Buscar

tcc waldir

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

UNIVERSIDADE FEDERAL DE JUIZ DE FORA 
CURSO DE GRADUAÇÃO EM ENGENHARIA CIVIL 
 
 
 
 
 
 
 
 
 
AVALIAÇÃO DOS COEFICIENTES DE IMPACTO UTILIZADOS NO CÁLCULO DE 
PONTES RODOVIÁRIAS VIA ANÁLISE DINÂMICA DE ESTRUTURAS 
 
 
 
 
 
 
 
WALDIR NEME FELIPPE FILHO 
 
 
 
 
 
 
 
 
 
 
 
JUIZ DE FORA 
2008 
WALDIR NEME FELIPPE FILHO 
 
 
 
AVALIAÇÃO DOS COEFICIENTES DE IMPACTO UTILIZADOS NO CÁLCULO DE 
PONTES RODOVIÁRIAS VIA ANÁLISE DINÂMICA DE ESTRUTURAS 
 
 
 
 
Trabalho Final de Curso apresentado ao 
Colegiado do Curso de Engenharia Civil da 
Universidade Federal de Juiz de Fora, como 
requisito parcial à obtenção do título de 
Engenheiro Civil. 
 
 
Área de Conhecimento: Engenharia Civil - 
Estruturas 
 
 
 
Orientador: Flávio de Souza Barbosa 
 
 
 
 
 
 
 
 
Juiz de Fora 
Faculdade de Engenharia da UFJF 
2008 
AVALIAÇÃO DOS COEFICIENTES DE IMPACTO UTILIZADOS NO CÁLCULO DE 
PONTES RODOVIÁRIAS VIA ANÁLISE DINÂMICA DE ESTRUTURAS 
 
 
 
 
WALDIR NEME FELIPPE FILHO 
 
 
 
Trabalho Final de Curso submetido à banca examinadora constituída de acordo com 
o Artigo 9o do Capítulo IV das Normas de Trabalho Final de Curso estabelecidas 
pelo Colegiado do Curso de Engenharia Civil, como parte dos requisitos necessários 
para a obtenção do grau de Engenheiro Civil. 
 
 
Aprovado em: ____/________/_____ 
 
 
Por: 
 
 
_____________________________________ 
Prof. Flávio de Souza Barbosa - Orientador 
 
_____________________________________ 
Prof. Afonso Celso de Castro Lemonge (UFJF) 
 
_____________________________________ 
Prof. Paulo Roberto Miana (UFJF) 
 
 
 
 
 
 
 
 
AGRADECIMENTOS 
A meus pais e irmão que sempre me apoiaram na conquista de meus ideais; 
Ao prof. Flávio, pelos ensinamentos transmitidos, pela dedicação, amizade, empenho e anos 
de orientação; 
Ao professor Miana pelos valiosos conhecimentos passados ao longo de minha graduação e 
Aos amigos da UFJF, pelo companheirismo. 
 
 
 
 
 
 
 
 
 
 
 
 
RESUMO 
Tradicionalmente, o dimensionamento de pontes e viadutos é feito através de um 
procedimento pseudo-estático onde as cargas móveis são consideradas sem se levar em conta 
o efeito de forças inerciais. Neste procedimento, as ações dinâmicas atuantes nas estruturas 
são multiplicadas por um coeficiente, denominado coeficiente de impacto, que tem por 
objetivo majorar essas ações e desta forma, evitar o cálculo estrutural onde se considere o 
efeito da aceleração. Assim sendo, é proposto nesse trabalho uma comparação entre os efeitos 
dinâmicos modelados através da abordagem tradicional, através de coeficientes de impacto, e 
aqueles obtidos através de um modelo computacional via método dos elementos finitos onde 
as forças inerciais são consideradas. Para tanto, foram calculados os coeficientes de impacto 
segundo as normas brasileiras para pontes isostáticas de 20, 30 e 40 m de vão e estes foram 
comparados com os respectivos fatores de amplificação dinâmica obtidos para estas mesmas 
pontes através do modelo computacional. Nesta modelagem, a ponte é representada por 
modelo unifilar (elementos de barra ao longo do seu eixo), com propriedades de rigidez à 
flexão e os veículos considerados são simulados por um sistema de 2 graus de liberdade. Os 
resultados obtidos indicaram que, de uma forma geral, o cálculo tradicional através da adoção 
de coeficientes de impactos é satisfatória e produz resultados a favor da segurança. 
 
Sumário 
 
1. Introdução ............................................................................................................1 
1.1. Definições .....................................................................................................1 
1.2. Breve histórico ..............................................................................................1 
1.3. Classificações de pontes ..............................................................................3 
1.4. Sistemas estruturais......................................................................................4 
1.4.1. Pontes em Laje ......................................................................................4 
1.4.2. Pontes em Viga de Alma cheia..............................................................5 
1.4.3. Pontes em Vigas Caixão........................................................................5 
1.4.4. Treliçadas ..............................................................................................5 
1.4.5. Pontes em Pórticos................................................................................6 
1.4.6. Pontes em Arco .....................................................................................6 
1.4.7. Pontes suspensas por Cabos ................................................................6 
1.5. Carregamentos .............................................................................................7 
1.5.1. Ações permanentes ...............................................................................8 
1.5.2. Ações variáveis......................................................................................8 
1.5.3. Ações excepcionais ...............................................................................8 
1.6. Escopo do trabalho, metodologia e objetivos................................................9 
2. Revisão da literatura ..........................................................................................11 
3. Características e propriedades dos veículos e pontes no Brasil ........................13 
3.1. Veículos rodoviários....................................................................................13 
3.1.1. Lei da balança......................................................................................13 
3.1.2. Monitoramento do tráfego rodoviário ...................................................15 
3.1.3. Propriedades e tipos de suspensões dos veículos pesados................16 
3.1.4. Propriedades dos Pneus......................................................................17 
3.2. Descrição das estruturas de pontes consideradas......................................18 
4. Modelo computacional para simulação da iteração veículo-estrutura................20 
4.1. Modelagem do veículo ................................................................................20 
4.2. Modelagem da estrutura das pontes...........................................................21 
4.3. Modelo acoplado veículo-estrutura .............................................................23 
5. Efeitos da passagem de veículos sobre pontes rodoviárias...............................26 
5.1. Respostas típicas das pontes .....................................................................27 
5.2. Fator de amplificação dinâmica e o coeficiente de impacto da NBR 7187..34 
6. Discussão dos resultados e conclusões.............................................................36 
Referências ...............................................................................................................38 
 
