Buscar

Curso de Hidrologia

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 65 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 65 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 65 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

1-1
HIDROLOGIA GERAL
NNOTAS DE OTAS DE AAULAULA
Prof. Paulo Renato Barbosa
Universidade Federal do Rio de Janeiro
Escola Politécnica
Departamento de Recursos Hídricos e Meio
Ambiente
1-2
HHIDROLOGIAIDROLOGIA
BIBLIOGRAFIA:
1. Hidrologia (Ciência e Aplicação). Ed. ABRH/USP. Organizador: Carlos Eduardo Morecci Tucci.
2. Hidrologia Aplicada – Ed. McGraw Hill – Swami M. Villela & Arthur Mattos
3. Hidrologia Básica – Ed. Edgard Blücher Ltda. - Nelson de Souza Pinto.
INTRODUÇÃO
O MEIO AMBIENTE E OS RECURSOS NATURAIS
A água é um mineral líquido formado por dois átomos de hidrogênio e um de oxigênio (H2O). Devido à
sua capacidade de solubilização de gases e de erosão dos continentes, a água não se encontra pura na
natureza, e sim como uma dissolução aquosa de sais e matéria orgânica.
“O ser humano é constituído de aproximadamente 63% de água e necessita de aproximadamente 2 litros
de água por dia para sobreviver.
O APARECIMENTO DA “URBE”
Os primeiros grupos humanos sobre a Terra eram nômades e viviam da coleta. Como desenvolvimento
das tecnologias de caça, vestuário e abrigo, o número de indivíduos que atingia a idade adulta aumentava
e assim, a população. O modo de vida nômade não mais atendia às necessidades do grupo e foi
necessário estabelecer agrupamentos em áreas que fornecessem condições de vida, água abundante e
terras férteis, para agricultura e pecuária.
1-3
UM POUCO DE HISTÓRIA
Apesar de não possuírem o conhecimento teórico dos fenômenos hidráulicos, os povos antigos realizaram
notáveis obras de engenharia.
· 4000 AC ¾ Barragens no Rio Nilo;
· 3000 AC ¾ Canais de Irrigação na Mesopotâmia;
· 2000 AC ¾ Aquedutos e Canais (Roma, Grécia, China); Defesas contra enchentes.
A CRONOLOGIA DO DESENVOLVIMENTO DA TEORIA HIDROLÓGICA.
Século XV;
· Leonardo da Vinci ¾ explicou a salinidade dos mares pela ação das águas continentais que ao se
infiltrarem e escoarem carregavam os sais para os mares;
Século XVII;
· Abade Perrault ¾ mediu durante três anos a precipitação na bacia do Rio Sena. Medindo o
escoamento superficial e conhecendo a área de drenagem, demonstrou que a precipitação era suficiente
para suprir a vazão do rio;
· Mariotte ¾ mediu a velocidade da vazão do rio e com as medidas da seção transversal do rio
conseguiu medir a descarga do rio;
· Halley ¾ mediu a taxa de evaporação do mar Mediterrâneo e demonstrou que a quantidade evaporada
seria suficiente para garantir a vazão dos rios que desembocavam na região
1-4
Século XVIII;
· Bernoulli ¾ piezômetro
· Pitot ¾ tubo de Pitot
· Chézy ¾ fórmula ( iRCV H= )
Século XIX;
· Hidrologia Experimental; A experiência da Califórnia.
Século XX;
· 1a metade: Hidrologia Experimental Teórica (EUA); foram construídos canais, barragens, sistema de
irrgação e proteção contra enchentes.
· 2a metade: Hidrologia Estocástica; o acesso mais fácil aos computadores digitais permitiam o
desenvolvimento de vários métodos estatísticos de manipulação de dados temporais.
1-5
O AQUECIMENTO DESIGUAL DA SUPERFÍCIE DA TERRA
 O SOL A TERRA
Ao transladar ao redor do Sol com órbita eliptíca a Terra se aproxima (periélio) e se afasta (afélio) do Sol.
Sua trajetória de translação atravessa o plano de translação do Sol (ecliptica), formado por seu
deslocamento no espaço em direção a estrela Vega, da constelação da Lira.
Este plano forma com um plano imaginário passando pelo Equador da Terra um ângulo ora mais, ora
menos 23o 27’, conforme a posição da Terra em seu próprio movimento de translação.
São assim definidos quatro pontos notáveis em sua órbita de translação. Esses pontos são dois solstícios
e dois equinócios, pontos que definem o início e o fim das estações do ano.
1-6
¨ Equinócio de outono no hemisfério sul. A linha que separa a zona iluminada da escura passa
exatamente pelos pólos. O dia e a noite duram 12 horas em toda a Terra. Ocorre a 21 de março.
¨ Solstício de inverno no hemisfério sul (21 de junho). Neste caso, onde é inverno, temos a noite mais
longa do ano.
¨ Equinócio de primavera no hemisfério sul, ocorre em 23 de setembro.
¨ Solstício de verão no hemisfério sul (21 de dezembro). Neste caso, temos a noite mais curta do ano.
Em seu movimento de rotação ao redor de seu eixo (reta imaginária que atravessa os pólos), no sentido de
oeste para leste, a Terra oferece sempre apenas um hemisfério à radiação eletromagnética do Sol.
A forma "quasi" esférica da Terra, a inclinação do seu eixo de rotação em relação eclíptica e a órbita
descrita pelo seu movimento de translação ao redor do Sol, são os principais responsáveis pelas
diferenças de temperatura entre o equador e os pólos, pela existência das quatro estações do ano e
consequentemente pela existência de variados climas na superfície do globo terrestre.
¨ Afélio – ponto de máximo afastamento da órbita da Terra em seu movimento de translação ao redor
do Sol.
¨ Periélio – ponto de menor afastamento da órbita da Terra em seu movimento de translação ao redor do
Sol.
Além dessas variações ao longo do ano na recepção de radiação eletromagnética do Sol, devido à
distância e ponto de incidência, a radiação solar atravessa a atmosfera e pode encontrar, ao chegar na
superfície, oceano ou solo. No solo, a topografia do planeta está longe de ser homogênea e os tipos de
solo da superfície são muito diferentes.
Enfim, toda essa variedade faz com que a capacidade de retenção e reflexão de radiação, dos diferentes
pontos da superfície do planeta seja extremamente variável. Essa variabilidade leva à temperaturas
também extremamente variáveis.
1-7
ALGUNS TIPOS DE SUPERFÍCIE DA TERRA
OCEANOS FLORESTAS
DESERTOS SAVANAS
TUNDRA MONTANHAS
Essas diferentes temperaturas, que variam ao longo do dia, provocam diferentes pressões e daí, resulta o
vento. É o vento, que aliado à evaporação provocada pela temperatura, que faz circular o vapor d’água
pela atmosfera.
1-8
A UMIDADE
Evaporação – É quando moléculas de vapor de água vão para o ar aumentando a umidade do ar. O
aumento da temperatura aumenta a entropia e, conseqüentemente, o número de choques entre as
partículas. Assim, as moléculas trocam mais quantidade de movimento e, eventualmente, uma molécula
supera a película formada pela tensão superficial e é lançada na atmosfera.
Atmos – vapor.
Sfera – esfera.
CAMADAS DA ATMOSFERA
A atmosfera é constituída de cinco camadas: troposfera, estratosfera, mesosfera, termosfera e exosfera.
O ar se torna mais rarefeito quanto mais a gente sobe, e é por isso que os alpinistas normalmente levam
oxigênio com eles quando escalam altas montanhas. A troposfera é a única camada em que os seres vivos
podem respirar normalmente.
Troposfera - As condições climáticas acontecem na camada inferior da atmosfera, chamada troposfera.
Essa camada se estende até 20 km do solo, no equador, e a aproximadamente 10 km nos pólos.
Estratosfera - A estratosfera chega a 50 km do solo. A temperatura vai de 60ºC negativos na base ao
ponte de congelamento na parte de cima. A estratosfera contém ozônio, um gás que absorve os
prejudiciais raios ultravioleta do Sol. Hoje, a poluição está ocasionando "buracos" na camada de ozônio.
Mesosfera - O topo da mesosfera fica a 80 km do solo. É muito fria, com temperaturas abaixo de 100ºC
negativos. A parte inferior é mais quente porque absorve calor da estratosfera.
