A maior rede de estudos do Brasil

Grátis
11 pág.
resmate 2

Pré-visualização | Página 1 de 4

Determine o momento estático em relação ao eixo x da figura plana composta pelo quadrado (OABD) de lado 20 cm e o triângulo (BCD) de base (BD) 20 cm e altura 12 cm.
		
	
	6880 cm3
	
	9333 cm3
	 
	5200 cm3
	
	4000 cm3
	
	6000 cm3
		
	Sobre o cálculo do centroide de figuras planas é correto afirmar que:
		
	 
	Quando uma superfície possuir um eixo de simetria, o centroide da mesma deve estar situado nesse eixo, e o momento estático de primeira ordem em relação ao eixo de simetria é nulo;
	
	Quando uma superfície possui dois eixos de simetria, seu centroide não está situado interseção desses eixos;
	
	Para uma placa homogênea o centroide não coincide com o baricentro;
	
	Quando uma superfície é simétrica em relação a um centro O os momentos estáticos de primeira ordem em relação aos eixos X e Y, são diferentes de zero;
	
	Para um arame homogêneo situado no plano XY o centroide nunca não estará fora do arame.
		
	A fotoelasticidade é uma técnica experimental utilizada para a análise de tensões e deformações em peças com formas complexas. A passagem de luz polarizada através de um modelo de material fotoelástico sob tensão forma franjas luminosas escuras e claras. O espaçamento apresentado entre as franjas caracteriza a distribuição das tensões: espaçamento regular indica distribuição linear de tensões, redução do espaçamento indica concentração de tensões. Uma peça curva de seção transversal constante, com concordância circular e prolongamento, é apresentada na figura ao lado. O elemento está equilibrado por duas cargas momento M, e tem seu estado de tensões apresentado por fotoelasticidade.
Interprete a imagem e, em relação ao estado de tensões nas seções PQ e RS, o módulo de tensão normal no ponto
		
	
	R é maior que o módulo da tensão normal no ponto S.
	
	P é maior que o módulo da tensão normal no ponto R.
	
	Q é menor que o módulo da tensão normal no ponto S.
	 
	Q é maior que o módulo da tensão normal no ponto R.
	
	S é menor que o módulo da tensão normal no ponto P.
		
	Considere um triângulo retângulo ABC, com hipotenusa AB, base BC= 4cm e altura AC = 3cm. O momento de inércia deste triângulo (área) em relação ao eixo que passa pela base BC é dado por b.h3/12. Determine o momento de inércia deste triângulo em relação ao eixo que passa pelo vértice A e é paralelo à base. DICA: Teorema dos eixos paralelos: I = I´+ A.d^2 onde d^2 é d elevado ao quadrado
		
	
	15 cm4
	
	9 cm4
	
	36 cm4
	 
	27 cm4
	
	12 cm4
		
	Um motor de 20 HP (1 HP = 746 W) em cujo eixo gira a uma rotação 1.800 rpm, aciona uma máquina. Qual o torque aplicado ao eixo.
		
	
	51,4 N.m
	
	82,8 N.m
	 
	79,2 N.m
	
	27,3 N.m
	
	8,28 N.m
		
	Sobre o fenômeno da torção de eixos maciços não circulares marque a alternativa incorreta:
		
	 
	A tensão de cisalhamento máxima ocorre no interior da seção transversal;
	
	Para eixos de seção transversal quadrada a tensão máxima de cisalhamento ocorre em um ponto da borda a seção transversal mais próxima da linha central do eixo;
	
	A tensão de cisalhamento aumenta com o aumento do torque aplicado;
	
	O ângulo de torção aumenta com a redução do módulo de cisalhamento;
	
	A tensão de cisalhamento é distribuída de forma que as seções transversais fiquem abauladas ou entortadas;
		
	A viga engastada mostrada na figura possui uma reação em A que se opõe à rotação da viga. Determine essa reação.
		
