Buscar

biofisica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE
COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA
BIOFÍSICA
Rio de Janeiro / 2008
TODOS OS DIREITOS RESERVADOS À 
UNIVERSIDADE CASTELO BRANCO
ConteudistaConteudista
Wilson Jorge Gonçalves
UNIVERSIDADE CASTELO BRANCO
Todos os direitos reservados à Universidade Castelo Branco - UCB
Nenhuma parte deste material poderá ser reproduzida, armazenada ou transmitida de qualquer forma ou 
por quaisquer meios - eletrônico, mecânico, fotocópia ou gravação, sem autorização da Universidade Castelo 
Branco - UCB.
Universidade Castelo Branco - UCB
Avenida Santa Cruz, 1.631
Rio de Janeiro - RJ
21710-250 
Tel. (21) 3216-7700 Fax (21) 2401-9696
www.castelobranco.br
Un3b Universidade Castelo Branco
Biofísica / Universidade Castelo Branco. – Rio de Janeiro: UCB, 2008. - 52 
p.: il.
ISBN 978-85-7880-035-2
1. Ensino a Distância. 2. Título.
CDD – 371.39
Apresentação
Prezado(a) Aluno(a):
 
É com grande satisfação que o(a) recebemos como integrante do corpo discente de nossos cursos de gradu-
ação, na certeza de estarmos contribuindo para sua formação acadêmica e, consequentemente, propiciando 
oportunidade para melhoria de seu desempenho profi ssional. Nossos funcionários e nosso corpo docente es-
peram retribuir a sua escolha, reafi rmando o compromisso desta Instituição com a qualidade, por meio de uma 
estrutura aberta e criativa, centrada nos princípios de melhoria contínua.
Esperamos que este instrucional seja-lhe de grande ajuda e contribua para ampliar o horizonte do seu conhe-
cimento teórico e para o aperfeiçoamento da sua prática pedagógica.
Seja bem-vindo(a)!
Paulo Alcantara Gomes
Reitor
Orientações para o Autoestudo 
O presente instrucional está dividido em seis unidades programáticas, cada uma com objetivos defi nidos e 
conteúdos selecionados criteriosamente pelos Professores Conteudistas para que os referidos objetivos sejam 
atingidos com êxito.
Os conteúdos programáticos das unidades são apresentados sob a forma de leituras, tarefas e atividades com-
plementares.
As Unidades 1, 2 e 3 correspondem aos conteúdos que serão avaliados em A1.
 Na A2 poderão ser objeto de avaliação os conteúdos das seis unidades.
Havendo a necessidade de uma avaliação extra (A3 ou A4), esta obrigatoriamente será composta por todo o 
conteúdo de todas as Unidades Programáticas.
A carga horária do material instrucional para o autoestudo que você está recebendo agora, juntamente com 
os horários destinados aos encontros com o Professor Orientador da disciplina, equivale a 30 horas-aula, que 
você administrará de acordo com a sua disponibilidade, respeitando-se, naturalmente, as datas dos encontros 
presenciais programados pelo Professor Orientador e as datas das avaliações do seu curso.
Bons Estudos!
Dicas para o Autoestudo 
1 - Você terá total autonomia para escolher a melhor hora para estudar. Porém, seja 
 disciplinado. Procure reservar sempre os mesmos horários para o estudo.
2 - Organize seu ambiente de estudo. Reserve todo o material necessário. Evite 
 interrupções.
3 - Não deixe para estudar na última hora.
4 - Não acumule dúvidas. Anote-as e entre em contato com seu monitor.
5 - Não pule etapas.
6 - Faça todas as tarefas propostas.
7 - Não falte aos encontros presenciais. Eles são importantes para o melhor aproveitamento
 da disciplina.
8 - Não relegue a um segundo plano as atividades complementares e a autoavaliação.
9 - Não hesite em começar de novo.
SUMÁRIO
Quadro-síntese do conteúdo programático ................................................................................................. 10
Contextualização da disciplina ................................................................................................................... 11
UNIDADE I 
INTRODUÇÃO À BIOFÍSICA
1.1 - Grandezas físicas ................................................................................................................................. 13
1.2 - Sistemas Internacional de Unidades (SI) ............................................................................................. 13
1.3 - Notação científi ca ................................................................................................................................ 14
1.4 - Composição do Universo ..................................................................................................................... 14
1.5 - Conceitos de Biofísica ......................................................................................................................... 15
1.6 - Teorias dos campos de força ................................................................................................................ 15
1.7 - Atuações dos campos de força na Biologia ......................................................................................... 15
UNIDADE II
ENERGIA E TERMODINÂMICA
2.1 - Energia - introdução ............................................................................................................................ 17
2.2 - Tipos de energia ................................................................................................................................... 18
2.3 - Conservação da energia mecânica ....................................................................................................... 19
2.4 - Leis da Termodinâmica ....................................................................................................................... 20
2.5 - Princípio da degradação da energia ..................................................................................................... 21
2.6 - Entropia em Biologia ........................................................................................................................... 21
2.7 - Termodinâmica em sistemas biológicos .............................................................................................. 21
UNIDADE III
MEMBRANAS BIOLÓGICAS
3.1 - Compartimentação ............................................................................................................................... 23
3.2 - Conceito e dimensão das membranas .................................................................................................. 23
3.3 - Estrutura e funcionamento das membranas ......................................................................................... 24
UNIDADE IV
BIOFÍSICA DA VISÃO
4.1 - Luz e ondas .......................................................................................................................................... 25
4.2 - O olho humano .................................................................................................................................... 28
4.3 - Defeitos da visão ................................................................................................................................. 29
UNIDADE V
BIOFÍSICA DA AUDIÇÃO 
5.1 - Ondas sonoras ...................................................................................................................................... 33
5.2 - A orelha humana .................................................................................................................................. 35
5.3 - Defeitos da audição ............................................................................................................................. 37
UNIDADE VI
BIOFÍSICA DA CIRCULAÇÃO
6.1 - Introdução ........................................................................................................................................... 38
6.2 - Características dos fl uidos em escoamento ......................................................................................... 38
6.3 - Energéticada sístole e da diástole ....................................................................................................... 40
6.4 - A pressão no corpo humano ................................................................................................................. 41
Glossário ..................................................................................................................................................... 45
Gabarito ....................................................................................................................................................... 46
Referências bibliográfi cas ........................................................................................................................... 49
10 Quadro-síntese do conteúdo programático
UNIDADES DO PROGRAMA OBJETIVOS
I. INTRODUÇÃO À BIOFÍSICA
1.1 – Grandezas físicas
1.2 – Sistemas Internacional de Unidades (SI)
1.3 – Notação científi ca 
1.4 – Composição do Universo
1.5 – Conceitos de Biofísica
1.6 – Teorias dos campos de força
1.7 – Atuações dos campos de força na Biologia
• Defi nir grandezas físicas;
• Conhecer o Sistema Internacional de Unidades e 
suas principais grandezas adotadas;
• Expressar uma quantidade em notação científi ca;
• Resumir a composição do Universo a seus elemen-
tos fundamentais;
• Entender como a ciência física atua no corpo hu-
mano;
• Apresentar os campos de força existente no Uni-
verso;
• Identifi car os campos de força no cotidiano dos se-
res vivos.
II. ENERGIA E TERMODINÂMICA
2.1 – Energia - introdução 
2.2 – Tipos de energia 
2.3 – Conservação da energia mecânica
2.4 – Leis da Termodinâmica 
2.5 – Princípio da degradação da energia 
2.6 – Entropia em Biologia 
2.7 – Termodinâmica em sistemas biológicos
• Apresentar a importância da energia no mundo mo-
derno;
• Identifi car os tipos de energia;
• Citar o princípio da conservação da energia;
• Enunciar as duas leis da Termodinâmica;
• Relacionar a entropia e a organização dos seres vi-
vos.
III. MEMBRANAS BIOLÓGICAS
3.1 – Compartimentação
3.2 – Conceito e dimensão das membranas
3.3 – Estrutura e funcionamento das membranas
• A importância da compartimentação para a forma-
ção dos seres vivos;
• Conceituar membrana biológica;
• Explicar seu funcionamento.
IV. BIOFÍSICA DA VISÃO
4.1 – Luz e ondas
4.2 – O olho humano
4.3 – Defeitos da visão
• Apresentar o espectro eletromagnético focalizando 
a faixa de luz visível;
• Classifi car as ondas;
• Identifi car os elementos do olho humano e conhe-
cer seu funcionamento biofísico;
• Apresentar os defeitos da visão.
V. BIOFÍSICA DA AUDIÇÃO
5.1 – Ondas sonoras
5.2 – A orelha humana
5.3 – Defeitos da audição 
• Defi nir ondas sonoras;
• Apresentar as qualidades do som;
• Comentar a poluição sonora no cotidiano das pes-
soas;
• Identifi car os elementos da orelha humana e conhe-
cer seu funcionamento biofísico;
• Apresentar os defeitos da audição.
VI. BIOFÍSICA DA CIRCULAÇÃO
6.1 – Introdução
6.2 – Características dos fl uidos em escoamento
6.3 – Energética da sístole e da diástole
6.4 – A pressão no corpo humano
• Conhecer o sistema circulatório; 
• Conhecer as características dos fl uidos em escoa-
mento;
• Relacionar a energética da circulação com o princí-
pio da conservação da energia;
• Citar as pressões que constituem a pressão no corpo 
humano;
• Conhecer a infl uência da gravidade na pressão do 
ser humano.
11Contextualização da Disciplina
A aplicação da Física em Biologia, Enfermagem e Medicina não é novidade e tem desempenhado um papel 
essencial em recentes avanços dessas áreas. O estudo das Ciências Biológicas e Biomédicas está se tornando 
cada vez mais quantitativo em seus aspectos experimentais, refl etindo o uso da ferramenta da Física em várias 
áreas de pesquisa. Além disso, o emprego de equipamentos desenvolvidos inicialmente para pesquisas físicas 
hoje são essenciais para a obtenção de informações mais completas e precisas em experimentos biológicos e 
médicos.
Entretanto, para uma boa parte dos estudantes das ciências da vida, ainda não lhes está claro as razões pelas 
quais devam estudar Física.
Tivemos o cuidado então de explicar o fenômeno físico puramente e depois mostrá-lo nitidamente aplicado 
no corpo humano, por exemplo, o comportamento das ondas sonoras e a audição, das ondas eletromagnéticas e 
a visão, da hidrodinâmica comparando-a com o movimento da massa sanguínea, entre outros.
Tendo em vista os objetivos propostos, além de uma abordagem conceitual, fi zemos algumas apreciações 
quantitativas, nas quais se fez necessário o auxílio da Matemática dos Ensinos Fundamental e Médio. 
Este texto, portanto, é o resultado de nossa experiência em ministrar a disciplina de Biofísica há mais de dez 
anos no curso superior para as áreas biomédicas. Não existe a pretensão de esgotar o assunto, mas apresentar 
alguns itens que julgamos serem essenciais para o formando dessa área.
13UNIDADE I
INTRODUÇÃO À BIOFÍSICAINTRODUÇÃO À BIOFÍSICA
1.11.1 - Grandezas Físicas 
1.21.2 - Sistema Internacional de Unidades (SI) 
Por meio de aparelhos adequados, podemos obter 
medidas de massa, comprimento, tempo, velocidade 
etc. Esses elementos mensurados são denominados 
grandezas físicas.
Toda grandeza física é identifi cada pelo fato de apre-
sentar medidas. Observe que a medida compreende 
duas partes: um número e uma unidade.
Ex.: 2 kg grandeza física – massa
 número da medida – 2 
 unidade da medida – quilograma 
 