Termosfera - O topo da termosfera fica a cerca de 450 km acima da Terra. É a camada mais quente, uma
vez que as raras moléculas de ar absorvem a radiação do Sol. As temperaturas no topo chegam a 2.000ºC.
Exosfera - A camada superior da atmosfera fica a mais ou menos 900 km acima da Terra. O ar é muito
rarefeito e as moléculas de gás "escapam" constantemente para o espaço. Por issoé chamada de exosfera
(parte externa da atmosfera).
Ar
Mar
1-9
De uma forma geral, os desertos e a “Rain Forests” existem, não por causa das diferenças de temperatura,
e sim pela existência, ou não, de umidade na troposfera (camada da atmosfera mais próxima do solo).
Na troposfera, o gradiente de pressão é hidrostático (quanto maior a altura, menor a pressão).
A DISTRIBUIÇÃO DA UMIDADE NA TERRA.
CIRCULAÇÃO ATMOSFÉRICA
Rotação da Terra: Aceleração de Coriolis.
Esta aceleração provoca padrões de circulação de ar na atmosfera. Esses ventos transportam umidade. A
quantidade de precipitação depende da altitude, localização, vegetação e relevo. (Ex.: Monções da Índia,
El Niño)
Durante a época das grandes navegações os portugueses, com o uso da bússola e do astrolábio eram
capazes de identificar a latitude do ponto onde estavam, mas a dificuldade para estabelecer a longitude era
enorme. Assim, começaram a reunir informações generalizadas sobre os locais onde navegavam. Essas
informações incluíam a direção dos ventos e das correntes marítimas, a cor e a salinidade do mar, a
presença de aves, algas e quaisquer outras coisas que pudessem caracterizar um local.
Esse volume de informação levou à confecção dos altamente valiosos mapas sinóticos figurativos
chamados de “portulanos” que davam aos capitães das naus portuguesas uma grande vantagem
competitiva em relação aos seus adversários ingleses, holandeses, espanhóis e franceses. Os portugueses
haviam descoberto que existe um padrão de circulação global na atmosfera terrestre.
1-10
UMIDADE ABSOLUTA
Definição: Quantidade de vapor d’água existente por unidade de volume na atmosfera.
UMIDADE RELATIVA
Definição: É a razão entre a umidade existente no ar e a quantidade de vapor d’água necessário para
saturá-lo.
PONTO DE ORVALHO
Definição: É a temperatura na qual ocorre a saturação de uma massa de ar quando ela é resfriada sem
adição ou remoção de vapor d’água..
NÚCLEOS HIGROSCÓPICOS
Definição: Partículas, também chamadas de núcleos de condensação, de dimensões microcópicas, em
suspensão na atmosfera que agregam umidade. Pólen, sais, poeira, microorganismos, maresia, nuvens são
reservatórios de umidade. São fundamentais para formação de nuvens.
UMIDADE RELATIVA DO AR MÉDIA NO BRASIL
1-11
FORMAÇÃO DE NUVENS.
A nuvem é o resultado da condensação do vapor d’água existente na atmosfera. Os núcleos higroscópicos,
ou de condensação, atraem as moléculas de vapor d’água condensadas e dispersas no ar, agrupando-as à
sua volta até constituir uma diminuta gota. O mesmo processo, multiplicado milhões de vezes, origina as
massas de umidade concentrada que chamamos de nuvens.
São núcleos higroscópicos, partículas de argila, pólen, matéria orgânica, sais marinhos, cristais de gelo
etc.
TIPOS DE NUVENS:
STRATUS CUMULUS-NIMBUS
CIRRUS
2-1
TIPOS DE PRECIPITAÇÕES
As precipitações podem ser convectivas, orográficas e ciclônicas/frontais.
CONVECTIVAS
Definição : O aquecimento desigual da superfície do solo provoca a elevação da massa de ar sobre essas
regiões. Ao subirem, se resfriam e precipitam (chuva violenta, de curta duração e de grande intensidade,
sobre área pequena).
OROGRÁFICA
Definição: Ventos quentes e úmidos que sopram na direção da terra, vindos do mar, são elevados ao
encontrarem obstáculos (montanhas). Ao subirem, resfriam e precipitam (chuva fraca, de média duração e
de pequena intensidade, sobre extensa área).
SISTEMAS FRONTAIS OU CICLÔNICOS (FRENTES)
Definição: Grandes massas de ar homogêneas adquirem a temperatura da região em que se formam.
Frontais frias têm sua origem nos pólos e as frontais quentes têm suas origens no Equador. Alguma
instabilidade provoca o deslocamento da massa de ar. A interface dos sistemas têm o nome de “frente”.
Uma frente pode ter até 3000 km. de comprimento. Provoca chuvas de grande duração e média
intensidade sobre grandes áreas.
FRENTE FRIA FRENTE QUENTE
2-2
FORMAS DE PRECIPITAÇÃO:
Chuva Gotas acima de 3 mm de diâmetro
Chuvisco Gotas inferiores a 3 mm
Neve Sólida, na forma de cristais, em flocos
Saraiva (slit) Pequenas pedras de gelo
Granizo Pedras de gelo, formadas quando as gotas de chuva atravessam camadas de ar muito
frias
Orvalho(T>0o)
Geada(T<0o)
São fenômenos semelhantes formados respectivamente pela condensação e pela
sublimação do vapor nas superfícies durante as noites frias.
Nevoeiro (russo) Gotículas de vapor d’água em suspensão na atmosfera
CHUVA CHUVISCO
NEVOEIRO NEVE
2-3
GRANIZO SARAIVA
ORVALHO GEADA
2-4
OCORRÊNCIA DE ÁGUA NA TERRA:
Ocorrência de Água na Terra: Quantidade (x 1014)
Água quimicamente contida nas rochas (não circulante) 250.000,000
Oceanos 13.200,000
Calotas polares e geleiras 292,000
Água subterrânea 84,000
Lagos doces 1,300
Lagos salgados, mares 1,000
Umidade do Solo 0,900
Vapor d’água na atmosfera 0,130
Cursos d’água 0,013
Água livre circulante 13578,800
Observa-se no quadro acima que, de toda a água existente no planeta, somente 2,7% é água doce. E que
desta, cerca de 98% é água subterrânea.
Da água que se precipita sobre as áreas continentais, estima-se que de 60% a 70% se infiltra. Assim, a
parcela que escoa para os riachos e rios é de cerca de 40% a 30%. É esta água que se infiltra que mantém
os rios fluindo, mesmo quando acontece longos períodos de estiagem.
3-1
HIDROLOGIA
DEFINIÇÃO (United States Federal Council for Science and Technology):
“É a ciência que trata da água na Terra, sua ocorrência, circulação e distribuição, suas propriedades físicas
e químicas, e suas reações com o meio ambiente, incluindo suas relações com a vida”.
DEFINIÇÃO (Associação Brasileira de Recursos Hídricos): É o ramo da Geografia Física que trata das
águas terrestres (rios, riachos, lagos, lençóis subterrâneos etc), sua distribuição, propriedades, fenômenos
e leis naturais. Estuda as leis de ocorrência e distribuição das águas na superfície do solo, na atmosfera
terrestre, nos estratos geológicos, bem como suas relações com problemas de engenharia sanitária,
irrigação, hidroeletricidade, regularização das ondas de cheia e águas de navegação, drenagem, proteção
do solo contra erosão etc. Sendo, portanto, uma ciência de grande importância econômica e social.
USOS MÚLTIPLOS DOS RECURSOS HÍDRICOS :
- Abastecimento público;
- Consumo industrial;
- Irrigação;
- Recreação;
- Geração da energia elétrica;
- Navegação;
- Depuração (capacidade que possuem os corpos d’água de receberem matéria orgânica);
- Preservação da Flora e a Fauna.
Os registros históricos medidos dos dados hidrometeorológicos na Hidrologia são quase sempre
“errados”, pois estas medidas são pontuais, mas representam as informações hidrológicas de uma grande
área. Os instrumentos de medição também são imprecisos.
O CICLO HIDROLÓGICO
Def.: O Ciclo Hidrológico é um fenômeno global de circulação fechada da água entre a superfície
terrestre e a atmosfera, impulsionado, fundamentalmente, pela energia solar associada à gravidade e a
rotação da Terra.
