não têm a actividade agonista nem 
bloqueia os receptores adrenérgicos α. As suas aplicações terapêuticas devem-se sobretudo aos seus efeitos 
cardiovasculares. A nível cardíaco diminui a frequência e a contractilidade cardíacas. A nível vascular, inibe 
a vasodilatação e potencia a resposta constritora da adrenalina. Um dos seus efeitos laterais (arrefecimento 
das extremidades ) resulta desta vasoconstrição periférica. 
 Os Bloqueadores αααα, ou os antagonistas dos receptores adrenérgicos α, têm a sua principal aplicação 
clínica no sistema cardiovascular. Os antagonistas selectivos dos receptores α1 inibem a vasoconstrição e 
causam vasodilatação das arteríolas de resistência e das veias, reduzindo assim a pressão arterial. Deste 
modo, poderão ser utilizados em situações de Hipertensão. Os antagonistas α2 exercem os seus efeitos 
 11
cardiovasculares actuando no SNC e nos terminais dos nervos simpáticos. Aumentam o fluxo simpático, e 
potenciam a libertação de NA pelos terminais nervosos. 
 
 
NEUROTRANSMISSORES NÃO-ADRENÉRGICOS, NÃO-COLINÉRGICOS 
 A neurotransmissão autonómica é encarada actualmente de uma forma ampla e envolvente. 
Considerando-se que, para além dos neurotransmissores autonómicos clássicos (Acetilcolina e 
Noradrenalina), são libertadas outras substâncias, como purinas, eicosanóides e peptídeos, que funcionam 
como co-transmissores, neuromoduladores ou mesmo como transmissores. Constituem a designada 
transmissão não-adrenérgica, não-colinérgica. 
 Os nervos simpáticos pós-ganglionares noradrenérgicos contém também o Neuropeptídeo Y que 
tem uma acção sinérgica à noradrenalina, i.e.; está envolvido na manutenção do tónus vascular e tem uma 
acção vasoconstritora potente e prolongada (os pequenos vasos são os mais sensíveis). Vários subtipos de 
receptores do NPY foram identificados e clonados mas todos parecem funcionar via proteínas G. 
 O ATP encontra-se armazenado em grânulosconjuntamente com as catecolaminas. A libertação de 
noradrenalina e de ATP pelos terminais adrenérgicos da vasculatura causam excitação, embora o ATP 
desencadeie uma resposta rápida e a noradrenalina uma resposta lenta. A adenosina, resulta do metabolismo 
do ATP exerce efeitos inibidores na libertação do neurotransmissor, modulando os seus efeitos. 
 
 
ANGIOTENSINA II 
O sistema renina-angiotensina (SRA) participa na regulação imediata e sustentada da pressão arterial 
e é activado por factores que reduzem o volume circulante efectivo. 
 
A Renina é uma enzima sintetizada e armazenada pelas células granulares justaglomerulares, 
localizadas na parede das arteríolas aferentes renais e é segregada para a circulação. Tem como principal 
substrato o angiotensinogénio. O Angiotensinogénio é uma α2-globulina circulante, sintetizada de forma 
contínua pelo fígado. Várias hormonas como os glucocorticóides, a hormona tireóide e a própria 
angiotensina II estimulam a sua síntese. É convertido no decapeptídeo Angiotensina I pela renina. 
A Angiotensina I é convertida no octapeptídeo Angiotensina II pela Enzima de Conversão da 
Angiotensina (ECA). Esta enzima decompõe também dipeptídeos com sequências variadas de aminoácidos 
não sendo, por isso, específica para a angiotensina I. Dada a sua semelhança com a Cinínase II, a ACE 
degrada a bradicinina (potente activador do sistema L-arginina – óxido nítrico) nos seus componentes 
inactivos. Localiza-se, predominantemente, na superfície luminal do endotélio vascular (principalmente 
pulmonar) mas pode também encontrar-se no próprio plasma, no fluído cerebrospinhal, nas células epiteliais 
do rim, do tracto gastrointestinal e urogenital, bem como nas estruturas epiteliais e neuronais do cérebro. 
 12
Para além destas enzimas clássicas, foram identificadas inúmeras outras que participam em vias 
alternativas para a síntese de angiotensinas. 
 
 A Angiotensina I (AI) é rapidamente convertida em angiotensina II (AII) mas per se tem uma 
potência relativa sobre o músculo liso, coração e córtex adrenal inferior a 1% à da AII. 
A Angiotensina III induz (qualitativamente) uma resposta similar à AII. Têm uma potência similar 
na estimulação da secreção de aldosterona mas a AIII é muito menos potente na elevação da pressão 
sanguínea e na estimulação da medula supra-renal. 
A Angiotensina (1-7), ao contrário da AII, não induz vasoconstrição, libertação de aldosterona, sede 
nem facilita a neurotransmissão noradrenérgica. A libertação de vasopressina, a estimulação da síntese de 
prostaglandinas são acções que partilha com a AII. Tem também um efeito natriurético e reduz a resistência 
vascular renal, pelo que foi proposto que a angiotensina (1-7) actue por forma a contrabalançar as acções da 
AII. 
A AII tem como principal função o suporte ou o aumento da pressão arterial e a manutenção da 
filtração glomerular. A vasoconstrição e a libertação de aldosterona em resposta à AII ocorrem em casos de 
hemorragia, desidratação ou alterações posturais e estão actuantes em segundos ou minutos. Outras acções 
como o crescimento vascular ou a hipertrofia ventricular demoram dias ou semanas e estão implicados na 
patogénese das doenças cardiovasculares hipertensivas crónicas. 
 
Receptores 
As angiotensinas exercem o seu efeito através de receptores específicos presentes nas membranas 
celulares. Até ao momento, encontram-se caracterizados dois subtipos principais de receptores das 
angiotensinas: AT1 e AT2, os quais se distribuem heterogeneamente nos vários tecidos. 
Os Receptores AT1 caracterizam-se, tal como outros receptores hormonais, por Saturabilidade (têm 
capacidade de ligação limitada), Alta Afinidade e Elevada Especificidade estrutural. Executam a transdução 
do sinal (convertem a interacção com as angiotensinas em resposta celular) e regem-se por up e down-
regulation. Pertencem à superfamília dos receptores com sete domínios transmembranares acoplados a uma 
proteína G (Gqα e Giα) e são codificados a partir de um gene presente no cromossoma 3. Estão presentes no 
sistema vascular, coração, rins, cérebro, SNA e na supra-renal. As acções medidas por este subtipo de 
receptores pode ser avaliada na Quadro IV. 
Os Receptores AT2 são ainda largamente desconhecidos sob o ponto de vista estrutural e funcional. 
Têm uma distribuição ubiquitária e abundante nos tecidos fetais. No adulto apenas se distribuem à supra-
renal, ao ovário, ao endotélio vascular e a locais específicos do cérebro. Especula-se, actualmente, sobre o 
seu eventual papel no desenvolvimento e diferenciação celular. É codificado por um gene presente no 
cromossoma X. Pertence à família dos receptores com sete domínios transmembranares ligados à proteína G 
mas possuem uma homologia na sequência de aminoácidos de apenas 32-34% com os receptores AT1. 
 