 
1 
1. Introdução 
1.1. Definições 
 É denominada ponte toda a obra destinada a vencer obstáculos que impeçam 
a continuidade de uma via. Estes podem ser: rios, lagos, vales, braços de mar, ou 
mesmo outras vias, neste ultimo caso a obra é classificada como viaduto. 
Tecnicamente pontes e viadutos são classificados como Obras de Arte Especiais. 
 Uma ponte, em termos estruturais, pode ser dividida em três partes, a saber: 
infraestrutura, mesoestrutura e superestrutura. 
 A infraestrutura é a parte da ponte por onde os esforços recebidos da 
mesoestrutura são transferidos para o terreno sobre oqual a obra está implantada. 
Os blocos, as sapatas, as estacas, os tubulões etc., são os elementos constituintes 
da infraestrutura, assim como as peças de ligação dos diversos elementos entre si, e 
destes com a meso estrutura. 
 A mesoestrutura é constituída pelos pilares, que é o elemento que recebe os 
esforços da superestrutura e os oriundos das ações sobre os próprios pilares, 
transferindo-os para a infraestrutura. 
 A superestrutura é composta, em geral, por lajes e vigas principais e 
secundárias. Trata-se do elemento de suporte direto do extrato. 
 Os encontros são considerados por alguns autores como elementos 
constituintes da infraestrutura e por outros da mesoestrutura. Estes elementos têm 
características variáveis, contudo têm a função principal de absorver o empuxo dos 
aterros de acesso. 
1.2. Breve histórico 
 As primeiras pontes foram construídas com estrutura bastante simples e 
utilizavam madeira e pedras como materiais de construção. 
 Segundo PINHO et al, as mais antigas pontes de pedra foram construídas em 
Roma empregando a técnica de arcos aprendida com os etruscos. Dentre as pontes 
de pedra mais antigas podemos citar três delas que ainda hoje servem à população 
local, que são: Fabrício (62 a.C.) (Figura 1), São Ângelo (134 d.C.) e Céstio (365 
d.C.). 
 
2 
 Há noticias que pontes de madeira foram utilizadas pelos romanos para a 
travessia de rios e lagos. Durante o Renacentismo, o arquiteto Palladio construiu 
vãos de 30 m com treliças triangulares elaboradas por ele. Exemplos deste tipo de 
estrutura são as pontes Grubenmann, sobre o Rio Reno, em Schaffhausen – Suíça, 
com dois vãos de 52 e 59 m; a ponte sobre o rio Elba em Wittemberg – Alemanha, 
com 14 vãos de 56 m em treliça. 
 No fim do século XVIII iniciou-se a fase de transição entre as pontes de 
madeira para as pontes metálicas, transição esta que durou aproximadamente 40 
anos, iniciando e terminando em uma mesma geração. Inicialmente foram 
construídas em ferro fundido, sendo a ponte construída pelo exercito alemão sobre o 
Rio Oder, na Prússia, a primeira ponte a utilizar este material em sua construção. Já 
a primeira a ser construída totalmente em ferro fundido situa-se sobre o rio Severn, 
Inglaterra (1779), com um vão de 31 m, 15 de largura e com 59 m de comprimento 
total (Figura 2). 
 
 
Figura 1: Gravura de Piranesi mostrando a Ponte Frabício em Roma. (Imagem extraída de 
www.structurae.de) 
 
 As primeiras pontes treliçadas totalmente feitas em aço foram construídas nos 
Estados Unidos (1840), Inglaterra (1845), Alemanha (1853) e Rússia (1857). Entre 
1850 e 1880, foram construídas as primeiras pontes em aço no Brasil. 
 As pontes em concreto armado apareceram no início do século XX. Estas 
possuíam os tabuleiros em concreto armado e suas estruturas de sustentação eram 
construídas em arcos triarticulados de concreto simples. O concreto armado só veio 
 
3 
a ser utilizado na mesoestrutura a partir de 1912, quando as pontes de viga e de 
pórtico, com vãos de até 30 m, começaram a ser construídas. 
 Em 1938 o concreto protendido começou a se difundir, como material de 
construção de pontes, mas somente após o final da Segunda Guerra Mundial que 
ele começou a ser utilizado com freqüência. 
1.3. Classificações de pontes 
 As pontes podem ser classificadas de diversas maneiras, sendo as mais 
comuns: quanto sua finalidade de utilização, material de construção, tipo estrutural, 
tempo de utilização e mobilidade do estrato. 
 Quanto a sua finalidade as pontes podem ser rodoviárias, ferroviárias, 
passarelas, rodoferroviárias, etc. Podem, também, destinar-se ao suporte de dutos 
e, até mesmo, de vias navegáveis. 
 Ao serem classificadas quanto ao material que são construídas, as pontes 
podem ser de madeira, pedras, concreto (simples, armado ou protendido) e 
metálicas. 
 Pode-se classificá-las, também, quanto ao seu tipo estrutural e podendo ser 
em laje, viga, caixão, treliça, pórtico arco ou suspensa, conforme pode ser visto na 
Figura 3. 
 Em termos de tempo de utilização as pontes se subdividem em permanentes 
e provisórias. 
 
 
Figura 2: Ponte Severn. (Foto extraída de www.structurae.de) 
 
 
4 
 Por ultimo, pode-se classificar as pontes quanto a sua mobilidade do 
substrato, que são: flutuantes, corrediça, levadiça, basculante e giratória. 
 
 
 
 
 
 
 
Figura 3: Tipos estruturais de ponte. 
1.4. Sistemas estruturais 
1.4.1. Pontes em Laje 
 As pontes em laje possuem a seção transversal desprovida de qualquer 
vigamento, podendo ter um sistema estrutural simplesmente apoiado ou contínuo. A 
 
5 
Figura 3a mostra um exemplo desta estrutura em um sistema simplesmente apoiado 
em encontros e algumas seções transversais típicas. Este sistema estrutural 
apresenta algumas vantagens, como pequena altura de construção, boa resistência 
à torção e rapidez de execução, possuindo também boa relação estética. Podem ser 
moldadas no local ou constituídas de elementos pré-moldados, e os detalhes de 
fôrmas e das armaduras e a concretagem são bastante simples. 
 As soluções de pontes em laje podem ser de concreto armado ou protendido 
com a relação entre a espessura da laje e o vão variando de 1/15 a 1/20 para 
concreto armado e até 1/30 para concreto protendido. Quando os vãos são muito 
grandes, o peso próprio é muito alto e costuma-se adotar a solução da seção 
transversal em laje alveolada, onde os vazios podem ser conseguidos com fôrmas 
perdidas, através de tubos ou perfilados retangulares de compensado ou de plástico 
(Mason, 1977). 
1.4.2. Pontes em Viga de Alma cheia 
 As pontes em vigas de alma cheia possuem um sistema de vigas que 
suportam o tabuleiro. As vigas principais são denominadas longarinas e as vigas 
destinadas a aumentar a rigidez da estrutura são transversinas. 
1.4.3. Pontes em Vigas Caixão 
 As vigas caixão como o próprio nome indica, são vigas formadas por duas ou 
mais almas e por uma mesa inferior única, alem da mesa superior. Ao contrario das 
pontes em vigas de alma cheia, neste tipo de estrutura não é necessário utilizar 
transversinas intermediárias, já que este tipo de estrutura confere grande rigidez à 
torção ao sistema. 
1.4.4. Treliçadas 
 A treliça pode ser descrita como um conjunto de triângulos formados por 
peças retas e articuladas entre si. Quando adequadamente projetada, com 
proporções normais, uma treliça tem as seguintes características: 
a) Os eixos de todos os elementos são retos e concorrentes nos nós ou juntas; 
b) A treliça propriamente dita é carregada somente nos nós. 
 