O intercâmbio entre as circulações da superfície terrestre e da atmosfera, fechando o ciclo hidrológico,
ocorre em dois sentidos:
3-2
a) no sentido SUPERFÍCIE ®® ATMOSFERA, onde o fluxo de água ocorre fundamentalmente na forma de
vapor, como decorrência dos fenômenos de evaporação e transpiração.
b) No sentido ATMOSFERA ®® SUPERFÍCIE, onde a transferência de água ocorre em qualquer estado
físico, sendo mais significativas, em termos mundiais, as precipitações de chuva e neve.
“O Ciclo Hidrológico só é fechado em nível global”.
REPRESENTAÇÃO FIGURATIVA DO CICLO HIDROLÓGICO.
DESCRIÇÃO GERAL DO CICLO HIDROLÓGICO
PRECIPITAÇÃO
¨ Ocorre quando complexos fenômenos de aglutinação e crescimento das microgotículas, formamuma
grande quantidade de gotas com tamanho e peso suficientes para que a força da gravidade supere a
turbulência normal ou movimentos ascendentes do meio atmosférico.
INTERCEPTAÇÃO
¨ Parte do volume precipitado que está caindo sobre um solo com cobertura vegetal, sofre interceptação
em folhas e caules, de onde se evapora. Excedendo a capacidade de armazenamento na superfície dos
vegetais, começa o que se chama de gotejamento.
INFILTRAÇÃO
¨ Como o solo é um meio poroso, há infiltração de toda precipitação que chega ao solo, até que o filme
superficial de solo esteja saturado, quando então a taxa de infiltração se torna constante e a infiltração
se faz em regime permanente de escoamento. A infiltração e a percolação no interior do solo são
regidas pelas tensões capilares nos poros e pela gravidade.
ESCOAMENTO SUPERFICIAL
¨ A água ao chegar à superfície do solo é impulsionada pela gravidade para cotas mais baixas, vencendo
principalmente o atrito com a superfície do solo. Manifesta-se inicialmente na forma de pequenos
filetes que se moldam ao micro-relevo do solo. A erosão de partículas de solo pelos filetes em seus
trajetos, aliada à topografia preexistente, molda uma micro-rede de drenagem efêmera que converge
para a rede de cursos d’água mais estável, formada por arroios e rios. A presença de vegetação na
3-3
superfície do solo contribui para o aumento da infiltração, quando se opõe ao escoamento superficial.
A vegetação também reduz a energia cinética de impacto das gotas de chuva no solo (“splash”),
minimizando a erosão. Com raras exceções, a água escoada pela rede de drenagem mais estável
destina-se aos oceanos.
REPRESENTAÇÃO ESQUEMÁTICA DO CICLO HIDROLÓGICO
3-4
TEORIA DOS RESERVATÓRIOS LINEARES, DOODGE (1950).
A abordagem que considera as diferentes fases do Ciclo Hidrológico como reservatórios lineares, com
capacidade e contribuição definidos, permitiu o desenvolvimento de Modelos Matemáticos para a
Simulação dos processos do Ciclo Hidrológico. Esses modelos, quando bem calibrado, permitem que o
hidrólogo possa fazer inferências sobre a resposta hidrológica de uma Bacia Hidrografica à interferências
antrópicas. São, portanto, ferrramentas inestimáveis nos projetos de Recursos Hídricos.
REPRESENTAÇÃO DO CICLO HIDROLÓGICO POR RESERVATÓRIOS LINEARES
O BALANÇO HÍDRICO (A EQUAÇÃO DA CONTINUIDADE).
PPrecip.recip. = I = Intercep.ntercep. + E + Evap.vap. + I + Infilt.nfilt. + E + Esc.Supfsc.Supf. + Q . + Q subtsubt. + Q . + Q RioRio
4-1
A BACIA HIDROGRÁFICA
Def.: A Bacia Hidrográfica é uma área definida topograficamente, drenada por um curso d’água ou um
sistema conectado de cursos d’água tal que toda vazão efluente é descarregada através de uma simples
saída, o EXUTÓRIO. O DIVISOR TOPOGRÁFICO só cruza o rio em um ponto.
OS DIVISORES D’ÁGUA ¾¾ PLANTA TOPOGRÁFICA
4-2
OS DIVISORES D’ÁGUA
O DIVISOR TOPOGRÁFICO
A bacia hidrográfica é necessariamente contornada por um divisor d’água, assim chamado por ser a linha
de separação que divide as precipitações que caem em bacias vizinhas e que encaminha o escoamento
superficial resultante para um outro sistema fluvial. O divisor segue uma linha rígida unindo os pontos
de cota máxima entre bacias, o que não impede que no interior de uma bacia possam existir picos isolados
com cota superior a qualquer ponto do divisor (A linha cheia na figura acima). O DIVISOR TOPOGRÁFICO
só cruza o rio em um ponto.
O DIVISOR FREÁTICO
O divisor freático (hidrogeológico) é, em geral, determinado pela estrutura geológica dos terrenos e,
estabelece os limites dos reservatórios de água subterrânea de onde é derivado o deflúvio básico da bacia
(A linha tracejada na figura acima).
“As áreas demarcadas por esses divisores dificilmente coincidem exatamente”.
4-3
A TERMINOLOGIA DA SEÇÃO TRANSVERSAL
ME ¾ Margem esquerda MD ¾ Margem direita
Calha ou Leito Menor: é a escavação produzida pela corrente líquida, dentro de cujos limites ela escoa
quando não há transbordamento.
Calha ou Leito Maior: é a região marginal que contém o transbordamento das cheias até as elevações
longitudinais naturais mais próximas. É a planície de inundação, ou várzea do rio.
“As calhas caracterizam grandezas hidráulicas, como a área molhada, o perímetro molhado e o raio hidráulico, comuns a
qualquer seção de escoamento e importantes para a definição e o cálculo da vazão”.
Margem: é definida no ponto onde o rio passa de sua calha menor para sua calha maior (onde está a mata
ciliar, planície de inundação).
Batente: são os pontos de contato da superfície da água com o perímetro molhado. Os batentes variam
de acordo com as oscilações do nível d’água.
Largura Superficial: é a distância horizontal entre dois batentes.
Talvegue – É o lugar geométrico dos pontos de menor cota de uma região.
Profundidade : é a distância vertical entre a superfície da água e o fundo da calha em um ponto qualquer
da seção. Profundidade Máxima é a que corresponde ao talvegue. Profundidade Média é um
parâmetro de cálculo, quociente entre a área molhada e a largura superficial.
4-4
CLASSIFICAÇÃO DOS CURSOS D’ÁGUA.
Perenes – São aqueles que têm água o tempo todo. A cota do lençol freático é sempre maior que a cota
do talvegue (lugar geométrico dos pontos de menor cota).
Intermitentes – Nesses rios, em determinadas épocas, a cota do lençol freático fica abaixo da cota do
talvegue.
Efêmeros – São rios cujo escoamento está diretamente relacionado com a chuva. Ou seja, só têm água
durante, e até pouco após o fim da chuva.
RIO PERENE RIO INTERMITENTE RIO EFÊMERO
ORDEM DOS CURSOS D’ÁGUA:
Critério de Horton/Strahler : “Dois canais de ordem n unem-se para formar um canal de ordem n+1.”
5-1
CARACTERÍSTICAS FÍSICAS DE UMA BACIA HIDROGRÁFICA
Área de drenagem, (A):
Definição: A área de drenagem de uma bacia é a área plana (projeção horizontal) dentro do divisor
topográfico. A forma superficial está relacionada ao tempo de concentração.
Tempo de concentração, (tc):
Definição: É o tempo a partir do início da precipitação, necessário para que toda a bacia contribua na
seção em estudo ou, em outras palavras, o tempo que leva a água dos limites da bacia para chegar à saída
da mesma.
Sistema de drenagem, (Rede Potamográfica):
Definição: É constituído pelo rio principal e seus tributários. O estudo dessas ramificações e do
desenvolvimento do sistema é de grande importância, pois este indica a maior ou menor velocidade com
que a água sai de uma bacia hidrográfica.
Densidade de drenagem, (Dd):
Definição: É um índice que mostra a eficiência da drenagem da bacia.