 13
Quadro IV – Acções da Angiotensina II e a distribuição dos seus receptores. 
Localização AT1 AT2 
Sistema Vascular Vasoconstrição 
Hipertrofia Vascular 
Angiogénese 
Inibição da angiogénese 
Coração ↑ da contractilidade 
Hipertrofia Ventricular 
Inibição da colagenase 
Rins ↓ Fluxo arterial renal, Efeito variável sobre a taxa de 
filtração glomerular 
Contracção das células mesangiais e síntese de colagénio 
Inibição da libertação de Renina 
↑ transporte proximal de sódio 
 
Cérebro Libertação de Vasopressina e PGE2 
SNA Estimulação β-adrenérgica 
Supra-Renal Biossíntese de Aldosterona 
Secreção de Catecolaminas 
 
 
Transdução do sinal 
A ligação da AII ao Receptor AT1 conduz à cascata de transdução do sinal descrita previamente 
(vide supra). A AII aumenta também a entrada de cálcio para o interior da célula através de canais de cálcio 
tipo L presentes na membrana celular. O cálcio e o DAG activam a proteína Cínase C (PKC) e as Cínases 
cálcio-calmodulina, as quais catalisam a fosforilação de proteínas que regulam, por último, a resposta 
celular. Estes mecanismos completam-se em segundos ou alguns minutos e são responsáveis pela resposta a 
curto-prazo das angiotensinas. As respostas a médio e longo-prazo incluem o crescimento vascular e a 
hipertrofia ventricular. Deste modo, as angiotensinas actuam segundo vias celulares comuns aos factores de 
crescimento, nomeadamente a via da Cínase da MAP (Mitogen-Activated Protein) e da Jak-Stat (Signal 
transducers and activators of transcription), proteínas estas que activam a transcrição de vários proto-
oncogenes, como o c-fos, c-jun, c-myc e o egr-2. Os produtos dos dois primeiros, FOS e JUN, formam o 
heterodímero AP-1 que regula a transcrição de genes codificantes de factores de crescimento e proteínas de 
matriz extracelular. A activação dos receptores AT1 estimula, também, a Fosfolípase D e a Fosfolípase A2. 
Esta metaboliza a fosfatidilcolina em ácido araquidónico (AA) que por sua vez é convertido em 
prostaglandinas e tromboxano pela cicloxigénase e em leucotrienos e hidroxieicosatetraenóicos ácidos pela 
lipooxigénase, modulando assim a sinalização celular. 
 Os Receptores AT2 regulam os canais de K+ através da proteína Gi, inibem os canais de cálcio tipo T 
através de uma via não identificada e possuem vias independentes das proteínas G. Em condições 
fisiológicas, uma das funções dos receptores AT2 é a inibição da angiogénese, pelo que, em condições 
patológicas, a expressão destes vem aumentada dado o excessivo crescimento mediado pelos receptores AT1 
ou outros. Ressalta deste facto, que a AII pode exercer efeitos antagónicos sobre o crescimento, dependendo 
dos subtipos de receptores para as angiotensinas expressos por uma dada célula. 
 As angiotensinas, actuando sobre alguns tecidos, estimulam directamente substâncias de 
contrarregulação como prostaglandinas vasodilatadoras e óxidonítrico (NO). Pelo contrário, os órgãos-alvo 
podem amplificar os efeitos tipo angiotensina (angiotensin-like), como sejam as catecolaminas, a endotelina 
e os factores de crescimento. 
 14
 
O sistema Renina-Angiotensina desempenha um papel crucial na regulação da pressão arterial, a 
curto e a longo-prazo. A resposta constritora rápida da angiotensina deve-se a um aumento da resistência 
vascular total. Apesar da AII aumentar directamente a contractilidade miocárdica (pela abertura de canais de 
cálcio dependentes da voltagem nos miócitos) e indirectamente, aumentar a frequência cardíaca (pela 
facilitação do sistema simpático), o rápido aumento da pressão arterial activa o reflexo barorreceptor que 
diminui o tónus simpático e aumenta o tónus vagal. Decorre deste facto que a AII pode aumentar, reduzir ou 
não alterar a frequência e o débito cardíacos, dependendo do estado fisiológico prévio. Mais importante que 
a resposta rápida, é a resposta constritora lenta da AII que contribui para a estabilização da pressão arterial a 
Figura 3 – Transdução do sinal dos receptores AT1. 
AT1 
A II
AT1 
A II
Ext 
MC 
Cit 
Ca2+ 
PLD PLA2 AC Gq Gi 
PIP2 
IP3 
Ca
Ca
ATP 
AMPc 
Cínase da 
cadeia leve 
da Miosina 
Calmodulina 
Vasoconstrição 
Síntese de Aldosterona 
Facilitação da Neurotransmissão 
Efeitos Cardíacos, Renais e CNS 
↑↑↑↑c-fos, ↑↑↑↑ c-jun, ↑↑↑↑ c-myc, ↑↑↑↑ egr-1 
↑↑↑↑ FOS, ↑↑↑↑ JUN 
 ↑↑↑↑ AP-1 
!" Factores de Crescimento (↑↑↑↑ 
bFGF, ↑↑↑↑PDGF, ↑↑↑↑ TGFβ)β)β)β) 
!" Proteínas da Matriz 
extracelular (↑↑↑↑ Colagénio, ↑↑↑↑ 
Fib ti ↑↑↑↑ T i )
DAG 
PK
Calponina 
Caldesmona 
 
AA 
PO4 
MAP Cínase 
TKi 
TKa 
STAT
STAT
PO4 
MODULAÇÃO 
DA 
SINALIZAÇÃO 
PGs TXA2 HETEs LTs 
RESPOSTAS IMEDIATAS 
CRESCIMENTO CELULAR 
PLC 
 15
longo prazo. É mediada pela diminuição da excreção renal de Na+ e água e pelo aumento da excreção de K+. 
Para além destas alterações (agudas e crónicas) sobre a pressão arterial, a AII altera a morfologia do sistema 
cardiovascular causando hipertrofia das células cardíacas e vasculares. 
 
Correlações clínicas 
 Os Inibidores da Enzima de Conversão da Angiotensina (IECAs) têm como principal acção no 
sistema Renina-Angiotensina, a inibição da conversão da AI em AII pela ACE. Os seus efeitos clínicos 
parecem dever-se à supressão da síntese de AII mas também ao aumento da bradicinina, ( a qual estimula a 
biossíntese de prostaglandinas), uma vez que a ECA tem vários substratos. Por outro lado, ao interferirem 
com as ansas de feed back negativo existentes sobre a renina, provocam um aumento desta bem como um 
aumento de AI. Consequentemente, há activação das vias metabólicas alternativas, com aumento da 
produção de peptídeos activos como a angiotensina (1-7). A sua principal aplicação terapêutica é no 
tratamento da Hipertensão Arterial. 
 Os Antagonistas dos Receptores AT1 (os ‘sartans’), são dotados de elevada especificidade e 
selectividade para o subtipo de receptores AT1, sendo desprovidos de qualquer actividade intrínseca. São um 
novo instrumento terapêutico para a Hipertensão Arterial. Actuam por inibição da vasoconstrição e por 
diminuição da libertação de vasopressina e de aldosterona, da retenção renal de água e sódio e do 
crescimento celular a nível cardíaco, vascular e renal. 
 
 
VASOPRESSINA 
 A Vasopressina (VP) ou Hormona anti-diurética é sintetizada nos corpos celulares dos neurónios 
magnocelulares localizados nos núcleos supra-óptico e paraventricular, juntamente com a VP-neurofisina 
(ou neurofisina II) e VP-glicopeptídeo (ou copeptina). A VP-neurofisina liga-se à vasopressina e é crucial 
para um correcto processamento, transporte e armazenamento de VP. O transporte axonal de VP é rápido e 
tem como destino não só os botões terminais na neurohipófise mas também a zona externa da eminência 
mediana onde entra na circulação porta-hipofisáia, actuando como factor libertador de corticotrofinas. O 
principal estímulo fisiológico para a secreção de VP é a hiperosmolalidade plasmática. A 
hipotensão/hipovolémia grave constitui um forte estímulo para a sua secreção. A dor, as náuseas e a hipóxia, 
bem como certas hormonas endógenas (acetilcolina, histamina, dopamina, glutamina, aspartato, 
colecistocinina, neuropeptídeo Y, substância P, peptídeo intestinal vasoactivo (VIP), prostaglandinas e 
angiotensina II) podem estimular a secreção da VP. Pelo contrário, o peptídeo atrial natriurético (ANP), o 
ácido gama-aminobutírico (GABA) e os opióides inibem a secreção de VP. 
 