 5m grandeza física – comprimento 
 número da medida – 5 
 unidade da medida – metro 
Foi implantado na 11ª Conferência Interna-
cional de Pesos e Medidas, em 1960, na Fran-
ça.
O objetivo era uniformizar as unidades das 
grandezas físicas. Desde então, o SI tornou-se 
a linguagem internacional, trazendo facilida-
de e praticidade na troca de informações das 
comunidades científicas dos diversos países.
No Brasil, foi adotado pelo Decreto-Lei 
n.º 52423 de 30 de agosto de 1963.
• A seguir, citamos algumas das principais grandezas adotadas como fundamentais no SI:
14
• Em seguida, mostramos a formação dos múltiplos e submúltiplos das Unidades, mediante o emprego dos 
prefi xos.
1.31.3 - Notação Científica
Escrever um número em notação científica é 
expressá-lo sob a forma de um produto de dois 
fatores, a saber: 
 
A finalidade é facilitar a apresentação de uma 
quantidade muito grande ou muito pequena, 
omitindo-se os zeros.
Por exemplo:
500.000 Kg = 5,0 x 105Kg 
300.000.000 m/s = 3,0 x 108m/s
0,000015m = 1,5 x 10-5m
0,025 A = 2,5 x 10-2A
1.41.4 - Composição do Universo
A composição do Universo desde o microcosmo até 
o macrocosmo parece muito complexa, mas pode ser 
reduzida a alguns componentes fundamentais.
São eles:
Matéria → objetos, corpos, alimentos etc. 
Energia → calor, luz, som, trabalho físico ou me-
cânico.
Espaço → distâncias, áreas e volumes dos objetos 
e seres. 
Tempo → sucessão do dia e da noite, pela espera dos 
acontecimentos e pela duração da vida.
Essa composição é qualitativa e quantitativamente 
defi nida pelas grandezas físicas fundamentais e de-
rivada.
15
Matéria e energia são dois estados diferentes de uma 
mesma QUALIDADE FUNDAMENTAL.
A Matéria caracteriza-se pela massa e a Energia é a 
capacidade dessa massa em realizar trabalho.
1.51.5 - Conceito de Biofísica
É o estudo da matéria, da energia, do espaço e do tempo nos sistemas biológicos.
1.61.6 – Teorias dos Campos de Força 
Três são os campos de força que atuam no Univer-
so:
Gravitacional 
• O campo G é inerente à matéria, ou seja, aparece 
sempre que houver massa.
• Provoca sempre força permanente de atração.
• O campoG da Terra é um exemplo típico dessa 
força de atração cuja direção da força é vertical e o 
seu sentido é para o centro do planeta.
• O campo G também pode ser provocado pela ace-
leração dos corpos, é transitório. 
Eletromagnético 
• É mais diversifi cado que o campo G e possui forças 
de atração e repulsão.
• É a composição dos campos elétrico (E) e magnético 
(M). Compõem o campo elétrico (E) as cargas elétri-
cas positivas e negativas, que atraem-se e repelem-se 
segundo leis próprias.
• Compõem o campo magnético (M) as massas 
magnéticas – Norte e Sul –, que interagem segundo 
leis próprias.
• O campo eletromagnético (EM) também pode 
acontecer sem carga elétrica ou magnética. 
Estão nas radiações eletromagnéticas dos raios-X, 
das ondas de luz, das ondas de calor etc.
Campo Nuclear
• O campo nuclear (N) existe somente dentro dos 
limites do núcleo atômico.
• Sua força é a mais intensa de todos os campos, mas 
possui um raio de ação muito curto.
• Divide-se em campo nuclear forte, que é a força 
responsável por manter a coesão entre as partículas 
subatômicas do núcleo e campo nuclear fraco, que 
são responsáveis pelas emissões radioativas do núcleo 
atômico (radiação Beta).
1.71.7 - Atuações dos Campos de Força na Biologia
Os três campos de força estão muito presentes nos 
sistemas biológicos, como veremos nos exemplos a 
seguir: 
• No trabalho das centrifugadeiras, aparece um cam-
po G, no sentido horizontal.
• Levantamento de peso no campo G, como meio 
auxiliar de fi sioterapia.
• Introdução de líquido no organismo, especialmen-
te na terapia intravenosa, graças ao campo G.
• A drenagem de cavidades corporais só é possível 
graças ao campo G.
• Acentuamento da coluna vertebral – cifose, lordo-
se e escoliose – causado pelo campo G.
• Aplicação de ondas-curtas, como nos tratamentos 
fi sioterápicos (campo EM).
• O campo (EM) está presente em todos os seres 
vivos, sob a forma de calor.
• Vaga-lumes produzindo energia luminosa (cam-
po EM).
• Ressonância magnética utilizada para diagnósti-
cos, utilizando o campo magnético.
• Várias espécies animais possuem receptores sen-
síveis ao campo magnético da Terra e usam essa pro-
priedade para sua orientação.
• Tratamento de tumores com radioterapia (cam-
po N).
16
Exercícios 
1) Toda grandeza física apresenta uma medida. Quais as partes componentes de uma medida?
2) Escreva em notação científi ca, as seguintes quantidades:
50.000Kg = 
3.600s =
900.000Hz = 
0,00025m = 
3) A composição do Universo é, sem dúvida, muito complexa, mas pode ser reduzida a quatro componentes 
fundamentais. Cite-os.
4) Cite os três principais campos de força na Terra.
5) Qual o campo de força que, embora muito intenso, possui o menor raio de ação?
6) Qual o campo de força que provoca sempre uma permanente atração?
7) Onde se situa o Polo Sul magnético?
8) Cite dois exemplos de atuação dos campos de força nos sistemas biológicos.
17UNIDADE II
ENERGIA E TERMODINÂMICAENERGIA E TERMODINÂMICA
2.12.1 - Energia – Introdução
Nosso estilo de vida atual, cada vez mais de-
pendente do avanço tecnológico, do uso da ele-
tricidade, do petróleo e seus derivados (gaso-
lina, óleo diesel etc.), é sofisticado, prático e 
confortável. No entanto, todo esse conforto tem 
um custo muito alto. A crescente necessidade 
de novas fontes de energia, por exemplo, é uma 
das muitas questões que o mundo tem procurado 
discutir e solucionar.
Precisamos de energia o tempo todo. Obtemos 
essa energia em pequenos “pacotes”, que fa-
zem rádios, walkman, carrinhos de brinquedo, 
relógios e máquinas fotográficas funcionarem, 
ou por meio de um fornecimento contínuo, de 
uma companhia de distribuição de energia, que 
coloca em funcionamento uma quantidade de 
aparelhos cada vez maiores e mais sofisticados: 
microcomputadores, videogames, eletrodomés-
ticos, motores, lâmpadas, aquecedores...
Para suprir esse grande consumo, são necessá-
rias usinas geradoras de eletricidade. Ano após 
ano, essas usinas aumentam em tamanho, núme-
ro e variedade: hidrelétricas, termelétricas, nu-
cleares, eólicas... Infelizmente, cresce também 
o impacto ambiental.
Esse imenso universo tecnológico que atende 
às nossas necessidades tornou-se possível devi-
do à utilização de diversas formas naturais de 
energia e à capacidade de converter ou trans-
formar um tipo de energia em outro. Hoje em 
dia, praticamente todas as nossas atividades en-
volvem a utilização e a conversão de alguma 
forma de energia.
As palavras energia e trabalho são usadas mui-
tas vezes na conversação comum.
Você pode dizer, por exemplo: “Joguei fute-
bol tanto tempo que não tive energia nem para 
voltar para casa”. Nesse caso, talvez você esteja 
fazendo confusão entre energia e força.
Você diz a um amigo: “Eu não posso ir agora à 
biblioteca porque tenho trabalho para fazer em 
casa”. Aqui a palavra trabalho quer dizer tare-
fa.
Para um físico, energia é a capacidade de mu-
dar ou mover as coisas. Ela pode tomar várias 
formas e passar de uma para outra.
OBS.: A unidade de energia no Sistema Inter-
nacional é JOULE (J).
18
2.22.2 - Tipos de Energia
Energia Potencial 
Na mecânica, existem dois tipos de energia poten-
cial: a gravitacional e a elástica.
 Energia Potencial Gravitacional
Um corpo situado em uma posição tal que seu peso 
possa realizar trabalho possui energia potencial gra-
vitacional. Em relação ao solo, a energia potencial do 
corpo da fi gura a seguir pode ser determinada pelo 
trabalho que seu peso realiza quando ele cai da altu-
ra h.
Como a energia potencial desse corpo ( E ) é medi-
da pelo trabalho realizado pelo seu peso P, podemos 
escrever:
A energia potencial gravitacional depende:
• da massa do corpo (kg);
• da aceleração da gravidade local (m/s2);
• do nível de referência (m).
Exemplo:
Calcule a energia potencial gravitacional de um ho-
mem de 60 kg de massa, situado a uma altura de 5 
metros em relação ao solo. 
Dado: g = 10 m/s2 
SOLUÇÃO
EPG = m.g.h 
EPG = 60 x 10 x 5 
EPG = 3000 J
Energia Potencial Elástica 
Um corpo é denominado elástico quando, cessada 
a ação da força que o deformou, volta à situação ini-
cial.
Corpos elásticos, como a mola de aço, o elástico de 
estilingue e a corda de um relógio, podem armazenar 
energia quando são deformados. Essa energia é a po-
tencial elástica. 
Quando uma força produz deformação em uma 
mola, comprimindo-a ou esticando-a, a mola exerce 
uma força , denominada força elástica, sempre no 
sentido contrário ao da deformação. 
A energia potencial elástica armazenada na mola ou 
em outro corpo elástico é medida pela seguinte fór-
mula:
Em que k é a constante elástica do corpo elástico, 
medida em N/m no SI e x é a deformação da mola 
em metros.
Exemplo:
Uma mola de constante elástica 200 N/m sofre de-
formação de 0,8 m. Calcule a energia que a mola ga-
nhou.
SOLUÇÃO:
Energia Cinética 
Quando deslocamos um corpo, estamos transferindo 
energia para ele, realizando um trabalho sobre ele.
19
A energia que um corpo possui por causa do seu es-
tado de movimento denomina-se energia cinética. 
É calculada pela seguinte fórmula:
 , em que
m – massa do corpo (kg)
v – velocidade do corpo (m/s)
Exemplo:
Determinar a energia cinética de uma bola de 0,2 kg 
no instante em que sua velocidade é de 10 m/s.
SOLUÇÃO: 
 Energia Mecânica 
A energia mecânica de um sistema é a soma de suas 
energias potencial e cinética.
2.32.3 – Conservação da Energia Mecânica 
Vamos agora analisar as conversões de energia que 
ocorrem em um sistema puramente mecânico.
Na fi gura a seguir, mostramos uma pessoa escor-
regando por um tobogã, cujo perfi l segue os pontos 
A, B, C, D e E. Consideremos queo nível zero de 
energia potencial gravitacional seja o ponto E, isto é, 
no ponto E consideraremos que a energia potencial 
gravitacional é nula.
Se considerarmos que o tobogã é extremamente 
liso, ou seja, se pudermos desprezar os atritos, então 
não haverá dissipação de energia sob a forma de ca-
lor. Nesse caso, a energia mecânica do sistema, que 
corresponde agora à energia total, permanecerá cons-
tante.
Matematicamente, concluímos que: 
A tabela ao lado mostra-nos os valores das energias 
potencial, cinética e mecânica daquela pessoa durante 
a descida.
Observe que, durante a descida pelo tobogã, a ener-
gia cinética da pessoa aumenta, mas o potencial gra-
vitacional diminui. Em outras palavras, a velocidade 
aumenta à medida que sua altura em relação ao nível 
zero de energia potencial (ponto E) diminui.
Em uma montanha-russa, a energia potencial aumen-
ta à medida que o carrinho sobe e, consequentemente, 
a velocidade diminui. Durante a descida, enquanto a 
energia potencial diminui, a energia cinética e a ve-
locidade do carrinho aumentam. Se desprezarmos o 
atrito, a energia mecânica do carrinho permanecerá 
constante.
20
Lembre-se: a cada momento, ao nosso redor, a energia 
está se transformando de uma forma em outra. Ou ainda:
A energia não pode ser criada ou destruída, mas 
transformada de uma forma em outra.
2.42.4 - Leis da Termodinâmica 
Introdução
A Termodinâmica, que começou com o estudo do 
rendimento das máquinas térmicas, mostrou-se, mais 
tarde, como o mais abrangente dos fenômenos natu-
rais.
A transformação de energia em trabalho e vice-ver-
sa nas diferentes formas (mecânica, térmica, elétrica 
etc.) segue fi elmente as duas leis da Termodinâmica.
A Termodinâmica estuda as relações entre as quanti-
dades de calor trocadas e os trabalhos realizados num 
processo físico, envolvendo um corpo (sistema) e o 
resto do Universo, que denominamos meio exterior e 
ambiente.
Por exemplo, um gás contido num cilindro provido 
de êmbolo ao ser aquecido age com uma força so-
bre o êmbolo, deslocando-o. Assim, o sistema (gás) 
recebe calor Q do meio exterior e a força aplicada 
pelo sistema (gás) realiza um trabalho sobre o meio 
exterior. Quando o sistema como um todo produz um 
deslocamento ao agir com uma força sobre o meio 
exterior, o trabalho realizado é denominado traba-
lho externo. Já o trabalho executado pelas forças de 
interação entre as moléculas do gás, é chamado de 
trabalho interno.
1ª Lei - Conservação da Energia 
Enunciado: “A energia não pode ser criada nem des-
truída, mas somente convertida de uma forma em ou-
tra”, ou ainda, “a energia do Universo é constante”.
Obs.:
• Toda transformação de energia é acompanhada de 
produção de calor (energia térmica).
• Todos os seres vivos produzem calor em qualquer 
processo biológico.
• Qualquer forma de energia pode ser totalmen-
te convertida em calor; a recíproca, contudo, não é 
verdadeira. Ou seja, o calor não pode ser convertido 
totalmente em trabalho.
Uma parte do calor, sempre continuará como calor. 
Essa observação é muito importante porque dá ori-
gem ao conceito de ENTROPIA, uma forma de ener-
gia desorganizada, que será vista adiante.
2ª Lei – Transferência de Energia 
Enunciado: “Nas transformações naturais, a energia 
se degrada de uma forma organizada para uma forma 
desordenada chamada energia térmica.”
 