A
L
Dd = ; onde:
L - comprimento total de todos os cursos d’água,
A - Área plana da bacia.
FORMA DA BACIA
Coeficiente de compacidade, (Kc):
Definição: É a relação entre o perímetro da bacia e a circunferência de um círculo de área igual à da
bacia.
como;
2RA P= ; área de um círculo
RC P= 2 ; circunferência
P
=
A
R ; mas, como 
A
P
A
P
A
P
A
P
R
P
KC
545,377,122
2
2
=
´
=
P
=
P
P
=
P
= , logo,
A
P
KC 28,0=
Obs.: Uma bacia com forma mais alongada tem uma probabilidade menor de ter cheias, pois é, também,
menor a probabilidade de toda a tormenta precipitar dentro da bacia.
5-2
Fator de forma (Kf)
Definição: É a relação entre a largura média ( )L , obtida quando se divide a área pelo comprimento da
bacia, e o comprimento do curso d’água mais longo, desde a desembocadura até a cabeceira mais distante
na bacia ( )L .
L
A
L = ; donde 2L
A
K f =
OBS.: Uma bacia com um fator de forma baixo é menos sujeita a enchentes que outra de mesma área
porém com maior fator de forma. Isto se deve ao fato de que em uma bacia estreita e longa, com fator de
forma baixo, há menos possibilidade de ocorrência de chuvas intensas cobrindo simultaneamentetoda sua
extensão; e também, em uma tal bacia a contribuição dos tributários atinge o curso d’água principal em
vários pontos ao longo do mesmo, afastando-se, portanto, da condição ideal, para cheias, de bacia
circular.
RELEVO DA BACIA
O relevo de uma bacia hidrográfica tem grande influência sobre os fatores meteorológicos e hidrológicos.
¨ Velocidade do escoamento superficial Þ f (declividade do terreno);
¨ Temperatura/Precipitação/Evaporação Þ f (altitude da bacia).
Obs.: Deve-se desprezar os trechos extremos se estes apresentarem declividades discrepantemente altas
(cabeceiras) ou muito baixas (perto da seção de saída).
Declividade de álveo
Definição: É a razão entre a diferença de altitude de dois pontos e a distância horizontal, medida pelo
perfil, entre eles.
l
h
S
D
D=
5-3
Declividade média da bacia, ( )S
An
a
S
i
n
i i
å
=
ID
= 1
w
; onde:
¨ ID ® diferença de altitude padrão entre duas curvas de nível;
¨ iw ® largura entre duas curvas de nível, ao longo do rio;
¨ ia ® área, na bacia, entre duas curvas nível;
¨ A ® área total da bacia;
¨ n ® número de intervalos de curva de nível.
As características do relevo têm grande influência sobre os fatores meteorológicos e hidrológicos, pois é a
declividade do terreno que influi mais diretamente na velocidade do escoamento superficial. A
temperatura, a evaporação e a precipitação são funções da altitude da bacia. Aqui devemos recordar que a
umidade se distribui na atmosfera segundo um gradiente hidráulico.
FEIÇÕES FLUVIAIS
Os rios são uma das maiores forças que modelam a paisagem. Próximo às nascentes, a declividade do rio
é alta. Ele escava seu canal, formando vales em forma de V e profundas gargantas. Quedas-d’água e
cachoeiras se formam onde o rio deixa atrás rochas resistentes e passa a escoar sobre rochas friáveis, mais
facilmente erodidas.
Mais a jusante, podem formar-se meandros e a erosão lateral predomina, dando origem a um vale fluvial
amplo. Por vezes o rio corta o colo de um meandro e forma um lago de meandro abandonado. Os
sedimentos depositados no fundo do vale pelos rios meandrantes e durante as cheias ajudam a formar a
5-4
planície de inundação. As cheias também podem depositar sedimentos nas margens dos rios, dando
origem aos diques marginais.
Quando um rio deságua no mar ou em um lago, deposita grandes quantidades de sedimentos e pode
formar um delta. Um delta é um conjunto de barras de areia, pântanos e lagoas através dos quais o rio flui
em diversos canais chamados distributários ¾ o Delta do Parnaíba, por exemplo. Com freqüência o
aumento do nível do mar pode invadir a desembocadura do rio e formar um amplo estuário, uma seção
influenciada pelas marés, onde a água do mar mistura-se com a água doce.
GRAN CANYON
O VAPOR “ARABIA”
Em 1856 o navio a vapor ARABIA, que fazia o transporte de passageiros ao longo dos rio Missouri,
chocou-se com um tronco de árvore que flutuava pouco abaixo da superfície, a violencia do impacto
provocou um enorme buraco no casco da embarcação, que não possuindo compartimentos estanques,
nafragou em minutos.
Por sorte, a profundidade do rio não era muito grande e o barco apoiou-se sobre o lodo do fundo, o que
permitiu que todos fossem evacuados. No dia seguinte, apenas as partes superiores da embarcação eram
visíveis e em pouco mais de uma semana, o barco desapareceu completamente.
5-5
Começou a correr a estória que muitos dos passageiros voltavam da corrida do ouro na Califórnia que
haveria uma fortuna a bordo do barco. Muitos tentaram recuperar a carga e os valores deixados a bordo,
mas, com a tecnologia da época isto não era possível.
Passados muito anos, um século, e depois de várias tentativas frustadas, em 1987 foi iniciado um projeto
para encontrar o “Arabia”. Com tecnologia moderna e com maior compreensão do transporte de
sedimentos pelo rio, foi possível localizar o barco e, eventualmente, retirá-lo.
O Arabia foi encontardo no meio de um milharal, 800 metros a leste da margem do rio e a uma
profundidade de 15 metros. O trabalho de retirada da embarcação durou 18 meses.
Hoje o “Arabia” está aberto para visitação pública, como uma espécie de capsula do tempo, no “Mercado
Histórico do Rio”, na cidade de Kansas City, onde é possível ver como se vivia naquela época (“frontier
life”).
O VAPOR “ARABIA”
O SALVAMENTO
Nessa estória, pode-se perceber a enorme quantidade de sedimentos que um rio pode transportar, além da
capacidade erosiva de uma corrente. O leito do rio Missouri estará sempre em movimento, regido pelas
cheias naturais e por intervenções antrópicas.
Arabia Steamboat Museum - 400 Grand Blvd - Kansas City, Mo. 64106, USA - (816) 471-1856
6-1
PLUVIOMETRIA
PRECIPITAÇÃO
Definição: Entende-se por precipitação a água proveniente do vapor d’água da atmosfera depositada na
superfície terrestre.
Desde o instante da sua formação até atingir o solo, a precipitação é estudada pela METEOROLOGIA. Mas,
a partir do instante em que atinge o solo, ela torna-se um elemento básico para a HIDROLOGIA.
“A precipitação é a entrada do sistema hidrológico”
CARACTERÍSTICAS PRINCIPAIS :
· Total
· Duração
§ Temporal
· Distribuição
§ Espacial
“A ocorrência da precipitação é um processo aleatório que não permite uma previsão
determinística com grande antecedência.”
6-2
PRINCIPAIS APARELHOS DE M EDIÇÃO DE CHUVA
¨ Para medida de chuva são utilizados, principalmente, pluviômetros, pluviógrafos e radares
meteorológicos.
Obs.:
Este instrumento capta a precipitação através de um orifício localizado no centro e no fundo de um
TIPPING BUCKET
Este instrumento capta a precipitação através de
um orifício localizado no centro e no fundo de
um recipiente com superfície côncava. A altura
de chuva acumulada no orifício é calibrada e
toda vez que for alcançada um mecanismo
permite a passagem de um volume pré-
determinado de água.
Um sensor magnético, acoplado ao mecanismo
de passagem, dispara um sinal sempre que há
passagem de água. Essa passagem é registrada
como pulso, através de dispositivo eletrônico,
tipo “data-log”.
MEDIDAS PLUVIOMÉTRICAS
Altura de chuva, (h)– é a espessura média da lâmina de água precipitada que recobriria a
região atingida pela precipitação, admitindo-se que nessa região não se infiltrasse, não se
evaporasse, e nem se escoasse fora dos limites da região (mm). (( h=1 mm ÞÞ 1 l/m2 ))
Duração, (td) – É o intervalo de tempo durante o qual se considera a ocorrência de chuva
(minutos, horas).