6 
 O sistema de treliças tem duas grandes vantagens: a primeira é a dos 
elementos só serem solicitados por cargas axiais, a segunda permitir alturas maiores 
com menor peso e redução de flecha. 
 A desvantagem econômica das pontes em treliça é o custo maior de 
fabricação, pintura e manutenção, e às vezes o fator estético, pelo cruzamento 
visual dos elementos (PINHO, 2007). 
1.4.5. Pontes em Pórticos 
 Neste tipo de ponte a mesoestrutura é solidarizada monoliticamente a 
superestrutura, não sendo necessário, portanto, aparelhos de apoio nos pilares e 
reduzindo o comprimento de flambagem dos mesmos. 
 Normalmente possuem pilares inclinados, necessitando fundações inclinadas, 
também. Estes pilares, usualmente, estão sujeitos a uma grande carga de 
compressão. Segundo Pinho et al., isto faz com que esta solução seja recomendada 
para terrenos de bom suporte de cargas. 
1.4.6. Pontes em Arco 
 Este é o tipo mais antigo de ponte, as pontes em arco mais antigas que se 
tem noticia foram construídas pelos romanos por volta de 100 a.C.. 
 Estas estruturas, devido à sua configuração geométrica, permitem o uso de 
concreto simples em pontes de grandes vãos. Isto acontece quando o eixo do arco é 
projetado segundo as linhas de pressão devidas à cargapermanente, tirando 
proveito, desta maneira, da boa resistência a compressão do concreto. 
1.4.7. Pontes suspensas por Cabos 
 Neste tipo de ponte os tabuleiros são contínuos e são sustentados por cabos 
atirantados, podendo ser pênseis ou estaiadas. 
 Nas pontes pênseis os cabos são ligados a dois outros cabos maiores que, 
por sua vez, ligam-se às torres de sustentação. A transferência das principais cargas 
às torres e às ancoragens em forma de pendurais é feita simplesmente por esforços 
de tração. Os cabos maiores comprimem as torres de sustentação, que transferem 
os esforços de compressão para as fundações. Neste tipo de ponte, quando sujeita 
a grandes cargas de vento, o tabuleiro apresenta grandes deslocamentos, por esta 
 
7 
razão, exige-se que o mesmo seja projetado com grande rigidez à torção para 
minimizar este efeito. 
 As pontes estaiadas diferem das pênseis na forma com que os cabos são 
ancorados. Nesse caso, os cabos são ancorados diretamente às torres de 
sustentação. Seu sistema estrutural consiste em um vigamento, com grande rigidez 
à torção, que se apóia nos encontros e nas torres de ancoragem, e por um sistema 
de estais partindo dos acessos do vigamento, que passam por uma das torres de 
ancoragem e dirigem-se ao vão central, para então ancorá-los e sustentar o 
vigamento. Segundo Mattos, 2001 as torres deste tipo de ponte podem ser 
projetadas com grande esbeltez porque os estais transmitem apenas pequenas 
forças provenientes do vento e contribuem em muito para a segurança contra a 
flambagem. Estas apareceram pela a primeira vez na Alemanha em 1938, sendo 
uma das mais conhecidas a ponte Severin em Colônia, Alemanha construída em 
1960, com um vão de 350 m (Figura 4). 
 
 
Figura 4: Ponte Severin. (Foto extraída de www.structurae.de) 
1.5. Carregamentos 
 De acordo com a NBR 8681 os carregamentos atuantes em estruturas de 
pontes podem ser divididos em três classes, a saber: permanente, variáveis e 
excepcionais. Segundo MATTOS, 2001 tão importante quanto o valor dos 
carregamentos é o momento e a ordem que os carregamentos atuam, 
principalmente nas pontes em concreto protendido e nas em vigas pré-fabricadas e 
pré-moldadas em que ocorrem mudanças nas características da seção transversal. 
 
8 
1.5.1. Ações permanentes 
 As ações permanentes são aquelas que permanecem constantes ou com 
pequena variação durante toda a vida útil da estrutura. As ações permanentes são 
divididas em diretas, tais como o peso próprio dos elementos, incluindo o peso 
próprio da estrutura e de todos os elementos construtivos permanentes, e indiretas, 
como protensão, recalques de apoio e retração dos materiais. 
1.5.2. Ações variáveis 
 As ações variáveis são aquelas que apresentam variações significativas de 
sua magnitude durante a vida útil da estrutura, que são, no caso especifico de 
pontes, as forças devido à frenagem e à aceleração, à aceleração centrífuga, à ação 
do vento, à variação de temperatura e às cargas móveis. Estas ações podem ser 
normais, quando possuem grande probabilidade de ocorrência para que sejam 
consideradas no projeto, ou especiais, como ações sísmicas ou cargas acidentais de 
natureza ou intensidade especiais. 
1.5.3. Ações excepcionais 
 Ações excepcionais são aquelas que têm pouca probabilidade de ocorrer e 
com pouco tempo de duração, podendo ser: choque de veículos ou navios nos 
pilares, esforços provenientes de abalos sísmicos e choque de veículos no guarda-
rodas. 
 Atualmente no Brasil, assim como no mundo, observa-se uma grande 
diversificação nos materiais empregados na construção de pontes, uma vez que 
alguns desafios tecnológicos que no passado eram obstáculos consideráveis para 
se fazer uma ponte, hoje em dia, com técnicas e materiais modernos, alguns desses 
obstáculos já não oferecem tanta dificuldade. Assim sendo, a opção do material a 
ser empregado na construção de uma ponte, em muitos casos hoje em dia, fica por 
conta da criatividade do projetista. 
 No Brasil a ABNT define normas para cargas móveis em projetos de pontes. 
As normas mais recentes que abordam esse assunto datam de 1982 e vêem 
sofrendo atualizações periódicas, além de serem objeto de estudo no presente 
trabalho conforme se descreve nos próximos itens. 
 
9 
1.6. Escopo do trabalho, metodologia e objetivos 
 As normas NBR 7188, NBR 7187 dentre outras regulamentam os 
procedimentos para o cálculo estrutural de pontes no Brasil. Apesar de estarem 
submetidas a ações dinâmicas, tais efeitos são considerados no cálculo de forma 
simplificada com a aplicação de um coeficiente de impacto que majora os resultados 
estáticos obtidos, visando, desta forma, englobar o efeito das forças inerciais. 
 Cabe então a seguinte pergunta: “A adoção de coeficientes de impacto é o 
suficiente para se dimensionar com segurança e economia uma ponte, sem a 
consideração de forças inerciais e de amortecimento?”. Esta pergunta serviu como 
agente motivador para o presente trabalho. 
 Assim sendo, busca-se nesse trabalho avaliar, em alguns casos específicos, 
se a adoção de coeficientes de impacto é uma estratégia que produz bons 
resultados quando comparados com os valores obtidos numa analise através de um 
modelo de elementos finitos onde as ações inerciais e de amortecimento são 
consideradas. 
 Utiliza-se um modelo em elementos finitos no qual a massa do veículo é 
considerada distribuída em dois graus de liberdade e a ponte é modelada através de 
elementos de viga. 
 Os resultados dinâmicos obtidos com esse modelo são comparados com as 
analises pseudo-estáticas, prescritas na NBR 7187 visando avaliar a adoção de 
coeficientes de impacto no cálculo de pontes em alguns casos específicos. 
 Visando dar uma visão geral desse trabalho ao leitor, este trabalho foi dividido 
da seguinte forma: 
 Capítulo 1: Apresenta-se neste capítulo as principais definições pertinentes 
ao estudo de pontes, um breve histórico, as possíveis classificações de uma 
ponte e os tipo de carregamento atuantes nestas estruturas; 
 Capítulo 2: Aqui são apresentados os principais trabalhos relacionados ao 
estudo das vibrações produzidas em pontes devido à passagem de veículos 
sobre as mesmas, destacando-se os mais relevantes; 
 Capítulo 3: Neste capítulo descreve-se as principais características e 
propriedades dos veículos, da legislação sobre os limites de peso dos 
veículos de carga, do processo de monitoramento dos mesmos e das 
características das pontes adotadas nesse trabalho; 
 
10 
 Capítulo 4: Faz-se aqui a descrição do modelo computacional para a 
simulação da iteração veículo-estrutura, isto é, da modelagem do veículo, da 
estruturas das pontes e da acoplagem de ambos os modelos; 
 Capítulo 5: Aqui são feitas considerações sobre os efeitos da passagem de 
veículos sobre pontes rodoviárias, bem como, são apresentados os 
resultados obtidos através do modelo adotado. 
 Capítulo 6: Neste capítulo é realizada a discussão dos resultados obtidos. 
Também são apresentadas sugestões para trabalhos futuros. 
 
