Buscar

EX.05 MECANICA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
35
5. EQUILÍBRIO DOS CORPOS RÍGIDOS
Este material deve ser complementado com a leitura do capítulo 5 (HIBBELER) e do
capítulo 4 (BEER & JOHNSTON).
5.1 CONDIÇÃO DE EQUILÍBRIO DE UM CORPO RÍGIDO
Um corpo rígido está em equilíbrio quando as forças externas que atuam sobre ele
possam ser reduzidas a um sistema equivalente com força resultante nula e momento
resultante nulo. É importante ressaltar que o ponto em relação ao qual é feita a redução pode
ser qualquer ponto pertencente ao corpo ou não. Esta condição está representada na Fig. (5.1)
e na equação (5.1).
Figura 5.1 – Condição de equilíbrio de um corpo rígido.
∑∑ ==== 0MM0FR oRo , (5.1)
A demonstração deste resultado é apresentada de forma completa na 3a área da disciplina
considerando-se o problema dinâmico. É importante ressaltar que a condição representada
pela equação (5.1) é válida para um corpo em equilíbrio ou para um corpo em movimento
retilíneo uniforme. A equação (5.1) escrita em forma escalar é representada pelo conjunto de
equações (5.2), que são as Equações de Equilíbrio da Estática.
0,0,0
0,0,0
===
===
∑∑∑
∑∑∑
zyx
zyx
MMM
FFF
(5.2)
No caso plano, as forças estão definidas apenas no plano XY e os momentos estão definidos
no eixo Z. Logo, as equações de equilíbrio indicadas em (5.2) ficam reduzidas a três equações
conforme indicado em (5.3). Estas três equações permitem resolver problemas com no
máximo 3 incógnitas.
0
0
0
=
=
=
∑
∑
∑
z
y
x
M
F
F
(5.3)
=
F1
r1
F4
F3
F2
r4
r3
r2O
R= 0
Mo = 0
O
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
36
5.2 VÍNCULOS E REAÇÕES
A função dos vínculos é a de restringir um ou mais movimentos de corpo rígido de um
corpo. Para cada movimento restrito irá corresponder uma reação.
Movimento de corpo rígido. São os movimentos que um corpo pode realizar sem
alterar as suas dimensões próprias ou seja sem que este sofra deformações.
Grau de liberdade. Representa uma possibilidade de movimento de corpo rígido de
um corpo. No espaço um corpo rígido tem seis graus de liberdade que são três translações; ux,
uy e uz; e três rotações; Rx, Ry e Rz . Já no plano um corpo rígido tem três graus de liberdade
que são duas translações; ux e uy; e a rotação Rz . A Fig. (5.2) ilustra os graus de liberdade no
plano e no espaço.
Figura 5.2 – Representação dos graus de liberdade no plano e no espaço.
Para que um sólido esteja em equilíbrio é necessário que a sua vinculação elimine
todas as possibilidades de movimento de corpo rígido.
Do ponto de vista teórico os vínculos são sempre completos ou seja se um vínculo
impede o movimento, por exemplo, na direção vertical, então este movimento deve ser
impedido nos dois sentidos ou seja para baixo e para cima. Considerando o caso de uma
cadeira comum, sabe-se que as patas dela impedem o movimento vertical para baixo. Para que
as patas fossem realmente um vínculo completo, a cadeira deveria ser aparafusada no chão de
modo a impedir o movimento vertical para cima e para baixo. Neste sentido, deve-se tomar o
cuidado de projetar os vínculos com as características que se verificam necessárias durante o
cálculo.
Do ponto de vista teórico os vínculos são perfeitos ou seja ou o vínculo impede
totalmente o movimento numa dada direção ou este movimento é livre. Não há vinculação
parcial.
5.3 TIPOS DE VÍNCULOS PARA O CASO PLANO
Vínculos de 1ª classe. A reação deste tipo de vínculo é equivalente a uma força com
linha de ação conhecida. Neste caso, há apenas uma incógnita. Os tipos de ligações que ficam
nesta categoria são: cabo, haste curta (sem peso), rolete, rolete ou pino confinado em guia sem
atrito, balancim, superfície de contato sem atrito. A seguir apresenta-se um esquema de cada
um destes tipos de ligação.