Intensidade, (i) – É a relação entre a altura pluviométrica e a duração da precipitação (mm/h,
mm/min).
6-3
ALGUNS APARELHOS DE MEDIÇÃO DE CHUVA
PLUVIÓGRAFO PLUVIÔMETRO
A SAÍDA GRÁFICA DE UM PLUVIÓGRAFO
6-4
6-5
PROCESSAMENTO DE DADOS PLUVIOMÉTRICOS :
· Detecção de erros grosseiros
· Preenchimentos de falhas
· Verificação da homogeneidade
DETECÇÃO DE ERROS GROSSEIROS:
· Valores absurdos (inesperados), dias inexistentes (30/Fev, 31/Abr), precisão em
desacordo com a escala.
· Erros sistemáticos:
Vazamentos
Entupimentos
Fora do padrão
· Erros acidentais :
Vento forte (chuva quasi-horizontal)
Transbordamento
PREENCHIMENTO DE FALHAS (MÉTODO DA PONDERAÇÃO REGIONAL):
Muitas vezes as estações pluviométricas apresentam falhas em seus registros, devido à
ausência do observador, ou por defeito no aparelho, que pode não ter feito o registro ou feito
um registro suspeito, falho.
OBS.: Tomar cuidado para pegar dados de pluviômetros, não só próximos mas,
principalmente, da mesma região meteorológica, para preencher a falha de um outro aparelho.
a) Escolhe-se três estações localizadas o mais próximo possível da estação em questão, na
mesma região meteorológica.
b) Determina-se Px pela média ponderada dos registros, de pelo menos, três das estações
vizinhas.
6-6Exemplo:
Ano A B C D
1965 284.60 232.00 289.60 216.60
1966 129.00 139.00 122.70 117.50
1967 95.80 96.60 100.20 97.80
1968 89.80 80.00 92.70 131.10
1969 129.20 124.50 128.70 118.80
1970 158.60 149.80 174.60 150.00
1971 153.20 147.30 163.40 140.40
Média 148.60 138.46 153.13 140.18
÷
ø
ö
ç
è
æ ´+´+´= 70,92
13,153
18,140
00,80
46,138
18,140
80,89
60,148
18,140
3
1
xP
52,83=xP
VERIFICAÇÃO DA HOMOGENEIDADE DOS DADOS (ANÁLISE DE CONSISTÊNCIA):
MÉTODO DA DUPLA MASSA ¾¾ (USGS)
O objetivo é examinar séries mensais ou anuais para verificar se houve alguma anormalidade
durante a operação da estação.
O método consiste em construir-se uma curva dupla cumulativa, na qual são relacionados os
totais anuais (mensais) acumulados de um determinado posto e a média acumulada dos totais
anuais (mensais) de todos os postos da região, considerada homogênea sob o ponto de vista
meteorológico.
Se os valores do posto a consistir são proporcionais aos observados na base de comparação, os
pontos devem alinhar-se segundo uma única reta. A declividade da reta determina o fator de
proporcionalidade entre ambas as séries.
ANO Média dos Postos
Y
Média dos Postos
YAcumulado
Posto Examinado
X
Posto Examinado
XAcumulado
1965 22 22 30 30
1966 30 52 50 80
1967 60 112 70 150
1968 70 182 78 228
1969 86 268 83 311
1970 66 334 71 382
6-7
Quando o gráfico anterior formar uma reta quer dizer que o posto pertence àquela região
meteorológica.
CASOS TÍPICOS:
OK!
· Série de valores proporcionais, homogênea;
· Série confiável.
Pode estar correto!
· Erros sistemáticos;
· Mudança nas condições de observação;
· Existência de uma causa física real; por exemplo :
presença de um reservatório artificial e mudança no
microclima.
· Pode ter ocorrido mudança de localização dos postos.
Pode-se modificar a reta dependendo do segmento que se considerou mais correto
Não está correto!
6-8
· Possíveis erros de transcrição;
· Talvez os postos pertençam a regiões
meteorológicas diferentes.
Não está correto!
· Postos em regiões meteorológicas diferentes.
CORREÇÃO DOS DADOS (CASO 2):
a) Passar os valores mais antigos para a tendência atual.
b) Passar os dados mais recentes para a tendência antiga.
( )*ao
o
a
ac PPM
M
PP -+=
onde:
Pc = Precipitação acumulada ajustada à tendência desejada.
Pa* = Valor da ordenada correspondente à interseção das duas tendências.
Ma = Coeficiente angular da tendência desejada.
Mo = Coeficiente angular da tendência a corrigir.
Po = Valor acumulado a ser corrigido.
6-9
Roteiro para obtenção de dados hidrometeorológicos através do Banca de Dados
¾ HidroWeb, da Agência Nacional de Águas ¾ ANA.
COLOCAR O CÓDIGO DO POSTO
Clique após em LISTAR
6-10
Clique em cima do codigo
Neste posto existem dados de
chuva. Para acessá-los, clique
em arquivo access (fornece os
dados no programa access) ou
arquivo texto (fornece os
dados num bloco de dados).
Vale lembrar, que caso não
apareça nada neste quadrinho
escrito “chuvas”, é porque o
posto não possui dados.
6-11
NESTE CASO, PEDI PARA LISTAR OS DADOS EM ACCESS:
SÍTIOS DE INTERESSE:
· de algumas das principais agencias brasileiras que medem de precipitação:
ANA ¾ Agência Nacional de Águas. [http://hidroweb.ana.gov.br]
CPRM ¾ Companhia de Pesquisa de Recursos Minerais. [http://www.cprm.gov.br]
INMET ¾ Instituto de Meteorologia ¾ Ministério da Agricultura.[http://www.inmet.gov.br]
CPTEC ¾ Centro de Previsão de Tempo e Estudos Climáticos. [http://www.cptec.inpe.br]
7-1
PRECIPITAÇÃO MÉDIA
(CHUVA EQUIVALENTE)
PRECIPITAÇÃO MÉDIA
Definição: Aceita-se a Precipitação Média como sendo uma lâmina de água de altura uniforme sobre
toda a área considerada associada a um período de tempo dado. (hora, dia, mês, ano).
Obs.: Isto é uma abstração, a chuva real não obedece a distribuições espaciais e/ou temporais conhecidas.
É um fenômeno aleatório.
O Método da Média Aritmética - Todos os pluviômetros têm a mesma importância.
n
P
P
n
i
i
m
å
== 1
onde, n = número de pluviômetros
O Método de Thiessen
( )
å
å
=
== n
i
i
n
i
ii
m
A
AP
P
1
1
onde, n = número de pluviômetros
O método consiste em atribuir um fator de peso aos totais precipitados em cada aparelho, proporcionais à
área de influência de cada aparelho.
Essas áreas de influência (peso) são determinadas em mapas, unindo-se os postos adjacentes por linhas
retas e, em seguida traçando-se mediatrizes dessas retas formando polígonos. Os lados dos polígonos são
os limites das áreas de influência de cada posto.
Obs.: Embora mais preciso do que o método aritmético, também apresenta limitações, pois não considera
as influências orográficas.
7-2
Área Altura de
POSTO Km2 Chuva (mm)
Belo Horizonte 16,50 6 99,00
Santa Bárbara 1117,20 26 29047,20
Rio Piracicaba 801,90 62 49717,80
Nova Era 656,70 43 28238,1
Antonio Dias 669,00, 16 10704,0
Cel. Fabriciano 272,25 10 2722,5
Pres. Vargas 437,25 17 7433,25
Cubas 136,95 8 1095,6
S. J. Goiabal 209,55 26 5448,3
D. Silvério 227,70 52 11840,4
Ouro Preto 255,80 13 3325,40
SS 4800,80 SS 149671,55
Pm = 149.671,55 / 4800,80 = 31,18 mm
7-3
O Método das Isoietas
ISOIETAS
Definição: São curvas traçadas sobre mapas que representam linhas de igual precipitação. O traçado
dessas curvas é semelhante ao das curvas de nível, onde a altura de chuva substitui a cota do terreno.
A precipitação média sobre uma área é calculada ponderando-se a precipitação média entre isoietas
sucessivas, (normalmente fazendo a média dos valores de duas isoietas) pela área entre as isoietas,
totalizando-se esse produto e dividindo-se pela área total.