Receptores 
Os efeitos celulares de VP são mediados pelos receptores V1 e V2 (Quadro V). O Receptor V1 
realiza, entre outras funções, a contracção da musculatura lisa vascular e a estimulação da síntese de 
prostaglandinas e da gluconeogénese hepática. A activação destes receptores estimula a via do 
 16
fosfatidilinositol. Estimula também a fosfolípase D que conduz à activação da proteína cínase C via DAG, 
com fosforilação de proteínas chave. Por último, conduz também à formação de metabolitos do ácido 
araquidónico pela activação da fosfolípase A2. Os Receptores V2 são responsáveis pelas acções renais da 
VD e talvez pela sensibilização do reflexo barorreceptor na área postrema. Activam proteínas G, estimulando 
a produção de AMPc que activa a proteína Cínase ª 
 
Quadro V – Acções da Arginina-Vasopressina e a distribuição dos seus receptores. 
Receptores Distribuição Acções 
V1a Músculo liso vascular, miométrio, bexiga, testículos, adipócitos, 
hepatócitos, plaquetas, células intersticiais medulares renais, vasa recta da 
microcirculação renal, células epiteliais dos ductos colectores corticais, 
baço e muitas estruturas do SNC. 
V1 
V1b Adenohipófise 
Vasoconstrição, crescimento 
das células musculares lisas, 
gluconeogénese, agregação 
plaquetária, libertação de 
ACTH 
V2 Células principais dos ductos colectores renais Aumento da permeabilidade 
do ducto colector à água 
 
Efeitos vasculares 
 Apesar de ser um potente vasoconstritor, como é desencadeada uma redução compensatória do 
débito cardíaco, o seu efeito sobre a pressão arterial é diminuto. Este facto deve-se, sobretudo, à vasopressina 
circulante que actua nos receptores V1 inibindo os eferentes simpáticos e potenciando os barorreflexos, 
aumentando a actividade parassimpática no tronco cerebral. Em certos vasos, os receptores V2 causam 
vasodilatação, possivelmente por libertação de NO pelo endotélio vascular. Tem interesse como Hormona de 
Stress em situações de hipovolémia uma vez que os níveis plasmáticos de VP são elevados e permitem a 
manutenção da perfusão tecidual. 
 
 
3. FACTORES DERIVADOS DO ENDOTÉLIO 
 
ENDOTELINAS 
 Os três membros da família, Endotelina-1 (ET-1), Endotelina-2 (ET-2) e Endotelina 3 (ET-3), são 
peptídeos com 21 aminoácidos produzidos em vários tecidos. Actuam como moduladores do tónus vascular, 
da proliferação celular e da produção de hormonas. 
 São sintetizadas na forma de pré-pró-endotelinas que são convertidas por endopepetidases em pró-
endotelinas (ou Big Endothelin 1, 2, 3) que originam as endotelinas 1, 2 e 3, respectivamente. Esta reacção é 
catalisada pela Enzima de Conversão da Endotelina (ECE) presente no plasma, pulmão e rim. Encontram-
se clonados três tipos de ECE, a ECE-1, a ECE-2 e ECE-3, apesar das duas últimas ainda não terem sido 
identificadas no Homem. 
A ET-1 é a única endotelina produzida pelas células endoteliais, sendo também produzida pelas 
células musculares lisas vasculares, células mesangiais e hepatócitos. A ET-2 é produzida 
predominantemente pelo rim e intestino enquanto que a ET-3 está associada com os neurónios (atingindo 
 17
concentrações elevadasno cérebro) sendo também produzida no intestino, pulmão e supra-renal. Dos 3 tipos 
de endotelinas a ET-1 é a que tem maior significado e importância para o sistema cardiovascular. Como a 
ET-1 não é armazenada em grânulos de secreção, a sua secreção é regulada por factores que modificam a 
transcrição do seu gene. 
A hipóxia, o Shear Stress, a angiotensina II, a adrenalina, a insulina, a trombina (resultante do 
processo de coagulação), os radicais livres (que se acumulam durante a isquemia e a reperfusão), o TGFβ e a 
interleucina 1β são os principais estímulos para a sua libertação. 
A prostaciclina e o NO inibem a produção de ET-1 por um mecanismo dependente do AMPc 
enquanto que o peptídeo atrial natriurético (ANP) inibe a produção basal de ET-1 e é estimulada pela AII e 
trombina. A ET1 e a big ET1 são segregadas em pequenas quantidades para o plasma mas na sua maioria são 
libertadas para a média dos vasos, onde actuam de modo parácrino (Fig. 4). 
 
Receptores 
As endotelinas exercem as suas acções fisiológicas através de receptores específicos, constituídos 
por sete domínios transmembranaras, acoplados à proteína G e à fosfolípase C. Estão clonados dois 
receptores das endotelinas: ETA e ETB. Actualmente considera-se que os ETB medeiam a vasodilatação mas 
tanto os ETB como os ETA causam vasoconstrição, dependendo da espécie ou do território vascular 
considerado (Quadro VI). 
 
Quadro VI – Acções da Endotelina e a distribuição dos seus receptores. 
 ETA ETB 
Afinidade ET1=ET2>ET3 ET1=ET2=ET3 
Localização Células musculares lisas vasculares 
Coração 
Pulmão 
Cérebro 
Rim 
 
Células musculares lisas vasculares 
Cérebro 
Pulmão 
Coração 
Intestino 
Rim 
Vasodilatação inicial mediada pela libertação do NO seguida de vasoconstrição sustentada 
Vasoconstrição das artérias coronárias ↓ Taxa de Filtração Glomerular 
Proliferação das células musculares lisas vasculares Inibição da bomba Na+/K+ 
Efeito inotrópico positivo Proliferação das células mesangiais 
Inibição da libertação de renina e estimulação da ACE ↑ Síntese de matriz mesangial 
Acções 
Modulação do volume sanguíneo pela libertação do 
peptídeo atrial natriurético e de aldosterona 
 
 
 
As endotelinas ligam-se aos seus receptores específicos acoplados à proteína G, tendo como 
segundos mensageiros IP3 e DAG. O IP3 não parece ser responsável pelos efeitos contrácteis prolongados da 
ET-1 que dependem sobretudo do cálcio extracelular. Este efeito parece dependente da interacção com 
canais iónicos, uma vez que a ET-1 e a ET-3 abrem canais de Cl- e encerram canais de K+ insensíveis ao 
ATP, despolarizando a membrana. 
 
 18
Efeitos vasculares 
Quando segregadas em quantidades pequenas funcionam como vasodilatadores porque através dos 
receptores ETB1 estimulam a libertação e a acção do NO. Esta vasodilatação transitória precede o seu 
potentíssimo efeito vasoconstritor mediado pelos ETA. 
 Após lesão do endotélio vascular, há agregação plaquetária com libertação de TGFβ e trombina que 
induzem libertação de endotelina, causando vasoconstrição. A ET-1 circulante encontra-se elevada em várias 
situações patológicas como na Insuficiência Cardíaca Congestiva, após o Enfarte Agudo do Miocárdio, na 
Hipertensão Essencial, na Insuficiência Renal Aguda e na Hipertensão Pulmonar, pelo que poderá 
desempenhar um importante papel na fisiopatogenia destas doenças. A ET1 parece também desempenhar 
funções relevantes no desenvolvimento embrionário, uma vez que a ausência do seu gene conduz a 
anomalias craniofaciais graves e morte ao nascimento por insuficiência respiratória. 
 