X
Y
Z
ux
uZ
uY RY
RX
RZ
X
Y
ux
uY
Z
RZ
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
37
θ θ
F
θ
F
θ
θ
θ
θF
Cabo
A reação é uma força de tração que
tem a direção do cabo no sentido
de puxar o elemento ao qual
ele está ligado.
Haste curta (sem peso)
A reação é uma força que tem a
direção da haste.
Rolete (apoio simples)
A reação é uma força que atua perpendicularmente à
superfície no ponto de contato.
Rolete confinado numa guia sem atrito.
A reação é uma força que atua perpendicu-
larmente à guia.
Balancim
A reação é uma força que atua perpendicularmente à
superfície no ponto de contato.
θ
θF
θF
θF
ou
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
38
θ
θ
θ
Superfície de contato sem atrito.
A reação é uma força que atua perpendicularmente à superfície no
ponto de contato.
Elemento rotulado conectado a um
colar deslizante sobre uma barra sem atrito
A reação é uma força que atua perpendicular-
mente à barra.
O vínculo de primeira classe de uso mais comum é o apoio simples, que corresponde ao caso
do rolete, e a sua representação mais usual é dada pelo esquema abaixo. É importante salientar
que a direção da reação é indicada pelo triângulo.
Vínculos de 2ª Classe. A reação deste tipo de vínculo é equivalente a uma força com
linha de ação desconhecida, o que é equivalente a uma força representada por duas
componentes. Os casos mais comuns deste tipo de vínculo são o apoio duplo (também
chamado rótula ou articulação), superfície de contato com atrito e elemento solidário a um
colar deslizante sobre uma barra sem atrito. A seguir apresenta-se um esquema de cada um
destes tipos de ligação.
Apoio duplo (pino sem atrito)
As reações são duas componentes de forças ou o módulo e a direção φ da resultante das
θF
θ
F
θ
Fx
Fy
θF
φ
F F
ou
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
39
θ
forças. Os ângulos φ e θ não são necessariamente iguais a menos que a barra seja bi-
articulada. A representação simplificada deste tipo de vínculo está apresentada no esquema
abaixo.
FxFy
Superfície de contato com atrito.
A reação é composta por uma força N que atua
perpendicularmente à superfície no ponto de contato (força
normal) e por uma força de atrito que atua paralelamente à
superfície no ponto de contato e com sentido definido de
modo a impedir o deslizamento da barra.
Elemento solidário a um colar deslizante sobre uma
barra sem atrito.
As reações são equivalentes a uma
força e um momento que atuam
perpendicularmente à barra.
Vínculo de 3ª classe. A reação deste tipo de vínculo é equivalente a duas componentes de
força e um momento. O exemplo típico deste tipo de vínculo é o engaste.
Fx
Fy
M
F
M
θN
F
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
40
5.4 UMA CLASSIFICAÇÃO SIMPLIFICADA DE ESTRUTURAS
As estruturas podem ser classificadas em função do número de reações externas.
Estruturas cujas reações podem ser calculadas com as equações de equilíbrio são ditas
Isostáticas. A Fig. (5.3) apresenta um exemplo deste tipo de estrutura.
Figura 5.3 – Estrutura Isostática.
Estruturas cujas reações não podem ser calculadas apenas com as equações de
equilíbrio são ditas Hiperestáticas. A Fig.(5.4) ilustra uma estrutura hiperestática. Neste tipo
de problema o número de incógnitas é maior que o número de equações. Nota-se que as
reações VA e VB são obtidas aplicando-se as equações 0=∑ yF e 0=∑ AM . A terceira
equação, 0=∑ xF , resulta em BA HH = . As reações HA e HB são ditas reações
estaticamente indeterminadas. Para obtermos mais uma equação, para resolver o problema,
faz-se necessário considerar a forma como a estrutura se deforma, o que é assunto para as
próximas disciplinas.
Figura 5.4 – Estrutura Hiperestática.
Estruturas cujo númerode reações for inferior ao número de equações são ditas
Hipoestáticas. Na realidade, pode-se ter um número de reações superior ao número de
equações, desde que os vínculos estejam dispostos de modo não eficaz. A estrutura ilustrada
na Fig. (5.5) tem duas reações e 3 equações.
Figura 5.5 – Estrutura Hipoestática.