 
 
 
11 
2. Revisão da literatura 
 De uma forma geral os problemas de dinâmica de estruturas começaram a ter 
evidência no início do século XIX, com o começo das primeiras pontes ferroviárias. 
Nesta época as opiniões se dividiam em duas vertentes: uma assumia que os efeitos 
de uma carga móvel assemelhavam-se a um impacto, outra afirmava que a carga de 
uma locomotiva não atuava por tempo suficiente sobre a estrutura para ser capaz de 
deformar a ponte, quando esta a atravessava rapidamente. 
 Dentre as primeiras publicações relativas ao problema de impacto e 
solicitações dinâmicas em pontes pode-se citar o trabalho realizado por Friedrich 
Bleich (BLEICH, 1924). Seu trabalho merece destaque por ter adotado as diretrizes 
seguidas posteriormente por várias normas de projeto e por seu pioneirismo nesteestudo. 
 O problema de uma carga móvel foi resolvido, primeiramente, para o caso 
onde a massa da viga é considerada pequena em relação à massa da carga que a 
percorre com velocidade constante. A solução deste problema deve-se a R. Willis 
(WILLIS et al. 1849), que deduz uma expressão, aproximada, para a equação do 
movimento fundamentada em um modelo de uma massa que desloca com 
velocidade constante por uma viga simplesmente apoiada, flexível e massa 
desprezível. 
 Para o caso em que a massa da carga é assumida como pequena frente à 
massa da viga, foi tratado originalmente, para uma viga simplesmente apoiada e 
carga pontual constante, por A. N. Krylov (KRΫLOV, 1905) e S. P. Timoshenko 
(TIMOSHENKO, 1908 e 1922), que utilizaram o método da expansão das funções 
de autovalor. 
 É também creditada a Timoshenko a solução para o problema dos efeitos de 
um carregamento harmônico movendo sobre uma viga com velocidade constante. 
 A resolução do problema considerando as massas da viga e da carga móvel, 
na qual foi obtida uma resposta satisfatória, deve-se a A. Schallenkamp 
(SCHALLENKAMP, 1937), o qual utilizou uma série de Fourier com coeficientes 
desconhecidos para o trajetória de uma carga concentrada com magnitude 
constante. 
 Cabe lembrar que todos os exemplos mencionados até esse ponto do texto 
utilizaram um veículo idealizado por uma massa pontual. 
 
12 
 Modelos com veículos idealizados de forma mais complexa e pontes 
modeladas de forma mais refinada somente foram possíveis com o desenvolvimento 
das ferramentas computacionais. Para o problema de vibrações em pontes 
identificam-se duas abordagens para o problema de interação veículo-estrutura: 
modelos analíticos simplificados do veículo e da estrutura e modelos numéricos 
complexos em elementos finitos (Melo, 2007). 
 Utiliza-se nesse trabalho um modelo em elementos finitos no qual a massa do 
veículo é considerada distribuída em dois graus de liberdade e a ponte é modelada 
através de elementos de viga. 
 Os resultados dinâmicos obtidos com esse modelo são comparados com as 
analises pseudo-estáticas, prescritas na NBR 7187 visando avaliar a adoção de 
coeficientes de impacto no cálculo de pontes em alguns casos específicos. 
 
 
13 
3. Características e propriedades dos veículos e pontes no 
Brasil 
3.1. Veículos rodoviários 
 Os veículos rodoviários, segundo o DNER, podem ser divididos em: leves e 
comerciais (ou de carga). Os veículos de carga mais freqüentes no tráfego 
rodoviário brasileiro, conforme o item 3.1.2 deste trabalho, são: 2C, 3C e 2S3. Estes 
podem ser descritos da seguinte forma: 
• Caminhões de dois eixos, em uma só unidade (2C): caminhões basculantes, 
de carroceria, baú e tanque, veículos de camping e de recreação, veículos 
moradia, etc., tendo dois eixos com rodas simples no dianteiro e rodas duplas 
na traseira (6 pneus); 
• Caminhões de três eixos, em só unidade (3C): caminhões betoneira, 
caminhões basculantes pesados, caminhões de carroceria e baús longos, 
etc., tendo três eixos: dianteiro de rodas simples e traseiros (tandem duplo ou 
não) de rodas duplas (10 pneus); 
• Caminhões com semi-reboque, com cinco eixos (2S3): veículos com cinco 
eixos, constituídos por duas unidades, uma das quais é um cavalo motor 
(com dois eixos), e o reboque com 3 eixos (tandem triplo), com 18 pneus; 
Segundo a Resolução CONTRAN n° 12/98 o comprimento máximo autorizado 
para estes veículos são: 14,00m (2C e 3C) e 18,50m (2S3). 
3.1.1. Lei da balança 
 Um conjunto de artigos do Código de Transito Brasileiro (CTB) e de 
Resoluções do Conselho Nacional de Transito (CONTRAN), que regulamentam as 
configurações dos veículos nas rodovias brasileiras, é conhecido como Lei da 
Balança. Alguns dos aspectos mais relevantes a este trabalho serão destacados a 
seguir. 
 O Peso Bruto Total (PBT), referido aos veículos monolíticos, é definido pela 
soma algébrica das cargas máximas permitidas em todos os seus eixos 
componentes. Quando se trata de veículos compostos, usa-se o Peso Bruto Total 
Combinado (PBTC), tendo a mesma definição do PBT. 
 
14 
 Segundo a Resolução n° 12 do CONTRAN (06/02/1998), consideram-se eixos 
em tandem os eixos de quatro pneumáticos cada, que constituam um conjunto 
integral de suspensão, podendo qualquer um deles ser ou não motriz. O conjunto de 
dois eixos consecutivos em tandem é chamado tecnicamente de eixo tandem duplo 
(TD), e o de três, eixo tandem triplo (TT). Não se faz o uso de configurações em 
tandem com mais de três eixos, tampouco de eixos tandem triplo em veículos 
rebocados. Considera-se eixo duplo especial (DE) o conjunto de dois eixos, 
interligados por suspensão especial, no qual um deles é dotado de quatro 
pneumáticos e o outro de dois pneumáticos, os eixos isolados de dois pneumáticos 
são chamados de eixos simples de rodas simples (SRS) e os isolados de quatro 
pneumáticos, eixos simples de rodas duplas (SRD). Estes eixos têm seus limites de 
carga descriminados na Tabela 1. 
Eixo Carga máxima (kN) 
SRS 60 
SRD 100 
TD 170 
TT 255 
DE 135 
Tabela 1: Configurações de eixo e seus limites de peso. 
 