Obs.:
• Um pêndulo oscilando, acaba parando ao fi m de 
algum tempo em virtude dos choques com as molé-
culas do ar. A energia “organizada” do pêndulo se 
converte em energia térmica. A recíproca neste caso, 
embora validada pela 1ª Lei, é muito difícil, de pro-
babilidade ínfi ma.
21
• Outro exemplo: o calor passa espontaneamente de 
um corpo de maior temperatura para outro de menor 
temperatura. A recíproca é altamente improvável. 
• Ainda outro exemplo: uma gota de tinta colocada 
num líquido se espalha uniformemente por ele, es-
2.5 2.5 - Princípio da Degradação da Energia
pontaneamente. Mas é praticamente impossível que 
as moléculas se agrupem, restaurando a gota inicial.
Note, portanto, que o comportamento da Natureza é 
assimétrico, os sistemas evoluem espontaneamente 
segundo um sentido preferencial. 
As transformações naturais ocorrem preferencial-
mente num sentido, caracterizando-se pela irrever-
sibilidade. Embora ocorra sempre conservação da 
energia, à medida que o Universo evolui, diminui a 
possibilidade de se conseguir energia útil ou trabalho 
do sistema.
À medida que o Universo evolui, há diminuição 
da energia utilizável.
2.62.6 - Entropia em Biologia
Podemos começar esse estudo dizendo que a Entro-
pia num ser vivo é inversamente proporcional à sua 
Organização.
Os modelos abaixo permitem visualizar melhor essa 
relação:
A. caixa com entropia mínima:cabem 125 blocos.
B. caixa com entropia máxima:cabem menos de 125 blocos.
A. Armário com alta entropia. Poucos medica-men-
tos, seringas desordenadas, menos pacotes de algodão. 
Desordem, e não se acha nada rapidamente. 
B. Armário com baixa entropia. Tudo certo e fácil de 
achar, alem de maior quantidade.
Essa relação entre Entropia e Organização não se 
limita a aspectos físicos somente. Os seres vivos, por 
sua vez, procuram atingir o mais alto grau de organiza-
ção e efi ciência na utilização de sua energia, justamente 
para diminuir sua entropia.
Os seres vivos lutam continuamente pelo abaixa-
mento de sua entropia. Isso resulta em aumento da 
entropia ambiental.
Viver é retirar organização do ambiente. Num ecossis-
tema sem interferências estranhas, a entropia ambiental 
aumenta em ritmo natural. 
A espécie humana, com seus objetivos às vezes 
desvairados, acelera o ritmo da entropia ambiental. 
Para disfarçar essa agressão ambiental, a entropia foi 
chamada de POLUIÇÃO. 
A diferença entre estado hígido (boa saúde) e estado 
patológico (doenças) é apenas no grau de entropia, 
que é aumentado no 2º caso. Toda e qualquer doença 
decorre do aumento da entropia do ser. Nenhuma 
estrutura não-biológica possui uma entropia tão baixa 
quanto a da célula viva.
2.72.7 - Termodinâmica em Sistemas Biológicos
Na maquinaria celular, não há motores à ex-
plosão, cilindros a vapor ou outros artefatos. 
As células utilizam energia elétrica originada 
pelos comandos do cérebro e a partir daí os ór-
gãos, músculos e demais tecidos por movimen-
tos de contração/repulsão realizam trabalho.
22
Como o ser vivo não é uma máquina mecâ-
nica, não pode ser recarregado por uma bate-
ria ou por uma fonte de calor. Os seres vivos 
recorrem, então, aos alimentos e dele retiram 
sua energia através de oxidações metabóli-
cas. 
Exercícios 
1) Calcule a energia potencial gravitacional que um atleta acumula para elevar um haltere de 50 kg de massa 
a uma altura de 2,5 m.
2) Determine a energia potencial elástica de um paciente que, em uma sessão de fi sioterapia, deve distender 
um elástico por 40 cm, sabendo-se que o constante elástico do aparelho é de 800 N/M.
3) Calcule a energia cinética de um coelho de 700 g que, ao fugir do seu predador, atinge uma velocidade de 
36 km/h.
4) O Brasil utiliza o represamento das águas dos rios para a construção de usinas hidroelétricas na geração de 
energia elétrica. Porém, isso causa danos ao meio ambiente, por exemplo:
• Imensa quantidade de madeira nobre submersa nas águas; 
• Alteração do habitat da vida animal;
• Assoreamento dos leitos dos rios afl uentes.
Numa usina hidroelétrica, existe uma transformação sequencial de energia.
Esta sequência está indicada na alternativa:
(A) cinética – potencial – elétrica;
(B) química – cinética – elétrica; 
(C) cinética – elástica – elétrica;
(D) potencial – cinética – elétrica;
(E) potencial – química – elétrica.
5) Em um dado ponto de um sistema, um corpo possui 200J de energia cinética e 500 J de energia potencial. 
Qual o valor da energia mecânica desse corpo?
 