A BHA
VA VB
P3P2P1
AHA
VA
P3P2P1
B HB
VB
B
VB
P3P2P1
A
VA
3 incógnitas: HA, VA e VB
3 equações: 0=∑ xF , 0=∑ yF
 0=∑ AM
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
41
A BHA
VA VB
P
a b
Nesta estrutura o movimento de corpo rígido na direção X é livre. É interessante
observar que a colocação de mais apoios simples, como os do ponto A ou B, não muda a
condição de hipoestaticidade do problema, embora aumente o número de reações. Este seria
um exemplo típico de vínculos aplicados de modo não eficaz.
Do ponto de vista estrutural a hipoestacidade não é desejável, no entanto em corpos
que funcionam como mecanismo a hipoestacidade é necessária. A Fig. (5.6) ilustra o
mecanismo básico de uma balança mecânica. Neste caso, o giro livre em torno do ponto A é
necessário para o funcionamento da balança. Quando a balança está equilibrada (estrutura
auto-equilibrada), o peso padrão é igual ao peso do objeto que se deseja pesar.
Figura 5.6 – Balança mecânica.
A Fig. (5.7) ilustra um mecanismo formado por duas rodas e umas correia. Para que
estas rodas possam transmitir movimento de uma para a outra é necessário que a rotação de
ambas as rodas com em relação ao centro, de cada uma delas, esteja livre.
Figura 5.7 – Mecanismo formado por duas rodas e correia.
Exemplo 1. Calcule as reações dos vínculos A e B.
Solução: Aplica-se diretamente as equações de equilíbrio.
00 =→=∑ AX HF (1)
PVVF BAY =+→=∑ 0 (2)
( ) 00 =−+→=∑ PabaVM BA
ba
PaVB
+
= (3)
Substituindo-se (2) em (3) obtém-se
A
Ay
Ax
P1
P2
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
42
A BHA
VA VB
M
a b
400 N
200 N
300 N
A
B
C
2m
1m
1m 1m
HA
VA MA
ba
PbVA
+
=
Caso a carga P fosse aplicada no centro da viga ou seja a = b, as reações VA e VB seriam iguais a P/2.
Este resultado pode ser obtido diretamente através da simetria do problema.
Caso a carga P fosse aplicada sobre um dos apoios verifica-se que esta carga é totalmente absorvida por
este apoio ou seja se a carga é aplicada no apoio A tem-se VA = P e VB = 0.
Exemplo 2. Calcule as reações dos vínculos A e B.
Solução: Aplica-se diretamente as equações de
equilíbrio.
00 =→=∑ AX HF (1)
BAY VVF =→=∑ 0 (2)
( ) 00 =++−→=∑ MbaVM BA
ba
MVB
+
= (3)
Substituindo-se (2) em (3) obtém-se 
ba
MVA
+
=
5.5 EXERCÍCIOS RESOLVIDOS
1) Determinar as reações no vínculo A da estrutura.
Solução: O vínculo representado no ponto A é um engaste
ou seja impede 3 movimentos: duas translações e uma
rotação. Logo, este vínculo deve ser representado por 3
reações: duas forças e um momento. A figura ao lado já
representa estas reações. Para resolver o problema basta
aplicar as equações de equilíbrio.
N 3000 =→=∑ AX HF (1)
N 6002004000 =+=→=∑ AY VF (2)
02002400130030 =⋅−⋅−⋅−→=∑ AA MM
Nm 1700=AM
2) Determinar as reações dos apoios da viga desprezando o peso próprio da mesma.
Solução: Substituir os vínculos por suas reações correspondentes e aplicar as equações de equilíbrio.
45cos6000 ⋅+→=∑ AX HF (1)
N 3,424−=AH
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
43
A BHA
VA VB
100 N600 N
2m 3m 2m
45°
VA
HA
RA
θ
A
B
HA
VA VB
100 N
200 N
300 N
0,8m 0,8m 1m
1,
5m
C
45sen6001000 ⋅+=+→=∑ BAY VVF
N 7,331N 6,1920100545sen600270 =→=→=⋅−⋅⋅−⋅→=∑ ABBA VVVM
O sinal negativo de HA indica que o sentido arbitrado para esta reação está errado. O sentido correto é o
contrário do arbitrado. Pode-se notar que o erro no sentido da força não afetou a solução do problema. Quando se
tem esta situação pode-se trabalhar de duas formas: manter o sinal negativo sabendo que ele indica o sentido
contrário ou trocar o sinal e o sentido arbitrado para a força.
