Buscar

Estudo da Resistencia do Tijolo de Adobe com Adicao de Fibras Naturais de Coco Verde para Habitacoes de Baixo Custo

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 59 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 59 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 59 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE FEDERAL DO CEARÁ 
CENTRO DE TECNOLOGIA 
DEPARTAMENTO DE ENGENHARIA ESTRUTURAL E CONSTRUÇÃO CIVIL 
 
 
 
 
 
 
 
RENÊ PINHEIRO 
 
 
 
 
 
ESTUDO DA RESISTÊNCIA DO TIJOLO DE ADOBE COM ADIÇÃO DE FIBRAS 
NATURAIS DE COCO VERDE PARA HABITAÇÕES DE BAIXO CUSTO 
 
 
 
 
 
 
 
 
 
 
 
 
FORTALEZA 
2009 
 
 
RENÊ PINHEIRO 
 
 
 
 
 
 
 
 
 
ESTUDO DA RESISTÊNCIA DO TIJOLO DE ADOBE COM ADIÇÃO DE FIBRAS 
NATURAIS DE COCO VERDE PARA HABITAÇÕES DE BAIXO CUSTO 
 
 
 
 
 
 
 
 
 
 
 
 
 
Monografia submetida à Coordenação do 
Curso de Engenharia Civil da Universidade 
Federal do Ceará, como requisito parcial para 
obtenção do grau de Engenheiro Civil. 
 
Orientador: Prof. (a) Ricardo M. de Carvalho 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FORTALEZA 
2009 
 
 
RENÊ PINHEIRO 
 
 
 
 
 
ESTUDO DA RESISTÊNCIA DO TIJOLO DE ADOBE COM ADIÇÃO DE FIBRAS 
NATURAIS DE COCO VERDE PARA HABITAÇÕES DE BAIXO CUSTO 
 
 
 
 
 
Monografia submetida à Coordenação do Curso de Engenharia Civil, da Universidade Federal 
do Ceará, como requisito parcial para a obtenção do grau de Engenheiro Civil. 
 
 
 
 
Aprovada em ___/___/___ 
 
 
 
 
BANCA EXAMINADORA 
 
 
 
__________________________________________________ 
Prof. M.Sc. Ricardo Marinho de Carvalho (Orientador) 
Universidade Federal do Ceará - UFC 
 
 
__________________________________________________ 
Prof. D.Sc. Alexandre Araújo Bertini 
Universidade Federal do Ceará - UFC 
 
 
__________________________________________________ 
Reymard Sávio Sampaio de Melo 
Engenheiro Civil 
 
 
 
 
 
 
 
 
 
 
“Esforço, empenho e dedicação são virtudes 
que levam o ser humano ao sucesso”. Por isso, 
dedico esse trabalho à minha família, que 
acreditou incessantemente em meu potencial e 
me deu força para prosseguir. À minha 
namorada e amigos, que sempre por perto 
despertavam em mim motivação e alegria para 
continuar. Aos meus professores, que 
formaram de mim não só um profissional, mas 
um homem preparado para a vida. E, 
principalmente, dedico meu trabalho a Deus, 
que com sua infinita bondade me iluminou e 
guiou meus passos para que, com certeza, 
alcance um futuro promissor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESUMO 
 
 
O déficit habitacional continua sendo um dos principais problemas sócio-
econômicos dos estados brasileiros. Como forma de minimizar a falta de moradia, 
principalmente, nas regiões rurais, a utilização de antigas técnicas construtivas com o 
emprego de terra crua, decorridas de legados culturais e notórios, pode ajudar amplamente no 
combate dessas dificuldades advindas de longos tempos. O tipo de edificação escolhida para 
estudo foi a milenar técnica da construção com tijolos de adobe, no caso, adicionada de fibras 
naturais de coco verde em sua composição. Para estudar a qualidade dos tijolos, foram 
realizados ensaios de granulometria e de consistência do solo, além do ensaio de resistência 
mecânica à compressão do adobe tradicional e acrescido de fibras de coco, principal objetivo 
do trabalho. Os resultados alcançados mostram a eficiência e qualidade técnica deste 
material, que além de resistente, ainda é de baixo custo e contribuí para suprir o crescimento 
demográfico de forma eco-sustentável. 
 
Palavras-chave: Déficit habitacional. Terra crua. Adobe com adição de fibras naturais de coco 
verde. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LISTA DE FIGURAS 
 
 
Figura 2.1 – Conceito de habitabilidade da unidade habitacional. ......................................... 16 
Figura 2.2 – Localização das arquiteturas de terra no mundo ao longo do tempo. ................. 20 
Figura 2.3 – Utilização de taipa de mão em casa popular. ...................................................... 21 
Figura 2.4 – Igreja edificada com a taipa de pilão. ................................................................. 22 
Figura 2.5 – Residência construída com a utilização de adobe. .............................................. 23 
Figura 2.6 – Representação de molde utilizado pelos egípcios. ............................................. 24 
Figura 2.7 – Tijolos de lama e palha a secarem ao sol. ........................................................... 25 
Figura 2.8 – Tijolo de adobe. .................................................................................................. 26 
Figura 2.9 – Forma para confecção de adobes. ....................................................................... 27 
Figura 2.10 – Disposição descontínua e aleatória das fibras de coco no tijolo de adobe. ...... 28 
Figura 2.11 – Amassamento do solo com pipa à tração animal e maromba. .......................... 29 
Figura 2.12 – Amassamento do solo com os pés. ................................................................... 29 
Figura 3.1 – Destorroamento do material. .............................................................................. 32 
Figura 3.2 – Material passado na peneira Nº 10 . ................................................................... 32 
Figura 3.3 – Material retido lavado . ....................................................................................... 32 
Figura 3.4 – Secagem da estufa . ............................................................................................ 32 
Figura 3.5 – Passagem de material seco nas peneiras . ........................................................... 33 
Figura 3.6 – Pesagem material retido . .................................................................................... 33 
Figura 3.7 – Mistura do solo c/ a solução hexametafosfato de sódio . ....................................34 
Figura 3.8 – Mistura transferida p/ o copo dispersor . ............................................................ 34 
Figura 3.9 – Ação do dispersor por 15min . ............................................................................ 34 
Figura 3.10 – Mistura em proveta graduada . ......................................................................... 34 
Figura 3.11 – Secagem do material na estufa . ....................................................................... 35 
Figura 3.12 – Pesagem do material retido . ............................................................................. 35 
Figura 3.13 – Gráfico da curva granulométrica do solo . ........................................................ 37 
Figura 3.14 – Material passado na peneira Nº 40 (0,42mm) . ................................................ 38 
Figura 3.15 – Adição de água no solo . ................................................................................... 38 
Figura 3.16 – Moldagem do material no aparelho Casagrande . ............................................ 38 
Figura 3.17 – Ranhura no centro da concha . .......................................................................... 38 
Figura 3.18 – Massa plástica do trecho que se ligou . ............................................................ 39 
Figura 3.19 – Material na cápsula p/ ser secado na estufa . .................................................... 39 
 
 
Figura 3.20 – Material passado #40 . ...................................................................................... 39 
Figura 3.21 – Massa plástica . ................................................................................................. 39 
Figura 3.22 – Placa devidro . ................................................................................................. 40 
Figura 3.23 – Secagem do material na estufa . ....................................................................... 40 
Figura 3.24 – Gráfico do número de golpes pela umidade p/ determinação do LL do solo . . 41 
Figura 4.1 – Material coletado de Coreaú . ............................................................................. 42 
Figura 4.2 – Formas 7 x 7 x 7 cm (1) . .................................................................................... 43 
Figura 4.3 – Formas 7 x 7 x 7 cm (2). ..................................................................................... 43 
Figura 4.4 – Destorroamento do material. .............................................................................. 44 
Figura 4.5 – Peneiramento (#4 mm) ....................................................................................... 44 
Figura 4.6 – Amassamento do material. ................................................................................. 44 
Figura 4.7 – Massa plástica pronta para ser despejada na forma. ........................................... 44 
Figura 4.8 – Material aplicado na forma. ................................................................................ 44 
Figura 4.9 – Secagem do adobes à sombra. ............................................................................ 45 
Figura 4.10 – Aplicar jornal molhado sobre bancada de trabalho. ......................................... 45 
Figura 4.11 – Argamassa de cimento e areia fina. .................................................................. 45 
Figura 4.12 – Espalhar argamassa na superfície da bancada. ................................................. 46 
Figura 4.13 – Assentamento dos adobes sobre a argamassa. .................................................. 46 
Figura 4.14 – Retirada do excesso de argamassa. ................................................................... 46 
Figura 4.15 – Secagem na estufa por 24hrs. ........................................................................... 46 
Figura 4.16 – Secagem a temperatura ambiente. .................................................................... 47 
Figura 4.17 – Máquina universal de ensaios. .......................................................................... 47 
Figura 4.18 – Carregamento no corpo de prova. ..................................................................... 47 
Figura 4.19 – Rompimento do CP. ......................................................................................... 47 
Figura 5.1 – Fibras naturais de coco verde. ............................................................................ 49 
Figura 5.2 – Aplicação das fibras no solo. .............................................................................. 49 
 
 
 
 
 
 
 
 
 
 
 
 
 
LISTA DE TABELAS 
 
 
Tabela 3.1 – Peneiras: Abertura de malha. ............................................................................. 32 
Tabela 3.2 – Classificação textural do solo. ............................................................................ 36 
Tabela 3.3 – Determinação da classificação do solo de acordo com sua plasticidade. ........... 40 
Tabela 3.4 – Dados para determinação da plasticidade do solo. ............................................. 41 
Tabela 4.1 – Características dos corpos de prova. .................................................................. 47 
Tabela 4.2 – Resistência à compressão dos blocos. ................................................................ 48 
Tabela 5.1 – Características dos corpos de prova. .................................................................. 50 
Tabela 5.2 – Resistência à compressão dos blocos. ................................................................ 50 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SUMÁRIO 
 