6) Enuncie a 1ª Lei da Termodinâmica.
7) Com base na 2ª Lei da Termodinâmica, explique sob o aspecto biológico, a diferença entre um estado HÍ-
GIDO e um estado PATOLÓGICO.
23UNIDADE III
MEMBRANAS BIOLÓGICASMEMBRANAS BIOLÓGICAS
3.13.1 - Compartimentação
No espaço sem barreiras, as trocas de Energia e 
Matéria se fazem livremente.
A presença de uma barreira qualquer (peneira, papel 
de fi ltro etc.) seleciona o trânsito pelo tamanho dos 
transeuntes. Se, porém, todo o espaço considerado na 
questão for separado por uma barreira, aparecem en-
tão dois compartimentos.
Nesse caso, as trocas se fazem obrigatoriamente 
através da barreira. Um tubo de diálise, um balão de 
borracha, uma célula etc. são estruturas que apresen-
tam compartimentação.
A compartimentação é o estabelecimento de duas 
regiões no espaço, separados fi sicamente por uma 
barreira e funcionando por um trânsito seletivo.
A importância desse sistema para o surgimento dos 
seres vivos foi fundamental. Sem compartimentação 
não existe seres vivos.
A estrutura fundamental para compartimentação nos 
seres vivos é a membrana biológica.
3.23.2 - Conceito e Dimensões das Membranas
São estruturas altamente diferenciadas, destinadas a 
estabelecer compartimentações nos seres vivos.
Elas são capazes de selecionar, por mecanismos de 
transportes, os ingredientes que devem passar tanto 
para fora como para dentro.
A espessura de uma membrana é de 7 a 9 nm, ou 
seja, da ordem de 10-8 m. 
Os diâmetros celulares são de 103 à 2,0 x 104 nm, o 
que dá áreas e volumes variáveis às células.
Uma célula de 103 mm tem uma área de 
3,0 x 106 nm2, isto é, cerca de 3,0 x 10-8 cm2 e volu-
me de 5,0 x 108 nm3, isto é, cerca de 5,0 x 10-13 cm3.
Esses espaços são determinados pelas membranas.
24
3.33.3 - Estruturas e Funcionamento das Membranas
As estruturas básicas de uma membrana e seu funcionamento podem ser entendidos com as defi nições abai-
xo:
Estruturas Básicas da Membrana
Os canais podem possuir carga elétrica (positiva ou 
negativa) ou serem destituídos de carga.
Canais positivos repelem cátions (+) e deixam pas-
sar anions (-).
Canais negativos repelem anions (-) e deixam pas-
sar cátions (+).
Nos canais com carga, não passam substâncias sem 
carga, porque para essas os canais estão sempre ocu-
pados.
Existem também canais sem carga elétrica que 
funcionam deixando passar substâncias por diferen-
ça de pressão. 
Essa passagem de substâncias se dá com a reali-
zação de TRABALHO, resultado num consumo de 
energia.
Exercícios 
1) Conceitue membranas biológicas.
2) Dê a ordem de grandeza da espessura de uma membrana biológica. 
3) Explique o que são poros ou canais. 
4) Explique como funcionam os operadores.
5) Que canais repelem os anions e deixam passar os cátions? 
6) Como as substâncias atravessam as membranas nos canais sem carga?
25UNIDADE IV
BIOFÍSICA DA VISÃOBIOFÍSICA DA VISÃO
4.14.1 - Luz e Ondas 
Introdução
Quando uma pessoa liga um aparelho de rádio ou de 
televisão, imediatamente recebe a mensagem emitida 
pela estação de rádio ou TV (música, voz do locutor, 
imagens). Esses aparelhos foram fabricados conve-
nientemente para receber o som e a imagem codifi -
cados através de ondas. O controle remoto da TV, o 
forno de microondas, a telefonia celular têm também 
o funcionamento baseado na propagação de ondas. 
Todas essas ondas são invisíveis ao olho humano, 
mas existem as visíveis, como as formadas numa cor-
da ou na água. O objeto de estudo desse capítulo é a 
onda.
Conceito
ONDAS: são movimentos oscilatórios que se propa-
gam num meio. Nesses movimentos, apenas a energia 
é transferida, não havendo transporte de matéria.
As ondas originam-se em meios elásticos como 
cordas, superfície da água, do ar etc. Fazendo-se um 
rápido movimento vertical na extremidade de uma 
corda tensa e horizontal, forma-se uma onda que se 
propaga ao longo do seu comprimento. Quando a 
água de um lago é tocada, propagam-se ondas através 
da sua superfície. 
 
Tanto na corda como na superfície da água, a onda 
(ou perturbação) propaga-se de maneira contínua, 
ponto por ponto.
Natureza das Ondas 
As ondas podem ter natureza mecânica ou ele-
tromagnética. 
ONDAS MECÂNICAS: resultam de deforma-
ções provocadas em meios materiais elásticos, 
transportando apenas energia mecânica. Por 
isso, as ondas mecânicas não se propagam no 
vácuo, mas apenas na matéria. 
Exemplos: ondas em cordas, ondas na superfí-
cie de um líquido, ondas sonoras etc.
ONDAS ELETROMAGNÉTICAS: Resultam 
de vibrações de cargas elétricas, transportan-
do energia sob a forma de quanta (“pacotes” de 
energia). Por isso, as ondas eletromagnéticas 
propagam-se no vácuo e em alguns meios ma-
teriais.
Exemplos: ondas luminosas (luz), ondas de rá-
dio ou TV, microondas, raios-X, gama ( ) etc.
 
Antena parabólica para recepção de ondas
 eletromagnéticas.
Tipos e Classificações das Ondas 
As ondas podem ser do tipo transversal ou 
longitudinal, dependendo da direção do movi-
mento vibratório das partículas, relativamente à 
sua direção de propagação.
26
ONDAS TRANSVERSAIS: aquelas em que a dire-
ção do movimento vibratório é perpendicular à dire-
ção de propagação.
Exemplo: ondas propagando-se numa corda.
ONDAS LONGITUDINAIS: aquelas em que a di-
reção ao movimento vibratório coincide com a dire-
ção de propagação.
Exemplo: ondas sonoras propagando-se no ar.
 
As ondas também podem ser classifi cadas quanto ao 
número de dimensões da propagação de energia em:
ONDAS UNIDIMENSIONAIS: a energia propaga-
-se linearmente, como na corda, que é um meio uni-
dimensional.
ONDAS BIDIMENSIONAIS: a energia propaga-se 
superfi cialmente, como na superfície da água, que é 
um meio bidimensional.
ONDAS TRIDIMENSIONAIS: a energia propaga-
-se no espaço, que é um meio tridimensional, como 
as ondas sonoras e as ondas luminosas (eletromag-
néticas).
 
O Conjunto das Ondas Eletromagnéticas 
As ondas luminosas são geradas por vibrações de 
elétrons nas fontes de luz, com frequências de osci-
lação variando de 4,3.1014Hz (para luz vermelha) até 
7,5.1014Hz (para luz violeta). A fi gura mostra que 
cada frequência de vibração dos elétrons da fonte 
gera no cérebro uma sensação luminosa de cor dife-
rente: cada luz monocromática (luz de uma só cor) 
tem uma frequência determinada. A luz branca é uma 
soma de sensações luminosas geradas no cérebro por 
luzes monocromáticas diferentes. 
 
A frequência das radiações visíveis cresce do ver-
melho para o violeta.
Os elétrons de uma fonte podem, porém, vibrar com 
frequências muito abaixo ou muito acima daquelas 
que sensibilizam o olho humano. Nascem, assim, as 
ondas eletromagnéticas invisíveis, constituindo um 
conjunto muito grande e com as variadas aplicações 
práticas. A fi gura resume os diversos tipos de radia-
ções eletromagnéticas existentes e a ordem de gran-
deza de suas frequências.
As ondas de rádio são produzidas por oscilação de 
elétrons em antenas de metal. Seus comprimentos de 
ondas variam do tamanho de um estádio de futebol ao 
tamanho de um homem. As microondas são usadas 
em telecomunicações e têm o comprimento de onda 
do tamanho de um punho.
Os raios infravermelhos são produzidos por corpos 
aquecidos e também são chamados “raios de calor”, 
por serem facilmente absorvidos pelo corpo humano, 
dando uma sensação de aquecimento. São invisíveis. 
A faixa de frequências da luz visível é muito peque-
na. O comprimento de onda da luz visível é compa-
rável ao tamanho do menor objeto que pode ser visto 
num microscópio óptico (10-7 m).
Os raios ultravioletasão produzidos por corpos mui-
to aquecidos. O sol emite grande quantidade de raios 
ultravioleta, em grande parte absorvidos pela atmos-
fera terrestre.
Os raios-X são produzidos quando um feixe de elé-
trons muito acelerados se choca contra uma placa de 
metal dentro de um tubo a vácuo. Têm comprimento 
de onda igual ao tamanho de um átomo. 
A frequência das radiações visíveis cresce do vermelho para o violeta.
27
Os raios γ são produzidos por reações nucleares e 
apresentam comprimento de onda cerca de um vigé-
simo do diâmetro de um próton.
Os raios γ de mais alta frequência observados pro-
vêm da interação da atmosfera com os chamados 
raios cósmicos (partículas de altíssima energia vindas 
do espaço extraterrestre e que bombardeiam a Terra 
continuamente). 
 