Em algumas aplicações as reações do apoio duplo A devem ser representadas por uma única força.
Neste caso a solução fica
N 6,5387,3313,424 22 =+=AR
o01,38
3,424
7,331tan =→= θθ
Principalmente em concursos pode ser útil a confirmação da resposta
obtida. Para tal basta fazermos o somatório de momentos em relação a um outro ponto, diferente de A, igual a
zero. Escolhendo-se o ponto B e substituindo-se o valor correspondente a reação VA obtém-se
057,00100245sen60057,33170 ≈−→=⋅+⋅⋅+⋅−→=∑ BM
Quando a solução do problema é correta deve-se obter 0 = 0 ou uma situação próxima, como neste
exemplo, a isto em função de erros de arredondamento.
3) Determinar as reações dos vínculos da treliça.
Solução: Aplicar as equações de equilíbrio.
N 1000 =→=∑ AX HF
N 5000 =+→=∑ BAY VVF
AB VV −= 500
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
44
N 84,303N 15,19606,21005,130012008,10 =→=→=⋅−⋅−⋅+⋅→=∑ BAAB VVVM
Conforme mencionado no exercício anterior pode-se confirmar a solução do problema fazendo-se o
somatório dos momentos em relação a um outro ponto qualquer. Escolhendo-se o ponto C obtém-se
001,001005,130012008,115,1966,20 =→=⋅−⋅+⋅+⋅−→=∑ CM
Pelo resultado obtido verifica-se que a solução está correta.
5.6 EQUAÇÕES DE EQUILÍBRIO ALTERNATIVAS
Vimos que o equilíbrio de um corpo rígido no plano pode sempre ser representado
pelas equações de equilíbrio apresentadas em (5.4).
0
0
0
=
=
=
∑
∑
∑
O
y
x
M
F
F
(5.4)
No entanto este conjunto de equações pode levar, em alguns casos, a um sistema de equações
que deve ser resolvido. Logo, pode ser vantajoso adotarmos um conjunto de equações de
equilíbrio alternativo.
O primeiro conjunto de equações de equilíbrio alternativas está representado na
equação (5.5). A Fig. (5.8) ilustra o funcionamento destas equações de equilíbrio.
0
0
0
=
=
=
∑
∑
∑
B
A
a
M
M
F
(5.5)
Figura 5.8 – Ilustração do primeiro conjunto de equações de equilíbrio.
A equação 0=∑ AM indica que o sistema de forças deve ser reduzido ao ponto A, e que o
momento resultante em A, MRA, é nulo. A equação 0=∑ aF indica que a componente da
resultante paralela ao eixo a-a é nula. A Fig. (5.8b) indica a redução do sistema de forças para
F1
F4
F3
F2
A
R
MRA
=
A
a
a
R
R
=
A
a
a
R
B
a) b) c)
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
45
o ponto A, e a Fig. (5.8c) ilustra o resultado das duas primeiras equações de equilíbrio, que é a
componente da resultante ortogonal ao eixo a-a. Para anular-se esta componente iguala-se a
zero o somatório de momentos em relação a um ponto B, que deve ser escolhido de modo que
a reta AB não seja paralela a direção da componente da resultante que se deseja eliminar.
Porque o conjunto de equações (5.5) representa o equilíbrio de um corpo rígido?
Demonstração: A equação 0=∑ BM pode ser escrita como
aaB ABR
R
ABAB
kji
⋅−=










= ⊥
⊥
⊥
00
0M (5.6)
em que ⊥AB é a distância entre os pontos A e B medida na direção ortogonal ao eixo a-a e
aAB é a distância entre os pontos A e B medida na direção paralela ao eixo a-a. Pela equação
(5.6) observa-se que para MB = 0 tem-se que 0=⊥R , desde que se garanta 0≠aAB .
Portanto, para que o conjunto de equações (5.5) represente as condições de equilíbrio de um
corpo rígido é necessário que a reta AB não seja ortogonal ao eixo a-a.
O segundo conjunto de equações de equilíbrio alternativas está representado na
equação (5.7). A Fig. (5.9) ilustra o funcionamentodestas equações.
0
0
0
=
=
=
∑
∑
∑
C
B
A
M
M
M
(5.7)
Figura 5.9 – Ilustração do segundo conjunto de equações de equilíbrio.