 
 
CE 
CML 
ETA ETB 
Relaxamento Contracção 
Crescimento 
Promotor do 
gene ET-1 
↓↓↓↓ 
RNAm 
preproET →→→→ PreproET→→→→ProET→→→→ET-1→→→→ 
ECE 
ETB 
Endotelina-1 
PGI2 
NO 
TXA2 
Catecolaminas 
Angiotensina II 
Shear Stress 
Trombina 
Interleucina 1ββββ 
TGF-ββββ 
Hipóxia 
Radicais livres 
Insulina 
PROSTACICLINA 
Óxido Nítrico 
ANF 
Figura 4 – Síntese, libertação e acção da Endotelina-1. 
 19
Interacções 
A ET-1 estimula a produção de factores relaxantes derivados do endotélio como o NO e a 
prostaciclina, provavelmente por acção sobre receptores ETB. Este subtipo de receptor está também 
associado com a libertação do factor hiperpolarizante derivado do endotélio que abre canais de K+ de 
baixa condutância activados pelo Ca2+. Os ETA endoteliais podem mediar a libertação do prostanóide 
constritor tromboxano A2. 
A ET-1 estimula também a libertação do peptídeo atrial natriurético que inibe a produção e acções 
da própria ET-1 e atenua a proliferação vascular de células musculares lisas induzida pela endotelina. O 
peptídeo natriurético tipo-C tem acções similares ao anterior, co-localiza-se com a ET-1 nas células 
endoteliais, contrabalançando as acções da endotelina local e sistemicamente. 
 
Correlações clínicas 
 Os Antagonistas dos Receptores da Endotelina poderão ser úteis nas situações em que a 
endotelina está anormalmente elevada. 
 
 
OUTROS FACTORES CONSTRITORES DERIVADOS DO ENDOTÉLIO 
Em certas condições patológicas, o endotélio produz outros factores constritores derivado do 
endotélio (EDCFS). Destacam-se os prostanóides dependentes da ciclooxigenase, como o Tromboxano A2 
(TXA2) e as Prostaglandinas D2 e E2 e os Aniões Superóxido. 
O TXA2, produzido pelas plaquetas, induz vasoconstrição e agregação plaquetária, ao contrário da 
Prostaciclina (PGI2) que é produzida na parede vascular e é vasodilatadora e anti-agregante plaquetária. A 
PGH2.é o precursor de ambas, pelo que os dois eicosanóides representam os pólos opostos da interacção 
entre as plaquetas e a parede vascular. A activação das plaquetas estimula fosfolípases membranares, com 
formação de ácido araquidónico e a sua transformação em endoperóxidos de prostaglandinas e TXA2 que 
causam agregação plaquetária. 
 20
Figura 7 - Factores Vasoconstritores e Mecanismos de acção. A – Receptor da Angiotensina; ACE – 
Enzima de Conversão da Angiotensina; COX – Cicloxigénase; DAG – Diacilglicerol. E – Receptor da 
Endotelina; ECE - Enzima de Conversão da Endotelina; IP3 – Trifosfato de Inositol; NPY – 
Neuropeptídeo Y; RS – Retículo Sarcoplasmático; α – Receptor adrenérgico α. 
Factores 
Circulantes 
Vasoconstritores 
Factores 
Constritores 
derivados 
do Endotélio 
Neurotransmissores 
A 
VASOCONSTRIÇÃO 
A
E 
αααα 
Adrenalina 
Noradrenalina 
Angiotensina I 
Angiotensina II
ECA
ECE COX
Endotelina 
Tromboxano 
Prostaglandinas D2 e E2 
Ião Superóxido 
PLC DAG 
IP3
Ca2RS 
Actina 
Miosina 
Fármacos Vasoconstritores 
• Agonistas αααα 
• Bloqueadores ββββ 
Célula
Muscular Lisa
Célula
Endotelial
ATP 
NPY 
 21
 
VASODILATAÇÃO 
 
Os factores circulantes vasodilatadores incluem a Acetilcolina, a Bradicinina, a Trombina, a 
Histamina, a Endotelina (via ETB), cuja acção depende essencialmente de factores relaxantes derivados 
do endotélio, como o NO e a Prostaciclina. O NO funciona também como neuromodulador. O endotélio 
produz ainda o factor hiperpolarizante derivado do endotélio (EDHF). 
 
 
3. FACTORES EXTRÍNSECOS 
 
ACETILCOLINA 
 O sistema nervoso parassimpático é constituído por dois componentes, o craniano e o sagrado. A 
acetilcolina (Ach) é o neurotransmissor usado nas sinapses entre os neurónios pré e pós-ganglionares, como 
também entre estes últimos e os receptores nos órgãos-alvo. 
No que concerne aos vasos sanguíneos, eles recebem uma enervação parassimpática muito pobre e, 
inclusivamente, os vasos do músculo esquelético e da pele não têm qualquer enervação parassimpática. Não 
obstante, os vasos do músculo esquelético recebemfibras vasodilatadoras colinérgicas que caminham através 
de nervos simpáticos, constituindo o designado Sistema Vasodilatador Simpático. Estas fibras, 
anatomicamente simpáticas, libertam acetilcolina e medeiam um fenómeno de vasodilatação (que, no entanto 
não é constante nem muito marcado), e que ocorre imediatamente antes ou no início do exercício físico. 
Em termos gerais, a enervação parassimpática está topograficamente organizada: os vasos 
sanguíneos da cabeça e dos órgãos torácicos são enervadas pelas fibras pós-ganglionares do componente 
craniano, enquanto que do componente sagrado partem os nervos que suprem os vasos dos órgãos genitais, 
bexiga e intestino grosso. Estas fibras colinérgicas, juntamente com as do sistema simpático, constituem 
plexos na adventícia dos vasos e dos quais partem fibras que se dirigem à porção externa da camada média 
dos mesmos. Os neurotransmissores atingem as regiões mais profundas da camada muscular por difusão e, 
por sua vez, as junções de hiato permitem que se dê a propagação do sinal nervoso por todas as células. 
 
Receptores 
Existem dois tipos de receptores colinérgicos, os nicotínicos e os muscarínicos. Os receptores 
nicotínicos são canais iónicos dependentes de ligandos, cuja activação por duas moléculas de Ach 
desencadeia um rápido aumento na permeabilidade aos iões Na+ e Ca2+, conduzindo à despolarização da 
estrutura pós-sináptica. Estes receptores localizam-se nas placas motoras, nas células cromafins da medula 
supra-renal e nos gânglios vegetativos (onde medeiam as sinapses entre os neurónios pré e pós-ganglionares 
dos sistemas simpático e parassimpático). Os receptores muscarínicos, em contrapartida, pertencem à 
classe dos receptores ligados à proteína G. A sua resposta é lenta, podendo ser excitatória ou inibitória e não 
 22
está necessariamente relacionada com alterações da permeabilidade iónica. Existem cinco subtipos de 
receptores muscarínicos, que apresentam localizações anatómicas e características bioquímicas diferentes. 
No que concerne a sua distribuição, destacam-se os receptores M1, que se localizam no SNC e na mucosa 
gástrica; os receptores M2, que predominam no miocárdio e na vasculatura; os receptores M3, situados no 
músculo liso e nas glândulas exócrinas. 
 