 
1 INTRODUÇÃO ................................................................................................................ 10 
1.1 Definição do problema ............................................................................................... 12 
1.2 Justificativa do tema abordado .................................................................................. 12 
1.3 Objetivos .................................................................................................................... 12 
1.3.1 Objetivos gerais ................................................................................................ 12 
1.3.2 Objetivos específicos ........................................................................................ 13 
1.4 Metodologia ............................................................................................................... 13 
1.5 Estrutura do Trabalho ................................................................................................ 14 
2 REVISÃO BIBLIOGRÁFICA ......................................................................................... 15 
2.1 Conceituações de habitação ....................................................................................... 15 
2.2 Habitações de interesse social .................................................................................... 16 
2.3 Déficit habitacional .................................................................................................... 18 
2.4 Panorama mundial das construções em terra ............................................................. 19 
2.4.1 Taipa de mão .................................................................................................... 21 
2.4.2 Taipa de pilão ................................................................................................... 22 
2.4.3 Adobe ............................................................................................................... 23 
2.5 Histórico do adobe ..................................................................................................... 23 
2.6 Adobe ......................................................................................................................... 25 
2.7 Adobe com adição de fibras de coco verde ............................................................... 26 
2.7.1 Local de Fabricação .......................................................................................... 27 
2.7.2 Confecção das formas ....................................................................................... 27 
2.7.3 Preparação do solo e da fibra de coco triturada ................................................ 28 
2.7.4 Amassamento e descanso do barro ................................................................... 28 
2.7.5 Manufatura dos adobes ..................................................................................... 30 
2.7.6 Secagem dos tijolos .......................................................................................... 30 
3 ENSAIO DE GRANULOMETRIA, LIMITE DE LIQUIDEZ E LIMITE DE 
PLASTICIDADE ..................................................................................................................... 31 
3.1 Determinação da granulometria ................................................................................. 31 
3.1.1 Método do peneiramento .................................................................................. 31 
3.1.2 Método da sedimentação .................................................................................. 33 
3.1.3 Cálculos e resultados ........................................................................................ 35 
3.2 Determinação dos limites de consistência .................................................................37 
3.2.1 Determinação do limite de liquidez .................................................................. 37 
3.2.2 Determinação do limite de plasticidade............................................................ 39 
3.2.3 Índice de plasticidade do solo ........................................................................... 40 
3.2.4 Cálculos e resultados ........................................................................................ 40 
4 ENSAIO DE RESISTÊNCIA MECÂNICA À COMPRESSÃO DO ADOBE 
CONVENCIONAL .................................................................................................................. 42 
4.1 Materiais e métodos ................................................................................................... 42 
4.1.1 Matéria-prima ................................................................................................... 42 
 
 
4.1.2 Formas .............................................................................................................. 43 
4.1.3 Confecção dos tijolos ....................................................................................... 43 
4.1.4 Secagem dos adobes ......................................................................................... 44 
4.1.5 Preparação para ensaio de resistência mecânica à compressão ........................ 45 
4.1.6 Ensaio de resistência mecânica à compressão .................................................. 46 
4.2 Características dos corpos de prova ........................................................................... 47 
4.3 Resultados Obtidos .................................................................................................... 48 
4.4 Discussões e comparações ......................................................................................... 48 
5 ENSAIO DE RESISTÊNCIA MECÂNICA À COMPRESSÃO DO ADOBE COM 
ADIÇÃO DE FIBRAS DE COCO VERDE ............................................................................ 49 
5.1 Materiais e métodos ................................................................................................... 49 
5.1.1 Confecção dos tijolos ....................................................................................... 49 
5.2 Características dos corpos de prova ........................................................................... 50 
5.3 Resultados obtidos ..................................................................................................... 50 
5.4 Discussões e comparações ......................................................................................... 50 
6 CONSIDERAÇÕES FINAIS ........................................................................................... 51 
6.1 Conclusões ................................................................................................................. 51 
6.2 Dificuldades encontradas na elaboração do trabalho ................................................. 51 
6.3 Sugestões para futuros trabalhos ................................................................................ 52 
REFERÊNCIAS BIBLIOGRÁFICAS ..................................................................................... 53 
 
 
 
 
 
 
 
 
 
 
10 
 
1 INTRODUÇÃO 
 
O Brasil, país classificado como “em desenvolvimento”, enfrentou e continua 
enfrentando diversos problemas sócio-culturais e econômicos em seus estados. A falta de 
moradia e de educação, as péssimas condições das malhas viárias, o descaso com o 
saneamento básico, vêm cada vez mais degradando a imagem dos órgãos e entidades públicas, 
tanto no âmbito municipal, quanto no estadual e federal. 
Segundo o importante estudo “Déficit Habitacional no Brasil”, realizado pela 
Fundação João Pinheiro – MG (1995 apud Câmara Brasileira da Indústria da Construção – 
CBIC, 1996, p. 02) a deficiência de habitação no país, em 1991, totalizava 4,99 milhões de 
unidades, sendo 3,36 milhões localizadas no segmento urbano e 1,63milhões nas áreas rurais. 
Em 2006, de acordo com outro estudo realizado pela mesma fundação, para 
solucionar a falta de moradia do país seria preciso construir cerca de 7,935 milhões de 
domicílios multi-familiares (Fundação João Pinheiro, 2008). E este número, com base nesses 
estudos citados, só tende a crescer. 
De acordo com Carvalho et al (2009), o estado do Ceará apresenta um déficit 
habitacional de aproximadamente 400 mil unidades, isso apenas na capital e região 
metropolitana do estado. Nas outras cidades, a carência de moradias chega a quase 200 mil 
unidades, dividido entre médias e pequenas cidades. 
Para o IBGE (1999 apud Lorenzetti, 2001, p. 07), a caracterização do déficit 
habitacional é dada pela ausência de um dos itens a seguir, referentes à moradia própria ou 
não: instalações sanitárias ligadas à rede geral ou fossa séptica, abastecimento de água com 
canalização interna ligada à rede geral, coleta de lixo e ligação à rede de energia elétrica. 
Vale lembrar, que os números indicados até aqui, não incluem a parcela referente 
à carência de moradia por posse irregular do terreno (áreas de proteção ambiental, por 
exemplo), o que aumentaria mais o índice de falta de habitação (Lorenzetti, 2001). 
A dificuldade em encontrar locais propícios para morar, muitas vezes leva as 
pessoas a se alojarem em locais públicos, como praças, parques, praias, ruas, calçadas. Em 
alguns casos, a apropriação de terras por parte dos desabrigados é inevitável. Além disso, 
diversas famílias, por falta de dinheiro e apoio político, constroem suas casas com diversos 
materiais, desde laminados de madeira e zinco, até plásticos e papelões, vivendo de forma 
subumana. 
Diversas medidas podem solucionar o problema da falta de habitação, contudo, a 
construção de um novo padrão de desenvolvimento, deve ser norteada por uma noção de 
11 
 
crescimento econômico, não perdendo de vista a preocupação com o equilíbrio ambiental e 
com a justiça social. O homem deve lembrar que, por menor que seja sua ação, os impactos 
sobre o meio ambiente são iminentes. Isso exige a mudança imediata de atitudes, hábitos e 
padrões de consumo utilizados pelo ser humano. Neste sentido, o grande desafio da busca de 
um modelo sustentável de desenvolvimento, é atender as necessidades humanas sem ferir os 
princípios naturais (ALEXANDRIA ; LOPES, 2008, p. 02). 
Segundo Cavalcante (2003 apud ALEXANDRIA ; LOPES, 2008, p. 02 ), a forma 
de chegar aos predicados de uma vida sustentável não é tão simples assim. Para ele, não existe 
uma teoria única do desenvolvimento ecologicamente equilibrado, e sim uma multiplicidade 
de métodos de compreender e investigar a questão. “É necessário uma visão e análise 
multidimensional e multidisciplinar, que possibilitem encontrar mecanismos que permitam o 
uso dos valores naturais, sem riscos de esgotar a capacidade de sustentação dos ecossistemas” 
(CAVALCANTE, 2003 apud ALEXANDRIA ; LOPES, 2008, p. 02 ). 
Várias alternativas podem ser mencionadas para reduzir a falta de moradia do 
país. Contudo, seriam necessárias significativas verbas para tal realização. Além disso, 
diversos fatores dificultam a implantação de ações voltadas à habitação popular, 
principalmente nas áreas rurais. Dentre elas, destaca-se a logística de materiais e componentes 
que envolvem tais cidades. Grandes distâncias, falta de transporte e de água, escassez de 
materiais de construção são apenas alguns fatores que inviabilizam a realização de obras 
nesses locais. Portanto, dependendo do legado cultural da região, a utilização de antigas 
técnicas, porém práticas e rápidas, ajudariam a amenizar consideravelmente a pobreza do 
Brasil. Uma delas é a utilização de terra crua nas construções, através de planejamentos 
globais estruturados e estrategicamente capazes de promover um desenvolvimento sustentável 
e econômico.Processo utilizado nas antigas civilizações, trata-se de um sistema milenar, datado 
de cerca de cinco a dez mil anos, de acordo com a literatura. Conforme a Bíblia (Bíblia, 1999 
apud OLIVEIRA, 2003), são encontradas várias referências a tijolos de barro cozidos e de 
terra crua, basicamente formados por argila e areia. Esse sistema construtivo é composto por 
várias técnicas, como: taipa de pilão, pau-a-pique, pães de barro e adobe, principal material 
utilizado em construções em terra no Brasil. 
O adobe, segundo a literatura, é um tijolo de terra crua apiloado, ou compactado, 
moldado em formas que podem ser produzidas individualmente, de pares, quatro unidades, ou 
até mais, dependendo da produtividade almejada pelo fabricante. Sua composição é de, 
aproximadamente, 20% de argila e 80% de silte (BOUTH, 2005). 
12 
 
Dentre suas vantagens, o adobe regula a umidade ambiental, proporcionando um 
conforto térmico agradabilíssimo. Sua produção economiza significativamente o consumo de 
energia e, conseqüentemente, auxilia na preservação ambiental. Contudo, as desvantagens 
também devem ser levadas em conta nesse sistema construtivo. Dentre elas, destacam-se a 
permeabilidade do material, a dificuldade de encontrar terra adequada para tal construção, 
afinal a geologia do terreno é de total importância para a verificação da capacidade ou não de 
se construir, as constantes retrações nos tijolos de adobe durante o processo de secagem, 
causando trincas e fissuras em sua superfície (Pisani, 2007). 
 