 Os limites de PTB/PBTC das classes de veículos constantes na base de 
dados do DNIT são apresentados na Tabela 2. 
N° de eixos de cada tipo Classe SRS SRD DE TD TT 
Limite de Peso 
(kN) 
O2C 1 1 0 0 0 160 
O3C 1 0 1 0 0 195 
O4CD 2 0 1 0 0 255 
2C 1 1 0 0 0 160 
3C 1 0 0 1 0 230 
4C 1 0 0 0 1 315 
4CD 2 0 0 1 0 290 
2C2 1 3 0 0 0 360 
2C3 1 2 0 1 0 430 
3C2 1 2 0 1 0 430 
3C3 1 1 0 2 0 500 
2S1 1 2 0 0 0 260 
2S2 1 1 0 1 0 330 
2I2 1 3 0 0 0 360 
2S3 1 1 0 0 1 415 
2I12 1 2 0 1 0 430 
2I3 1 4 0 0 0 460 
3S1 1 1 0 1 0 330 
3S2 1 0 0 2 0 400 
3I2 1 2 0 1 0 430 
3S3 1 0 0 1 1 485 
3I12 1 1 0 2 0 500 
3I3 1 3 0 1 0 530 
Tabela 2: PBT/PBTC das classes de veículos. 
 
15 
3.1.2. Monitoramento do tráfego rodoviário 
 O tráfego é avaliado através dos Postos de Pesagem, de Contagem e de 
Monitoramento. Sendo que nos Postos de Pesagem os veículos são avaliados em 
baixas velocidades, logo sem efeitos dinâmicos, já os Postos de Contagem tem 
como objetivo coletar dados sobre o fluxo de veículos em trânsito. Hoje, dos vinte e 
seis Postos de Contagem existentes no Brasil nenhum se encontra em operação. Os 
Postos de Monitoramento levantam dados relativos ao volume de tráfego, velocidade 
e cargas por eixo. 
 Os dados colhidos pelo DNIT, no período de dezembro de 1999 e outubro de 
2002, e sintetizados por Rossigali, permitem chegar à distribuição de freqüências 
relativas das diferentes classes de veículos apresentada na Figura 5. 
46
,
2%
7,
2%
3,
4%
2,
4%
0,
0%
7,
8%
11
,
5%
0,
0%
0,
0%
0,
0%
0,
0%
0,
0%
0,
0%
0,
2%
2,
8%
0,
1%
7,
2%
0,
1%
0,
0%
0,
0%
0,
1%
0,
0%
0,
9%
0,
0%
0,
0%
0,
2%
0,
1%
0,
1%
9,
6%
0%
10%
20%
30%
40%
50%
LE
VE
S
U
TI
LI
T
O
2C
O
3C
O
4C
D 2C 3C 4C 4C
D
2C
2
2C
3
3C
2
3C
3
2S
1
2S
2
2I
2
2S
3
2I
12 2I
3
3S
1
3S
2
3I
2
3S
3
3I
12 3I
3
7R
O
D
8R
O
D
9R
O
D
OU
TR
OS
 
Figura 5: Distribuição de freqüências relativas das classes de veículos. (Adaptado de ROSSIGALI, 
2006) 
 Da inspeção do gráfico da Figura 5, se concluí que os veículos pesados mais 
freqüentes nas rodovias brasileiras são os dos tipos 3C, 2C e 2S3. Por este motivo, 
as análises desenvolvidas neste trabalho terão como foco os veículos: 3C, 2C e 
2S3. 
 Com estes dados, coletados pelo DNIT, pode-se também conhecer a 
distribuição de carga entre os eixos dos veículos. A Figura 6 mostra a distribuição de 
carga para os veículos utilizados neste trabalho. 
 
 
16 
 
Figura 6: Percentuais de peso total em cada eixo dos veículos de configuração mais freqüentee seus 
 respectivos comprimentos (em metros). 
3.1.3. Propriedades e tipos de suspensões dos veículos pesados 
 Uma das funções do sistema de suspensão é isolar a estrutura do veículo e 
seus ocupantes de choques e vibrações geradas pelas irregularidades do 
pavimento. O objetivo é conciliar a sensibilidade humana e manter a estabilidade, o 
controle direcional e todas as necessidades de manobra de um veículo em seu 
comportamento dinâmico (Melo, 2007). 
 Uma forma de representar o sistema composto pela massa do veículo, 
suspensão e pneus é mostrada na Figura 7. A massa suspensa representa o 
conjunto do corpo do veiculo, seus ocupantes e carga transportada, que é apoiada 
sobre uma massa não suspensa, conjunto do eixo, roda, freio, mecanismos 
mecânicos e pneus, através de uma mola e um amortecedor. A massa não 
suspensa apóia-se no chão através do pneu, o qual atua como uma mola 
amortecida. 
 
 
Figura 7: Representação de um sistema de suspensão simples. 
 
 O tipo de suspensão mais utilizada em veículos pesados são aquelas 
formadas por molas formadas por feixes de lâminas. As propriedades deste tipo de 
mola são caracterizadas pela relação entre força e deslocamento, conforme mostra 
a Figura 8. 
 
17 
 
 
Figura 8: Relação força-deslocamento característica de uma mola em feixe de lâminas. Fonte: 
GILLESPIE et al., 1992. 
 
 Gillespie et al., 1992, também mostra em seu trabalho as propriedades típicas 
mais importantes utilizadas em simulações numéricas e que foram obtidas em 
experimentos realizados com diversas suspensões de diversos fabricantes. A Tabela 
3 mostra as propriedades dos tipos de eixos utilizados neste trabalho. 
 
Posição da suspensão Faixa de rigidez (kN/m) 
Coeficiente de 
amortecimento 
(kN.s/m) 
Massa não 
suspensa 
(kg) 
Eixo direcional 165 até 429 3,0 635,0 
Eixo simples trativo 482 até 589 6,0 1089,0 
Eixo trativo em tandem duplo 321 até 589 6,0 2132,0 
Eixo de semi-reboque em tandem triplo 321 até 393 6,0 2110,0 
Tabela 3: Propriedades das suspensões. 
 
3.1.4. Propriedades dos Pneus 
 A relação da deflexão vertical e carga suportada pelos pneus têm 
comportamento não-linear, inicialmente, e posteriormente linear. Gillespie et al., 
1992, além das propriedades de rigidez das suspensões as estudou também para os 
pneus que podem ser vistas resumidamente na Tabela 4. 
 
Tipo de pneu Rigidez por pneu (kN/m) 
Coeficiente de amortecimento por pneu 
(kN.s/m) 
Convencional Simples 839 1,0 
Convencional Duplo 839 1,0 
Tabela 4: Propriedades dos pneus. 
 
 
18 
3.2. Descrição das estruturas de pontes consideradas 
 A geometria das pontes é obtida em função do sistema estrutural, do vão a 
ser vencido, da altura estrutural disponível, do processo de construção e das 
características da via. 
 O Departamento Nacional de Estradas de Rodagem – DNER em seu manual 
de projeto de obras-de-arte especiais define alguns parâmetros a serem 
considerados durante o projeto de pontes. Dentre estes, pode-se citar aqueles 
utilizados para o projeto das estruturas aqui consideradas, que são: 
− Classe de projeto: I-B (pista simples) 
− Região: Plana 
− Largura da faixa de rolamento: 3,60 m 
− Largura do acostamento externo: 2,40 m 
− Velocidade diretriz: 100 km/h 
 
 
Figura 9: Seção transversal de acordo com o DNER para pontes da classe I-B. 
 