COLINA
COLINA
ACh
ACETIL
-CoA
A
C
hT
Ca2+
ACh
ACh
ACh
ACh
ACh
ACh
ACh
ACh ACh ACh
ACh
Terminal
Colinérgico
R
M
usc
RNic
Pool
sináptico
Ex
oc
ito
se
AChEAcetil
Coa
Colina
Estrutura Pós-sinápticaDi
fusã
o
 
 
Figura 6 – Síntese de Acetilcolina. 
 
 
Quanto aos sistemas de segundos mensageiros, os receptores M1, M3 e M5 activam a proteína Gq/1l, 
enquanto que os receptores M2 e M4 interagem com a proteína Gi,. 
A proteína Gq/1l é responsável pela estimulação da fosfolípase C que leva à hidrólise do fosfolípido 
da membrana, fosfatididilinositol-4, 5-bisfosfato (PIP2), em diacilglicerol (DAG) e 1,4,5-trisfosfato de 
inositol (IP3). O DAG, juntamente com o Ca2+, activa a proteína cínase C, que intervém na fase final da 
resposta, enquanto que o IP3 actua num receptor do retículo sarcoplasmático, levando à libertação de Ca2+ 
nele armazenado. Deste modo, ocorrem fenómenos dependentes do Ca2+, como sejam a contracção no 
músculo liso e a secreção nas glândulas exócrinas. 
 23
As proteínas Go e Gi inibem a enzima adenilcíclase, activam canais de K+ e suprimem a actividade 
dos canais de Ca2+ dependentes da voltagem, o que, no caso concreto do miocárdio, explica os efeitos 
inotrópico e cronotrópico negativos da Ach. 
 
Efeitos vasculares 
Tendo em consideração que no músculo liso se encontram receptores M3, cujo segundo mensageiros 
é o IP3, esperar-se-ia que a Ach tivesse um efeito vasoconstritor, o que não acontece na realidade. Nos vasos 
sanguíneos, há receptores M3 na camada muscular e receptores M2 no endotélio, e a Ach libertada pelos 
terminais nervosos actua sobretudo neste últimos. A activação das células endoteliais pela Ach leva à síntese 
de substâncias vasodilatadoras, nomeadamente o óxido nítrico (NO). Para além disso, existem receptores 
pré-sinápticos M2 nos terminais axonais adrenérgicos, pelos quais a Ach exerce uma acção inibitória sobre a 
libertação de noradrenalina, o que contribui para o seu efeito vasodilatador. É pertinente notar que em caso 
de lesão do endotélio, este não é capaz de sintetizar substâncias relaxantes, pelo que a Ach ao interagir com 
os receptores da camada muscular provoca vasoconstrição. 
 
Actualmente, encontram-se disponíveis vários fármacos que interferem com a transmissão 
colinérgica, nomeadamente fármacos agonistas e antagonistas dos receptores muscarínicos e nicotínicos, 
bem como inibidores das enzimas que medeiam a síntese de Ach. Todos estes agentes prefiguram-se como 
importantes armas terapêuticas em situações clínicas tão diversas como o Íleo Paralítico, a Parésia Vesical, 
o Glaucoma de ângulo fechado, a Miastenia Gravis e a Taquicardia Paroxística Supraventricular, entre 
outros. 
 
 
NEUROTRANSMISSORES NÃO-ADRENÉRGICOS, NÃO-COLINÉRGICOS 
Vários mediadores não-adrenérgicos, não-colinérgicos participam na teia reguladora da circulação. 
 O NO actua como neuromodulador no Sistema Nervoso Central e Periférico paralelamente aos seus 
efeitos directos nos vasos sanguíneos. A nível central, a libertação endógena de NO reduz a excitabilidade 
simpática e parassimpática, com diminuição do fluxo eferente. Como neuromodulador periférico, o NO 
exerce os seus efeitos vasodilatadores através da redução do tónus vascular mantido por acção adrenérgica, 
miogénica e humoral. O NO opõe-se aos mecanismos vasoconstritores simpáticos, inibindo a libertação de 
noradrenalina pelos terminais dos nervos pós-ganglionares e antagonizando intracelularmente a transdução 
do sinal noradrenérgico. A importância da modulação da vasoconstrição simpática pelo NO é directamente 
dependente da relevância relativa do simpático sobre a circulação. 
 A Adenosina, formada a partir da degradação do ATP, abre canais de K+, causa hiperpolarização e 
inibe a entrada de Ca2+. Este efeito evidencia-se sobretudo a nível cardíaco, onde inibe a contracção e a 
frequência cardíacas. A nível vascular é vasodilatadora via receptores A2.pré-sinápticos. 
 O Peptídeo Intestinal Vasoactivo (VIP) é armazenado em vesículas diferentes das de acetilcolina 
mas tem uma acção sinérgica, condicionando vasodilatação. 
CORRELAÇÕES 
CLÍNICAS 
 24
 O Peptídeo Relacionado com o Gene da Calcitonina (CGRP) é um neurotransmissor vasoactivo 
cujo receptor se associa à proteína Gs que, via AMPc, causa vasodilatação. 
 A Dopamina é outro neurotransmissor vasodilatador que exerce os seus efeitos a nível pós-sináptico 
através da activação da adenilcíclase (receptores DA1) e a nível pré-sináptico inibindo a libertação de 
noradrenalina receptores DA2 pré-sinápticos. 
 
 
CININAS 
No nosso organismo existem dois peptídeos com grande capacidade vasodilatadora, a bradicinina e 
a calidina (ou lisilbradicinina). Estas cininas têm como precursores os cininogénios de alto e baixo peso 
molecular. São sintetizados sobretudo pelos hepatócitos, mas também as células endoteliais e as células 
musculares lisas dos vasos têm a capacidade de os produzir e/ou armazenar. 
O cininogénio de alto peso molecular, quando se encontra no plasma, está ligado à pré-calicreína e 
ao factor XII, estando implicado na via intrínseca da cascata da coagulação. Quando ligados às plaquetas, os 
cininogénios de alto e baixo peso molecular impedem que estas interajam com a trombina, um poderoso 
factor pró-agregante. Para além das plaquetas, também as células endoteliais e as células musculares lisas 
têm receptores para o cininogéniode alto peso molecular e quando os cininogénios estão ligados a estes 
elementos celulares significa que estão prontos para a síntese de cininas. 
A libertação dos peptídeos vasoactivos a partir dos seus precursores faz-se por acção de proteases – 
cininogenases, nomeadamente proteases de serina e as calicreínas plasmática e tecidular. A calicreína 
plasmática circula no plasma na sua forma inactiva, denominada de pré-calicreína. Esta última é activada 
por fragmentos proteolíticos provenientes do factor XIIa. Por sua vez, a formação destes fragmentos a partir 
do factor XIIa é catalisada pela plasmina e, por feed-back positivo, pela própria calicreína. Em contrapartida, 
a calicreína plasmática e o cininogénio de alto peso molecular activam o factor XII. Conclui-se, portanto, que 
existe uma intricada rede de activações recíprocas destes agentes. Por seu lado, a calicreína tecidular 
localiza-se sobretudo na membrana apical de células envolvidas no transporte transcelular de electrólitos. É 
encontrada nas glândulas sudoríparas e salivares, no pâncreas, na próstata, no intestino e nos rins. A 
calicreína tecidular actua em ambos os cininogénios, dando origem à calidina, enquanto que a calicreína 
plasmática processa o cininogénio de alto peso molecular, do qual deriva a bradicinina. Os inibidores de 
proteases de serina, como sejam a α2-macroglobulina, a antitrombina III, o inibidor C1, controlam a 
actividade da calicreína plasmática. Por outro lado, a α1-antitripsina e a kallikrein-binding protein inibem a 
calicreína tecidular. 
 Ambas as cininas são metabolizadas em fragmentos inactivos por cininases, que se dividem em dois 
grandes grupos: as cininases de tipo I, como é o caso das carboxipeptidases (que são as cininases mais 
abundantes no plasma), e as cininases de tipo II, de que é exemplo a enzima conversora da angiotensina 
(ACE), uma glicoproteína transmembranar de cadeia simples, localizada principalmente na superfície das 
células endoteliais. 
 