1.1 Definição do problema 
 
A busca por alternativas para reduzir a falta de moradia no país é incessante. A 
utilização de construções em terra, através de tijolos de adobe, pode solucionar grande parte 
desse problema social. Porém, é necessário estudar a capacidade e resistência desses tijolos. O 
acréscimo de fibras naturais de coco pode gerar resultados mais expressivos se comparados 
aos adobes convencionais. 
 
1.2 Justificativa do tema abordado 
 
Estudar as características e potencialidades do adobe pode ajudar amplamente a 
reduzir o déficit habitacional. A adição de fibras naturais pode viabilizar ainda mais essa 
técnica construtiva. Portanto, o presente trabalho almeja, através de ensaios técnicos, 
apresentar resultados que assegurem segurança e conforto na utilização desse sistema 
construtivo. 
 
1.3 Objetivos 
 
1.3.1 Objetivos gerais 
 
O trabalho tem como objetivo estudar o adobe, tijolo de terra crua composto 
basicamente por silte, areia e argila, com a adição de fibras naturais de coco verde. 
 
 
 
13 
 
1.3.2 Objetivos específicos 
 
Para a obtenção dos objetivos gerais, serão realizados estudos e procedimentos 
mais específicos, necessários para o enriquecimento do trabalho. Dentre eles, destacam-se: 
 
1. Apresentar, com base na literatura mundial, a deficiência habitacional presente no país e a 
importância de construções com a utilização de terra crua, focando os estudos para os tijolos 
de adobe com fibras de coco; 
 
2. Realizar no solo coletado de Coreaú: ensaios granulométricos para sua classificação 
textural e ensaios de consistência para cálculo de seu teor de plasticidade; 
 
3. Ensaiar a resistência mecânica a compressão do adobe com base na norma técnica E.080 
(Adobe) e comparar a potencialidade técnica entre o tijolo de adobe convencional, e com a 
adição de fibras naturais de coco (teor: 10% em volume). 
 
1.4 Metodologia 
 
Com o intuito da concretização dos objetivos propostos, desenvolveram-se 
algumas atividades, que esclarecem melhor a necessidade de técnicas construtivas inovadoras: 
 
i) Foram abordadas, com o auxílio da literatura, as construções com a utilização de terra crua, 
as técnicas empregadas para tais construções. Bem como a importância que o adobe tem nos 
aspectos ecológico, social e econômico; 
 
ii) Desempenharam-se no laboratório de mecânica dos solos ensaios de granulometria e 
ensaios de limites de consistência. Estes classificam a textura do solo e, conseqüentemente, 
analisam a possibilidade da construção com adobe na região onde o solo foi coletado; 
 
iii) Realizaram-se no laboratório de materiais de construção civil, ensaios de resistência 
mecânica á compressão do adobe com e sem aditivos, buscando identificar e comparar as 
vantagens e desvantagens dos dois materiais. 
 
 
14 
 
1.5 Estrutura do Trabalho 
 
O presente trabalho contém sete capítulos. O primeiro é a introdução que 
apresenta o tema ao leitor, contextualizando, justificando e proporcionando ao mesmo um 
conhecimento vasto e subjetivo do problema analisado. Nesse capítulo estão também os 
objetivos a serem alcançados e as metodologias para tal obtenção. No segundo capítulo, 
apresenta-se a revisão bibliográfica. Ela é formada por conceitos, opiniões, críticas, 
experiências de diversos autores, tanto no aspecto de habitação popular e déficit habitacional, 
até as construções de terra crua e, mais especificamente, com a utilização do tijolo de adobe 
utilizando fibras de coco em sua composição. O terceiro capítulo é formado por ensaios para a 
classificação textural do solo analisado. Dentre eles, destacam-se os ensaios granulométricos e 
os ensaios de seus limites de consistência. No quarto capítulo, analisa-se o comportamento do 
adobe tradicional durante o ensaio mecânico de resistência à compressão, juntamente com 
suas características, aparelhagens técnicas, escolha do tipo de material, proporção utilizada, 
entre outros. Nele, também se debate os resultados do ensaio. No quinto capítulo avaliam-se 
os mesmo aspectos do capítulo anterior, só que agora considerando o adobe com a adição de 
fibras de coco verde. No sexto capítulo apresentam-se as conclusões, dificuldades encontradas 
durante a elaboração do trabalho e possíveis sugestões para futuras pesquisas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15 
 
2 REVISÃO BIBLIOGRÁFICA 
 
2.1 Conceituações de habitação 
 
A palavra habitação pode ser conceituada de diferentes formas, segundo a 
literatura mundial. O termo abrange diversos valores e diferentes formas de sua análise. 
Acredita-se, que para entender o significado de um determinado termo, é necessária sua 
avaliação dele como um todo. Buscar informações, definições, pesquisar as raízes da palavra, 
formar uma opinião particular, poderá ajudar a entender o real significado da expressão. Eis a 
seguir algumas definições de habitação que facilitarão sua compreensão. 
De acordo com o Plano Diretor de Desenvolvimento Urbano Ambiental – 
PDDUA, da cidade de Porto Alegre – RS (1999), “habitação é a moradia provida de infra-
estrutura básica (água, luz, telefonia e esgotos) e cujos moradores têm acesso aos serviços 
essenciais (educação, saúde, lazer)”. 
Para a SEGEP, Secretaria Municipal de Coordenação Geral do Planejamento e 
Gestão, de Belém – PA (2008), a expressão é resumida como “parte ou todo de uma 
edificação que se destina a residência”. 
As definições anteriores mostram o entendimento leigo e superficial do 
significado de habitação. Para o estudo mais apurado do termo, deve-se levar em conta a 
necessidade de habitações saudáveis para a população de baixa renda. Elas abrangem, desde o 
ato da preparação de seu desenho, microlocalização e construção, até o seu uso e manutenção. 
É importante considerar a localização geográfica e social da edificação, os materiais utilizados 
para sua construção, bem como a qualidade dos acabamentos, o território da moradia provido 
de recursos fundamentais como abastecimento de água e energia e uma vizinhança que busca 
sempre satisfação com relação amistosa para com seus vizinhos (Cohen et al, 2007, p. 01) 
De forma mais sistemática, Bonduki (2002 apud COHEN et al, 2007, p. 03) 
esclarece e conceitua habitação: 
 
O conceito de habitabilidadeurbana parte do pressuposto que a habitação deve ser 
entendida em um sentido mais abrangente e sistêmico, no sentido de pertencimento, 
de usufruto e de direito à cidade. Isto é, inclui a oferta e o acesso por parte da 
população à rede de infra-estrutura urbana e de acesso aos equipamentos públicos. 
Diz respeito à questão do pertencimento ao território e da inclusão de um amplo 
contexto urbano, dando visibilidade ao pleno exercício de fruir, usufruir e construir 
um espaço com qualidade de saudável/habitável. 
 
16 
 
É importante ressaltar também o conceito de habitabilidade no aspecto de 
qualidade de vida e comodidade dos moradores. A satisfação das pessoas em terem suas 
necessidades físicas, culturais, psicológicas e sociais atendidas, através de edificações 
confortáveis. O interesse dos órgãos públicos em executarem construções adequadas 
ambientalmente à moradia, com luminosidade apropriada, conforto térmico e acústico, além 
da preocupação com a segurança no entorno das moradias (COHEN et al, 2007, v. 12). A 
figura 2.1 esquematiza os conceitos mencionados anteriormente. 
 
 
Figura 2.1 - Conceito de habitabilidade da unidade habitacional 
Fonte: Obtida com base nos conceitos de Bonduki (2002), desenvolvida por Castro (2007) 
 
2.2 Habitações de interesse social 
 
“A função primordial da habitação é a de abrigo”. Com o aprimorar de técnicas 
construtivas, o homem passou a utilizar materiais disponíveis em seu meio, tornando o abrigo 
cada vez melhor elaborado. Porém, apesar de toda a evolução tecnológica, sua função 
primordial tem permanecido a mesma, ou seja, proteger o ser humano das intempéries e de 
intrusos (ABIKO, 1995 apud LARCHER 2005, p. 06). 
Para Rapoport (1984 apud LARCHER, 2005, p. 06) a variedade observada na 
forma de construção denota a característica humana de transmitir significados e traduzir as 
aspirações de diferenciação e territorialidade dos habitantes em relação a vizinhos e pessoas 
de fora de seu grupo. 
Santos (1999 apud LARCHER, 2005, p. 06) afirma que “a habitação é uma 
necessidade básica e uma aspiração do ser humano.” Para Bolafi (1977 apud LARCHER, 
SEGURANÇA
SALUBRIDADE 
DOMICIAR/ENT
ORNO
PSICOLÓGICAS
SOCIOCULTURAIS
LUMINOSO
TÉRMICO
ACÚSTICO
TÁCTIL
SATISFAÇÃO DAS 
NECESSIDADES
CONFORTOS 
AMBIENTAIS
FRUIÇÃO
USUFRUIÇÃO
CONSTRUÇÃO 
DO ESPAÇO 
ARQUITETURAL
FÍSICAS
HABITABILIDADE 
DA UNIDADE 
HABITACIONAL
QUALIDADE DE 
VIDA
COMODIDADE 
DOS MORADORES
17 
 
2005, p. 06), “a casa própria, juntamente com a alimentação e o vestuário é o principal 
investimento para a constituição de um patrimônio, além de ligar-se, subjetivamente ao 
sucesso econômico e a uma posição social mais elevada.” 
Junqueira e Vita (2002 apud LARCHER, 2005, p. 06) observam que: 
 
Hoje a aquisição da habitação faz parte do conjunto de aspirações principais de uma 
parcela significativa da população brasileira, embora venha perdendo importância 
relativa para a educação, saúde e previdência privada. Esta perda de importância 
relativa não foi devido à realização da aspiração da moradia pela população mas, em 
grande parte, devido à deficiência crescente destes serviços públicos. 
 