 Além destas recomendações, o DNER também recomenda valores mínimos 
para a alma das vigas, espessura das lajes e esbeltez. 
 O presente estudo restringiu-se as pontes de concreto armado, moldado in 
loco, com vãos de 20, 30 e 40 m, sendo o esquema estrutural longitudinal de vigas 
bi-apoiadas. As seções transversais são ilustradas na Figura 10, que constam de 
lajes associadas às vigas principais de seção retangular constante, sendo as 
transversinas desligadas das lajes. 
 
19 
 
a) Vão 20 m 
 
 
 
 
b) Vão 30 m 
 
 
 
c) Vão 40 m 
 
Figura 10: Seção transversal típica das pontes estudadas. 
 
 
20 
4. Modelo computacional para simulação da iteração 
veículo-estrutura 
4.1. Modelagem do veículo 
 O veículo é um sistema de carregamento dinâmico móvel, ou seja, variável no 
tempo e no espaço, que atua na estrutura de uma ponte ao trafegar sobre o 
pavimento a certa velocidade. O veículo excita a ponte devido à ação inercial das 
massas do veículo, pela rugosidade do pavimento (desprezada neste trabalho) e 
pela iteração com a própria estrutura em movimento. Considera-se, também, que o 
veículo não perde contato com a estrutura em momento algum. 
 Apresenta-se esquematicamente na Figura 11 o modelo do veículo, bem 
como os referenciais adotados. O modelo representa um veículo, com uma massa 
suspensa e outra não suspensa, assim como sua suspensão (massa 1m , mola 1k e 
amortecedor 1c ) e pneus (mola 2k e amortecedor 2c ) e dois graus de liberdade: 1x e 
2x . A iteração veículo-estrutura é dada através do grau de liberdade cx . 
 
 
Figura 11: Veículo com 2 graus de liberdade sobre um elemento linear. 
 
 Pode-se escrever o sistema de equações diferenciais associadas aos graus 
de liberdade do veículo e do grau de liberdade de contato do mesmo com a ponte 
cx , conforme a equação (1). 
 
21 
( ) ( ) 




=
















−+−
−
+
















−+−
−
+
















2
1
2
1
2211
11
2
1
2211
11
2
1
2
1 00
00
00
P
P
x
x
x
kkkk
kk
x
x
x
cccc
cc
x
x
x
m
m
ccc
&
&
&
&&
&&
&&
 (1) 
onde: iP , im , ic , ix&& , ix& e ix são o peso, a massa, o coeficiente de amortecimento, a 
aceleração, a velocidade e o deslocamento da massa i, respectivamente. 
 Este modelo apresenta resultados próximos daqueles obtidos com um modelo 
mais complexo de quatro graus de liberdade analisado por Green, conforme 
mostrado na Figura 12. Por esse motivo o modelo com 2 graus de liberdade foi 
adotado neste trabalho. 
 
 
Figura 12: Resposta obtida por Green et al com veículos de 2 e 4 graus de liberdade. 
 
 O resultado apresentado na Figura 12 indica que a complexidade do modelo 
de veículo para o caso analisado não exerce grande influência sobre as respostas 
obtidas. 
4.2. Modelagem da estrutura das pontes 
 Para a modelagem da estrutura foi considerado uma discretização unifilar 
através do Método dos Elementos Finitos, utilizando elementos de viga. 
 As equações diferenciais de movimento de uma estrutura submetida a um 
carregamento em função do tempo e do espaço é dada por: 
fkxxcxm =++ &&& (2) 
onde: 
m é a matriz de massa global da estrutura; 
c é a matriz de amortecimento global da estrutura; 
 
22 
k é a matriz de rigidez global da estrutura; 
x&& , x& e x são, respectivamente, os vetores de aceleração, velocidade e 
deslocamento dos pontos nodais da estrutura e 
f é o vetor de forças nodais variável no tempo e no espaço. 
 A Figura 13 mostra o modelo de vigas representando a estrutura da ponte, 
isto é, o conjunto formado pelas vigas principais e transversais e tabuleiro, sendo im 
a i-ésima massa concentrada nos nós. 
 
 
Figura 13: Modelo de elementos finitos da estrutura da ponte. 
 
 A superestrutura foi modelada como barras contínuas utilizando elementos de 
viga os quais apresentam matrizes de rigidez local elk como a mostrada na equação 
(3), onde E , I e L representam, respectivamente, o módulo de elasticidade 
longitudinal da superestrutura, o momento de inércia da seção transversal e o 
comprimento do elemento. A matriz de rigidez global da estrutura, k , foi obtida 
somando-se adequadamente as matrizes de rigidez locais doselementos utilizados 
na discretização da estrutura. 




















−
−−−
−
−
=
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
el
4626
612612
2646
612612
22
2323
22
2323
k (3) 
 O módulo de elasticidade longitudinal do concreto aos 28 dias utilizado foi o 
módulo de elasticidade secante, obtido segundo a norma NBR 6118, no item 8.2.8, 
conforme abaixo. 
2
15600 ckci fE = 
MPaEci 3313035.5600 2
1
== 
 
cics EE 85,0= 
MPaEcs 2816033130.85,0 == 
 
(4) 
 
 
 
 
(5) 
 
23 
 Para a massa específica do concreto armado foi adotado o valor 
³/25 mkNc =ρ , os valores da área e do momento de inércia da seção transversal, 
utilizados em cada caso, estão listados na Tabela 5 para os respectivos vãos. 
 Para a simulação da massa das pontes adotou-se uma modelagem de 
massas discretas, obtendo-se a matriz global apresentada abaixo. 
( ) ( ) ( ) ( )[ ],2/,,2/,2/,2/ 32211 nmmmmmmdiag K++=M (6) 
 O valor da massa im do i-ésimo elemento é calculada multiplicando-se a área 
da seção transversal, A , pelo comprimento do elemento, L , e pela massa 
específica da estrutura, cρ . 
 A matriz de amortecimento foi considerada proporcional à matriz de massa. 
 
Vão 
(m) 
Área 
(m²) 
Momento de inércia 
(m4) 
20 5,1710 0,7670 
30 5,9810 2,8671 
40 6,4310 4,8609 
Tabela 5: Propriedades das seções transversais das pontes consideradas. 
 
4.3. Modelo acoplado veículo-estrutura 
 Associando as equações (1) e (2), pode-se escrever um sistema de equações 
único que engloba todas as equações diferenciais que descrevem o comportamento 
dinâmico do sistema, conforme mostrado na equação (7). 
 