Obs.: A precisão do método depende muito da habilidade do analista.
å
å
-
=
-
=
+ ÷
ø
öç
è
æ +
= 1
1
1
1
1
2
n
i
i
i
n
i
ii
m
A
A
hh
P
n – Número de isoietas.
7-5
Obs.: Os mapas mostram, claramente, que em termos de disponibilidade de água de chuva, o que importa é o volume de água precipitada
(altura de chuva). Segundo o mapa, na região do polígono das secas, o número de dias com chuva, não é muito menor do que, por exemplo,
na Amazônia.
8-1
A EQUAÇÃO GERAL DAS CHUVAS INTENSAS:
Chuva pontual ¾ Curvas i x d x f
OBS.: Aplicável para bacias hidrográficas pequenas e chuvas intensas. Na definição da equação das
chuvas de uma localidade devem ser usados os registros das chuvas realmente observados nesse posto.
( )
:; Onde
bt
TK
i c
a
R
+
=
i ¾ intensidade de precipitação (mm / h).
TR ¾ tempo de recorrência (anos).
t ¾ duração da precipitação (mm).
K, a, b, c ¾ parâmetros relativos ao regime pluviográfico local.
Para usar a equação é preciso definirmos o que é uma chuva intensa e o que é uma bacia pequena.
LIMITE INFERIOR DE CHUVAS INTENSAS (PROF. OTTO PFAFSTETTER):
Duração (min) 5 10 15 30 60 120 240 480 840
Altura (mm) 5 7,5 10 15 20 25 30 35 40
Intensidade (mm/h) 60 45 40 30 20 12,5 7,5 4,4 2,9
Procedimento gráfico para obtenção dos parâmetros
Sejam, por exemplo, os seguintes dados de chuva:
Duração (min) ¾¾ 5 10 15 30 60
Intensidade TR = 10 ANOS 130 116 85 70 42
(mm/h) TR = 25 ANOS 155 130 110 86 52
Para se obter os parâmetros K, a, b e c, da equação i x d x f, adota-se o seguinte procedimento.
Linearizando-se a equação da chuva intensa com o uso de logarítmos (anamorfose), temos:
)(log.log.loglog
)(
btcTaKi
bt
KT
i R
anamorfose
c
a
R +-+=¾¾¾ ®¾
+
=
8-2
a expressão linearizada, podemos ver uma reta, do tipo AXBY -= ; onde:
· ;log Yi Þ
· ;log.log BTaK R Þ+
· ;Ac Þ
· .)(log Xbt =+
Atribuindo-se valores a TR, as variáveis log i e log(t + b), correspondentes, configurarão a equação de
uma reta, cujocoeficiente angular é “c”, e cujo coeficiente linear é (log K + a log TR).
SEQÜÊNCIA DE PASSOS :
1) adota-se um valor de TR,
2) arbitra-se b=0
3) plota-se (log i x log(t+b))
4) examinar:
4.1) No caso de concavidade para baixo, aumenta-se o valor de b.
4.2) No caso de concavidade para cima, diminui-se o valor de b.
5) continuar a variar até obter uma reta.
8-3
OBS.: Para os dois valores de TR, você vai obter o mesmo c o mesmo b. Se tal não acontecer, os dados
de chuva não são de boa qualidade.
Para a determinação dos parâmetros “K” e “a”, forma-se um sistema de duas equações a duas incógnitas,
utilizandos-se as coordenadas conhecidas de dois pontos quaisquer, tomados um em cada reta obtida, para
cada TR.
)(loglogloglog 111 btcTaKi R +-+=
)(loglogloglog 222 btcTaKi R +-+=
Resolvendo-se este sistema de duas equações e duas incógnitas, consegue-se os valores de “K” e “A”.
)log(
log
bt
I
c
+D
D=
8-4
Com a obtenção dos parâmetros da equação 
( )c
a
R
bt
TK
i
+
= , podemos extrapolar o período total de
observações. No gráfico acima, as curvas para TR = 50 ANOS e TR = 100 ANOS, representam uma
extrapolação da equação.
v Equações Intensidade x Duração x Freqüência para algumas cidades brasileiras:
São Paulo: (Wilken)
( ) 025,1
172,0
22
7,3462
+
=
t
i R
Rio de Janeiro: (Ulysses
Alcantara)
( ) 150,1
217,0
26
154,99
+
=
t
i R
Belo Horizonte: (Freitas)
( ) 840,0
100,0
20
87,1447
+
=
t
i R
Curitiba: (Parigot de Souza)
( ) 740,0
150,0
22
0,1239
+
=
t
i R
8-5
O MÉTODO DO PROFESSOR OTTO PFAFSTETTER (1957) :
( )[ ]tcbtaRPMAX .1log.. ++=
Onde:
PMAX ¾ precipitação máxima em mm,
t ¾ duração da precipitação em horas,
a, b e c – constantes para cada posto.
R – Fator de ajuste, definido como: ÷
÷
ø
ö
ç
ç
è
æ
+= g
ba
RTRTR ; onde TR = Tempo de Recorrência.
Sendo:
TR ¾ tempo de retorno, ou recorrência, em anos,
aa e bb ¾ valores que dependem da duração da precipitação,
gg ¾ uma constante, adotada para todos os posto igual a 0,25.
TABELAS:
Precipitação para TR = 1 ANO
8-6
Valores de bb , a, b e c, para algumas cidades brasileiras (Pfafstetter, 1957):
9-1
FFREQÜÊNCIA DE REQÜÊNCIA DE TTOTAIS OTAIS PPRECIPITADOSRECIPITADOS
FREQÜÊNCIA
Definição: É o número de vezes que um fenômeno de características iguais a outro, ocorre em um
período de tempo.
Seja, por exemplo, a tabela de alturas de chuva abaixo:
MÊS PRECIPITAÇÃO
 MÉDIA (mm/mês)
JAN. 136
FEV. 168
MAR. 148
ABR. 104
MAI. 72
JUN. 44
JUL. 28
AGO. 36
SET. 52
OUT. 80
NOV. 88
DEZ. 124
Os dados observados são ordenados em ordem decrescente e a cada um é atribuído o seu número de
ordem m ( m variando de 1 a n, sendo n o número de períodos de observação).
m PRECIPITAÇÃO
 MÉDIA (mm/mês)
1 168
2 148
3 136
4 124
5 104
6 88
7 80
8 72
9 52
10 44
11 36
12 28
A freqüência (relativa) com que foi igualado ou
superado um evento de ordem m , é:
( )CalifórniadaMétodo
n
m
F =
9-2
Isto é, podemos dizer que a probabilidade de termos uma precipitação maior ou igual a 124 mm/mês é:
12
4==
n
m
FR
Porém, o Método da Califórnia consideraria que a probabilidade de, no exemplo acima, termos uma
precipitação maior ou igual a 28 mm é de:
0,1
12
12 ===
n
m
FR
Ou seja, um evento certo, todos os meses teríamos uma precipitação de pelo menos, 28 mm. Como isto
não é correto, Kimbal propos uma pequena modificação, que para amostras grandes praticamente não
altera os valores, mas torna o método, conceitualmente, correto.
( )KimbaldeMétodo
n
m
F
1+
=
TEMPO DE RECORRÊNCIA (OU TEMPO DE RETORNO)
Definição: É o intervalo médio de tempo (dia, mês, ano) em que pode ocorrer ou ser superado um dado
evento.
R
R
R
R T
F
F
T
1
;
1 ==
ATENÇÃO: Para períodos de recorrência bem menores do que o número de anos de observação, o valor
encontrado para a freqüência relativa (FR) pode dar uma boa idéia do valor real da probabilidade (P). Ou
seja, sempre que o tamanho da amostra for grande, estaremos assumindo que, “a freqüência relativa é
uma estimativa da probabilidade”.
R
R T
P
P
T
1
;
1 ==
“Freqüência Relativa @@ Probabilidade (Hidrologia Estocástica)”
9-3
OBS.: “A Freqüência Relativa de um evento aleatório é equivalente à Probabilidade desse evento”.
É a aceitação dessa tese que dá origem à Hidrologia Estocástica.
