Buscar

Aula 2 Erros e tratamento de dados QA Clássica KMB

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ERROS E TRATAMENTO DE DADOS 
ANALÍTICOS
Profa. Kátia Messias Bichinho
UNIVERSIDADE FEDERAL DA PARAÍBA
Centro de Ciências Exatas e da Natureza
Departamento de Química
Química Analítica Clássica 
ERROS EM MEDIÇÕES
Química Analítica Clássica
 São definidos como a diferença existente entre
um valor medido e um valor verdadeiro ou mais
provável.
Obs: embora as concentrações reais nunca possam ser
exatamente conhecidas para a maioria das
medições, é possível informar com bastante certeza
o valor verdadeiro ou mais provável.
Exemplos: materiais de referência certificados NIST,
IRMM.
ERROS EM MEDIÇÕES
Química Analítica Clássica
 Todas as medidas físicas possuem um certo grau de
incerteza associado ao processo de medição.
 Todo valor numérico, que é o resultado de uma medida
experimental, terá uma incerteza associada. É necessário
conhecer e expressar o intervalo de confiabilidade do
resultado.
 Não há como evitar incertezas em medições, mas é
possível melhorar métodos e técnicas para minimizá-las.
 Os erros e incertezas são conhecidos e calculados por
meio de tratamento estatístico dos dados experimentais, para
que se obtenha o resultado analítico, ou seja, a informação
desejada.
ERROS EM MEDIÇÕES
Química Analítica Clássica
ERRO ABSOLUTO  é a diferença entre o valor medido e o valor 
verdadeiro ou mais provável.
Informa se existe desvio positivo (a maior) ou negativo (a menor) 
entre o valor medido e o valor verdadeiro ou mais provável.
i vE x x 
E = erro absoluto
Xi = valor medido
Xv = valor verdadeiro ou mais 
provável
ERROS EM MEDIÇÕES
Química Analítica Clássica
ERRO RELATIVO  é o erro absoluto dividido pelo 
valor verdadeiro ou mais provável, expresso em 
percentagem.
.100%i v
v
x x
E
r x