24 
( )









=






































+−
−
+






































−
+−
−
+






































tfx*k
x*c
xm
2
1
2
1
2,
2,211
11
2
1
2
2211
11
2
1
2
1
00
00
0
00
00
0000
00000
00
00
0
00
00
00-00
00000
00
00
00
00
00
000000
000000
P
P
x
x
k
kkkk
kk
x
x
c
cccc
cc
x
x
m
m
c
c
MM
MM
LL
LL
&
&
&
MM
MM
LL
LL
&&
&&
&&
MM
MM
LL
LL
 
(7) 
onde: 
*c é a matriz de amortecimento da estrutura com o elemento ccc , acrescido de 2c ; 
*k é a matriz de amortecimento da estrutura com o elemento cck , acrescido de 2k ; 
 Na equação (7), somente a matriz de massas é constante no tempo. As 
demais devem ser atualizadas a cada passo no tempo, já que com o movimento do 
veículo o grau de liberdade do ponto de contato é alterado. 
 O vetor de cargas ( )tf é obtido através da adição das cargas nodais 
equivalentes do veiculo, ( )tf ' (conforme equação (8)), ao vetor de cargas devido ao 
carregamento permanente da estrutura. Para determinar as cargas nodais 
 
25 
equivalentes, primeiramente determina-se a posição do veículo em dado instante, 
conseqüentemente o elemento sobre o qual o veículo se encontra. Feito isso, 
calcula-se as cargas nodais equivalentes de acordo com a equação (8) e Figura 14. 
 
 
Figura 14: Elemento com carga fora do nó. 
 
 
( ) ( )( )
( ) 













−
−
+−
+−
=














=
lala
aal
alaall
alal
l
P
M
V
M
V
t
2
2
22
323
3
2
2
1
1
23
2
23
f' (8) 
onde: 21 PPP += . 
 Os valores das rigidezes equivalentes adotadas para modelar as rigidezes da 
suspensão foram obtidos a partir dos valores médios daqueles listados na Tabela 3 
e então calculou-se a rigidez equivalente a associação paralela de molas. Os valores 
obtidos para as rigidezes, coeficientes de amortecimentos e massas estão listados 
na Tabela 6. 
 
Massa 
(kg) 
Rigidez 
(kN/m) 
Coeficiente de amortecimento 
(kN.s/m) Veículo 
1m 2m 1k 2k 1c 2c 
2C 14276,0 1724,0 684,0 839,0 6,0 1,0 
3C 20233,0 2767,0 603,5 839,0 6,0 1,0 
2S3 37666,0 3834,0 1041,0 839,0 6,0 1,0 
Tabela 6: Propriedades adotadas para os veículos considerados. 
 
 
 
26 
5. Efeitos da passagem de veículos sobre pontes 
rodoviárias 
 Neste capítulo será apresentado um estudo com a intenção de fornecer uma 
melhor compreensão dos parâmetros mais influentes no fator de amplificação 
dinâmica (FAD). Este fator é definido como: 
estático
dinâmicoFAD δ
δ
= (9) 
onde: 
dinâmicoδ
 é o deslocamento máximo no meio do vão de uma ponte avaliado para a 
passagem de um veículo, considerando-se forças inerciais e 
estáticoδ é o deslocamento máximo no meio do vão de uma ponte avaliado para a 
passagem de um veículo, sem considerar forças inerciais (carga estática). 
 Foram consideradas pontes com duas vigas principais biapoiadas com vãos 
de 20, 30 e 40m, sujeitas a passagem de veículos das classes 2C, 3C e 2S3, com 
velocidades iguais a: 20, 60 e 100 km/h. Neste trabalho foi desconsiderado o efeito 
das irregularidades do pavimento. 
 No modelo unifilar da estrutura foram considerados o método da superposição 
modal (ROCHA e BARBOSA, 2007) e 3 modos de flexão vertical. 
 Após realizar uma análise de convergência para um vão de 48 m, optou-se 
por utilizar 12 elementos. Para isso, realizou-se a passagem de um veículo sobre a 
estrutura modelada com 4, 12 e 24 elementos. As respostas para o deslocamento 
vertical no meio do vão podem ser vistas na Figura 16. Observa-se nessa figura que 
os resultados para 12 e 24 elementos são muito semelhantes e, por esse motivo, o 
modelo com 12 elementos foi adotado. 
 
27 
 
Figura 15: Análise de convergência. 
5.1. Respostas típicas das pontes 
 Apresentam-se a seguir as respostas em termos de deslocamentos no meio 
do vão para as estruturas consideradas. As mesmas foram submetidas à passagem 
de veículos das classes 2C, 3C e 2S3 com peso total de 160kN, 230kN e 415kN, 
respectivamente. As velocidades (v) dos veículos foram fixadas em 20, 60 e 
100km/h. Os deslocamentos verticais no meio do vão para os três vãos 
considerados são apresentados nas figuras 17, 18 e 19, respectivamente. 
 
 
 
a) v = 20 km/h 
-100
-80
-60
-40
-20
0
20
40
0 1 2 3 4 5
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
2C 3C 2S3
 
 
 
 
 
 
 
 
28 
b) v = 60 km/h 
-100
-80
-60
-40
-20
0
20
40
0 0,5 1 1,5 2
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
2C 3C 2S3
 
c) v = 100 km/h 
-100
-80
-60
-40
-20
0
20
40
0 0,5 1 1,5 2
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
2C 3C 2S3
 
Figura 16: Resposta em termos de deslocamentos no meio do vão para a ponte com vão de 20m. 
 
 
 
 
 
a) v = 20 km/h 
-80
-60
-40
-20
0
20
0 1 2 3 4 5
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
2C 3C 2S3
 
 
 
 
 
 
29 
b) v = 60 km/h 
-80
-60
-40
-20
0
20
0 0,5 1 1,5 2 2,5
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
2C 3C 2S3
 
c) v = 100 km/h 
-80
-60
-40
-20
0
20
0 0,2 0,4 0,6 0,8 1 1,2
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
2C 3C 2S3
 
Figura17: Resposta em termos de deslocamentos no meio do vão para a ponte com vão de 30m. 
 
 
 
 
 
a) v = 20 km/h 
-10
-8
-6
-4
-2
0
2
0 1 2 3 4 5 6 7 8
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
2C 3C 2S3
 
 
 
 
 
30 
 
b) v = 60 km/h 
-100
-80
-60
-40
-20
0
20
0 0,5 1 1,5 2 2,5 3
Tempo (s)
D
es
lc
o
am
en
to
 
(m
m
)
2C 3C 2S3
 
c) v = 100 km/h 
-10
-8
-6
-4
-2
0
2
0 0,5 1 1,5 2
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
2C 3C 2S3
 
Figura 18: Resposta em termos de deslocamentos no meio do vão para a ponte com vão de 40m. 
 
 
 Observa-se na Figura 19, Figura 20 e Figura 21 que a resposta à passagem 
dos veículos a baixas velocidades (20 km/h) é bem próxima da resposta estática 
enquanto que para médias e altas velocidades as forças inerciais são mais 
significativas. 
 
 
 
 
 
 
 
 
 
 
31 
 
 
a) Vão = 20m 
-100
-80
-60
-40
-20
0
20
40
0 1 2 3 4 5
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
Dinâmica Estática
 
b) Vão = 30m 
-100
-80
-60
-40
-20
0
20
40
0 1 2 3 4 5
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
Dinâmica Estática
 
c) Vão = 40m 
-10
-5
0
5
10
0 1 2 3 4 5 6 7 8
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
Dinâmica Estática
 
Figura 19: Resposta em termos de deslocamentos no meio do vão para o veículo 2S3 a 20 km/h. 
 