“A habitação desempenha três funções diversas: social, ambiental e econômica. 
Como função social, tem de abrigar a família e é um dos fatores do seu desenvolvimento” 
(Fernandes, 2003 apud LARCHER, 2005, p. 06). 
Conforme Abiko (1995 apud LARCHER, 2005, p. 06 e 07), outro conceito de 
habitação: 
 
A habitação passa a ser o espaço ocupado antes e após as jornadas de trabalho, 
acomodando as tarefas primárias de alimentação, descanso, atividades fisiológicas e 
convívio social. Assim, entende-se que a habitação deve atender os princípios 
básicos de habitabilidade, segurança e salubridade. 
 
A habitação, apesar de ser indispensável para a vida de qualquer ser humano, é 
um produto efetivamente caro. E isso dificulta as classes menos privilegiadas de desfrutarem 
desse poder aquisitivo. Então a Habitação de Interesse Social (HIS) define medidas para 
solucionar o problema de falta de moradia para as classes mais baixas. Segue algumas 
definições utilizadas por instituições e agências de termos importantes nesse estudo (ABIKO, 
1995 apud LARCHER, 2005, p. 08): 
 
− “Habitação de Baixo Custo: A habitação de baixo custo é uma habitação barata 
sem que isso signifique necessariamente habitação para população de baixa renda”. 
 
− “Habitação para população de baixa renda: A habitação para população de 
baixa renda é um termo que tem a mesma conotação de habitação de interesse social e trazem 
a necessidade de se definir a renda máxima das famílias e indivíduos situados nesta faixa de 
atendimento”. 
− “Habitação popular: Termo genérico envolvendo todas as soluções destinadas 
ao atendimento de necessidades habitacionais”. 
18 
 
Nos conceitos de abordagens habitacionais, a habitação popular deve ser 
entendida como um processo com uma dimensão física e com procedimentos complexos de 
produção desenvolvidos nos âmbitos político, social, econômico, jurídico, ecológico, 
tecnológico. Para uma melhor compreensão da unidade habitacional, além de considerar que 
ela é um espaço confortável, seguro e salubre, é necessário abranger ainda mais o enfoque 
(ABIKO, 1995 apud LARCHER, 2005, p. 09). 
 
2.3 Déficit habitacional 
 
 O conceito de déficit habitacional não se resume à apenas falta de moradia para 
as classes mais baixas. Ele também envolve a substituição de moradias devido às péssimas 
condições de instalações e o grande número de famílias habitando uma mesma casa. As 
definições dos dois conceitos são dadas a seguir (FUNDAÇÃO JOÃO PINHEIRO, 1995; 
IPARDES, 2003): 
 
− Déficit por reposição deficiente de estoque: “gerado pela existência de 
moradias sem condições de habitabilidade, devido à precariedade das construções ou em 
virtude de terem sofrido desgaste da estrutura física e que, portanto, devem ser repostas”; 
 
− Déficit por incremento deficiente do estoque: “criado pela existência de 
domicílios improvisados e de coabitação familiar ou ainda, da moradia em locais destinados a 
fins não residenciais”. 
 
Outro aspecto também considerado na formulação do déficit, é denominado “ônus 
excessivo com aluguel”. Corresponde ao número de famílias urbanas, com renda familiar de 
até três salários mínimos, que moram em casa ou apartamento (domicílio urbanos duráveis) e 
que despendem mais de 30% de sua renda com aluguel (FUNDAÇÃO JOÃO PINHEIRO, 
1995). Nestes setores, geralmente as relações de locação são baseadas na informalidade e, em 
conseqüência, são extremamente perversas para com os inquilinos. Ao contrário do que 
ocorre com os setores médios, em que o trâmite das locações segue leis e regulamentos. 
 
 É imprescindível comentar também sobre os casos em que os domicílios são 
inadequados para a moradia. Estes, de acordo com a Fundação João Pinheiro (1995), são 
classificados em: “domicílios com carência de infra-estrutura, com adensamento excessivo de 
19 
 
moradores, com problemas de natureza fundiária, em alto grau de depreciação ou sem unidade 
sanitária domiciliar exclusiva”. 
 
2.4 Panorama mundial das construções em terra 
 
A terra crua, de acordo com a literatura, sempre foi um dos materiais mais 
empregados em construção no mundo. Originalmente, os materiais utilizados pelos primeiros 
homens para a construção dos seus abrigos, foram de caráter natural, abundantes e acessíveis, 
como a madeira, as folhas, as ramas e a palha. Devido a vida nômade, com freqüentes 
mudanças de moradias, não havia preocupações ou necessidades de construções mais duráveis 
por parte daqueles homens. Portanto, à medida que os hábitos se modificavam e o homem 
evoluía para o estilo de vida sedentário, ele passou a adotar materiaismais resistentes e 
duradouros, também disponíveis na natureza. Dentre eles, destacam-se: a terra e a pedra 
(ALEXANDRIA ; LOPES, 2008, p. 02). 
As datações mais antigas das construções em terra nos remetem à região da 
Mesopotâmia e ao antigo Egito. Isto ocorre primeiro pela presença constante de rios que, 
devido ao processo geológico de milhares de anos, sedimentaram o material para a formação 
da argila. Segundo por causa do clima seco, cujo conforto térmico das edificações em terra é 
considerável (BUSSOLOTI, 2008). 
De acordo com Motta et al. (2004, p. 01), “o uso do solo como material de 
construção é muito antigo. Isto é comprovado através de inúmeras construções remanescentes 
de eras passadas, que são testemunhos da história e cultura dos povos”. 
A construção em terra foi durante séculos a principal forma construtiva em várias 
regiões do mundo. Em países da Ásia, no Egito e no Oriente Médio, existem exemplos dessas 
edificações com mais de cinco mil anos de antiguidade. No Egito, por exemplo, a utilização 
do adobe foi bastante difundida nas construções de casas, palácios, templos, muros, fortalezas 
devido ao seu fácil manuseio e baixo custo (PATRONE et al., 2005). 
Bussoloti (2008) alega que, praticamente todas as antigas civilizações já 
trabalharam com a terra em suas edificações. Os sumérios, assírios e babilônios construíram 
templos em formato de pirâmides (zigurates), os egípcios ergueram as mastabas (túmulos 
também em formato piramidal) e, posteriormente, recorreram a construções de pedra. Os 
astecas também utilizaram bastante essa técnica construtiva, levantando diversas pirâmides de 
seus deuses com toneladas de terra batida. Também na América, muitas tribos pré-
20 
 
colombianas utilizavam o adobe, pau-a-pique e a taipa de pilão para suas construções, 
copiando as idéias dos portugueses colonizadores. 
Ainda de acordo com Bussoloti (2008), aproximadamente metade das 
construções, localizadas nos países “em desenvolvimento”, utilizavam a terra como base de 
suas construções, ou seja, cerca de um terço da humanidade vive em habitações deste tipo. 
Para ele, o fato da população brasileira mais humilde sobreviver de forma transitória, é 
determinante para o grande número de casas provisórias construídas com terra crua. 
 Para Dethier (2002 apud ALEXANDRIA ; LOPES, 2008, p. 03): “A terra vem 
sendo utilizada, pelos homens, desde o surgimento dos primeiros povoados, há uns 10 mil 
anos, para edificar cidades inteiras; palácios e templos; igrejas e mesquitas; armazéns e 
castelos, praças fortificadas e soberbos monumentos”. 
Alexandria e Lopes (2008, p. 03) complementam: 
 
Disponível na maior parte da superfície terrestre esse material aparentemente 
simples foi usado em todos os continentes em todos os climas, em todas as latitudes 
e em quase todas as culturas e civilizações pré-industriais, comprovando não só a 
diversidade de seu emprego, mas a extraordinária multiplicidade de formas e 
funções que pode assumir (Figura 2.2). 
 
 
Figura 2.2 – Localização das arquiteturas de terra no mundo ao longo do tempo 
Fonte: SILVA (1995 apud ALEXANDRIA ; LOPES, 2008, p. 03) 
 
Alexandria e Lopes (2008, p. 04) afirmam que as construções em terra foram e 
continuam sendo utilizadas em vários países do mundo, e muitas dessas casas já estão de pé 
há séculos, o que mostra todo o potencial desse estilo de construção sustentável. 
Além de ser recomendado em construções alternativas para populações de baixa 
renda em países subdesenvolvidos ou em desenvolvimento, [...] a terra também está sendo 
21 
 
adotada atualmente para elaboração de residências de classe média alta, não apenas nos países 
do dito primeiro mundo, mas também no Brasil (Machado et al., 2004, p. 01 e 02). 
 Para Dethier e Guillaud (1994 apud ALEXANDRIA ; LOPES, 2008, p. 04) “a 
terra sempre foi um dos materiais de construção mais utilizados no mundo e atualmente cerca 
de 30% da população mundial ainda vive em construções de terra”. 
Dethier e Guillaud (1994 apud ALEXANDRIA ; LOPES, 2006, p. 03) continuam: 
 
Existe um vasto repertório de técnicas que utilizam a terra crua como matéria básica 
para o levantamento das paredes. Técnicas que variam de acordo com as 
peculiaridades culturais, condicionantes ambientais e características do solo 
disponível em cada região do globo, onde elas são utilizadas. No Brasil, as mais 
usadas a partir do período colonial, foram o adobe, a taipa-de-pilão e a taipa-de-mão. 
 