000.10
1
;)10000( =Þ TrVertedouroanosQMAX
ATENÇÃO: É importante ressaltar, que freqüência, probabilidade ou tempo de recorrência, definem
características médias, isto é, uma chuva com um TR=25 anos poderá em um intervalo total de 50 anos
ocorrer duas vezes nos primeiros 5 anos e depois ficar 45 anos sem acontecer.
LEIS DA PRECIPITAÇÃO:
1) A intensidade das precipitações com o mesmo tempo de recorrência é inversamente proporcional à
sua duração.
2) A intensidade das precipitações com a mesma duração é diretamente proporcional ao seu tempo de
recorrência.
3) A intensidade das precipitações é inversamente proporcional à sua área de precipitação.
4) Em um determinado período chuvoso as intensidades ou as alturas e precipitação decrescem do centro
da área de precipitação para sua periferia, segundo uma lei aproximadamente parabólica.
###################################################
ESCOLHA DO PERÍODO DE RETORNO:
P – Probabilidade F Þ Freqüência Relativa P = F
TR <=> RISCO.
“* ¾ Em Hidrologia, o RISCO está diretamente associado à escolha do período de retorno.”
F
TentãoFPmas
P
T RR
1
:,,;
1 ===
9-4
RISCO:
Definição: É a probabilidade de uma determinada obra vir a falhar durante a sua vida útil.
( )[ ]ntR --´= 11100
Onde :
R ¾ Risco.
T ¾ Período de retorno.
N ¾ Vida útil da obra.
PERÍODOS DE RETORNO
PARA DIFERENTES OCUPAÇÕES DA ÁREA:
TIPO DE OCUPAÇÃO DA ÁREA (CETESB ¾ 1980) Tipo de Obra T (anos)
Residencial
MICRODRENAGEM 2
Comercial Microdrenagem 5
Áreas com edifícios de serviço ao publico Microdrenagem 5
Aeroportos Microdrenagem 2 - 5
Áreas comerciais e artérias de tráfego Microdrenagem 5 – 10
Áreas comerciais e residenciais Macrodrenagem 50 – 100
Áreas de importância específica Macrodrenagem 500 - ….
RISCO EM % PARA DIFERENTES VALORES DE TR E N:
Vida útil da obra (anos)
T(anos) 2 5 25 50 100
2 75 97 99,9 99,9 99,9
5 36 67 99,9 99,9 99,9
10 19 41 93 99 99,9
25 25 18 64 87 98
50 4 10 40 64 87
100 2 5 22 39 63
500 0,4 1 5 9 18
10-1
FLUVIOMETRIA
Definição: É o setor da Hidrologia que trata das técnicas de medição de níveis d´água, velocidades e
vazões nos rios.
Objetivo: Conhecer o volume de água que escoa por uma seção transversal de um rio, em um
determinado intervalo de tempo. O ideal seria termos conhecimento, em tempo-real, da vazão a cada
instante. Todavia, isto, ainda não é possível. Portanto, procura-se conhecer a vazão durante um período
de tempo (campanha) e extrapolam-se os resultados obtidos para períodos de tempo maiores. Existem
várias metodologias de medição de vazões, cada uma delas com o índice de precisão diretamente
associado ao custo de obtenção dos dados.
10-2
CRITÉRIOS PARA O ESTABELECIMENTO DE UM POSTO FLUVIOMÉTRICO:
a) Localizar em um trecho retilíneo, de fácil acesso e o mais estável possível;
b) Localizar fora da área de influência de obras hidráulicas existentes;
c) Selecionar trecho com velocidades regularmente distribuídas e não muito reduzidas;
d) Entregar os cuidados de leitura da régua ou troca de papel do limnígrafo, à pessoa de confiança.
Observação: Um dos grandes objetivos de se medir as vazões de um rio em determinado trecho, é
podermos associar a descarga medida à respectiva cota do nível d’água da superfície do rio. Assim, para
cada cota do nível d’água, corresponderá uma vazão.Essa relação, “cota x vazão”, é chamada na
Hidrologia de Curva-Chave, e será vista em maior detalhe, posteriormente.
Q = v.A
A
A A
h (cota)
Curva chave
(equivalente a uma parábola).
Q
10-3
MÉTODOS DE MEDIÇÃO DE VAZÕES:
a) MÉTODO VOLUMÉTRICO
É empregado para pequenos cursos d’água e canais, ou em nascentes. Consiste em derivar as águas para
recipientes volumétricamente calibrados, ou que tenham formas que facilitem a determinação de seus
volumes. A vazão será o quociente do volume do recipiente pelo tempo de enchimento cronometrado.
)(
)(
)(
tempot
volumeV
vazãoQ =
b) MÉTODO DOS TRAÇADORES
Químicos – A concentração de sal é medida na seção de montante e um tempo depois na seção de
jusante.
01
1
CC
CC
qQ
-
-=
Onde:
C – Concentração de sal injetado,
C1 - Concentração de sal em regime permanente,
C0 – Concentração natural de sal do rio.
q – Vazão injetada.
Radioativos – Em geral esses traçadores são utilizados para medições em rios violentos, encachoeirados,
ou seja, rios que possam apresentar riscos de vida para a equipe de fluviometria. O manuseio do material
radioativo é perigoso e exige pessoal especializado, sendo portanto mais dispendiosa a sua utilização.
c) MÉTODO DOS NÍVEIS D’ÁGUA
A leitura é feita em uma “escala limnimétrica”, uma régua em geral denteada, construída em madeira ou
metal esmaltado e “amarrada” à um RN (referencial de nível), ou através de um limnígrafo.
10-4
Observação: O uso da régua limnimétrica, ou de um limnígrafo, para se medir as vazões de um rio em
uma determinada seção transversal, só é possível se conhecermos a curva que relaciona o nível d’água à
vazão, isto é, a curva-chave na seção.
d) MÉTODOS ÁREA X VELOCIDADE
Definição: São métodos indiretos e se baseiam na equação da continuidade dos escoamentos líquidos;
AvQ .=
d.1) Método dos Flutuadores:
É empregado mais freqüentemente para se obter estimativas de vazões em reconhecimentos hidrológicos
ou para medir vazões de enchentes.
Quando o flutuador cruza a seção de montante, o auxiliar dá um sinal, para que o operador acione o
cronômetro. Quando o flutuador cruza a seção de jusante, é registrado o tempo de percurso. Repete-se o
procedimento várias vezes, em várias faixas longitudinais, e, assim define-se as diferentes velocidades
superficiais.
Pode-se, portanto, relacionar a velocidade superficial com a velocidade média da seção transversal.
LSUPERFICIAMÉDIASEÇÃOMÉDIA
vKv .=
O coeficiente K varia com a rugosidade da calha fluvial, com a geometria da área molhada (raio
hidráulico) e com a turbulência do escoamento.
TABELA DE VALORES PARA K, SEGUNDO DNAEE.
Situação K
Velocidades fortes, profundidades superiores a 4m 1,00
Velocidades médias em rios e montanhas 1,05
Declives fracos, rios médios 0,85
Grandes rios 0,95
Declives médios, rios médios 0,90 ¾ 0,95
Velocidades muito fracas 0,80
Planta (visão superior)
V
Corte
V
Vmáx
Vsuperfície
Flutuadores
10-5
d.2) Método do Tubo de Pitot.
O tubo de Pitot, em sua configuração mais simples é um tubo recurvado, com dois ramos em angulo reto.
Aplica-se a Equação de Bernoulli aos pontos 1 e 2 do escoamento da figura.
Equação de Bernoulli:
te
g
C
vp
y =++
2
2
g
APLICAÇÃO:
ghvh
g
v 2;
2 1
2
1 =\=
:;0,;
22 221
2
22
2
2
11
1 entãovehhmasg
vph
g
vph ==++=++
gg
( )[ ]
:;
2
;
2
12
2
112
2
1 assim
g
hhhg
g
vpp
g
v
r
r
g
-+=-=
10-6
d.3) Método dos Molinetes.
Procedimento:
(a) Faz-se o levantamento batimétrico da seção transversal selecionada para obter-se o perfil e a área da
seção;
(b) Divide-se a seção transversal do rio em um certo número de posições verticais para o levantamento do
perfil de velocidades;
(c) Mede-se as velocidades nessas verticais em pontos;
(d) Acha-se a velocidade média ponderada para perfil vertical;
(e) Determina-se a velocidade média aritmética para cada setor definido entre duas verticais;
(f) Calcula-se a vazão em cada setor, multiplicando-se a velocidade obtida no item (d), pela área do setor;
(g) A vazão total estimada será o somatório das vazões em cada um dos setores definidos na seção
transversal do rio.
