Buscar

indução eletromagnetica

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

INDUÇÃO ELETROMAGNÉTICA
O que você deve saber sobre
O uso de motores elétricos e circuitos de corrente alternada revolucionou a sociedade moderna. Hoje, seu uso é tão disseminado que é difícil imaginar a vida sem eletricidade. Neste tópico, vamos revisar a base de funcionamento de transformadores e motores de corrente alternada: a indução eletromagnética.
INDUÇÃO ELETROMAGNÉTICA
I. Fem induzida
 Os elétrons livres da barra ficam então sujeitos a uma força magnética de direção paralela à barra e sentido de A para B.  A extremidade A fica carregada positivamente, e a B, negativamente.  As cargas continuam a se concentrar nas extremidades até que se estabeleça um equilíbrio.  Há um campo elétrico vertical para baixo, e igualdade de módulo entre a força magnética para baixo e a força elétrica para cima.  Entre os terminais da barra, há uma fem induzida.
Barra condutora AB deslocando-se para a direita com velocidade
constante v, numa região sujeita a um
campo magnético B perpendicular ao vetor velocidade e entrando no
plano do papel.


I. Fem induzida
Se a barra tem comprimento L, a fem induzida vale:
INDUÇÃO ELETROMAGNÉTICA
II. Fluxo magnético
A indução, descrita por Faraday, depende de três fatores:  intensidade B do campo magnético;  área A a ser atravessada pelas linhas;  ângulo θ entre as linhas de campo e a normal à superfície considerada:
INDUÇÃO ELETROMAGNÉTICA
Casos de variação do fluxo magnético
Variação na intensidade do campo B
Enquanto o ímã cai por entre as espiras da bobina, há variação na intensidade do campo magnético induzido na espira. Isso pode ser observado no osciloscópio.
II. Fluxo magnético
ANDREW LAMBERT PHOTOGRAPHY/SCIENCE PHOTO LIBRARY/LATINSTOCK