Espectro Eletromagnético
 
A velocidade de propagação da onda eletro-
magnética depende do meio que ela atraves-
sa. No vácuo, essa velocidade é máxima se 
c = 300.000 km/s ou = 3 . 108 m/s, independen-
do da frequência da onda. Em outro meio trans-
parente qualquer, como o ar, a água, os cristais 
etc., a velocidade é menor do que c e depende 
do índice de refração desse meio.
• Faixa do ultravioleta
Elementos de uma Onda
Comprimento de onda (λ): é a distância entre duas 
cristas ou dois vales consecutivos.
Nas ondas que se propagam ao longo da corda, os 
pontos mais altos costumam ser denominados cristas 
e os pontos mais baixos, vales.
Produção de ondas ao longo de uma corda tensa. 
Frequência da onda (f): é o número de vezes que a 
onda oscila numa unidade de tempo.
Período da onda (T): é o tempo gasto para a onda 
percorrer uma oscilação ou ciclo.
Equação Fundamental das Ondas 
As ondas se propagam com velocidade constante, 
portanto em movimento uniforme:
Logo , em que:
∆S – é o espaço entre duas cristas, por exemplo.
∆t – é o período da onda.
Então V = , mas T = 
V = λ . f
28
V – velocidade de propagação 
λ – comprimento de onda
 f – frequência da onda
Ex.: 
A fi gura representa a forma de uma corda, num de-
terminado instante, por onde se propaga uma onda. 
Sabendo que a velocidade dessa onda é de 6 cm/s, 
determine:
a) o comprimento de onda;
b) a frequência.
Solução:
a) Como cada divisão do gráfi co é de 1 cm, a dis-
tância entre duas cristas adjacentes (comprimento de 
onda) vale:
λ = 12 divisões. 1 cm
λ = 12 cm 
b) Sendo a velocidade dessa onda v = 6 cm/s e v = 
λ f, tem-se a frequência:
4.24.2 - O Olho Humano
Dá-se o nome de óptica da visão ao estudo da tra-
jetória dos raios luminosos, através do globo ocular 
(ou olho) humano, até a formação de imagens no cé-
rebro, pelas quais o homem enxerga o mundo que o 
cerca. Neste estudo, além do olho normal, serão vis-
tos alguns dos principais defeitos da visão e como 
corrigi-los através de lentes apropriadas. 
Globo Ocular Humano 
O olho humano é um sistema óptico constituído por 
diversos meios transparentes e é também um sistema 
fi siológico complexo com vários componentes. Na fi -
gura abaixo, tem-se um corte transversal esquemático 
de um globo ocular.
Os elementos representados são:
Córnea – membrana transparente em forma de ca-
lota esférica.
Íris - espécie de diafragma com abertura central va-
riável para controlar a entrada da luz no olho. 
Pupila – disco da abertura causada pela íris.
Cristalino - meio transparente com forma de lente 
biconvexa que separa o humor aquoso do vítreo. É o 
principal elemento refrator do olho (lente principal).
Humor aquoso – meio transparente líquido.
Humor vítreo - meio transparente, incolor e gela-
tinoso.
Músculos ciliares – músculos que sustentam o cris-
talino e que permitem variar os raios de curvatura do 
mesmo.
Esclerótica – membrana opaca que envolve quase 
todo o globo ocular.
Retina – membrana de natureza nervosa, sensível à 
luz, e está ligada ao nervo óptico.
Nervo óptico - transmissor das sensações lumino-
sas captadas pela retina para o cérebro. 
Ponto cego - ponto onde as fi bras nervosas que 
compõem a retina se encontram com o nervo óptico. 
Esse ponto é insensível à luz.
Comportamento Óptico do Globo Ocular 
A luz proveniente de um objeto penetra no olho pela 
córnea e, convergindo, atinge a retina, onde a imagem 
se forma; percorre, pela ordem os seguintes meios 
transparentes: humor aquoso, o cristalino e o humor 
vítreo. Pela complexidade de se traçar a marcha de 
raios luminosos através desses meios, convencionou-
-se representar todos eles por uma única lente con-
29
vergente, de distância focal variável, no chamado 
olho reduzido, conforme a fi gura.
No olho reduzido, a lente convergente, que fi ca na 
posição do cristalino, deve conjugar imagens reais 
exatamente sobre a retina, para que se possa ver com 
nitidez.
Acomodação Visual
As pessoas emétropes, isto é, de visão normal, têm 
capacidade de acomodar objetos da distância mínima 
de 25 cm (por convenção) do olho até o infi nito. A 
primeira distância corresponde ao ponto próximo e 
a segunda, ao ponto remoto, conforme as duas pró-
ximas fi guras. 
PONTO PRÓXIMO (de abscissa pp ): mínima dis-
tância de visão distinta que uma pessoa pode ter. Nes-
sa situação, os músculos ciliares estão contraídos ao 
máximo (“olhar esbugalhado”).
PONTO PRÓXIMO
(Músculos ciliares contraídos ao máximo)
PONTO REMOTO (de abscissa pR ): máxima dis-
tância de visão distinta que uma pessoa pode ter. Nes-
sa situação, os músculos ciliares estão completamente 
relaxados (“olhar de peixe morto”). 
PONTO REMOTO
(Músculos ciliares completamente relaxados)
 
Amplitude de acomodação visual: é a variação 
da vergência do cristalino de um olho, funcionando 
como lente, ao deslocar um objeto desde o seu ponto 
próximo até o seu ponto remoto.
O emétrope possui amplitude de acomodação de 
quatro dioptrias (4di).
A vergência de uma lente é calculada pela fórmula:
 em que V – vergência (dioptrias)
 f – distância focal (metro) 
4.34.3 - Defeitos da Visão
Cada olho do par de olhos de uma pessoa pode apre-
sentar defeitos, sendo os mais comuns a miopia, a 
hipermetropia, a presbiopia, o astigmatismo e o es-
trabismo. 
Para cada olho defeituoso, existe um tipo conve-
niente de lente que, associada ao mesmo, corrige a 
anomalia (usando óculos ou lentes de contato).
Miopia
O míope apresenta como defeito o achatamento do 
globo ocular perpendicularmente ao seu eixo óptico, 
alongando-o. Em consequência, a imagem se forma 
antes da retina. Seu ponto remoto não está no infi nito, 
mas numa distância fi nita, o que aumenta sua difi cul-
dade em enxergar de longe.
30
 Para a correção da miopia, deve-se usar lentes di-
vergentes, aumentando a sua distância focal.
f = - pR
f – distância focal (metro) 
P – ponto remoto (metro) 
Exemplo:
 
O ponto remoto de um míope situa-se a 2 m de seu 
olho. Determine a distância focal e a vergência da 
lente que corrige o defeito.
 
SOLUÇÃO
Hipermetropia
O hipermétrope apresenta como defeito o achata-
mento do globo ocular longitudinalmente ao seu eixo 
óptico, encurtando-o. Em consequência, a imagem se 
forma depois da retina. Seu ponto remoto não está 
a 25 cm, mas a uma distância maior que esta, o que 
aumenta sua difi culdade em enxergar de perto.
Para a correção da hipermetropia, deve-se usar len-
tes convergentes, diminuindo a sua distância focal.
 (em metros)
Exemplo:
Uma pessoa hipermétrope tem seu ponto próximo 
situado a 50 cm da vista. Para que possa enxergar ni-
tidamente objetos situados a 25 cm de distância, de-
termine a vergência da lente que deve usar.
SOLUÇÃO
Presbiopia 
O presbita apresenta como defeito o endurecimentodo cristalino e, por conseguinte, a perda da capaci-
dade de acomodação visual. A presbiopia não é um 
defeito congênito, mas decorrente do avanço da ida-
de. As pessoas idosas geralmente a têm. Ela é vulgar-
mente chamada de “vista cansada”. 
 A correção da presbiopia é feita com o uso de 
lentes convergentes, como na hipermetropia, pois o 
ponto próximo do presbita também está além dos 25 
cm. 
(em metros)
Astigmatismo 
O astigmata apresenta um defeito na córnea, com 
raios de curvatura irregulares, o que ocasiona uma vi-
são manchada dos objetos.
31
A correção do astigmatismo é feita com o uso 
de lentes cilíndricas.
 
Estrabismo
O estrábico apresenta como defeito a incapa-
cidade de dirigir para um mesmo ponto os eixos 
ópticos dos olhos.
A correção do estrabismo é feita com uso de 
lentes prismáticas. 
Daltonismo
O daltonismo é uma anomalia genética, geral-
mente herdada, na qual o portador é incapaz de 
distinguir certas cores, mas comumente o ver-
melho e o verde. Estima-se que cerca de 8% dos 
homens e 0,05% das mulheres na Europa sejam 
daltônicos. Os cones, receptores de luz locali-
zados sobre a retina do globo ocular, contêm 
pigmentos que selecionam as luzes vermelhas, 
verde e azul. Se a quantidade de pigmento é re-
duzida ou se um (ou mais) dos três sistemas de 
cores estiver ausente, o portador será daltônico. 
A anomalia é impossível de ser corrigida.
O físico e químico inglês John Dalton 
(1766 – 1844) era portador dessa doença, tendo 
realizado estudos sobre ela. Daí o seu nome, 
daltonismo, para esta anomalia. 
Exercício
1) Como se chamam as ondas que não se propagam no vácuo?
2) O que são ondas transversais? Dê um exemplo.
3) Na faixa ultravioleta, a luz possui 3 (três) características. Cite-as:
4) A fi gura mostra o perfi l de onda de uma onda mecânica propagando-se no ar, com velocidade de 5,0 m/s.
 
Determine:
a) o comprimento de onda no SI.
b) a frequência desse movimento.
c) o período do movimento.
5) Que elemento do olho humano é responsável por sua cor? 
6) Qual é a função do nervo óptico?
7) Que defeito da visão surge decorrente do avanço da idade?
 
8) Os esquemas correspondem a um olho míope (1) e um olho hipermétrope (2). As lentes corretivas devem 
ser, respectivamente, para (1) e (2):
 
32
a) Divergente e convergente.
b) Divergente e divergente.
c) Biconvexa e bicôncava.
d) Convergente e divergente.
e) Convergente e convergente.
9) Uma pessoa jovem tem seu ponto próximo a 1 m dos olhos. Para que possa enxergar nitidamente objetos 
a 25 cm de distância, determine:
a) O tipo de defeito;
b)O tipo de lente;
c) A vergência da lente.
33UNIDADE V
BIOFÍSICA DA AUDIÇÃO BIOFÍSICA DA AUDIÇÃO 
5.15.1 - Ondas Sonoras 
Introdução 
As pessoas e muitos animais comunicam-se através 
do som. Daí percebe-se a importância deste capítulo, 
em que serão estudados os principais fenômenos on-
dulatórios sonoros e como a orelha* humana diferen-
cia os diversos sons.
O estudo das ondas sonoras denomina-se Acústica.
Ondas sonoras são ondas de natureza mecânica 
(necessitam de um meio material elástico para se pro-
pagar), tipo longitudinal (a direção de vibração das 
partículas coincide com a direção de propagação) e 
classifi cação tridimensional (propagam-se nas di-
mensões do espaço).
 