 25
Receptores 
 Existem duas classes de receptores de cininas nos vasos, designados B1 e B2, ambos acoplados a 
proteínas G. Os receptores B2 predominam nas células endoteliais, e tanto a bradicinina como a calidina são 
potentes agonistas. O mesmo não sucede com os metabolitos que resultam da acção das cininases de tipo I e 
II, cujo poder agonístico é muito diminuto ou é mesmo inexistente quando comparado com o dos seus 
precursores. Nas células endoteliais, os receptores B1 apenas estão constitutivamente expressos em 
determinados vasos, mas podem ser induzidos por endotoxinas em todos os vasos. Em alguns leitos 
vasculares, os receptores B1 e/ou B2 podem mediar respostas vasomotoras independentes do endotélio, 
conduzindo à produção de prostanóides vasoconstritores ou vasodilatadores pelas células musculares lisas. 
 
Transdução do sinal 
Os receptores B2 endoteliais estão acoplados a uma proteína G que activa a enzima fosfolípase C. Da 
acção desta última resulta a libertação de DAG e IP3 que, respectivamente, conduzem à activação da 
proteína C e à mobilização de Ca2+ a partir dos meios intra e extracelulares; o influxo de Ca2+ do meio 
extracelular ocorre através de canais catiónicos não selectivos (activados pelo estiramento ou por polifosfatos 
de inositol, como o IP4) segundo um gradiente electroquímico. A hiperpolarização é um fenómeno complexo 
envolvendo a abertura de canais de potássio. Resulta da acção directa das cininas sobre receptores B2; do 
próprio Ca2+ citosólico e da existência de substâncias que aumentam o AMPc, como é o caso da PGI2 (daí 
que a prostaciclina venha a ter um efeito facilitador sobre a libertação de NO) e potencia a entrada de cálcio. 
 
Ca2+
 
PLA2 
GTP 
B 
PLC 
GT
B
R
NO 
L-Arginina 
IP
IP
A
CO EOX-
 
GTP 
B2 
K
EDHF PGI2 
Bradicinina
NO
Ca2
Figura 7 – Transdução do sinal da Bradicinina. 
 26
No citoplasma da célula endotelial, o Ca2+ desempenha um papel central na cascata de segundo-
mensageiros desencadeada pelas cininas. De facto, ele vai activar a síntese de NO pela enzima constitutiva 
NO síntase, contribui para a libertação de ácido araquidónico por acção da fosfolípase A2, isto para além dos 
efeitos sobre a extrusão de K+ subjacente ao fenómeno de hiperpolarização anteriormente descrito. O ácido 
araquidónico (AA) é, por sua vez, processado pela cicloxigénase em PGI2, a qual vai actuar sobre a célula 
muscular lisa adjacente. Em contrapartida, o AA pode ser sujeito à acção da epoxigénase dependente do 
citocromo P-450 dando origem ao EDHF, o qual pode provir ainda de uma via alternativa mediada pela 
monoxigénase, assunto que será realçado mais à frente. Os inibidores da ACE, ao impedir a degradação da 
bradicinina, potenciam os seus efeitos, sendo também capazes de aumentar a sensibilidade dos receptores das 
cininas, bem como da cascata da transdução do sinal. 
 
 
2. FACTORES DERIVADOS DO ENDOTÉLIO 
 
ÓXIDO NÍTRICO 
O NO é sintetizado a partir do aminoácido L-arginina, por uma reacção catalisada pela NO síntase. A 
produção de NO pode ser inibida por substâncias análogas à l-arginina (nomeadamente o L-NAME e o L-
NMMA), que são reconhecidas pela NO síntase, funcionando deste modo como falsos substratos. 
O NO tem uma semi-vida muito curta (apenas 5 seg.), sendo rapidamente inactivado por radicais 
livres de oxigénio (o superóxido nítrico assim formado é altamente tóxico) e pelo grupo heme da 
hemoglobina. Portanto, o NO praticamente não tem efeitos sistémicos, mas actua de forma parácrina e/ou 
autócrina e o seu tempo de semi-vida é aumentado pela hipóxia. Não obstante, o NO pode ligar-se às 
globinas da hemoglobina, dando origem a nitrosaminas. Estas, constituem uma via de transporte do NO, o 
que lhe permite actuar em locais a jusante. A hemoglobina apresenta, então, uma relação ambivalente com o 
NO: inactiva-o pelo grupo heme ou possibilita-lhe uma acção à distância ao combinar-se com as suas 
globinas. É pertinente salientar ainda que o próprio NO é capaz de inibir a síntese dos radicais de oxigénio, 
pelo que tem um carácter antioxidante. Se eventualmente aqueles já se tenham formado como consequência 
do stress oxidativo, então o NO combina-se e dá origem a compostos muito nocivos. 
 Existem três isoformas da enzima NO síntase: o tipo I (ncNOS) expressa-se constitutivamente no 
sistema nervoso central; o Tipo II (iNOS) é uma isoforma que é induzida , enquanto que o Tipo III (ecNOS) 
é uma enzima constitutivamente expressa, sobretudo nas células endoteliais. Estas três isoenzimas diferem 
não apenas no local onde são expressas, mas também quanto à sua dependência ao ião cálcio. Por um lado, a 
actividade dos tipos I e III depende do complexo Ca2+-Calmodulina, enquanto que o tipo II é independente 
da presença de Ca2+ intracelular, sendo regulado a nível da sua expressão genética por acção de citocinas e 
outros mediadores inflamatórios. 
O NO que é produzido nos macrófagos pela iNOS, vai ter uma acção bactericida ao combinar-se 
com radicais livres de oxigénio, o que é particularmente importante para a actividade fagocítica daquelas 
 27
células.Por outro lado, a síntese de NO pela ncNOS é estimulada quando o glutamato se liga aos receptores 
NMDA da estrutura pós-sináptica. A partir desta, difunde em direcção ao terminal pré-sináptico, onde actua 
no sentido de aumentar a libertação daquele aminoácido. Deste modo, o NO tem uma acção reverberante na 
saída de glutamato, amplificando circuitos neuronais centrais que são de particular importância no processo 
de memorização. Para além disto, é também libertado nas sinapses mediadas pelos nervos não adrenérgicos e 
não colinérgicos (NANC). Contudo, não é um verdadeiro neurotransmissor em virtudede não possuir um 
receptor sináptico específico, e a capacidade de atravessar barreiras biológicas advém da sua grande 
difusibilidade. 
 
 
No que concerne a ecNOS, é estimulada por uma panóplia de substâncias, nomeadamente a Ach, a 
bradicinina, a histamina, a serotonina, a trombina, substância P, o ADP, o shear stress. Fisiologicamente, há 
uma libertação contínua de NO pelas células endoteliais, mantendo os vasos num estado dilatado, o que 
assegura o fluxo sanguíneo basal. Exerce, também, uma acção antiagregante e impede a activação 
plaquetária, ao aumentar os níveis intracelulares de GMPc. Desempenha ainda um importante papel na 
função renal, nomeadamente na natriurese, na diurese e no fluxo renal plasmático. 
 