INDUÇÃO ELETROMAGNÉTICA
Variação na área A atravessada pelas linhas de campo
Variação no ângulo θ entre as linhas de campo e a superfície
A área da espira retangular CDEF,
efetivamente atravessada pelas linhas de campo, é reduzida de acordo com o movimento para a direita.
A espira retangular gira na região de influência do campo magnético, variando continuamente o ângulo determinado pelas linhas de campo e a normal à superfície da espira.
II. Fluxo magnético
Indução eletromagnética Clique aqui para ver a animação.
INDUÇÃO ELETROMAGNÉTICA
III. Lei de Faraday
Lei de Lenz
O sinal negativo na expressão da lei de Faraday descreve um resultado conhecido como lei de Lenz: “A corrente induzida em um circuito aparece sempre com um sentido tal que o campo magnético criado tende a contrariar a variação do fluxo magnético através da espira”.
O ímã em [A] se afasta da espira, e o sentido da corrente, de acordo com a regra da mão direita, é horário, para compensar (naturalmente) a diminuição do fluxo magnético. Em [B], o sentido da corrente induzida é anti-horário, para reverter o aumento do fluxo para baixo.
INDUÇÃO ELETROMAGNÉTICA
Correntes de Foucault: são induzidas em condutores maciços.
Podem atingir grande intensidade com grande dissipação de energia na forma de calor.
Quando o paralelepípedo entra por completo na região do campo magnético, exibe dois conjuntos de correntes de Foucault, que giram em
sentidos opostos.
Em velocímetros analógicos de automóveis,
quando o eixo do carro gira, ele aciona ímãs que produzem pequenas correntes elétricas e campos magnéticos, que movimentam o ponteiro indicador de velocidade.
III. Lei de Faraday
POWERED BY LIGHT/ALAN SPENCER/ ALAMY/OTHER IMAGES
INDUÇÃO ELETROMAGNÉTICA
IV. Correntes alternadas
São correntes induzidas com sentidos alternantes, provocadas,
por indução eletromagnética, pelo funcionamento de motores elétricos mediante a rotação de espiras em regiões atravessadas por campos magnéticos, em movimentos de vaivém. Podemos dizer que a expressão geral da corrente i depende do seu valor máximo e de uma função trigonométrica. A variação pode ser senoidal:
em que  = 2f é a pulsação, f é a frequência com que a corrente varia no tempo, e t, o instante considerado.
INDUÇÃO ELETROMAGNÉTICA
Gráfico corrente X fase, exibindo variação senoidal da função.
IV. Correntes alternadas
INDUÇÃO ELETROMAGNÉTICA
Valor eficaz da corrente
Transformadores
São dispositivos usados para modificar uma ddp alternada.
IV. Correntes alternadas
INDUÇÃO ELETROMAGNÉTICA
A relação entre a ddp no primário UP e a ddp do secundário US depende exclusivamente da razão entre o número de espiras entre as bobinas:
(Ufal) Um fio metálico tem suas extremidades unidas formando um retângulo plano (ver figura).
Um resistor ôhmico no fio tem resistência R, e os potenciais em suas extremidades C e D são denotados por VC e VD. Num dado instante, um campo magnético uniforme de módulo B é ligado em todo o espaço, com direção perpendicular ao plano do fio e sentido indicado na figura (⊗). Nesse contexto, pode-se afirmar que:
a) a corrente elétrica induzida no fio terá sentido horário, tal que VC > VD.
b) a corrente elétrica induzida no fio terá sentido horário, tal que VC < VD.
c) não haverá corrente elétrica induzida no fio, tal que VC = VD.
d) a corrente elétrica induzida no fio terá sentido anti-horário, tal que VC > VD.
e) a corrente elétrica induzida no fio terá sentido anti-horário, tal que VC < VD.
RESPOSTA: D Após a ligação do campo, há um aumento de fluxo para entrar na página. Pela lei de Lenz, a corrente deve provocar diminuição do campo nesse sentido. Para tanto, a corrente deve fluir no sentido anti-horário. A corrente vai de C para D. Há queda de potencial de C para D, o que significa que VC > VD.
2
INDUÇÃO ELETROMAGNÉTICA – NO VESTIBULAR
EXERCÍCIOS ESSENCIAIS
INDUÇÃO ELETROMAGNÉTICA – NO VESTIBULAR
(PUC-MG) A figura mostra um plano inclinado sobre o qual se coloca um ímã no ponto A, que desliza livremente em direção a B. No trajeto, ele passa através de uma espira circular, ligada a um voltímetro V.
RESPOSTA: C
O fluxo magnético varia durante todo o movimento de descida do ímã: ele aumenta até chegar à espira e depois diminui. Logo, há ddp induzida em todo o trajeto de A a B.
4
EXERCÍCIOS ESSENCIAIS
Desprezando-se todos os atritos mecânicos, pode-se afirmar que:
a) haverá uma diferença de potencial (ddp) induzida na bobina apenas nos momentos de entrada e saída do ímã através da espira.
b) o voltímetro não vai acusar nenhuma ddp, porque a espira não está ligada a nenhuma pilha ou bateria.
c) durante toda a passagem do ímã através da espira, o voltímetro vai acusar leituras da ddp induzida.
d) o voltímetro somente acusaria a leitura de uma ddp induzida na espira se houvesse atrito entre o ímã e o plano inclinado, fazendo com que o ímã passasse através da espira com velocidade constante.
INDUÇÃO ELETROMAGNÉTICA – NO VESTIBULAR
(Ufal) A figura ilustra um fio condutor e uma haste metálica móvel sobre o fio, colocados numa região de campo magnético uniforme espacialmente (em toda a região cinza da figura), com módulo B, direção perpendicular ao plano do fio e da haste e sentido indicado. Uma força de módulo F é aplicada na haste, e o módulo do campo magnético aumenta com o tempo.
De acordo com a lei de Faraday, é correto afirmar que:
a) o aumento de B com o tempo tende a gerar uma corrente no sentido horário, enquanto a ação da força F tende a gerar uma corrente no sentido anti-horário.
b) o aumento de B com o tempo tende a gerar uma corrente no sentido anti-horário, enquanto a ação da força F tende a gerar uma corrente no sentido horário.
5
EXERCÍCIOS ESSENCIAIS
INDUÇÃO ELETROMAGNÉTICA – NO VESTIBULAR
c) ambos, o aumento de B com o tempo e a ação da força F, tendem a gerar uma corrente no sentido horário.
d) ambos, o aumento de B com o tempo e a ação da força F, tendem a gerar uma corrente no sentido anti-horário.
e) a ação da força F tende a gerar uma corrente no sentido horário, enquanto o aumento de B
com o tempo não tem influência sobre o sentido da corrente gerada.
5
EXERCÍCIOS ESSENCIAIS
RESPOSTA: C O aumento do campo provoca aumento no fluxo
magnético e, por isso, gera corrente induzida na haste. O campo aumenta na direção normal à folha, saindo da página. Pela lei de Lenz, a corrente induzida deve ter sentido tal que provoque variação inversa no campo magnético. Isso é obtido com uma corrente no sentido horário. A ação da força também aumenta o fluxo, pelo aumento da área do circuito imersa no campo magnético. Assim, a corrente induzida também deve ter sentido horário, para compensar o aumento. 
INDUÇÃO ELETROMAGNÉTICA – NO VESTIBULAR
(Unimontes-MG) O fluxo magnético através de uma bobina varia com o tempo, de acordo com o gráfico mostrado a seguir. Sabe-se que a bobina constitui um circuito fechado, cuja resistência é igual a 10 Ω.
Determine o valor da corrente elétrica no intervalo entre t = 0,3 s e t = 0,4 s.
a) 4 A 	c) 3 A
b) 2 A 	d) 1 A
9
EXERCÍCIOS ESSENCIAIS
INDUÇÃO ELETROMAGNÉTICA – NO VESTIBULAR
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Professor: utilize a animação como um resumo sobre indução eletromagnética.
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Professor: utilize a animação para mostrar como ela está presente em aparelhos e motores elétricos.
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*
Fis-cad-2-top-9 – 3 Prova 
*

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Outros materiais