2.4.1 Taipa de mão 
 
Trazida para o Brasil pelos colonizadores portugueses, a técnica da taipa de mão 
(Figura 2.3) também conhecida como pau-a-pique, barro armado, taipa de sebe ou taipa de 
sopapo, consiste numa estrutura armada com ripas de madeira ou bambu associada a uma 
mistura de barro. É uma técnica simples de construção, porém muitas vezes tratada com 
preconceito devido sua rústica aparência (BUSSOLOTI, 2008). 
 
 
Figura 2.3 – Utilização de taipa de mão em casa popular 
Fonte: BUSSOLOTI (2008) 
 
Devido a fácil degradação pela água por capilaridade, as construções em taipa de 
mão devem ser executadas sobre fundações de alvenaria de pedra com cerca de 60 cm de 
altura. Aconselha-se utilizar essa técnica construtiva nas edificações de pequeno e médio 
porte e de preferência em regiões com baixos índices pluviométricos. Apesar de material 
22 
 
construtivo ser incombustível, isotérmico, natural e barato, ele não suporta bem os esforços 
laterais provocados pela fluência das cargas da cobertura (KAWAMOTO et al., 2007). 
 
2.4.2 Taipa de pilão 
 
A taipa de pilão (Figura 2.4) foi trazida ao Brasil pelos colonizadores europeus. 
Sua metodologia construtiva consiste em socar a terra, colocando-a em camadas de 15 cm, 
dentro de uma armação de madeira chamada taipal (Motoro, 1994 apud SILVA, 2000). Para 
dar a mistura uma maior consistência, é importante umedecer bem o material em camadas de 
10 cm, aproximadamente e em alguns casos, deve-se adicionar a argamassa, pedregulhos de 
diâmetros variados e para dar uma maior resistência à compressão às paredes (SILVA, 2000). 
 
 
Figura 2.4 – Igreja edificada com a taipa de pilão 
Fonte: KAWAMOTO et al. (2007) 
 
E Silva (2000, p. 28) acrescenta: 
 
Uma casa construída na técnica da taipa-de-pilão, se for bem feita, ou seja, se o 
barro for bem escolhido e bem compactado e se as paredes tiverem uma espessura 
entre 40 e 80cm, será uma casa sólida e confortável do ponto de vista térmico e 
acústico. E, quanto ao ponto de vista estético, essas casas são bastante agradáveis, 
podendo até dispensar o uso de reboco (camada final de revestimento), pois suas 
paredes ficam totalmente lisas, de modo que permitem a aplicação da pintura direto 
sobre as paredes, depois de prontas. 
 
O processo atualmente pode produzir paredes tão resistentes quanto às de 
concreto, isto quando ocorre de maneira mecanizada. E mesmo confeccionadas manualmente, 
as construções com taipa de pilão são mais resistentes que aquelas feitas com adobe, isto 
ocorre devido a compressão que faz com que as paredes fiquem mais compactas, sólidas e 
menos impermeáveis (BUSSOLOTI, 2008) 
23 
 
2.4.3 Adobe 
 
O adobe (figura 2.5) é uma técnica tradicional executada em terra crua. Sua 
fabricação, que pode ser unitária ou de largas escalas, consiste no amassamento da terra, que 
após alguns dias de descanso será colocada, ainda úmida, sobre formas (geralmente de 
madeiras e retangulares) e em seguida despejadas para secar ao sol (VIVAS, s.d., apud 
OLIVEIRA 2003). 
 
 
Figura 2.5 – Residência construída com a utilização de adobe 
Fonte: ALEXANDRIA ; LOPES (2008, p. 07) 
 
Segundo Gutierrez (1972 apud OLIVEIRA, 2003, p. 04), “o adobe como sistema 
de construção, se pode descrever como a superposição de blocos de barro misturado com 
palha, secados ao sol, que seunem entre si com uma argamassa similar a sua constituição 
interna”. 
Para Santiago (2001 apud Machado et al., 2004, p. 02), “adobe é a denominação 
pela qual são conhecidos os tijolos de barro secos à sol ou à sombra, em locais arejados, sem 
que sejam submetidos à queima pelo fogo”. 
 
2.5 Histórico do adobe 
 
“O tijolo remonta a épocas muito longínquas, sendo impossível definir com 
precisão as suas origens. Campbell (2005) considera que o tijolo remonta à era do Neolítico, 
ou seja, por volta de 10.000 a. C., mas reforça a incerteza dos números” (MESQUITA, 2007, 
p. 05). O Homem neste período, dominador da técnica do fogo e iniciando a vida baseada na 
24 
 
agricultura e pecuária, passa a se preocupar com sua proteção e começa a delimitar ser 
espaços, surgindo assim a construção (MESQUITA, 2007). 
Mesquita (2007, p. 05) evidencia o início da utilização dos tijolos de terra e 
compara o material com a lama e a pedra, já existentes nos antigos povoados: 
 
Os tijolos mais antigos de que se tem conhecimento até hoje foram encontrados em 
Jericó, junto ao Mar Morto, numa das povoações mais antigas que se conhecem. Os 
tijolos eram de lama, moldados manualmente e secos ao sol, apresentando uma 
consistência maior do que a lama por si só. Eram muito irregulares, carecendo de 
grandes quantidades de argamassa de lama para ligá-los, argamassa esta que 
representava o elo mais fraco da matriz criada, especialmente quando da ocorrência 
de precipitação. A resistência era a vantagem mais óbvia face à utilização direta de 
lama para o mesmo propósito e a trabalhabilidade, a abundância de matéria-prima e 
a facilidade de transporte foram fatores que tornaram esta solução interessante face à 
pedra. O tijolo era assim um meio termo entre dois materiais já existentes. 
 
Para Simões (1996 apud MESQUITA, 2007), um dos principais motivos para a 
fabricação de tijolos, foi a utilização de moldes (Figura 2.6). Isto se deu, inicialmente, na 
Mesopotâmia, há 4000 anos, impulsionado pela falta de pedras, que eram amplamente 
utilizadas naquela época. 
 
 
Figura 2.6 – Representação de molde utilizado pelos egípcios 
Fonte: Campbell (2005 apud MESQUITA, 2007 p. 06) 
 
Acredita-se que as primeiras formas foram executadas antes da descoberta do 
ferro, contudo, segundo Campbell (2005 apud MESQUITA, 2007), tal afirmação talvez não 
proceda devido às limitadas ferramentas de pedras utilizadas naquela época. 
Com a utilização das formas, a produção de tijolos se tornou mais rápida e 
regular. Estes tijolos da Antiguidade eram, aproximadamente, o que hoje se denomina de 
adobe. Eram constituídos basicamente de lama e palha (Figura 2.7), colocados em formas que 
os envolviam lateralmente e permitiam assim, sua secagem ao sol. Contudo, os tijolos 
apresentavam pouquíssima durabilidade quando sujeitos à ação de água (MESQUITA, 2007). 
 
25 
 
 
Figura 2.7 – Tijolos de lama e palha a secarem ao sol 
Fonte: Campbell (2005 apud MESQUITA, 2007 p. 06) 
 
“As grandes construções, como as pirâmides, eram feitas em pedra. No entanto, as 
habitações menos nobres, dos trabalhadores, eram feitas de tijolo. Esta hierarquia iria sofrer 
alterações ao longo dos tempos” (MESQUITA, 2007, p. 05). 
Nos Estados Unidos, por exemplo, seu uso é generalizado, sendo inclusive 
utilizado na construção de mansões. É símbolo de status construir uma casa com este material. 
Em outros países, apesar de ainda não existirem normas para sua produção, seu uso também já 
é difundido na construção de habitações para classes mais abastadas (Machado et AL, 2004, 
p. 02). 
E Machado et al. (2004, p. 03) ainda acrescenta: “Em países desenvolvidos como 
na França e Estados Unidos, principalmente no Novo México, a prática de construir com 
adobes já não é mais utilizada apenas para uma população carente, mas de uma classe média 
alta”. 
 
2.6 Adobe 
 
“Adobe é uma palavra de origem árabe, que foi assimilada pelo espanhol e 
transmitida às Américas, onde foi adotada também pelo idioma inglês. E significa tijolos de 
terra crua” (DETHIER, 1982 apud SILVA 2000). 
O tijolo de adobe (Figura 2.8) é constituído basicamente por silte, areia e argila, 
variando suas proporções de acordo com regiões e técnicas construtivas locais. Tais relações 
vão desde 20 e 80% até 40 e 60% (argila e silte, respectivamente). Suas dimensões também 
variam amplamente dependendo da localização. Para Milanez (1958 apud Oliveira, 2003), as 
26 
 
dimensões variam em altura, largura e comprimento, respectivamente, de 8 x 12 x 25 cm até 
10 x 30 x 46 cm. 
 
 
Figura 2.8 – Tijolo de adobe 
Fonte: Bussoloti (2009) 
 
Sua utilização, apesar de pouco difundida no Brasil se comparada ao tijolo 
cerâmico furado, possui diversas relevantes vantagens. Dentre elas, uma bastante 
significativa, é a de não necessitar de mão de obra especializada para construir com esse 
material, podendo muitas vezes até o proprietário da casa construir sua própria moradia. O 
tijolo de adobe também, de acordo com Oliveira (2003), é um excelente regulador térmico e 
acústico, e, além disso, despende um baixíssimo custo energético, tanto no âmbito do 
transporte, quanto no da confecção e futura reciclagem do material. 
 Dentre as desvantagens apresentadas por esse material de terra crua, pode-se 
mencionar: total permeabilidade dos componentes do adobe quando em contato com água, 
causando enfraquecimento ou desintegração do material, preconceito devido ao aspecto 
rústico da edificação com o adobe, dificuldade de encontrar os componentes para confecção 
dos tijolos, só valendo a pena utilizar essa técnica construtiva em locais cujos solos já são 
propícios para utilização. 
 