Assim, ondas sonoras não se propagam no vácuo, 
sendo este, portanto, o melhor isolante acústico.
A fi gura a seguir mostra um êmbolo móvel (fonte) 
que executa movimentos oscilatórios numa extremi-
dade de um tubo comprido contendo ar (meio gaso-
so). Note-se que as camadas de ar sofrem compres-
sões e rarefações, que se propagam no seu interior 
com velocidade v. Por isso, as ondas que se propagam 
recebem também o nome de ondas de pressão. 
As frentes de onda, ao chegarem a outra extremida-
de (aberta), atingem a orelha do observador, que pos-
sui uma membrana denominada tímpano. O tímpano 
passa a vibrar com a mesma frequência das ondas, 
transmitindo-as ao cérebro, que registra, assim, a sen-
sação fi siológica chamada de som. 
A orelha humana normal consegue captar frequên-
cias de ondas sonoras que vão desde 20 Hz até 20 000 
Hz, aproximadamente.
Qualquer frequência abaixo de 20 Hz denomina-se 
infrassom e acima de 20 000 Hz, ultrassom.
Um exemplo interessante de ondas infrassônicas 
são os abalos sísmicos. Uma onda ultrassônica pode 
ser produzida através de vibrações elásticas do cristal 
de quartzo. Certos animais, como cachorros e morce-
gos, conseguem ouvir o ultra-som.
Velocidade do Som
As ondas sonoras propagam-se em meios sólidos, lí-
quidos e gasosos, com velocidades que dependem das 
diferentes características dos materiais. De um modo 
geral, as velocidades maiores ocorrem nos sólidos e 
as menores, nos gases.
A 20 ºC, o som propaga-se no ferro sólido a 
5 100 m/s, na água líquida, a 1 450 m/s e no ar, a 
343 m/s.
A Barreira do Som
A velocidade do som no ar é aproximadamente 
1.220 km/h. Foguetes e mísseis superam essa marca, 
mas, entre os veículos com fi nalidade de transporte de 
cargas e passageiros, apenas os aviões supersônicos 
o fazem.
Por que não é maior a utilização de veículos super-
sônicos? As razões não são apenas técnicas ou de se-
gurança. O problema maior é o que se convencionou 
chamar de barreira de som. 
Quando um avião supera a velocidade do som, rom-
pendo a tal barreira, produz-se uma espécie de onda 
*Segundo a Nova Terminologia Anatômica Mundial, publicada em dezembro de 1997, o nome ouvido foi substituído por orelha.
34
de choque. Em termos práticos, há um estrondo sô-
nico, cuja violência é capaz de quebrar vidros, com-
prometer estruturas de prédios e outras edifi cações, 
e ainda provocar danos irreparáveis aos aparelhos 
auditivos das pessoas situadas nas proximidades do 
evento.
É por isso que os aviões supersônicos são usados 
com restrições e que os aeroportos de onde decolam 
esses aparelhos se situam em regiões afastadas dos 
grandes centros urbanos. 
Avião supersônico F5 em voo.
Qualidades do Som
ALTURA: qualidade que permite diferenciar um 
som grave de um som agudo. A altura do som de-
pende apenas da sua frequência.
Frequência maior → som agudo 
 
Frequência menor→ som grave
Defi ne-se intervalo (i) entre dois sons como sendo o 
quociente entre suas frequências: 
 
 
Caso f2 = f1 ⇒ i = 1, diz-se que os sons estão em 
uníssono. 
Caso f2 = 2 f1 ⇒ i = 2, diz-se que o intervalo corres-
ponde a uma oitava acima.
Caso f2= ⇒ i = , diz-se que o intervalo corres-
ponde a uma oitava abaixo.
Obs.: 
As notas musicais de mesmo nome estão separadas 
por um intervalo de uma oitava.
INTENSIDADE: qualidade que permite diferenciar 
um som forte de um som fraco. A intensidade do som 
depende da energia que a onda transfere e divide-se 
em intensidade física e intensidade auditiva.
A intensidade física do som é medida em w/m, no 
Sistema Internacional.
O menor valor de intensidade física sonora audível 
(limiar de audibilidade) é I0= 10-12 w/m2, e o maior 
valor de intensidade física sonora suportável (limiar 
da dor) é I = 100 w/m2, após isso, o tímpano pode ser 
rompido.
A intensidade auditiva depende da distância em que 
o observador se encontra da fonte sonora; quanto mais 
longe, menor é a intensidade sonora. Essa intensidade 
é medida em bel (B), no Sistema Internacional, porém 
a mais usada é o decibel (dB).
1 B = 10 dB
O Som Também Polui 
Um dos grandes e graves problemas de nossa so-
ciedade é a poluição sonora. Vivemos num mundo 
em que o normal é o ruído, o barulho constante. O 
silêncio é uma rara, exceção. Por isso aumenta assus-
tadoramente o número de pessoas com defi ciências 
auditivas causadas pela exposição prolongada a sons 
muito intensos. Sons acima de 80 dB já constituem 
poluiçãosonora. Todos precisamos nos engajar na 
cruzada contra o barulho, limitando a intensidade dos 
sons que nos cercam.
Se os problemas físicos são intensos e altamente 
prejudiciais, não menos graves são os efeitos psico-
lógicos e sociais do excesso de som. A poluição sono-
ra, além dos males físicos, interfere na comunicação, 
provoca a fadiga, reduz a efi ciência no trabalho e neu-
rotiza a população.
Abaixo temos uma tabela com alguns ambientes que 
fazem parte da nossa vida e seus respectivos níveis 
sonoros:
35
Pesquisas da U.S. Environmental Protection Agency 
(Agência de Proteção Ambiental dos Estados Unidos) 
demonstram que o excesso de ruídos pode provocar 
distúrbios mentais, ulceras gástricas, problemas car-
díacos e, até mesmo, problemas em fetos.
Quando exposto diariamente a ruídos acima de 75 
dB, o ser humano, em poucos anos, sofre mudanças 
em seu organismo, como: dilatação das pupilas, pal-
pitação cardíaca, difi culdades na digestão, elevação 
na pressão arterial, alteração na secreção de vários 
hormônios. As mulheres podem ter o ciclo menstrual 
desregulado. Além disso, outras consequências po-
dem ser a desestabilidade emocional e o estresse. 
TIMBRE: qualidade que permite diferenciar dois 
sons de mesma altura e mesma intensidade, emiti-
dos por fontes distintas.
Uma mesma nota musical emitida por um piano e 
por um violão diferencia-se pelo timbre.
 
Persistência Acústica 
Chama-se persistência acústica ao menor intervalo 
de tempo para que dois sons não se separem no cé-
rebro. A persistência acústica da orelha humana é de 
0,1s. Se dois sons chegam à orelha com intervalos de 
tempo menores que 0,1s, o cérebro não consegue dis-
tingui-los. Portanto, um ouvinte consegue distinguir 
dois sons distintos desde que os receba em interva-
los de tempo maiores (ou iguais) a 0,1s. Esse fato 
possibilita ao observador perceber o eco, fenômeno 
bastante conhecido. 
 
5.25.2- A Orelha Humana 
É o órgão encarregado em transformar as diferenças 
de pressão do som em pulsos elétricos, que são envia-
dos ao cérebro, onde causam a sensação psicofísica 
da audição.
A seguir será apresentada uma comparação entre al-
gumas características da VISÃO e da AUDIÇÃO. 
Visão 
• sintética – impulsos energéticos são somados.
Ex.: azul + amarelo = verde
• tem persistência da imagem na retina. (cinema)
Audição
• O ouvido é capaz de perceber dois sons de fre-
quências diferentes, mesmo quando emitidos separa-
damente.
• Pelo timbre diferencia uma mesma nota de dois 
instrumentos musicais diferentes.
• Som não tem persistência, o que nos permite a arte 
da música, pela sequência dos sons que são ouvidos 
separadamente.
Anatomia da Orelha
a. Orelha externa 
• pavilhão auricular (orelha)
• canal auditivo (meato)
b. Orelha média
• É uma cavidade limitada pelo tímpano e paredes 
ósseas, comunicando-se com o exterior através da 
trompa de Eustáquio.
• A função desse canal é equalizar as pressões ex-
terna e interna. 
• Localiza-se a cadeia mecânica encarregada de 
transmitir o som para o ouvido interno. 
TÍMPANO – MARTELO – BIGORNA – ESTRI-
BO 
c. Orelha interna
• É uma cavidade fechada, onde circula um líquido 
envolvendo as estruturas denominadas perilinfa, có-
clea (caracol) e os canais semicirculares.
• A cóclea é o órgão que transforma energia mecâni-
ca em energia elétrica. Na cóclea e canais semicircu-
lares existe outro líquido (endolinfa). 
• Cóclea e os canais semicirculares formam o labi-
rinto.
36
Funções da Orelha 
a. Orelha Externa
• a captação e a condução do som são feitas pelo 
pavilhão auricular, que ainda é capaz de refratar sons, 
reforçando a intensidade que chega ao ouvido.
• o canal auditivo (meato) leva o som captado ao 
tímpano. 
b. Orelha Média
• transforma a energia sonora em deslocamento 
mecânico.
• o tímpano vibra sob o impulso da onda sonora em 
amplitude proporcional. 
 