Transdução do sinal 
O NO é um gás que se difunde para a camada muscular subjacente ao endotélio, entra nos miócitos 
lisos e activa a enzima guanilcíclase que se encontra livre no citosol. Dá-se a síntese de GMPc a partir de 
GTP, o que despoleta o relaxamento do músculo e, por conseguinte, do vaso. Os mecanismos celulares 
subsequentes à formação de GMPc e que, em última instância, provocam vasodilatação, são variados e 
complexos. Por um lado, este segundo-mensageiro vai activar uma cínase dependente do GMPc, a PKG. Esta 
enzima vai fosforilar e assim inactivar canais de Ca2+ ligando-dependentes e voltagem-dependentes. Em 
contrapartida, a fosforilação de canais de K+ do sarcolema conduz à sua activação e a saída deste ião resulta 
em hiperpolarização da membrana, o que diminui a entrada de Ca2+ pelos canais voltagem-dependentes. O 
GMPc, por seu turno, bloqueia a libertação de Ca2+ armazenado no retículo sarcoplasmático induzida pelo 
IP3, ao mesmo tempo que potencia a sua recaptação para dentro deste organelo celular ao activar, via 
fosfolambam, o transportador Ca2+-ATPase, SERCA. Também a Ca2+-ATPase e o trocador Na+/Ca2+ do 
sarcolema são activados pelo GMPc, tal como as fosfatases da cadeia leve da miosina. Todos este fenómenos 
resultam na diminuição da fosforilação desta cadeia leve da miosina, da qual depende o aparelho contráctil 
das células musculares lisas para ser activado. 
 
Correlações clínicas 
 A deficiência de NO contribui para a patogénese de várias doenças, incluindo a hipertensão, a 
aterosclerose e a diabetes mellitus. Curiosamente, o NO inibe a mitogénese de fibroblastos e de células 
musculares lisas, pelo que, esta acção anti-proliferativa previne a hipertrofia do músculo liso que ocorre 
durante a instalação da aterosclerose. De igual modo, a diminuição da produção de NO pode ser responsável 
pela impotência sexual observada em doentes diabéticos do sexo masculino. Uma vez que a impotência 
 28
pode ser solucionada pela injecção intracavernosa de nitrovasodilatadores, tem-se especulado que o NO 
libertado para o tecido muscular dos seios cavernosos, sobretudo o que provém de terminais nervosos e não 
tanto o de origem endotelial, seja essencial para a função eréctil. Esta é a base do famoso Viagra, cujo 
princípio activo (Sildenafil) é um inibidor da fosfodiestérase, reduzindo-se a degradação do GMPc, o 
segundo-mensageiro do NO nas células musculares lisas, e que é produzido no decurso da estimulação 
sexual. Outro exemplo da aplicação clínica do NO é representado pelo uso de trinitroglicerina nas situações 
de crise de angina de peito, uma vez que esta substância é uma dadora de substrato para a NO síntase. 
Os nitrovasodilatadores relaxam a maioria do músculo liso vascular das artérias e veias. A nitroglicerina em 
baixas doses produz venodilatação que predomina sobre a dilatação arteriolar, resultando numa diminuição 
da pré-carga para o ventrículo direito mas praticamente sem efeitos sobre a resistência vascular sistémica. 
Pelo contrário, a resistência vascular pulmonar e o débito cardíaco reduzem ligeiramente. 
 
Figura 8 – Vasodilatação mediada pelo NO. 
 29
PROSTAGLANDINAS 
 As prostaglandinas são compostos que derivam do ácido araquidónico (AA), um ácido gordo 
insaturado mobilizado pela fosfolípase A2 (PLA2) a partir de fosfolípidos da membrana. Dentro da família 
das prostaglandinas, salientam-se a prostaciclina (PGI2), o tromboxano A2 (TxA2), e os prostanóides PGD2 
e PGE2, pelos seus efeitos na regulação do tónus vascular. Estas substâncias derivam todas da via da 
cicloxigénase, mas o ácido araquidónico pode seguir um caminho alternativo mediado pela lipoxigénase. 
Por acção desta enzima, formam-se leucotrienos, que são libertados pelos macrófagos e leucócitos (por 
exemplo, nas reacções anafiláticas), os quais exercem uma poderosa acção vasoconstritora e 
broncoconstritora. 
A prostaciclina é a principal prostaglandina produzida pelas células endoteliais quando sobre esta 
actuam factores mecânicos, nomeadamente, a pressão pulsátil, e substâncias endógenas derivadas do plasma, 
como é o caso da bradicinina e da trombina, ou produzidas por plaquetas activadas, destacando-se a 
serotonina, o factor de crescimento derivado das plaquetas (PDGF) e a interleucina-1. 
A síntese de PGI2 inicia-se com a libertação de ácido araquidónico a partir dos fosfolípidos da 
membrana citoplasmática por acção da PLA2, como atrás foi mencionado. De seguida, o AA é processado 
pela enzima síntase de endoperóxidos de prostaglandinas (PGGH síntase, também conhecida por 
Cicloxigénase ou Cox), a qual tem uma actividade de cicloxigénase (levando à produção de PGG2) e uma 
actividade peroxidásica (conduzindo à formação de PGH2, qual é o precursor de todos os prostanóides). 
Existem duas isoenzimas Cox: a Cox-1 é uma forma constitutiva, enquanto que a Cox-2 é induzida, sendo 
característica dos estados inflamatórios. O último passo é catalisado pela prostaciclina síntase, obtendo-se a 
PGI2. 
 
Transdução do sinal 
Fisiologicamente, a PGI2 actua de forma parácrina em receptores presentes em algumas células 
musculares lisas dos vasos, em elementos figurados do sangue e em células endoteliais. Estes receptores vão 
activar a adenilcíclase, conduzindo ao aumento da concentração intracelular de AMPc nas células alvo. Este 
segundo mensageiro é responsável pelo relaxamento das células musculares lisas e pelo efeito 
antiagregante nas plaquetas. 
Nos miócitos, ocorre um fenómeno de interacção entre o GMPc e o AMPc: a elevação da 
concentração de GMPc provocada pelo NO vai ter um efeito inibitório sobre a fosfodiestérase que degrada o 
AMPc. Existe, então, uma potenciação da vasodilatação desencadeada pela PGI2 por acção do NO. 
 A prostaciclina impede que as plaquetas e outras células sanguíneas adiram à superfície endotelial; 
estimula as enzimas que metabolizam ésteres de colesterol nos miócitos lisos vasculares, suprime a 
acumulação destes lipídeos ao promover a sua fagocitose por macrófagos (inibe a aterogénese) e impede a 
libertação de factores de crescimento que conduzem à hipertrofia da camada muscular da parede dos vasos. 
Existem condições, algumas das quais patológicas, em que ocorre redução da capacidade de produção de 
PGI2 pelo endotélio, aumentando o do risco de aparecimento de episódios de trombose ou desenvolvimento 
 30
de aterosclerose. Dentro destas salientam-se o envelhecimento, a diabetes mellitus, a aterosclerose e a 
nicotina do tabaco. 
 
Correlações clínicas 
A via metabólica descrita pode ser inibida por determinadas substâncias, o que pode trazer 
repercussões clínicas relevantes. Os glicocorticóides induzem a formação da lipocortina, uma inibidora 
endógena da PLA2. Deste modo, impedem a formação da PGI2, um importante mediador da resposta 
inflamatória pela sua capacidade de exercer uma intensa vasodilatação. Também o ácido acetilsalisílico, 
princípio activo da vulgar aspirina, bem como outros anti-inflamatórios não esteróides (AINEs), sãoinibidores da Cox-1 e/ou da Cox-2. Este facto vai repercutir-se numa produção diminuída de PGI2 pela Cox-
1 da mucosa gástrica, e o efeito citoprotector que esta prostaglandina exerce pode estar prejudicado aquando 
da administração daqueles fármacos. Os AINES têm utilidade nos estados inflamatórios, mas vai ter uma 
acção nociva para a mucosa gástrica e na resposta hemostática, ao impedir a síntese de TxA2, um poderoso 
pró-agregante plaquetário. É pertinente salientar que, enquanto a cicloxigénase das células endoteliais pode 
ser continuamente ressintetizada, assegurando a libertação de PGI2, o mesmo não acontece com a Cox das 
plaquetas que é responsável pela produção de TxA2. De facto, uma vez que são células anucleadas, a 
regeneração da Cox plaquetária só se faz à custa da formação de novas plaquetas, processo que demora 
alguns dias se tivermos em conta que o tempo médio de vida destas células é cerca de 8 a 11 dias. 
Recentemente, foi descoberto um novo campo terapêutico de grande interesse para o ácido acetilsalicílico. 
Pequenas doses deste salicilato inibem irreversível e selectivamente a Cox das plaquetas, sem ter repercussão 
na mucosa gástrica, o que tem interesse na prevenção de fenómenos tromboembólicos. 
 