Er = erro relativo
Xi = valor medido
Xv = valor verdadeiro ou mais 
provável
ERROS EM MEDIÇÕES
Química Analítica Clássica
EXATIDÃO DOS RESULTADOS 
A exatidão dos resultados de uma medida 
está relacionada com o erro absoluto, ou seja, a 
exatidão informa quanto o valor medido é 
diferente do valor verdadeiro ou mais provável.
ERROS EM MEDIÇÕES
Química Analítica Clássica
A precisão de uma medida pode ser definida 
como a concordância de uma série de medidas de uma 
mesma grandeza.
Dois conceitos:
Repetibilidade de resultados é obtida quando se faz medidas 
precisas de uma grandeza sob as mesmas condições, 
repetidas vezes (réplicas).
Reprodutibilidade de resultados ocorre quando a precisão é 
mantida, por exemplo, quando a análise é repetida no dia 
seguinte, ou na semana seguinte, ou feita por outro analista 
no mesmo laboratório ou feita por outro analista em outro 
laboratório.
ERROS EM MEDIÇÕES
Química Analítica Clássica
PRECISÃO DOS RESULTADOS 
A precisão dos resultados está relacionada à 
concordância entre diferentes medidas. 
 quanto mais os valores medidos são diferentes 
entre si, maior a dispersão dos resultados, ou seja, 
menor a precisão.
 quanto mais parecidos são os valores medidos, 
menor a dispersão de resultados, ou seja, maior a 
precisão.
Química Analítica Clássica
I
II
III
Valor verdadeiro ou
mais provável
Exatidão e Precisão
I Exato e Preciso
II Inexato e Preciso
III Inexato e impreciso
Exemplo A – Exato e impreciso
Valor médio = 49,1 %
Valor verdadeiro = 49,1 +- 0,1 %
49,0 49,1 49,2 49,3 49,4
49,0 49,1 49,2 49,3 49,4
Exemplo B – Inexato e preciso
Valor médio = 49,4 %
Valor verdadeiro = 49,1 +- 0,1 %
Química Analítica Clássica
TIPOS DE ERROS
Química Analítica Clássica
A) Determinados ou sistemáticos
Podem ser medidos, corrigidos ou eliminados.
Em geral, influenciam na exatidão de uma
medida, pois afastam o valor medido do valor
verdadeiro.
B) Indeterminados ou aleatórios
Não são mensuráveis, são aleatórios e afetam a
precisão das medidas.
Em geral, seguem a distribuição gaussiana.
ERROS DETERMINADOS
Química Analítica Clássica
 Pessoais e operacionais
São erros que independem de propriedades
físicas e químicas do sistema ou de equipamentos e
reagentes químicos, mas dependem do
conhecimento e da habilidade do analista.
Exemplos:
- manter copo de béquer destampado durante as análises;
- não regular o nível da balança analítica;
- derramar soluções durante transferências;
- deixar ebulir, promovendo a projeção de volumes da
amostra.
ERROS DETERMINADOS
Química Analítica Clássica
 Instrumentos e reagentes
São erros determinados ocasionados pela
inadequada operação do instrumento analítico
(instalação, condições de uso, calibração etc.) e
pureza dos reagentes químicos.
Exemplos:
- aparelhos como pipetas, buretas e balões volumétricos
sem calibração ou com callibração vencida;
- impurezas em reagentes sólidos podem comprometer a
massa medida.
- Impurezas em reagentes líquidos podem atuar como
interfentes.
ERROS DETERMINADOS
Química Analítica Clássica
Erros de método
A escolha do método deve ser cuidadosa e o
procedimento deve ser rigorosamente observado.
Exemplos:
- uso de indicador inadequado;
- aplicação do método a faixas de concentração
inedequadas;
- uso de soluções-padrão para volumetria com
concentração inadequada.
IDENTIFICAÇÃO DE ERROS DETERMINADOS
Química Analítica Clássica
Utilização de amostras em branco, ou seja, que não
contêm o analito a ser determinado, devem ser
analisadas usando-se o método escolhido, em paralelo
às amostras.
Utilização de diferentes métodos analíticos para
determinar uma mesmo analito em determinada
amostra. A análise estatística dos dados deve reproduzir
resultados equivalentes, do contrário, existem erros
determinados.
IDENTIFICAÇÃO DE ERROS DETERMINADOS
Química Analítica Clássica
Amostras de materiais de referência certificados (mcr)
por institutos nacionais e internacionais devem ser
analisadas utilizando-se o método escolhido. Este
método deve reproduzir o valor certificado. (IPT –
Instituto de Pesquisas Tecnológicas; NIST – National
Institute of Standards and Technology).
Amostras idênticas do mesmo material podem ser
analisadas por analistas diferentes em laboratórios
diferentes, utilizando-se os mesmos métodos ou
diferentes métodos, desde que validados e
reconhecidos. Divergências de resultados além do erro
aleatório esperado indicam erros sistemáticos.
ERROS INDETERMINADOS OU ALEATÓRIOS
Química Analítica Clássica
Considere que os erros determinados são
conhecidos e estão corrigidos ou eliminados.
 Ainda assim, os resultados obtidos para repetidas
medidas sofrerão flutuações devido aos erros
indeterminados.
 São intrínsecos ao processo analítico e devem ser
estimados por meio do tratamento estatístico de
dados.
ERROS INDETERMINADOS OU ALEATÓRIOS
Química Analítica Clássica
Lei de Distribuição de Gauss
 Admite-se que os erros indeterminados seguem
a Lei de Distribuição de Gauss ou Distribuição
Normal.
População  é o conjunto de todas as medidas de 
interesse. Corresponde a um número elevado de 
medidas.
Amostra  é um subconjunto de medidas selecionadas a 
partir da população, escolhidas para se fazer 
estimativas sobre a população. É representativa 
da população e torna viável o experimento.
ERROS INDETERMINADOS OU ALEATÓRIOS
Química Analítica Clássica
Lei de Distribuição de Gauss
 Uma variável segue a lei de distribuição normal
quando, em princípio, pode tornar todos dos
valores de - a + , com probabilidades dadas
pela equação:
2
2
( )1 1
exp
22
 