2.7 Adobe com adição de fibras de coco verde 
 
A produção de adobes com a adição de fibras de coco verde é similar à preparação 
do adobe convencional. Com base nos procedimentos de Soares et al. (2008) e Oliveira 
27 
 
(2003), os processos, materiais e cuidados necessários para a obtenção desses tijolos com 
aditivos são descritos a seguir. 
 
2.7.1 Local de Fabricação 
 
Antes de iniciar a fabricação dos adobes, é necessário fazer um planejamento 
racional e adequado do local de trabalho. É imprescindível que a terra a ser utilizada esteja 
próxima a área de trabalho; a produção dos tijolos deve ser realizada em local coberto; é 
importante que os tijolos sejam moldados em bancadas com alturas adequadas às operações, 
visando assim uma maior produtividade; é necessário uma área externa para secagem dos 
adobes e uma área fechada para armazenamento dos tijolos (FARIA,2002 apud Oliveira, 
2003). 
 
2.7.2 Confecção das formas 
 
As formas para a fabricação dos adobes podem variar no tipo de material 
(madeira, ferro, isopor), tamanho, forma e quantidade de tijolos a serem produzidos. Contudo, 
dentre os materiais, o mais aconselhável é a madeira devido sua grande facilidade na mudança 
de formas e tamanhos dos tijolos. 
Dependendo da necessidade, as formas (Figura 2.9) podem ser de apenas um 
adobe ou de até dezesseis ou mais unidades. A madeira mais recomendável para utilização é a 
tábua taipá devido ao seu baixo custo, uma das finalidades das construções em terra. Porém, 
os compensados e madeirites também podem ser empregados na moldagem dos adobes. 
 
 
Figura 2.9 – Forma para confecção de adobes 
Fonte: Faria et al. (2009) 
 
 
28 
 
2.7.3 Preparação do solo e da fibra de coco triturada 
 
Faria (2002 apud OLIVEIRA, 2003) recomenda que, após a coleta e 
acondicionamento das fibras, deve-se lavá-las para a remoção de impurezas para em seguida 
serem colocadas ao sol por um tempo e posteriormente na estufa para perda total de umidade. 
Logo após a secagem completa da biomassa, a mesma deve ser peneirada a uma ordem de 15 
mm. Atender a proporção de 10% em volume da fibrade coco no adobe (SOARES et al., 
2008). 
Segundo Callister (1994 apud FERREIRA et al., 2009), os compósitos reforçados 
por fibras contínuas alinhadas possuem propriedades mecânicas anisotrópicas, ou seja, na 
direção do alinhamento a resistência mecânica é máxima. Já na direção perpendicular, o 
reforço do tijolo é mínimo. Em outro caso, se os tijolos estiverem reforçados com fibras 
aleatoriamente espalhadas (Figura 2.10), a rigidez e a resistência são significativas e as 
propriedades desses compósitos são isotrópicas. 
 
 
Figura 2.10 – Disposição descontínua e aleatória das fibras de coco no tijolo de adobe 
Fonte: Ferreira et al. (2009) 
 
No caso do solo, ele também precisa estar totalmente seco e peneirado por uma 
peneira grossa de 4 mm (FARIA, 2002 apud OLIVEIRA, 2003). 
 
2.7.4 Amassamento e descanso do barro 
 
O barro (mistura de solo, biomassa e água) deve ser amassado e deixado em 
repouso durante 24 horas para melhor homogeneização da umidade e absorção pela biomassa 
(FERREIRA et al., 2009). Após este repouso, o material deve ser amassado vigorosamente 
para evitar que as lâminas de argila se ordenem segundo atrações elétricas, reduzindo assim a 
resistência mecânica dos tijolos (MINKE, 2000 e BARRIOS, 1986, apud OLIVEIRA, 2003). 
29 
 
Após o amassamento, deve-se lançar a mistura com as mãos até completar as formas e em 
seguida passar uma régua para tirar o excesso de material. A desmoldagem dos tijolos de 
adobe foi realizada logo em seguida (FERREIRA et al., 2009). 
 Segue as diferentes maneiras de amassamento do solo: pipa à tração animal, 
maromba ou betoneira (Figura 2.11), mais utilizados em produções de largas escalas de 
adobe, e amassamento com a utilização dos pés, mais comumente utilizado (Figua 2.12). 
 
 
Figura 2.11 – Amassamento do solo com pipa à tração animal (à esquerda) e maromba (à direita) 
Fonte: Faria et al. (2009) 
 
 
Figura 2.12 – Amassamento do solo com os pés 
Fonte: Faria et al. (2009) 
 
Faria (2002 apud OLIVEIRA, 2003) destaca sobre o volume de água a ser 
acrescentado na mistura e amassamento do barro: 
 
Não existe teor pré-determinado para o amassamento do barro. O único parâmetro 
para se determinar o teor ótimo é a trabalhabilidade e plasticidade do barro, ou seja, 
o mesmo deve ter uma consistência tal que seja possível moldar o tijolo 
(preenchendo totalmente a forma) e tirá-lo da forma sem deformação excessiva 
(popularmente, o tijolo não pode esborrachar). 
 
 
 
30 
 
2.7.5 Manufatura dos adobes 
 
Para a produção de adobe, o processo pode ser manual ou mecanizado, 
dependendo da necessidade do fabricante. No caso da redução do déficit habitacional, o mais 
interessante é o processo artesanal (menos dispendioso). De acordo com Faria (2002 apud 
OLIVEIRA, 2003), a utilização de equipamentos mecânicos na França aumentou 
consideravelmente a produção de adobe, e conseqüentemente, as despesas também 
aumentaram. 
 
2.7.6 Secagem dos tijolos 
 
De acordo com Ferreira et al. (2009), “a secagem dos tijolos de adobe deve ser 
realizada inicialmente à sombra e, depois de 8 dias, diretamente ao sol, sobre estrados, e 
cobertos com lona plástica no período noturno e na ocorrência de chuvas”. 
Oliveira (2003) complementa que as condições climáticas é que determinam o real 
tempo de secagem. Esse tempo pode variar dependendo da intensidade do sol (temperatura), 
largura dos tijolos e umidade do ar. “É aconselhável que, durante o processo de secagem, os 
tijolos sejam virados com determinada freqüência para que a mesma seja homogênea, 
evitando, assim, retrações diferenciais e, conseqüentemente, deformação dos tijolos”, 
acrescenta Oliveira (2003). 
 
 
 
 
 
 
 
 
 
 
 
 
 
31 
 
3 ENSAIO DE GRANULOMETRIA, LIMITE DE LIQUIDEZ E LIMITE DE 
PLASTICIDADE 
 
Para a realização do ensaio mecânico de resistência à compressão, é fundamental 
saber exatamente a composição do adobe a ser ensaiado, bem como algumas características 
físicas e químicas de tal tijolo. Para a obtenção desses dados, realizaram-se alguns 
experimentos no Laboratório de Mecânica dos Solos da Universidade Federal do Ceará 
(UFC). O material utilizado para os ensaios foi de Coreaú, município de Araquém, na região 
norte do Ceará. 
O ensaio a seguir é fundamentado nas seguintes normas da Associação Brasileira 
de Normas Técnicas (ABNT): NBR 7181 (1984), “Solo – Análise granulométrica”; NBR 
5734 (1989), “Peneiras para ensaio – Especificação” e NBR 6457 (1986), “Amostras de Solo 
– Preparação para Ensaios de Compactação e Ensaios de Caracterização”, sendo esta última 
desnecessária para esta análise. 
 
3.1 Determinação da granulometria 
 
Com base no capítulo 4 da apostila Mecânica dos Solos, utilizada no curso de 
engenharia civil da UFC, realizou-se o ensaio que determina a granulometria do solo trazido 
de Coreaú. Através destes dados, pode-se traçar a curva granulométrica do solo, e 
conseqüentemente obter sua classificação textural. 
A execução do ensaio é realizada através de duas etapas. Na primeira ocorre o 
peneiramento das partículas, no caso de grãos com até 0,074mm de diâmetro. A segunda 
etapa é o método da sedimentação, realizado em partículas menores que 0,074mm. Os ensaios 
podem ser realizados de três maneiras diferentes: apenas o peneiramento para o material 
granular; sedimentação para solos finos; análise granulométrica conjunta, que compreende 
tanto o peneiramento quanto a sedimentação (solos com partículas grossas e finas). 
No ensaio realizado, foi executada a análise granulométrica conjunta. 
 
3.1.1 Método do peneiramento 
 
Para a realização deste procedimento é necessário a utilização dos seguintes 
equipamentos e acessórios: Série de peneiras Tyler (Tabela 3.1), peneirador (“Ro-Tap”), 
balança para 1kg, sensível a 0,1g, cápsula de porcelana ou metálica e estufa que mantenha 
32 
 
temperatura entre 105º e 110ºC. É importante salientar que até a peneira nº 10, o 
peneiramento é grosso, da nº 40 até a peneira nº 200, o peneiramento é fino, e a partir da 
peneira nº 200, necessita-se da sedimentação para análise granulométrica. 
 