 Amin.= 1,1 x 10
-11m Amáx.= 1,1 x 10
-5m 
• dimensões do tímpano área: 65 mm2 
 Espessura: 0,1 mm 
 
• Esse diminuto movimento é transmitido ao marte-
lo, daí para a bigorna e dela ao estribo.
• Os deslocamentos do tímpano são transmitidos 
aos ossículos através de um sistema de alavancas in-
terfi xas, produzindo amplifi cação do som.
• Quando a intensidade sonora é muito grande, o 
mecanismo de amplifi cação é atenuado através da 
contração refl exa dos músculos: 
 estapídio – afasta o estribo da bigorna
 tensor do tímpano – afasta o martelo da bigorna 
• Esse mecanismo de defesa, contudo, não protege a 
orelha dos ruídos súbitos. 
 
c. Orelha Interna
• transforma o movimento mecânico em hidráulico 
e o hidráulico em pulso elétrico.
• um fator biofísico importante nesse mecanismo é 
diferença de potencial entre o órgão de Corti (- 70 
mv) e endolinfa (+ 80 mv), responsável pela trans-
missão dos impulsos elétricos ao cérebro (gradiente 
de 150 mv).
Audiometria
• a capacidade de audição de diferentes frequências 
não é a mesma e está relacionada à intensidade so-
nora. 
• Audiograma: são testes feitos em câmaras espe-
ciais, à prova de som, com fontes geradoras de sinais 
de frequência e intensidade conhecidas, com a fi na-
lidade de investigar a capacidade de audição. 
Som na Esfera Afetiva
• Outro aspecto importante da psicofísica do som é 
a sua capacidade de gerar emoções.
• Alguns sons ou vozes agradam e outros desagra-
dam.
• Sons que nos deixam alegres ou tristes.
• Da herança cultural herdamos outros aspectos:
Ex.: Orquestra 
piano é solene
órgão é pastoral ou religioso
metais são marciais
37
5.35.3 – Defeitos da Audição
Existem dois tipos de surdez:
a. Surdez de condução: 
• obstrução no canal auditivo externo.
• lesões no tímpano ou nos ossículos.
• pode ser parcialmente corrigida com aparelhos de 
uso local.
• esse tipo de surdez difi cilmente é total.
b. Surdez nervosa:
• há lesões na cóclea ou no nervo ótico.
• é a mais grave.
• algumas são irreversíveis. 
• uso de antibiótico como estreptomicina pode cau-
sar lesões irreversíveis no nervo ótico.
Teste do Diapasão
• paciente entra numa sala a prova de som.
• vibra-se a diapasão perto de um ouvido e vai afas-
tando-o gradualmente até o paciente indicar que não 
ouve mais. 
• nesse instante, o cabo da diapasão é rapidamente 
trazido para perto do ouvido.
 
Duas situações ocorrem:
1. O paciente recomeça a ouvir o som – Surdez de 
Condução
2. O paciente não ouve nada – Surdez Nervosa
Exercícios 
1) Cite a faixa de frequências cujos sons são audíveis pelo ser humano.
2) Em que meio (sólido, líquido, gasoso) o som se propaga com maior velocidade?
3) Explique o fenômeno da barreira do som.
4) Defi na a qualidade do som conhecida como Altura.
5) Qual é a unidade no Sistema Internacional para a intensidade sonora? Que submúltiplo é mais usado?
6) O que é poluição sonora?
7) Qual é a função da trompa de Eustáquio?
8) Quando a intensidade sonora é muito grande, o mecanismo de amplifi cação é atenuado pela contração 
refl exa de dois músculos. Cite-os:
9) Como se chama o teste feito com a fi nalidade de investigar a capacidade auditiva?
10) Explique o aspecto psicofísico do som.
11) Quais são os dois tipos mais comuns de surdez?
38 UNIDADE VI
BIOFÍSICA DA CIRCULAÇÃO BIOFÍSICA DA CIRCULAÇÃO 
6.16.1 - Introdução 
Este trabalho trata de um dos fl uidos mais importan-
tes para o corpo humano por ter funções nutritivas, 
respiratórias, excretora e de defesa do organismo: o 
sangue. Sendo também considerado como um tecido 
do corpo humano, isto é, um tecido fl uido, o sangue é 
mais uma das maravilhas da natureza, constituindo-se 
num adulto em um volume de 5,5 litros que é trans-
portado poruma malha de mais de 90.000 km, o que 
equivale a mais de duas voltas em torno da Terra. 
A propulsão é feita por uma bomba – o cora-
ção – que faz o sangue circular pelo corpo cerca de 
uma vez por minuto, gastando, em um dia, energia 
capaz de elevar um adulto em 700 m. 
O sistema circulatório tem função de comunicador 
de Matéria e Energia entre os diversos comparti-
mentos biológicos. 
É um leva-e-traz contínuo de metabólitos diversos, 
consumindo e trocando energia potencial e cinética 
sem parar. Compõe-se, portanto de: 
a. Coração, como uma bomba propulsora.
b. Vasos sanguíneos, que formam uma rede contí-
nua e cíclica, unida pelo coração. 
c. Sangue, um fl uido formado por células e líquido.
d. Sistema de controle, ligado ao sistema nervoso 
central. 
 
A circulação sanguínea é um sistema fechado, com 
o volume circulatório em regime estacionário. Isso 
quer dizer que o sangue está contido em um sistema 
de bomba hidráulica e vasos condutores sem vaza-
mentos e contínuo.
Isso signifi ca que a quantidade de sangue movimen-
tada a cada impulso do coração é a mesma na grande 
e pequena circulação. 
Esse volume é de cerca de 83 ml ejetados de cada 
ventrículo e de 166 ml, ejetados pelo coração em cada 
batida.
Aproximadamente ¼ da massa sanguínea está na 
pequena circulação e ¾, na grande. Um indivíduo 
com 5 litros de sangue tem-nos assim distribuído:
• pequena circulação – 1,2 l (coração e pulmão)
• grande circulação – 3,5 l (coração, corpo todo)
• no coração – 0,25 l 
6.26.2 – Características dos Fluidos em Escoamento 
O sangue enquadra-se como fl uido real, que como 
tal deve ser: compressível, turbulento, rotacional e 
viscoso, como se detalha a seguir.
Compressibilidade 
Um fl uido é compressível quando é possível mudar 
sua densidade, isto é, quando sob pressão diminui seu 
volume. O sangue é constituído de plasma, glóbulos 
vermelhos e glóbulos brancos, isto é, um líquido com 
células que, em certas situações, num escoamento po-
dem se encontrar mais comprimidas que o normal. 
Neste caso, o sangue teria sua densidade aumentada. 
Rotacionalidade
O escoamento de um fl uido é rotacional quando 
uma partícula no interior do fl uido gira em torno de 
seu centro de massa. Sob certas condições, as células 
do sangue giram em torno do seu centro de massa. O 
fato de essas partículas, no caso do sangue, células, 
terem um movimento de rotação, implica que parte 
da energia de movimento do sangue estará na forma 
de energia cinética de rotação, o que contribui, como 
veremos adiante, para uma queda de pressão ao longo 
do percurso do sangue.
Viscosidade
A viscosidade tem o mesmo papel na mecânica dos 
fl uidos que o atrito na mecânica dos sólidos, ou seja, 
no escoamento teremos transformação de energia ci-
nética em energia térmica. Em consequência, tere-
mos uma queda de pressão no sentido do escoamento. 
Esta queda se deve a uma resistência de arraste, pela 
aderência do fl uido ao tubo, fazendo com que no tubo 
a velocidade decresça de valor do centro até as bor-
39
das. Na fi gura abaixo, tem-se um escoamento em que 
o fl uido diminui sua velocidade de um valor máximo 
no centro do tubo até chegar a zero nas suas paredes. 
Este tipo de escoamento é chamado de escoamento 
laminar. 
Efeito da viscosidade para um fl uido dentro de um 
tubo cilíndrico, onde a velocidade ao longo do fl uido 
aumenta das bordas para o centro. 
Quando um fl uido é mais viscoso, signifi ca que ade-
re melhor a uma superfície. Por exemplo, o óleo de 
máquina leve tem uma viscosidade cerca de cem ve-
zes maior que o da água para a mesma temperatura 
abaixo de 400 C. Isso explica porque é mais difícil 
remover óleo de uma superfície do que a água. Na 
tabela abaixo, estão os valores da viscosidade de al-
gumas substâncias para certas temperaturas.
Turbulência 
Um fl uido está em regime turbulento quando muda 
de velocidade no decorrer do tempo. Uma das formas 
de um fl uido estar em regime turbulento é quando sua 
velocidade é superior a certo valor, que pode ser ob-
tido por:
 
 
Em que Re é o numero de Reynolds; η é a viscosida-
de do fl uido; ρ é a densidade do fl uido; D é o diâmetro 
e νc é a velocidade crítica. O número de Reynolds, 
Re, que é adimensional para um grande número de 
fl uidos, num escoamento através de um tubo de seção 
circular está em torno de 2.000. Quando num escoa-
mento de um fl uido este valor é superado, o escoa-
mento passa de laminar para turbulento. Para veloci-
dades abaixo do valor crítico, o fl uido também pode 
ser turbulento se houver protuberâncias no tubo. Nos 
vasos sanguíneos, podemos ter protuberâncias forma-
das pelo acúmulo de colesterol nas paredes dos vasos, 
como mostra a fi gura:
Turbulência provocada em virtude de protuberâncias em vasos 
sanguíneos.
EQUAÇÃO DA CONTINUIDADE
Os fl uidos ideais obedecem à equação da continui-
dade, que é a lei de conservação da massa aplicada à 
mecânica dos fl uidos. Defi ne-se o fl uxo ou vazão de 
um fl uido como variação de volume na unidade de 
tempo, ou seja: 
No SI, a unidade para o fl uxo é m3/s. Para fl uidos 
ideais, o fl uxo volumétrico deve ser constante. Neste 
caso, a equação da continuidade se expressa como:
 
A = área da secção transversal do tubo 
ν = velocidade do líquido 
Por meio dessa equação, pode-se concluir que se a 
área de um tubo, por exemplo, por onde, escoa um 
fl uido, diminui, então a velocidade deverá aumentar a 
fi m de manter o fl uxo constante.
VELOCIDADE DO FLUXO SANGUÍNEO EM 
REGIÃO DIFERENTE DA CIRCULAÇÃO 
A expressão fl uxo sanguíneo defi ne a verdadeira 
quantidade do sangue que fl ui por um vaso sanguíneo 
ou por um grupo de vasos sanguíneos, em determina-
do período de tempo.
Se a quantidade de sangue que fl ui por um vaso per-
manece constante, a velocidade do fl uxo sanguíneo, 
obviamente, diminui com o aumento de calibre do 
40
vaso. A aorta, ao sair do coração, tem área de secção 
reta de 2,5 cm. Em seu trajeto, ramifi cam-se em gran-
de artéria, em pequenas artérias, e em capilares, com 
uma fração do fl uxo sanguíneo aórtico passando para 
cada um desses vasos. A área total da secção reta de 
todas as ramifi cações vascular é muito maior do que 
a aorta; nos capilares, por exemplo, é cerca de 1.000 
vezes a da aorta. Como consequência, a velocidade 
do fl uxo sanguíneo é muito maior na aorta e míni-
ma nos capilares, onde seu valor é 1/1.000 da medida 
da aorta. Em termos numéricos, as velocidades são, 
aproximadamente, as seguintes: aorta: 30 cm/s; ar-
teríola: 1,5cm/s; capilares: 0,3cm/s; vênulas: 3mm/
s e nas veias cavas: 8cm/s.
 