  
 
ixy

 
ERROS INDETERMINADOS OU ALEATÓRIOS
Química Analítica Clássica
Lei de Distribuição de Gauss
Y – probabilidade de ocorrência
(relação entre o número decasos em que o resultado
ocorre e o número total de
resultados observados) de
um valor Xi da variável X;
 é a média da população e 
é o desvio padrão da
população;
Y

,
iXDesvio


-3 3-2 2-1 10
Grandeza , variável X
, iDesvio X
0
ERROS INDETERMINADOS OU ALEATÓRIOS
Química Analítica Clássica
Lei de Distribuição de Gauss
z = representa o desvio de um 
resultado da média da população
em relação ao desvio padrão.
ERROS INDETERMINADOS OU ALEATÓRIOS
Química Analítica Clássica
Lei de Distribuição de GaussLei de Distribuição de Gauss
Média da amostra
X = média da amostra
Xi = medida
N = número de medidas
ERROS INDETERMINADOS OU ALEATÓRIOS
Química Analítica Clássica
Lei de Distribuição de GaussLei de Distribuição de Gauss
Média da população
µ = média da população
Xi = medida
N = número de medidas
ERROS INDETERMINADOS OU ALEATÓRIOS
Química Analítica Clássica
Lei de Distribuição de GaussLei de Distribuição de Gauss
Desvio padrão da amostra
Variância da amostra é o quadrado do desvio
padrão da amostra, s2.
1
2

 

n
x
i
x
s
)(
ERROS INDETERMINADOS OU ALEATÓRIOS
Química Analítica Clássica
Lei de Distribuição de GaussLei de Distribuição de Gauss
Desvio padrão da população
n
i
x 