	
	1800 Nm no sentido anti-horário
	
	180 Nm no sentido horário
	 
	180 Nm no sentido anti-horário
	
	600 N para baixo
	
	600 N para cima
		
	Um eixo não-vazado de seção transversal circular se encontra submetido a um momento de torção. Podemos afirmar que:
		
	 
	a tensão de cisalhamento é máxima na periferia da seção circular;
	
	a tensão de cisalhamento é constante ao longo da seção circular.
	
	a tensão de cisalhamento é máxima no centro da seção circular;
	
	a tensão de cisalhamento independe do momento de torção;
	
	a tensão de cisalhamento é nula na periferia da seção circular;
		
	Uma viga de eixo reto tem seção transversal retangular, com altura h e largura b, e é constituída de material homogêneo. A viga está solicitada à flexão simples. Considerando um trecho dx da viga, o diagrama das tensões normais que atua nesse trecho é representado por:
		
	
	 
	
	 
	 
	
	
	Nenhum dos anteriores
	
	
		
	
	Suponha um eixo cilíndrico homogêneo preso em uma extremidade. Um torque T é aplicado ao mesmo e, em consequência, as seções retas estão submetidas ao cisalhamento. Escolhendo-se aleatoriamente uma seção, determinam-se os valores de tensão de cisalhamento: 100 MPa; 50 MPa e 0. Com relação às posições dos pontos, na seção reta, sujeitos a estes valores é verdade que:
		
	
	Um destes pontos é o centro e os demais afastados deste. O de 50 MPa mais afastado que o de 100MPa
	 
	Um destes pontos é o centro e os demais afastados deste. O de 100 MPa mais afastado que o de 50MPa
	
	Um desses pontos é o centro e os demais igualmente afastados do centro.
	
	Nada pode ser afirmado.
	
	Estes pontos estão necessariamente alinhados
		
	"Podemos entender o momento estático de uma área como o produto entre o valor do(a) _______ e o(a) _________ considerada(o) até o eixo de referência que escolhemos para determinar o momento estático." As palavras que melhor representam as lacunas que dão o sentido correto da frase são, respectivamente:
		
	
	momento de inércia; volume
	
	volume; área
	 
	área ; distância do centróide da área
	
	perímetro da área ; área
	
	distância do centróide da área ; perímetro da área
		
	Assinale a opção que apresenta a unidade que pode ser utilizada para expressar o momento de inércia de uma superfície plana:
		
	
	cm3
	
	 cm2
	 
	cm4
	
	kg.cm
	
	MPa
		
	Considere a seção reta de uma viga no plano xy. Sua área é A e o eixo y é um eixo de simetria para esta seção reta. A partir destas informações, marque a alternativa correta.
		
	
	O produto de inércia I xy desta seção pode ter um valor positivo
	
	O produto de inércia I xy desta seção sempre será um valor negativo
	
	O produto de inércia I xy desta seção sempre será um valor positivo
	 
	O produto de inércia I xy desta seção sempre será zero
	
	O produto de inércia I xy  desta seção pode ter um valor positivo
		
	Considere a figura plana composta pelo quadrado (OACD) de lado 18 cm e o triângulo (ABC) de base (AC) 18 cm e altura 18 cm. Sabendo que o centroide da figura (OABCD) está na posição de coordenadas (9, 14), determine o momento inércia Iy em relação ao eixo y que passa pelo centroide da figura plana (OABCD).
		
	
	230364 cm4
	
	23814 cm4
	 
	11664 cm4
	
	4374 cm4
	
	6840 cm4
		
	
Em uma estrutura de concreto armado formada por vigas, lajes e pilares, a força que é aplicada em uma viga, perpendicularmente ao plano de sua seção transversal, no centro de gravidade, com a mesma direção do eixo longitudinal da viga e que pode tracionar ou comprimir o elemento, é a força
		
	
	Torção
	
	Cortante
	
	cisalhante
	 
	Normal
	
	Flexão
		
	Uma barra circular vazada de aço cilíndrica tem 1,5 m de comprimento e diâmetros interno e externo, respectivamente, iguais a 40 mm e 60 mm. Qual o maior torque que pode ser aplicado à barra circular se a tensão de cisalhamento não deve exceder 120 MPa?
		
	 
	4,08 KN.m
	
	2,05 KN.m
	
	5,12 KN.m
	
	3,08 KN.m
	
	6,50 KN.m
		
	Em uma

Crie agora seu perfil grátis para visualizar sem restrições.