6.36.3 – Energética da Sístole e da Diástole 
O ciclo de contração cardíaca passa por duas fases 
bem características. 
• SÍSTOLE: contração com esvaziamento do co-
ração. 
• DIÁSTOLE: relaxamento com entrada de sangue 
nas cavidades cardíacas. 
Durante a sístole, o sangue é subitamente acelerado 
em todas as artérias, pela massa sanguínea que é eje-
tada pelos ventrículos. A pressão e a velocidade do 
sangue atingem o nível máximo. 
 Durante a diástole, tanto a pressão como a corrente 
sanguínea diminui um pouco.
 
Energética da sístole e diástole
Na fi gura A, está representado o ventrículo esquer-
do, instantes antes da sístole. Na fi gura B, a contração 
lançou massa de sangue com energia cinética (au-
mento da velocidade) e com energia potencial elás-
tica (dilatação da artéria). 
Quando a sístole termina, começa a diástole. A ener-
gia elástica armazenada na artéria se transforma em 
energia cinética para manter o fl uxo constante.
Pode-se notar que em nenhum momento do ciclo o 
fl uxo se interrompe, nem a pressão se anula.
 
Relação entre Onda de Pulso e Velocidade 
de Circulação 
Todas as artérias apresentam uma dilatação percep-
tívelao tato, em sincronia com a contração cardíaca. 
É o pulso.
A tomada do pulso fornece informações valiosas 
sobre o funcionamento do aparelho circulatório, tais 
como a frequência, arritmia (falta de ritmo), a in-
tensidade e outras. 
Embora o pulso possa ser registrado grafi camente e 
com riqueza de detalhes, a simples palpação permite 
verifi car importantes aspectos.
A onda de pulso não deve ser confundida com a 
corrente sanguínea. 
A onda de pulso é a energia da contração cardíaca 
que se propaga pelo sangue. É energia mecânica.
A corrente sanguínea é o deslocamento da massa 
de sangue, medida pelo movimento de hemáceas. É 
matéria. 
A onda de pulso se propaga com velocidade 4 a 6 
vezes maior que a corrente sanguínea e é palpável. 
 A corrente sanguínea não é perceptível ao tato e ne-
cessita de métodos especiais para ser percebida.
 
 VELOCIDADE:
 ONDA DE PULSO: 20 m.s .1
 CORRENTE SANGUÍNEA: 5 m.s .1
41
6.46.4 – A Pressão no Corpo Humano
Pressão Estática
O sangue, como qualquer outro fl uido, pode exer-
cer pressão nas paredes que o contém devido a seu 
próprio peso. Por exemplo, uma coluna de mercúrio 
de 76 cm exerce uma pressão de 1 atm em sua base, 
ou seja, um valor igual à pressão que a coluna de ar 
exerce na superfície da Terra ao nível do mar. Se fos-
se a água, essa mesma pressão seria exercida por uma 
coluna de cerca de 10 m de altura, e para o sangue a 
coluna teria uma altura de 9,75 m. Essas diferenças 
ocorrem em virtude dos valores de densidade de cada 
fl uido, pois a água tem densidade pouco inferior a do 
sangue, que por sua vez é inferior a do mercúrio. Po-
demos determinar o valor da pressão exercida por um 
fl uido pela seguinte equação: 
Em que P é a pressão absoluta; R é a pressão externa 
ou mecânica e pgh é a pressão manométrica: p como 
densidade do fl uido; g é aceleração da gravidade e h 
é altura de uma coluna de um fl uido para uma dada 
referência. Ao longo de todo o texto desse trabalho, as 
pressões indicadas serão as pressões manométricas. 
Algumas unidades:
Embora a unidade de PRESSÃO no SI seja o PAS-
CAL ( ), nas áreas biológica e médica, a unidade mais 
utilizada é o mmHg ou torr. Inclusive o esfi gnomanô-
metro é calibrado nessa unidade.
Pressão Dinâmica
A equação 1.1 expressa a ação da pressão mecâni-
ca mais a hidrostática, mas um fl uido em movimento 
também exercerá a pressão dinâmica que é dada por:
Em que p é a densidade do fl uido e v é a velocidade 
com ele fl ui.
De forma que a pressão total em um certo ponto do 
fl uido será dada por:
Note que nesta equação o termo novo é o da pressão 
dinâmica.
Pressão Mecânica 
O efeito da pressão mecânica é em virtude do co-
ração que, ao bombear o sangue para o corpo, está 
exercendo-lhe uma determinada pressão.
No corpo humano, a pressão do sangue se deve a 
contribuição da pressão estática, da pressão dinâmica 
e da pressão mecânica. Em virtude do próprio peso do 
sangue, as artérias e veias estão sob a pressão estática, 
que dependerá da altura da coluna de sangue em rela-
ção ao pé. A contribuição da pressão dinâmica é em 
virtude das diversas velocidades do sangue no corpo.
 No percurso do sangue, haverá variações de pressão 
sanguínea pelo corpo, grande parte em virtude dos 
efeitos da viscosidade. Outro fato interessante é que a 
pressão do sangue arterial (sangue rico em oxigênio) 
é maior que a do sangue venoso (sangue rico em gás 
carbônico). Isso se deve ao fato do sangue arterial ter 
o auxílio do coração para ser bombeado para o resto 
do corpo, o que não ocorre com o sangue venoso.
 
Resistência Periférica 
Outro parâmetro físico de importância na circulação 
sanguínea é a Resistência Periférica. Fazendo analo-
gia com a 1ª Lei de ohm, defi ne-se:
42
 Curvas de pressão e volume para as aortas normais obtidas na 
autópsia de seres humanos de diferentes faixas etárias. A rigi-
dez da aorta aumenta progressivamente com a idade (anos). 
Exemplo:
 Em uma determinada pessoa saudável, a pressão na 
aorta é de 100 mmHg e nos capilares, de 15 mmHg. 
Sabendo-se que o fl uxo sanguíneo ali é de 85 ml/s. 
calcule sua resistência periférica. 
O Campo Gravitacional e a Circulação 
Em um indivíduo na posição em pé, o vetor G é 
contra a subida do sangue e a favor da descida.
Pode-se notar que, acima do coração, o Campo G é 
contra a circulação arterial e a favor da venosa. 
Abaixo do coração, inverte-se a relação e o Campo 
G é a favor da circulação arterial e contra a venosa.
Vejamos a seguir a contribuição quantitativa do 
Campo G na circulação. 
O campo G e a Circulação +G – A favor do movimento do san-
gue; -G – Contra o movimento do sangue.
1 cm de altura – pressão da coluna de sangue varia 
de 0,78mmHg.
Sabe-se também que na altura do coração:
• a pressão arterial é de 95 mmHg
• a pressão venosa é de 5 mmHg
Exemplo:
Calcule a pressão sanguínea arterial na cabeça de 
um indivíduo, que está a 40 cm acima do coração, 
sabendo-se que a pressão arterial no coração é de 95 
mmHg.
Obs.: Isso explica porque uma queda de pressão é 
acompanhada de perda temporária dos sentidos. A 
posição deitada que acompanha o desmaio é uma de-
fesa contra a atuação do campo G, pois nesta posição 
a cabeça e o coração fi cam na mesma altura e o efeito 
G desaparece.
43
Exercícios 
1) De que se compõe, basicamente, o sistema circulatório?
2) Cite as quatro principais características dos fl uidos em movimento, como é o sangue.
3) Na energética da sístole e da diástole, quais são as energias interconvertidas?
4) Qual é a diferença entre onda de pulso e corrente sanguínea?
5) No corpo humano, a pressão sanguínea se deve a contribuição de três componentes. Cite-os. 
6) O que acontece com a elasticidade das artérias das pessoas quando envelhecem?
7) Um idoso hipertenso tem em determinado momento uma pressão na aorta de 220 mmHg. Sabendo-se que 
a pressão nos capilares é de 15 mmHg e que o fl uxo sanguíneo é de 85 ml/s, calcule sua resistência periférica.
8) Qual é o valor da pressão arterial e pressão venosa na altura do coração?
9) Calcule a pressão arterial no tornozelo de um indivíduo que se encontra de pé, sabendo-se que o coração 
encontra-se a 120 cm acima dele.
44
Se você:
1) concluiu o estudo deste guia;
2) participou dos encontros;
3) fez contato com seu tutor;
4) realizou as atividades previstas;
Então, você está preparado para as 
avaliações.
Parabéns!
45
Glossário
Diapasão – objeto metálico em forma de “U” destinado a afi nar instrumentos.
Entropia – forma de energia desorganizada.
Esfi gnomanômetro – aparelho destinado a medir a pressão arterial no corpo humano.
Espectro eletromagnético – apresenta as faixas-frequências de todas as ondas eletromagnéticas.
g – aceleração da gravidade; na Terra vale 9,81 m/s2.
SI – Sistema Internacional de Unidades.
Trompa de Eustáquio – o mesmo que tuba auditiva.
Vergência – o mesmo que convergência de uma lente; é medida em dioptria (Di).
46
Gabarito
UNIDADE I 
1. Número e unidade.
2. 5,0 X 104kg 
 3,6 X 103s 
 9,0 X 105H 
 2,5 X 10-4m
3. Matéria, energia, espaço e tempo. 
4. Gravitacional, eletromagnético e nuclear. 
5. Nuclear.
6. Gravitacional.
7. No norte geográfi co da Terra.
8. Vaga-lumes produzindo energia luminosa.
 Levantamento de peso, como meio auxiliar de fi sioterapia.
UNIDADE II 
1. 1250 J
 
2. 64 J 
 
3. 35 J 
4. Letra D
5. 700 J
6. A energia do Universo é constante. 
7. No estado hígido, o ser está organizado e tem baixa entropia; já no estado patológico, sua entropia está au-
mentada.
UNIDADE III 
1. São estruturas altamente diferenciadas, destinadas a compartimentar os seres vivos.
2. 10 m
3. São passagens que permitem

Outros materiais