2)( 

Variância da população é o quadrado do desvio 
padrão da amostra,  2.
-1
ERROS INDETERMINADOS OU ALEATÓRIOS
Química Analítica Clássica
Lei de Distribuição de GaussLei de Distribuição de Gauss
 Desvio padrão relativo,
x
s
sr 
 Coeficiente de variação,
100
x
s
CV
Química Analítica Clássica
Exercício
1) Os seguintes resultados foram obtidos para réplicas da
determinação de chumbo em uma amostra de sangue:
0,752; 0,756; 0,752; 0,751 e 0,760 mg L-1 de Pb. Calcule:
a) a média dos valores;
b) o desvio padrão para o conjunto de dados;
c) a variância;
d) o desvio padrão relativo;
e) o coeficiente de variação.
f) avalie os resultados em termos de precisão.
Química Analítica Clássica
Exercício - respostas
1) Os seguintes resultados foram obtidos para réplicas da
determinação de chumbo em uma amostra de sangue:
0,752; 0,756; 0,752; 0,751 e 0,760 mg L-1 de Pb. Calcule:
a) média, x = 0,754 mg L-1
b) desvio padrão , s = 0,004 mg L-1
c) variância, s2 = 0,00002 (mg L-1 )2
d) o desvio padrão relativo, sr = 0,005
e) o coeficiente de variação, CV = 0,5 %
f) os resultados são precisos, pois o conjunto de dados apresenta baixos
valores para desvio padrão e variância.
O teor de chumbo na amostra de sangue corresponde a 0,754 +- 0,004
mg L-1.
ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
 Os algarismos de um número que são necessários
para expressar a precisão da medida são denominados
algarismos significativos.
 São os dígitos que representam uma medida
experimental e que possuem significado físico, sendo que o
último algarismo é duvidoso.
 O número de algarismo significativos expressa a
precisão de uma medida.
Obs: para expressar toda e qualquer medida experimental
é preciso conhecer os algarismos significativos!!
ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
 Dados experimentais podem ser obtidos de duas
formas:
Diretamente: determinação da massa de uma substância
medida de massa em balança analítica ou determinação
do volume de uma solução com uma pipeta volumétrica
ou bureta.
Indiretamente: a partir dos valores de outras grandezas
medidas, através de cálculos.
Exemplo: o cálculo da concentração de uma solução a
partir da massa do soluto e do volume da solução).
ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
EXEMPLOS
A) Medida de massa em balança analítica que possui 
quatro casas decimais.
Considere a massa medida igual a 2,1546 g. 
Este resultado nos informa que a massa da amostra é maior 
do que 2,1545 g e menor do que 2,1547 g.
*Precisão em décimo de miligrama!
** Incorreto expressar o resultado como:
2,15 g, pois informa precisão menor!
2,15460 g, pois informa precisão maior!
ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
EXEMPLOS
B) Medida de massa em balança analítica que possui três casas 
decimais:
Considere a massa medida igual a 2,150 g. Este resultado nos 
informa que a massa da amostra é maior do que 2,149 g e 
menor do que 2,151 g.
*Precisão em miligrama!
Incorreto expressar como 2,15 g, pois informa precisão menor!
Incorreto expressar como 2,1500 g, pois informa precisão maior!
ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
EXEMPLOS
C) Medida de volume de solução em bureta analítica:
Suponha que o resultado encontrado tenha sido 
20,6 mL, que é a precisão máxima que a escala da bureta
permite determinar.
Incorreto expressar o resultado como 20,60 mL, porque induz à 
ideia de que o instrumento de medida possibilita maior precisão!
Incorreto expressar o resultado como 21 mL, porque informa 
uma precisão menor!
ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Quantos algarismo significativos temos?
 24,95 mL possui QUATRO algarismos significativos
 6,450 g possui QUATRO algarismos significativos
 1,1215 g possui CINCO algarismos significativos
 0,0108 g possui APENAS TRÊS algarismos significativos porque 
os zeros à esquerda servem apenas para indicar a posição da 
casa decimal!
* Este número pode ser expresso como 1,08 x 10-2 g.
 0,0025 kg possui APENAS DOIS algarismos significativos, pois 
pode ser facilmente expresso como 2,5 g ou 2,5 x 10-3 kg.
ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Algarismo ZERO
a) Não é significativo quando serve apenas para localizar o
ponto decimal  zeros à esquerda!!!
0,0670  quantos AS?
b) É significativo quando:
 Encontra-se entre dois algarismos: 1,203 g