 
EDHF 
As células endoteliais quando metabolizam o AA pela monoxigénase citocromo P-450, dão origem 
a um factor hiperpolarizante dependente do endotélio (EDHF), por exemplo quando são estimuladas pela 
bradicinina. O NO também é capaz de provocar hiperpolarização das células musculares lisas vasculares por 
um mecanismo independente do GMPc, e a própria PGI2 demonstra uma capacidade hiperpolarizante 
similar. Não obstante, o aumento da diferença do potencial de membrana persiste mesmo após a 
administração de inibidores da NO síntase e da Cox. Foi assim que se identificou o EDHF como uma 
entidade autónoma, com origem no endotélio, e que se difunde para a camada muscular subjacente onde 
induz a hiperpolarização das suas células. Sabe-se que esta hiperpolarização envolve a activação de canais 
de K+, e vai traduzir-se no bloqueio de canais de Ca2+ dependentes da voltagem, na diminuição da 
sensibilidade dos miofilamentos ao ião Ca2+ e na inibição da fosfolípase C, reduzindo a mobilização do Ca2+ 
armazenado no retículo sarcoplasmático. Por conseguinte, estes efeitos na cinética do Ca2+ provocam o 
relaxamento células musculares. Em virtude da existência de junções gap entre os miócitos, há propagação 
da hiperpolarização induzida pelo EDHF a todas as células musculares, incluindo as que estão mais 
profundamente situadas. 
 31
 O EDHF actua, portanto, sinergicamente com outras substâncias vasodilatadoras produzidas pelo 
endotélio, como sejam o NO, a PGI2 e epoxieicosanóides (que derivam da metabolização do AA pela 
epoxigénase), com o propósito de provocar o relaxamento da camada muscular e a consequente dilatação do 
vaso. 
OUTRAS FACTORES PRODUZIDAS PELO ENDOTÉLIO 
A células endoteliais libertam radicais livres de oxigénio em resposta ao shear stress e a substâncias 
químicas que sobre elas actuam. Isto tem implicações na função do endotélio uma vez que o anião 
superóxido inactiva o NO. Daí que a enzima superóxido dismútase (SOD) potencia o relaxamento mediado 
pelo endotélio ao impedir a degradação do NO. 
Há também síntese do factor activador das plaquetas (PAF), a partir de fosfolípidos da membrana, 
por acção da PLA2. A PGI2 inibe a produção de PAF, enquanto que os radicais de oxigénio a estimulam. Este 
factor vai provocar a contracção do músculo liso vascular e induzir a dessensibilização dos receptores β-
adrenérgicos (que são mediadores da resposta vasodilatadora despertada pelas catecolaminas circulantes ou 
libertadas pelos neurónios pós-ganglionares simpáticos). O PAF encontra-se igualmente envolvido na lesão 
tecidular decorrente da reperfusão pós-isquémica, visto que induz a activação das plaquetas e a adesão dos 
leucócitos ao endotélio (o que desencadeia, por seu lado, a libertação de radicais livres de O2). 
O endotélio produz factores de crescimento que regulam a proliferação das células endoteliais e do 
músculo liso subjacente, bem como a composição da matriz extra celular. Destes, destacam-se factores 
heparin-like e o TGF-ββββ (que inibem a proliferação das células musculares dos vasos), o PDGF e o b-FGF 
(ambos estimulando o crescimento do endotélio e do músculo subjacente). As células endoteliais 
desempenham, ainda, um papel fulcral na angiogénese ao sintetizarem o b-FGF e o VEGF. Estes dois 
factores de crescimento vão induzir as células endoteliais a sintetizarem proteinases (que degradam a 
membrana basal), a migrarem e a proliferarem, como também promover a formação de um novo tubo 
vascular a partir desta população de células endoteliais que está a proliferar. 
 Há também produção de citocinas, importantes mediadores da resposta inflamatória, quando as 
células endoteliais são activadas, quer por lesão directa, quer por acção de endotoxinas. Elas vão ser 
responsáveis por um largo espectro de acções no endotélio, as quais são colectivamente designadas de 
activação endotelial. Destas, destacam-se a estimulação da síntese de NO (que se traduz em intensa 
vasodilatação, como acontece no choque séptico), aumento da trombogenicidade do endotélio, estimulação 
da expressão de moléculas de adesão (favorecendo a adesão leucocitária) e a produção de mais citocinas e 
factores de crescimento (particularmente IL-1, IL-8, IL-6 e PDGF). 
 
 
3. SHEAR STRESS 
 
In vivo, o endotélio vascular encontra-se continuamente sujeito a uma diversidade de forças 
biomecânicas decorrentes do fluxo pulsátil do sangue ao longo da superfície luminal da camada íntima. Isto 
deve-se ao facto do endotélio corresponder à interface entre a corrente sanguínea e a parede dos vasos. 
 32
Várias forças hemodinâmicas fazem-se sentir no endotélio e podem ser classificadas em três categorias. O 
Shear Stress equivale a uma força de fricção aplicada na superfície endotelial pela passagem do sangue; o 
Ciclic Strain, caracterizado pela elongação das células como resposta à distensão rítmica do vaso; e a 
Pressão Pulsátil é uma força exercida tangencialmente sobre a superfície celular à medida que a onda de 
pressão se propaga ao longo do vaso. As forças externas induzem uma série de alterações no citosqueleto e 
nas cascatas de segundos mensageiros, pelo que o endotélio funciona como um autêntico 
mecanotransdutor. Para além disso, a deformação mecânica influencia a libertação de determinados 
agentes vasoactivos, como é o caso do NO, da endotelina-1 e da prostaciclina, pela regulação da expressão 
dos genes envolvidos na sua síntese. 
 Durante muito tempo, considerou-se que os principais mecanismos periféricos de controlo do tónus 
vascular eram mediados por factores metabólicos libertados localmente e pela resposta miogénica das 
células musculares lisas (caracterizada por uma relação inversa entre o raio e a pressão, o que implica que a 
um aumento da pressão transmural está associada a vasoconstrição). Contudo, existe também uma reacção 
dos vasos que é dependente do fluxo, i.e., subsequentemente a um aumento da velocidade do fluxo, existe 
vasodilatação, fenómeno que é mediado pelo aumento do shear stress. Isto significa que alterações no shear 
stress, decorrentes de variações do fluxo, induzem a libertação de factores vasorelaxantes pelo endotélio. A 
dilatação do vaso repõe, deste modo, os níveis de shear stress por um mecanismo de feed-back negativo. De 
facto, dos vários parâmetros reológicos que são influenciados pelo aumento do fluxo, nomeadamente um 
maior aporte de substâncias vasodilatadoras; a remoção acelerada de agentes constritores; alterações na 
pressão, na temperatura e/ou na viscosidade, o shear

Outros materiais