Tabela 3.1 – Peneiras: Abertura de Malha 
 
 
 
Fonte: Carísia et al. (2008) 
 
Para a realização do ensaio, toma-se uma amostra representativa do solo para o 
destorroamento (Figura 3.1). Passa-se o material destorroado na peneira nº 10 com abertura de 
2,0 mm (Figura 3.2). Em seguida, lava-se o material que ficou retido na peneira para retirada 
dos grãos finos colados aos grãos grossos (Figura 3.3). Transfere-se então o material retido 
para uma cápsula numerada e o leva para a estufa para secagem de no mínimo 12 horas 
(Figura 3.4). Após o período de secagem, procede-se ao peneiramento do material nas 
peneiras de 38,1 mm até 2,0 mm de diâmetro (Figura 3.5). Pesam-se as frações do material 
retido em cada peneira e por fim calculam-se as porcentagens retidas em cada uma das 
peneiras em relação ao peso da amostra total seca (Figura 3.6). 
 
 
Figura 3.1 – Destorroamento do material Figura 3.2 – Material passado na peneira Nº 10 
 
 
 
Figura 3.3 – Material retido lavado Figura 3.4 – Secagem na estufa 
Peneiras 3,5" 3" 2,5" 2" 1,5" 1" 0,75" 0,5" 3/8" 4 10 40 80 200 
mm 88,9 76,2 63,3 50,8 38,1 25,4 19,1 12,7 9,5 4,8 2,0 0,42 0,18 0,074 
33 
 
 
 
 
Figura 3.5 – Passagem de material Figura 3.6 – Pesagem material retido 
 seco nas peneiras 
 
3.1.2 Método da sedimentação 
 
O método da sedimentação foi desenvolvido por Bouyoucos e Casagrande e é 
baseado na “Lei de Stokes”, segundo a qual partículas num meioaquoso depositam-se com 
velocidades proporcionais aos seus diâmetros. 
Para a realização deste ensaio, necessita-se dos seguintes equipamentos e 
acessórios: peneirador “Ro-tap”; série de peneiras (Tyler); balança para 200g sensível a 0,01g; 
proveta de vidro graduada até 1.000ml; becker; cápsula de porcelana ou metálica; dispersor 
com copo de chicanas finas; cronômetro para intervalos de 30 minutos com precisão de 1 
segundo; solução de hexametafosfato de sódio; densímetro de bulbo simétrico, calibrado à 
20˚C, graduado em 0,001, de 0,995 a 1,050; termômetro até 50˚C, graduado em 1˚C; baqueta 
de vidro; escova com cerdas metálicas; pinça metálica. 
Segue o procedimento para a execução do ensaio: Primeiramente, passa-se o 
material a ser analisado na peneira n˚ 10 (2,0mm). Coloca-se o material coletado em um 
becker adicionando 125cm³ da solução de hexametafosfato de sódio com concentração de 
45,7g do sal para 1000cm³ de solução (Figura 3.7). Deixa-se a mistura em repouso por no 
mínimo 12horas. Após o tempo necessário, transfere-se toda a mistura para o copo dispersor 
removendo o seu excesso com água destilada (Figura 3.8). Deixa-se a mistura sob a ação do 
dispersor por aproximadamente 15 minutos (Figura 3.9). Deposita-se então a mistura em uma 
proveta graduada complementando com água destilada até a marca de 1000 ml (Figura 3.10). 
Com a palma da mão, tapa-se a boca da proveta e agita-se a mistura por cerca de 1 minuto. 
Imediatamente após a agitação, coloca-se a proveta sobre a bancada, aciona-se o cronômetro e 
mergulha-se o densímetro na proveta. Em seguida, fazem-se as leituras no densímetro 
34 
 
correspondentes aos tempos de 30s, 1 minuto, 2 minutos, 4 minutos, 8 minutos, 15 minutos, 
30 minutos, 1 hora, 2 horas, 4 horas, 8 horas e 16 horas, lembrando-se sempre de retirar o 
densímetro da proveta e colocá-lo na dispersão por cerca de 20s antes de cada leitura. 
Terminadas as leituras do ensaio de sedimentação, despeja-se e lava-se a 
suspensão na peneira n˚ 200 (0,074 mm). O material retido na peneira é transferido para uma 
cápsula e seco na estufa (Figura 3.11) e então ele é passado em um conjunto de peneiras (1,2 - 
0,6 – 0,42 – 0,30 – 0,15 e 0,074 mm de diâmetro. Por fim, pesam-se as proporções retidas em 
cada peneira (Figura 3.12). 
 
 
Figura 3.7 – Mistura do solo c/ a solução Figura 3.8 – Mistura transferida p/ o copo 
de hexametafosfato de sódio dispersor 
 
 
Figura 3.9 – Ação do dispersor por 15min Figura 3.10 – Mistura em proveta 
 graduada 
35 
 
 
Figura 3.11 – Secagem de material na estufa Figura 3.12 – Pesagem de material retido 
 
3.1.3 Cálculos e resultados 
 
Através dos dados encontrados no laboratório, alimenta-se a seguinte planilha, 
cujos valores estão em vermelho na Tabela 3.2, elaborada no laboratório de mecânica dos 
solos da UFC e conclui-se que o solo de Coreaú, distrito de Araquém, apresenta a seguinte 
classificação textural: 
 
- Pedregulho: 1% 
- Areia (grossa, média e fina): 33% 
- Silte: 40% 
- Argila: 26% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36 
 
Tabela 3.2 – Classificação textural do solo 
 
 
 
Segue também o gráfico da curva granulométrica do solo (Figura 3.13) em que o 
eixo das abscissas é formado pelo diâmetro dos grãos (mm) e o eixo das ordenadas é 
composto pela porcentagem que passa em cada peneira. 
ANALISE GRANULOMETRICA POR SEDIMENTAÇÃO
UMIDADE DA SEDIMENTACAO RESUMO DA SEDIMENTAÇÃO ( % )
CAPSULA No. 2 PEDREGULHO ACIMA DE 4,8 mm 1
PESO BRUTO UMIDO(g) 115,32 AREIA GROSSA 4,8 - 2,00 mm 3
PESO BRUTO SECO(g) 114,20 AREIA MÉDIA 2,00 - 0,42 mm 5
PESO DA CAPSULA(g) 13,74 AREIA FINA 0,42 - 0,074 mm 25
PESO DA AGUA(g) 1,12 SILTE 0,074 - 0,005 mm 40
PESO DO SOLO SECO(g) 100,46 ARGILA ABAIXO DE 0,005 mm 26
UMIDADE(%) 1,11 ARGILA COLOIDAL ABAIXO DE 0,001 mm xxx
AMOSTRA SECA
 PESO(g) PESO(g) % PASSA
AM.TOTAL AM.PARC. POLEG. mm RETIDO PASSA AM. TOTAL
 CAPSULA No. 1 2 2" 50.80 0,00 989,41 100
 PESO SOLO UMIDO(g) 1000,00 100,00 1 1/2" 38.10 0,00 989,41 100
 PESO PEDREG.(g) 39,32 1" 25.40 0,00 989,41 100
 P.S.MIUDO UMIDO(g) 960,68 - 3/4" 19.10 0,00 989,41 100
 P.S. MIUDO SECO(g) 950,09 - 1/2" 12.27 0,00 989,41 100
 P. AMOSTRA SECA(g) 989,41 98,90 3/8" 9.52 0,00 989,41 100
 CTE. DO FATOR K - 1,610 No. 4 4.76 8,76 980,65 99
2,52 No. 10 2.00 30,56 950,09 96
 PENEIRA PESO(g) PESO(g) % PASSA
POLEGADA mm RETIDO PASSA AM. TOTAL
 No. 16 1.190 1,47 97,43 95
 No. 30 0.590 2,20 95,23 92
 No. 40 0.420 1,07 94,16 91 
 No. 50 0.297 1,72 92,44 90
 No. 100 0.149 5,06 87,38 85
 No. 200 0.075 19,14 68,24 66
DENSIMETRO No.: 1 PROVETA No.: 1
 TEMPO LEITURA TEMPERAT. CORREC. LEITURA ALT. DE LEIT. "d" DOS % <d AM.
DECORRIDO (L) (o C) MEIO CORRIGIDA QUEDA COR. GRAOS TOTAL(Q)
s DISPERSOR (cm) FINAL (mm)
30 21,00 27,00 1,62 14,37 15,23 15,57 0,0578 25
60 20,00 27,00 1,62 14,54 15,58 15,74 0,0506 25
120 16,00 27,00 1,62 15,23 15,75 16,43 0,0360 26
240 14,00 27,00 1,62 14,66 15,01 15,86 0,0249 26
480 14,00 27,00 1,62 14,66 15,01 15,86 0,0176 26
900 13,00 27,00 1,62 14,84 15,18 16,04 0,0129 26
1800 12,00 27,00 1,62 15,01 15,18 16,21 0,0091 26
3600 11,00 27,00 1,62 15,18 15,36 16,38 0,0065 26
7200 11,00 27,00 1,62 15,18 15,53 16,38 0,0046 26
14400 9,00 27,00 1,62 15,53 15,70 16,73 0,0033 27
28800 9,00 27,00 1,62 15,53 16,74 16,73 0,0024 27
86400 9,00 27,00 1,62 15,53 16,74 16,73 0,0014 27
 SEDIMENTAÇÃO
PENEIRAMENTO DO SOLO GRAUDO
Com dispersor e Com defloculante
DENSIDADE A 20 O C
PENEIRAMENTO DO SOLO MIUDO
PENEIRA
37 
 
 
Figura 3.13 – Gráfico da curva granulométrica do solo 
 
 
3.2 Determinação dos limites de consistência 
 
 Sob o ponto de vista da engenharia, apenas a granulometria não é suficiente para 
a total caracterização do solo. Tão importante quanto os ensaios de peneiramento e 
sedimentação, estão os ensaios que determinam os limites de consistência do solo. 
Os limites de consistbasência se baseiam no fato de que um solo argiloso 
apresenta diferentes comportamentos de acordo com sua umidade. Assim, para determinar a 
consistência da fração fina de determinado solo, é necessário saber o teor de umidade limite 
entre os dois estados. 
A consistência do solo está dividida em três limites: liquidez, plasticidade e 
contração, sendo que os dois primeiros são os mais utilizados nos sistemas de classificação e 
na definição do intervalo de umidade na qual o solo se encontra no estado plástico. 
Os ensaios a seguir se baseiam nas seguintes normas: NBR 6457, “Amostras de 
solo – Preparação para ensaios de compactação e ensaios de caracterização”; NBR 6459, 
“Solo – Determinação do limite de liquidez” e NBR 7180, “Solo – Determinação do limite de 
plasticidade. 
 
