Buscar

Lei de Hooke

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 6 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 6 páginas

Prévia do material em texto

2. OBJETIVO
 Através de atividade realizada em laboratório, este experimento tem por objetivo assimilar através de um gráfico o alongamento de molas helicoidais, obtido com a aplicação de uma força deformadora, utilizando massas aferidas, determinando a constante elástica de uma mola helicoidal através do método estático; constante elástica de uma mola helicoidal através do método dinâmico; linearizando as equações trabalhadas, representando graficamente os dados experimentais e utilizar regressão linear para a determinação da grandeza estudada.
3. FUNDAMENTAÇÃO TEORICA
 A Lei de Hooke é uma homenagem ao físico inglês Robert Hooke, que teorizou a deformação do corpo elástico ao expandir-se.
 O físico inglês Robert Hooke foi quem primeiro demonstrou que muitos materiais elásticos apresentam deformação diretamente proporcional a uma força elástica, resistente ao alongamento produzido.
 A lei de Hooke é a lei da física relacionada à elasticidade de corpos, que serve para calcular a deformação causada pela força exercida sobre um corpo, tal que a força é igual ao deslocamento da massa a partir do seu ponto de equilíbrio vezes a característica constante do corpo é deformada:{\displaystyle F=k\,\Delta l}
 Hooke representou matematicamente sua teoria com a equação:
 Em que:
 F=força elástica
 K=constante elástica
 x=deformação ou alongamento do meio elástico
 Nota-se então que a Lei de Hooke é responsável por verificar a deformação do corpo elástico ao se expandir. O objeto de estudo mais usado para esse evento é a mola espiral, por ser um objeto flexível que se alonga facilmente.
 A energia armazenada no corpo (nesse caso, a mola) é a energia potencial, também conhecida como energia de posição, que é um tipo de armazenamento de energia dos corpos em virtude do seu posicionamento, ou seja, o sistema ou o corpo podem possuir forças interiores capazes de modificar suas posições relativas e suas diferentes partes para chegar ao objetivo (que é realizar trabalho).
 Mas como essa energia armazenada está diretamente ligada à mola, chamamos esse evento de Energia potencial elástica, no qual o armazenamento de energia ocorre na interação entre a mola e o bloco.
 O trabalho realizado de forma externa (força externa que aparece na figura), para vencer a resistência da mola, é igual à energia que o próprio trabalho transfere para a mola, ficando armazenada como energia elástica.
 Equação da Energia Potencial Elástica, cuja unidade no SI é Joule (J)
 Ao estudar molas e elasticidade, o físico do século 17 Robert Hooke notou que a curva de tensão vs deformação para muitos materiais tinha uma região de comportamento linear. Dentro de certos limites, a força requerida para deformar um objeto elástico como uma mola de metal era diretamente proporcional a deformação da mola. Este comportamento é descrito pela Lei de Hooke, comumente escrita como:
 Onde F é a força, x é a deformação (alongamento/compressão) e k é uma constante de proporcionalidade conhecida como constante de elasticidade a qual é usualmente expressa em N/m.
 Embora não tenhamos estabelecido explicitamente o sentido da força aqui, o sinal negativo é habitualmente adicionado. Isso é para significar que a força restauradora devido a mola é no sentido oposto ao sentido da força que causou o deslocamento. Puxando uma mola para baixo causará uma extensão da mola para baixo, que por sua vez resultará em uma força para cima devido a mola.
 É sempre importante se certificar de que o sentido da força restauradora é especificado consistentemente ao abordar problemas de mecânica envolvendo elasticidade. Para problemas simples, muitas vezes podemos interpretar a extensão xxx como um vetor uni-dimensional; Nesse caso, a força resultante também será um vetor uni-dimensional e o sinal negativo na lei de Hooke dará o sentido correto da força.
 Quando calculamos x é importante lembrar que a mola em si também terá alguns comprimento nominal L​0​​. O comprimento total L da mola sob extensão é igual ao comprimento nominal mais a extensão, L= L​0 + x. Para uma mola sob compressão, seria L=L​0​​ − x.
 A lei de Hooke pode ser utilizada desde que o limite elástico do material não seja excedido. O comportamento elástico dos materiais segue o regime elástico na lei de Hooke apenas até um determinado valor de força, após este valor, a relação de proporcionalidade deixa de ser definida (embora o corpo volte ao seu comprimento inicial após remoção da respectiva força). Se essa força continuar a aumentar, o corpo perde a sua elasticidade e a deformação passa a ser permanente (inelástico), chegando à ruptura do material.
 O instrumento que usa a lei de Hooke para medir forças é o dinamômetro.
 Molas "escalares" gerais	
 A lei de mola de Hooke geralmente se aplica a qualquer objeto elástico, de complexidade arbitrária, desde que a deformação e s tensão possam ser expressos por um único número que pode ser positivo e negativo.
 Por exemplo, quando um bloco de borracha ligado a duas placas paralelas é deformado por Cisalhamento simples , em vez de alongamento ou compressão, a força de corte F e o deslocamento lateral das placas X obedecem à lei de Hooke (para deformações suficientemente pequenas).
 A lei de Hooke também se aplica quando uma barra de aço reta ou um feixe de concreto, suportado em ambas as extremidades, é curvado por um peso F colocado em algum ponto intermediário. O deslocamento X neste caso é o desvio do feixe, medido na direção transversal, em relação à sua forma não descarregada.
 A lei também se aplica quando um fio de aço esticado é torcido, puxando uma alavanca unida a uma extremidade. Neste caso, F pode ser tomado como força aplicada à alavanca e X como a distância percorrida ao longo do seu caminho circular. Ou, de forma equivalente, pode-se deixar F o torque aplicado pela alavanca até a extremidade do fio e X ser o ângulo pelo qual essa extremidade gira. Em ambos os casos F é proporcional a X (embora a constante k seja diferente em cada caso).
Formulação vetorial 
 No caso de uma mola helicoidal esticada ou comprimida ao longo de seu eixo , a força aplicada (ou de restauração) e o alongamento ou compressão resultante têm a mesma direção (que é a direção desse eixo). Portanto, se F e X são definidos como vetores , a equação de Hooke ainda mantém e diz que o vetor de força é o vetor de alongamento multiplicado por um escalar fixo.
Força geral do tensor
 Alguns corpos elásticos se deformarão em uma direção quando submetidos a uma força com uma direção diferente. Um exemplo é um feixe de madeira horizontal com uma seção transversal quadrada não quadrada que é dobrada por uma carga transversal que não é nem vertical nem horizontal. Nesses casos, a magnitude do deslocamento X será proporcional à magnitude da força F , desde que a direção do último permaneça a mesma (e seu valor não é muito grande); Então a versão escalar da lei Hooke F = kX será realizada. No entanto, os vetores de força e deslocamento não serão múltiplos escalares uns dos outros, pois eles têm diferentes direções. Além disso, a relação k entre suas magnitudes dependerá da direção do vetor F.
 No entanto, em tais casos, muitas vezes existe uma relação linear fixa entre a força e os vetores de deformação, desde que sejam suficientemente pequenos. Ou seja, há uma função κ de vetores para vetores, de modo que 
 para qualquer número real Α , β e quaisquer vetores de deslocamento X 1 , X 2 . Essa função é chamada de tensor (de segunda ordem).
 Com respeito a um Sistema de coordenadas cartesiano arbitrário, os vetores de força e deslocamento podem ser representados por matrizes de 3 × 1 de números reais. Então o tensor κ conectando-os pode ser representado poruma matriz 3 × 3 κ de coeficientes reais, que, quando multiplicada pelo vetor de deslocamento, dá o vetor de força.
 Isso é,
 Para i = 1, 2, 3 . Portanto, a lei de Hooke F = κX pode ser dita também quando X e F são vetores com direções variáveis, exceto que a rigidez do objeto é um tensor κ , em vez de um único número real k .
Leis análogas 
 Uma vez que a lei de Hooke é uma proporcionalidade simples entre duas quantidades, suas fórmulas e conseqüências são matematicamente semelhantes às de muitas outras leis físicas, como aquelas que descrevem o movimento de fluidos ou a polarização de um dielétrico por um campo elétrico .
 Em particular, a equação do tensor σ = cε relacionando as deformações elásticas com as tensões é inteiramente semelhante à equação τ = με̇ relacionando o tensor de tensão viscosa τ e o tensor da taxa de deformação ε̇ nos fluxos de fluidos viscosos , embora o primeiro pertença a tensões estáticas (relacionadas à quantidade de deformação), enquanto o último refere-se a tensões dinâmicas (relacionadas à taxa de deformação).
Unidades de medida
 Nas unidades SI , os deslocamentos são medidos em metros (m) e força em newtons (N ou kg · m / s 2 ). Portanto, a constante de mola k , e cada elemento do tensor κ , é medida em newtons por metro (N / m), ou quilogramas por segundo ao quadrado (kg / s 2 ).
 Para meios contínuos, cada elemento do tensor de tensão σ é uma força dividida por uma área; É medido em unidades de pressão, ou seja, pascals (Pa, ou N / m2 , ou kg / (m.s 2 ). Os elementos do tensor de deformação ε são sem dimensões (deslocamentos divididos por distâncias). Portanto, as entradas De c  também são expressas em unidades de pressão.
5. CONCLUSÃO
 