 Encontra-se no final do número, à direita: 15,20 mL
ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Exercícios
a) 1,427 x 102
b) 1,4270 x 102 (significa que o dígito zero após o 7 é conhecido)
c) 6,302 x 10-6 pode ser escrito como 0,000006302
d) 9,00
e) 1,0
f) 0,01 pode ser escrito como 1 x 102
“número mínimo de algarismos necessários para escrever um
determinado valor em notação científica”
CÁLCULOS COM ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Adição ou subtração
Quando duas ou mais quantidades são adicionadas
ou subtraídas, o resultado da soma ou da diferença deverá
conter tantas casas decimais quantos existirem no fator
com o menor número delas.
CÁLCULOS COM ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Adição ou subtração
Exemplos
a) 3,4 + 0,020 + 7,31 = 10,730 = 10,7
Observe que o resultado possui três algarismos 
significativos, embora os números 3,4 e 0,020 possuem 
apenas dois algarismos significativos.
b) 2,432 x 106 + 6,512 x 104 - 1,227 x 105 = 2,374 x 106
2,432 x 106
0,0 6512 x 106
0,1227 x 106
CÁLCULOS COM ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Adição e substração - exercícios
a) A massa de um corpo medido em balança analítica é
2,2 g. Outro material possui massa de 0,1145 g. Calcular
a massa total dos dois corpos. R: 2,3 g
CÁLCULOS COM ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Adição e substração – exercícios
b) Um pedaço de polietileno possui massa de 6,80g.
Retirou-se uma amostra desse material, cuja massa
medida foi de 2,6367 g. Calcular a massa do pedaço de
polietileno restante. R: 4,20 g
CÁLCULOS COM ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Adição e substração - exercícios
c) Somar os seguintes valores:
1.000,0 + 10,05 + 1,066
R: 1011,1
CÁLCULOS COM ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Multiplicação e divisãoO resultado deverá conter tantos algarismos
significativos quantos estiverem expressos no fator que
possui o menor número de algarismos significativos.
CÁLCULOS COM ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Multiplicação e divisão - Exemplo
Calcular o número de móis existente nos seguintes
volumes de uma solução de HCl 0,1000 mol L-1:
a) 25,00 mL
nHCl = 25,00 x 0,1000 x 10-3 = 2,500 x 10-3
b) 25,0 mL
nHCl = 25,0 x 0,1000 x 10-3 = 2,50 x 10-3
c) 25 mL
nHCl = 25 x 0,1000 x 10-3 = 2,5 x 10-3
P
r
e
c
i
s
ã
o
CÁLCULOS COM ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
Logaritmo e antilogaritmo
Log 339 = 2,530
2 = característica
530 = mantissa
CÁLCULOS COM ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
O logaritmo de um número deverá ser expresso
com tantos dígitos à direita do ponto decimal (mantissa)
quantos forem os algarismos significativos do número
original.
Exemplos:
a) log 9,57 x 104 = 4,981
b) log 4,000 X 10-5 = - 4,3979
CÁLCULOS COM ALGARISMOS SIGNIFICATIVOS
Química Analítica Clássica
O antilogaritmo de um número deverá ser expresso
com tantos dígitos quantos dígitos existirem à direita do
ponto decimal do número original (mantissa).
Exemplo:
a) antilog 12,5 = 3 X 1012
REGRAS PARA ARREDONDAMENTO DE DADOS
Química Analítica Clássica
Para que um resultado analítico seja expresso com
número adequado de algarismos significativos, é comum
ser necessário realizar o arredondamento do número.
IMPORTANTE: o arredondamento deve ser feito somente
no resultado final. Não deve ser aplicado a cálculos e
resultados parciais, pois acarreta erros de
arredondamentos.
Química Analítica Clássica
1. Se o dígito a ser arredondado é < 5:
Manter o algarismo anterior
Exemplo: 0,523 será arredondado para 0,52.
2. Se o dígito a ser arredondado é >5:
Adicionar uma unidade ao algarismo anterior.
Exemplo: 44,8 será adicionado para 45.
3. Se o dígito a ser arredondado é =5:
a) manter o anterior se ele for par.
Exemplo: 0,525 será arredondado para 0,52.
b) adicionar uma unidade ao algarismo anterior se ele for ímpar.
Exemplo: 237,5 será arredondado para 238.
REGRAS PARA ARREDONDAMENTO DE DADOS
Química Analítica Clássica
Exemplos
a) 9,47 
b) 9,43
c) 9,55
d) 0,625
e) 0,635
f) 12,5
g) 7,5
h) 26,95
i) O preço da gasolina R$ 2,339 está correto em 
termos de algarismos significativos? Arredonde.
REGRAS PARA ARREDONDAMENTO DE DADOS
a) 9,5
b) 9,4
c) 9,6
d) 0,62
e) 0,64
f) 12
g) 8
h) 27,0
i) 2,34
Respostas

Outros materiais