3.2.1 Determinação do limite de liquidez 
 
O objetivo deste ensaio é determinar o limite de liquidez do solo, um dos 
parâmetros necessários para calcular seu índice de plasticidade. Dentre os equipamentos 
necessários para a realização do ensaio estão: balança para 200g, sensível a 0,01g, cápsula de 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
0,001 0,01 0,1 1 10 P
ER
CE
NT
AG
EM
 
QU
E 
PA
SS
A 
(%
)
DIÂMETRO DOS GRÃOS (mm)
CURVA GRANULOMÉTRICA
38 
 
porcelana de 12cmde diâmetro, aparelho de Casagrande, estufa que mantenha a temperatura 
entre 105˚ e 110˚C, espátula de aço, pinça metálica e peneira n˚ 40. 
O processo do ensaio começa colocando-se cerca de 100g do material passado na 
peneira nº 40 (0,42mm) numa cápsula (Figura 3.14). A seguir, adiciona-se aos poucos água 
destilada até o solo resultar em uma massa plástica (Figura 3.15). Transfere-se então parte da 
massa plástica para a concha do aparelho Casagrande, moldando-a de modo que a parte 
central da concha apresente uma espessura de aproximadamente 1cm (Figura 3.16). Com o 
auxílio do cinzel, dividi-se a massa do solo em duas partes e abre-se uma ranhura no centro da 
concha perpendicular à sua articulação (Figura 3.17). Em seguida, gira-se a manivela do 
aparelho e procede-se o golpeamento da concha contra a base até que as bordas inferiores da 
ranhura se unam em 1,3cm de comprimento, sendo então registrado o número de golpes. Logo 
após, retira-se um pedaço da massa plástica do trecho que se uniu (Figura 3.18) e o coloca 
numa cápsula para ser secado na estufa (Figura 3.19). Por fim, repetem-se as operações, de 
modo a se obter três pontos, até que a ranhura cubra o intervalo de 35 e 15 golpes entre o 
primeiro e o último ponto. 
 
 
Figura 3.14 – Material passado na peneira Figura 3.15 – Adição de água no solo 
n˚ 40 (0,42 mm) 
 
 
Figura 3.16 – Moldagem do material no Figura 3.17 – Ranhura no centro da concha 
aparelho Casagrande 
39 
 
 
Figura 3.18 – Massa plástica do trecho Figura 3.19 – Material na cápsula p/ ser 
que se ligou secado na estufa 
 
3.2.2 Determinação do limite de plasticidade 
 
O objetivo deste ensaio é determinar o limite de plasticidade do solo, o outro 
parâmetro para calcular o índice de plasticidade dos solos. Para este ensaio, serão necessários: 
balança para 200g, sensível a 0,01g, cápsula de porcelana de 12cm de comprimento e 5cm de 
altura, placa de vidro esmerilhado, cilindro de comparação (gabarito), estufa que mantenha a 
temperatura entre 105˚ e 110˚C, espátula de aço, pinça metálica e peneira n˚ 40. 
Inicia-se o ensaio tomando cerca de 100g da amostra do solo que foi passado na 
peneira n˚ 40 (Figura 3.20). Coloca-se a amostra na cápsula adicionando água destilada aos 
poucos até obter uma amostra plástica uniforme (Figura 3.21). Em seguida, forma-se uma 
pequena bola com o material misturado que deve ser rolado sobre a placa de vidro (Figura 
3.22) com pressão suficiente para que tome a forma de um cilindro de 3mm de diâmetro e 
10cm de comprimento. Continua-se a operação até que, por perda de umidade, o cilindro se 
fragmente ao atingir o diâmetro de 3mm. Concluindo, transfere-se os vários pedaços 
fragmentados para um recipiente para determinação de sua umidade na estufa (Figura 3.23). 
 
 
 Figura 3.20 – Material passado # 40 Figura 3.21 – Massa plástica 
 
 
40 
 
 
Figura 3.22 – Placa de vidro Figura 3.23 – Secagem do material na estufa 
 
3.2.3 Índice de plasticidade do solo 
 
O índice de plasticidade (IP) do solo nada mais é do que a diferença entre os 
limites de liquidez (LL) e limites de plasticidade (LP). Ele indica a faixa de valores em que o 
solo se apresenta plástico (Tabela 3.3): 
 
Tabela 3.3 – Determinação da classificação do solo de acordo com sua plasticidade 
Classificação do solo Índice de plasticidade 
Fracamente plástico 1 < IP < 7 
Medianamente plástico 7 < IP < 15 
Altamente plástico IP > 15 
FONTE: Apostila ensaios de mecânica dos solos – UFC (2003) 
 
3.2.4 Cálculos e resultados 
 
Através dos dados apresentados nos ensaios de limite de liquidez e plasticidade, 
elaborou-se uma planilha (Tabela 3.4) que calcula a umidade do solo em cada cápsula. 
Conseqüentemente, foi desenvolvido um gráfico (Figura 3.24) em escala logarítmica do 
número de golpes do ensaio LL pela umidade do material em cada cápsula. Conclui-se então 
que para o número de golpes almejado, ou seja, 25 golpes, o limite de liquidez é de 20%. Já o 
limite de plasticidade é calculado pela média aritmética das quatro umidades encontradas no 
ensaio. Portanto, o LP do solo é igual a 15%. O IP,dado pela diferença dos dois limites, é 
igual a 5%, caracterizando o solo em fracamente plástico. 
 
 
 
 
 
41 
 
Tabela 3.4 – Dados para determinação da plasticidade do solo 
 
 
 
 
Figura 3.24 – Gráfico do número de golpes pela umidade p/ determinação do LL do solo 
 
 
 
 
 
 
 
 
 
 
 
 
ENSAIOS DE LIMITES DE CONSISTÊNCIA
COREAÚ
 LIMITE DE LIQUIDEZ LIMITE DE PLASTICIDADE
No. DE GOLPES 42 25 15 10 xxx xxx xxx xxx
No. CÁPSULA 10 76 66 4 73 107 99 8
SOLO+TARA+AGUA (g) 16,63 14,77 13,78 15,35 9,04 9,79 7,76 8,24
SOLO+TARA (g) 15,09 13,32 12,49 13,40 8,71 9,43 7,43 7,95
TARA (g) 6,71 5,98 6,71 5,31 6,39 7,16 5,23 6,06
ÁGUA (g) 1,54 1,45 1,29 1,95 0,33 0,36 0,33 0,29
SOLO (g) 8,38 7,34 5,78 8,09 2,32 2,27 2,20 1,89
UMIDADE (%) 18,38 19,75 22,32 24,10 14,22 15,86 15,00 15,34
LIMITE DE LIQUIDEZ (LL): 20 %
LIMITE DE PLASTICIDADE (LP): 15 %
ÍNDICE DE PLASTICIDADE (IP): 5 %
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
10 100
UM
ID
AD
E 
 
(%
)
NÚMERO DE GOLPES
GRÁFICO DE LIQUIDEZ
42 
 
4 ENSAIO DE RESISTÊNCIA MECÂNICA À COMPRESSÃO DO ADOBE 
CONVENCIONAL 
 
O experimento realizou-se nos laboratórios de materiais de construção da 
Universidade Federal do Ceará (UFC). Como ainda não existe uma norma regulamentadora 
brasileira para o tijolo de adobe, foram utilizados dois artigos para a realização do ensaio. O 
primeiro, escrito por Ferreira et al. (2009), trata dos estudos das propriedades mecânicas do 
adobe com adição de fibras de coco. Já o segundo artigo, aborda a proposta de padronização 
de ensaios para caracterização física e mecânica dos adobes (FARIA et al., 2007). Ambos se 
baseiam na norma peruana E.080 (2000) e na NBR 6460/83. 
 
4.1 Materiais e métodos 
 
Para a confecção dos tijolos de adobe, necessita-se de todo um procedimento. A 
seleção da matéria-prima, escolha do material e dimensões das formas, etapas para fabricação 
dos tijolos, período e local de cura, traço utilizado para regularização dos adobes, tudo isso é 
imprescindível para a obtenção de resultados coerentes e satisfatórios. Segue os processos 
necessários para a realização do ensaio de resistência mecânica à compressão. 
 
4.1.1 Matéria-prima 
 
O material coletado (Figura 4.1) para a realização dos ensaios veio de Coreaú, 
distrito de Araquém, na região norte do Ceará. Fornecido pelo professor e orientador Ricardo 
Marinho de Carvalho, ele foi colhido durante a Expedição Caminhos da Terra, tema do artigo 
publicado em junho/09 no 8º SIACOT (Seminario IberoAmericano de Construccíon con 
Tierra). 
 
Figura 4.1 – Material coletado de Coreaú 
43 
 
4.1.2 Formas 
 
As formas (Figuras 4.3 e 4.4) foram confeccionadas em cubos de 7,0 cm, de 
acordo c/ Faria et al. (2007). Apesar delas poderem ser múltiplas, dependendo da necessidade 
de produção, optou-se por fazê-las individualmente, já que o propósito escolhido é 
experimental. O material utilizado para as formas foram tábuas taipá de 2,0 cm de espessura. 
 
 
Figura 4.2 – Formas 7 x 7 x 7 cm (1) Figura

Outros materiais