F1
F4
F3
F2
A
R
MRA
=
A
=
A
a) b) c)
R
R
A
B
d)
R
C
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
46
A equação 0=∑ AM indica que o sistema de forças deve ser reduzido ao ponto A, e que o
momento resultante em A, MRA, é nulo. Este processo esta ilustrado nas figuras (5.9a) a
(5.9c). A equação 0=∑ BM exige para ser satisfeita que o ponto B pertença a reta suporte
da resultante R. Já a equação 0=∑ CM exige que a resultante seja nula, desde que o ponto
C não seja colinear com os pontos A e B.
Exemplo 3. Calcular as reações nos apoios para viga bi-apoiada ilustrada na figura
abaixo.
 (a) (b)
Figura 5.10 – Ilustração do exemplo 1.
Solução: Aplicando-se as equações tradicionais obtém-se
kN 
3
2
3
11010
kN 
3
101130
00
=−=→=−+→=
=→=⋅−⋅→=
=→=
∑
∑
∑
yyyy
yyA
xx
ABAF
BBM
BF
Aplicando-se as equações de equilíbrio alternativas obtém-se
kN 
3
202130
kN 
3
101130
00
=→=⋅+⋅−→=
=→=⋅−⋅→=
=→=
∑
∑
∑
yyB
yyA
xx
AAM
BBM
BF
O sistema de equações alternativas funciona porque a reta AB não é ortogonal ao eixo a-a (eixo X).
1m 2m
A B
1 kN
1m 2m
A
B
1 kN
By
Bx
Ay
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
47
Exemplo 4. Para a estrutura representada na figura abaixo calcular as reações nos
vínculos.
Solução: Aplicando-se as equações de equilíbrio usuais tem-se
100866,0030cos60cos2002000 −⋅=→=⋅−⋅−+→=∑ FAFAX RHRHF
FAFAY RVRVF ⋅−=→=⋅+⋅−−→=∑ 5,0205,673030sen60sen2005000
( ) ( )
( ) ( ) 030sen2430cos30cos2230sen
30cos1260sen20030sen1460cos200150042000
=⋅−⋅⋅+⋅+⋅⋅+
⋅+⋅⋅−⋅−⋅⋅+⋅−⋅−→=∑
FF
A
RR
M
N 324=FR , N 58,180=AH e N 2,511=AV
Aplicando-se um conjunto alternativo de equações a solução fica
100866,00 −⋅=→=∑ FAX RHF (1)
1502012001500420 +⋅=→=⋅−⋅+⋅⋅+⋅−→=∑ AAAAD HVHVM (2)
( ) ( ) ( ) 0120030cos2150030sen220030sen2430cos220 =⋅+⋅+⋅+⋅⋅−⋅−⋅+⋅+⋅−→=∑ AAF HVM
025,13663732,3 −=⋅+⋅− AA HV (3)
Substituindo-se (2) em (3) obtém-se
N 6,180025,136638,559464,7 =→−=⋅+−⋅− AAA HHH , N 2,511=AV e N 324=FR
Quando se trabalha com um conjunto alternativo de equações de equilíbrio deve-se ter em mente que
estas equações funcionam desde que se atendam algumas condições. Apresenta-se a seguir um conjunto de
equações de equilíbrio que não conduz a resposta do problema.
A
500 N
HA
VA
RF
200 N
200 NB C D
E
F
4m
1m 1m
1m
1m
30°
ENG 01156 – Mecânica - Aula 05
Prof Inácio Benvegnu Morsch - CEMACOM
48
FAFAY RVRVF ⋅−=→=⋅+⋅−−→=∑ 5,0205,673030sen60sen2005000 (1)
15020 +⋅=→=∑ AAD HVM (2)
( ) 0230sen30sen160cos20030cos1260sen200150040 =⋅⋅+⋅⋅⋅−⋅+⋅⋅−⋅−⋅→=∑ FAB RHM
4
41,1046 F
A
RH −= (3)
Substituindo-se (1) e (3) em (2) obtém-se
205,673205,673150
2
41,10465,0205,673 =→+−=⋅− FF
RR
o que indica que o conjunto de equações empregado é linearmente dependente. Isto ocorre porque a reta que une
os pontos B e D é horizontal sendo paralela a resultante RX.

Outros materiais