 Os dados do experimento nos levaram a resultados com poucas diferenças entre o teórico e o prático. As margens de erros encontradas foram variadas e estas devem-se a fatores que podem ter comprometido a exatidão dos resultados da experiência como:
 A percepção visual no momento de acertar os ângulos da mesa, devido ao efeito determinado como Paralaxe. 
A habilidade psicomotora de cada integrante do grupo para forçar o dinamômetro.
O iniciar e parar do cronômetro.
 Por fim, os gráficos mostraram o trabalho executado pela mola, independentemente do pesos e, com isso, percebemos a relação peso x tempo aplicado para cada um, comparado com o resultado das forças. Por fim, conseguimos obter os resultados esperados nos objetivos, determinamos a constante elástica da mola helicoidal através do método estático; a constante elástica através do método dinâmico; linearizarmos as equações trabalhadas e representarmos graficamente os dados experimentais utilizando regressão linear para a determinação da grandeza estudada.
6. BIBLIOGRAFIA
https://pt.wikipedia.org/wiki/Lei_de_Hooke
https://pt.khanacademy.org/science/physics
http://www.sofisica.com.br
Wolfgang Bauer, Gary D. Westfall, Helio Dias, Física para Universitários - Mecânica, McGraw Hill Brasil, 2012
http://www.academia.edu

Outros materiais