O Molinete Hidrométrico:
Definição: É um aparelho que dá a velocidade local da água através da medida do número de revoluções
do hélice.
Operação do Molinete Hidrométrico
1) A cada número inteiro de rotações, o molinete emite um sinal (sonoro ou luminoso).
2) O tempo transcorrido entre os sinais é cronometrado.
3) Multiplicando-se o número de sinais medidos, pelo número de rotações por sinal (item 1), tem-se o
número total de rotações, que dividido pelo intervalo de tempo cronometrado, fornece o número de
rotações por segundo (RPS).
4) Usa-se a “equação de calibragem do molinete” para transformar a rotação do eixo (RPS) em
velocidade linear (m/s).
Peso
Molinete
MOLINETE HIDROMÉTRICO
10-7
Exemplo: Modelo A.Ott no 9473
41,0;019,04853,0 <+= nparanv
41,0;007,05145,0 ³+= nparanv
Parâmetros hidráulicos da seção:
Área molhada, (Am) ¾ é a área da seção transversal ocupada pela água, (m2);
Perímetro molhado, (Pm) ¾ é o perfil da seção transversal em contato com a água, (m);
Raio hidráulico, (R): Rm = Am/Pm, (m);
Largura média, (Lm) ¾ Lm = (l-
_
IP ), (m); onde l é a distância do PI até o PF.
Profundidade média, (h): h = Am/Lm, (m).
EXEMPLO PARCIAL DE RESOLUÇÃO DE UM PROBLEMA DE FLUVIOMETRIA:
Seja a seção transversal do rio.
Vamos considerar o uso de um Molinete Hidrométrico com as seguintes características:
¨ 1 SINAL 10 ROTAÇÕES
)2(;4,3;022,0.1305,0)/(
)1(;4,3;040,0.1252,0)/(
>+=
£+=
NRSNRSsmv
NRSNRSsmvEQUAÇÃO DO
APARELHO:
10-8
TABELA COM VALORES MEDIDOS NOS PONTOS ASSINALADOS DE VERTICAIS DA SEÇÃO TRANSVERSAL:
NO DO
PONTO
DISTÂNCIA
AO PI (m)
PROFUNDIDADE
DO PONTO (m)
NÚMERO
DE SINAIS
TEMPO
(seg)
NÚMERO DE
ROTAÇÕES POR
SEGUNDO (RPS)
VELOCIDADE
(m/s)
1 2,10 0,00 0 0 0,0000 0,040
2 12,00 1,00 5 46,4 1,0776 0,175
3 20,00 2,00 12 42,8 2,8037 0,391
4 30,00 3,00 23 40,2 5,7214 0,769
5 30,00 5,00 24 40,6 5,9113 0,793
6 40,00 1,00 36 40,2 8,9552 1,191
OBS.: Se temos, 8 sinais emitidos em 72,4 segundos, para molinetes com 1 sinal a cada 10 rotações,
então, NRS = (8 x 10) / 72,4 = 1,105 RPS.
a) Cálculo das áreas de setores definidos:
284,11
2
9,9.32,2
mAI ==
260,250,8.
2
08,432,2
mAII =÷
ø
öç
è
æ +=
240,520,10.
2
40,608,4
mAIII =÷
ø
öç
è
æ += 280,820,10.
2
16,1040,6
mAIV =÷
ø
öç
è
æ +=
b) Cálculo dos perímetros de alguns setores definidos:
( ) ( ) mPI 17,1032,29,9 22 =+= ( ) ( ) mPII 19,800,832,208,4 22 =+-=
c) Cálculo das velocidades médias em algumas verticais:
§ (Vertical A): Profundidade h = 0,00 m
V = sm /040,0
§ (Vertical B): Profundidade h = 2,32 m
0,00 m ¾¾® smV /166,01 =
1,00 m ¾¾® smV /175,01 =
1,82 m ¾¾® smV /215,01 =
2,12 m ¾¾® smV /040,01 =
10-9
32,220,0
2
040,0
30,0
2
040,0215,0
82,0
2
215,0175,0
00,1
2
175,0166,0
¸ú
û
ù
ê
ë
é
÷
ø
öç
è
æ+÷
ø
öç
è
æ ++÷
ø
öç
è
æ ++÷
ø
öç
è
æ += xxxxVB
BV sm /160,0=
§ (Vertical C): Profundidade h = 4,08 m
0,00 m ¾¾® smV /448,01 =
1,00 m ¾¾® smV /640,01 =
2,00 m ¾¾® smV /392,01 =
3,00 m ¾¾® smV /382,01 =
3,58 m ¾¾® smV /271,01 =
3,88 m ¾¾® smV /040,01 =
08,4
20,0
2
040,0
30,0
2
040,0272,0
58,0
2
272,0382,0
00,1
2
382,0392,0
00,1
2
392,0640,0
00,1
2
640,0448,0
¸
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
÷
ø
öç
è
æ+÷
ø
ö
ç
è
æ ++÷
ø
ö
ç
è
æ +
+÷
ø
öç
è
æ ++÷
ø
öç
è
æ ++÷
ø
öç
è
æ +
=
xxx
xxx
VC
CV sm /414,0=
d) Cálculo das Velocidades Médias nos Setores:sm
VV
V BAI /101,02
161,0040,0
2
=
+
=
+
=
sm
VV
V CBII /282,02
414,0161,0
2
=
+
=
+
=
e) Cálculo das Vazões nos Setores:
smAVQ III /148,148,11100,0
3=´=´=
smAVQ IIIIII /22,760,25282,0
3=´=´=
f) Cálculo da Vazão Total:
å=
=
n
i
iTOTAL
QQ
1
; onde: Qi é a vazão em cada um dos n setores da seção transversal.
10-10
O ADCP E SEU PRINCÍPIO DE FUNCIONAMENTO:
O ADCP ¾ Acoustic Doppler Current Profiler, ou Correntômetro Acústico de Efeito Doppler, é
um aparelho utilizado para medir a vazão dos cursos d’água através do efeito “Doppler”. Ele também
pode ser utilizado para medir o seu movimento com relação ao fundo do rio e a distribuição dos
sedimentos em suspensão na seção de medição.
É um instrumento que transmite ondas sonoras através da água. As partículas transportadas pela corrente
de água refletem o som de volta para o instrumento que percebe o eco através de sensores, fazendo com
que ele reconheça as diferentes profundidades e as velocidades das respectivas linhas de corrente através
do efeito Doppler. O ADCP pode utilizar diferentes freqüências para emitir o som, tais como: 75, 150,
300, 600, 1.200 e 2.400 kHz, dependendo do modelo.
O efeito Doppler refere-se à mudança de freqüência do sinal transmitido pelo sonar, causada pelo
movimento relativo entre o aparelho e o material em suspensão da água sob a ação do feixe das ondas
sonoras. Como o material em suspensão se desloca na mesma velocidade da corrente de água, a
magnitude do efeito Doppler é diretamente proporcional à essa velocidade. Medindo-se a freqüência dos
ecos que retornam do material em suspensão e comparando-a com a freqüência do som emitido, o ADCP
determina a velocidade da partícula que é a mesma da corrente da água (figura 2).
Fig. 1 - Técnica típica de uso do ADCP.
Fig. 2 - Mudança de freqüência causada pelo efeito Doppler.
10-11
O efeito Doppler é direcional. Qualquer mudança de freqüência corresponde a uma componente de
velocidade ao longo da direção do transdutor (emissor/receptor). As velocidades perpendiculares à
direção do transdutor não produzem nenhum efeito Doppler.
	01 - Hidrologia Geral
	02 - Precipitação
	03 - Ciclo Hidrológico
	04 - Bacia Hidrográfica
	05 - Características Físicas
	06 - Pluviometria
	07 - Preci[pitação Média
	08 - Chuvas Intensas
	09 - Frequência e Risco
	10 - Fluviometria

Outros materiais

Materiais relacionados

Perguntas relacionadas

Materiais recentes

34 pág.
FDH

Faculdade Descomplica

User badge image

Allan Teixeira

Perguntas Recentes