 
 
 
 
 
32 
 
 
a) Vão = 20m 
-100
-80
-60
-40
-20
0
20
40
0 0,5 1 1,5 2
Tempo (s)
D
es
lc
o
am
en
to
 
(m
m
)
Dinâmica Estática
 
b) Vão = 30m 
-100
-80
-60
-40
-20
0
20
40
0 0,5 1 1,5 2 2,5
Tempo (s)
D
es
lc
o
am
en
to
 
(m
m
)
Dinâmica Estática
 
c) Vão = 40m 
-100
-80
-60
-40
-20
0
20
40
0 0,5 1 1,5 2 2,5 3
Tempo (s)
D
es
lc
o
am
en
to
 
(m
m
)
Dinâmica Estática
 
Figura 20: Resposta em termos de deslocamentos no meio do vão para o veículo 2S3 a 60 km/h. 
 
 
 
 
 
33 
 
 
a) Vão = 20m 
-100
-80
-60
-40
-20
0
20
40
0 0,5 1 1,5 2
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
Estática Dinâmica
 
b) Vão = 30m 
-100
-80
-60
-40
-20
0
20
40
0 0,2 0,4 0,6 0,8 1 1,2
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
Estática Dinâmica
 
c) Vão = 40m 
-10
-5
0
5
10
0 0,5 1 1,5 2
Tempo (s)
D
es
lo
ca
m
en
to
 
(m
m
)
Estática Dinâmica
 
Figura 21: Resposta em termos de deslocamentos no meio do vão para o veículo 2S3 a 100 km/h. 
 
 
34 
5.2. Fator de amplificação dinâmica e o coeficiente de 
impacto da NBR 7187 
 O coeficiente de impacto (ϕ ) da norma NBR 7187 tem como objetivo 
amplificar as respostas estáticas, para simular os efeitos do carregamento dinâmico. 
Este coeficiente é expresso em função do vão das pontes. 
1007,04,1 ≥⋅−= lϕ (10) 
onde: l é o vão em metros. 
 A figura abaixo mostra os valores do FAD em função do vão para os três 
veículos e as três velocidades de trafego consideradas, bem como os respectivos 
coeficientes de impacto calculados pela equação (10). 
 
a) v = 20 km/h 
0,9000
1,0000
1,1000
1,2000
1,3000
1,4000
1,5000
15 20 25 30 35 40 45
Vão (m)
FA
D
2C 3C 2S3 NBR 7188
 
 
b) v = 60 km/h 
0,9000
1,0000
1,1000
1,2000
1,3000
1,4000
1,5000
15 20 25 30 35 40 45
Vão (m)
FA
D
2C 3C 2S3 NBR 7188
 
 
 
c) v = 100 km/h 
 
35 
0,9000
1,0000
1,1000
1,2000
1,3000
1,4000
1,5000
15 20 25 30 35 40 45
Vão (m)
FA
D
2C 3C 2S3 NBR 7188
 
Figura 22: FAD em função do vão para as velocidades de 20, 60 e 100 km/h. 
 
 
 
 
 
 
36 
6. Discussão dos resultados e conclusões 
 De acordo com a norma NBR 7188, para se levar em conta os efeitos 
dinâmicos das cargas móveis sobre as pontes, multiplicam-se os efeitos estáticos 
devido a um carregamento especificado pelas normas, pelo coeficiente de impacto, 
função apenas do vão da ponte. Esta abordagem obviamente não corresponde à 
realidade do comportamento das pontes já que uma série de outros parâmetros 
interferem na resposta dinâmica das estruturas. 
 Entretanto, a adoção dessa metodologia de cálculo simplifica 
consideravelmente o projeto estrutural e, uma vez verificado que sua adoção leva a 
projetos seguros e viáveis economicamente, essa prática torna-se uma aliada do 
projetista estrutural. 
 Assim sendo, analisando-se os modelos computacionais implementados e 
seus respectivos valores de FAD, observa-se que, exceto para os casos dos vãos 
menores com a velocidade do veículo de 100 km/h, os FADs são inferiores aos 
coeficientes de impactos normativos. Nesses casos pode-se então concluir que a 
adoção de coeficientes de impacto para baixas velocidades e vãos maiores tende a 
ser conservadora, uma vez que as forças inerciais envolvidas são de menor 
magnitude. 
 Cabe então uma discussão mais aprofundada sobre os resultados onde os 
coeficientes de impactos são inferiores aos FADs (casos relatados no parágrafo 
anterior) e, portanto, não estão a favor da segurança. 
 Os veículos modelados possuem comprimentos variando entre 14,00 e 18,50 
m. Desta forma percebe-se claramente que um modelo de veículo que possui um 
contato único com a ponte apresenta problemas na distribuição das cargas do 
veículo através da ponte, principalmente para vãos menores onde a relação entre o 
vão da ponte e a distância entre eixos do veículo é mais significativa. 
 Nesses casos, o modelo adotado tende a apresentar FADs superiores aos 
reais quando se considera a distância entre eixos, já que o carregamento total do 
veículo concentrado num único ponto de contato com a ponte bi-apoiada é 
obviamente mais severo para a estrutura que um conjunto de forças de mesma 
resultante e distribuído em mais de um ponto. 
 Assim sendo, pode-se concluir que: 
 
37 
1) Para os casos analisados onde foram obtidos FADs menores ou iguais ao 
coeficiente de impacto proposto pelas normas brasileiras, observa-se que o uso 
de coeficientes de impacto é favorável à segurança, já que numa situação real, 
ou seja, com um modelo de veículo mais refinado, a tendência é que os FADs 
sejam ainda menores que os obtidos com o modelo adotado no presente 
trabalho. 
2) Os casos onde se obteve FADs maiores que o coeficiente de impacto proposto 
pelas normas brasileiras não podem ser tomados como regra, uma vez que a 
modelagem do veículo adotada tende a amplificar os efeitos dinâmicos sobre a 
ponte. 
 Como trabalho futuro, sugere-se a realização do mesmo estudo aqui 
apresentado porém com a adoção de um modelo de veículo que simule mais 
adequadamente o comportamento dinâmico do sistema ponte-veículo. 
 
38 
Referências 
ABNT, NBR 7188 – Carga móvel em ponte rodoviária e passarela de pedestre, 
Associação Brasileira de Normas Técnicas, Rio de Janeiro, 1982 
 
ABNT, NBR 6118 – Projeto de estruturas de concreto - Procedimento. Associação 
Brasileira de Normas Técnicas, Rio de Janeiro, 2003 
 
ABNT, NBR 6123 – Forças devidas ao vento em edificações. Associação Brasileira 
de Normas Técnicas, Rio de Janeiro, 1988 
 
ABNT, NBR 7187 – Projeto de pontes de concreto armado e de concreto protendido 
– Procedimento, Associação Brasileira de Normas Técnicas, Rio de Janeiro, 2003 
 
ABNT, NBR 8681 – Ações e segurança nas estruturas, Associação Brasileira de 
Normas Técnicas, Rio de Janeiro, 2003 
 
Manual de projeto de obras-de-arte especiais, DNIT, Rio de Janeiro, 1996 
 
BATHE,Klaus-Jüurgen, Finite Element Procedures, 1ª ed. Upper Saddle River, NJ, 
Prentice-Hall Inc., 1996 
 
BLEICH, Friedrich, Theorie und Berechnung der eisernen Brüucken, 1ª ed. Berlin, 
Springer Verlag, 1924 
 
EL DEBS, Mounir Khalil, TAKEYA, Toshiaki et al., Um Estudo das Conseqüências do 
Tráfego de Combinações de Veículos de Carga sobre as Pontes da Rede Viária do 
DER-SP, Anais das XXX Jornadas Sul-americanas de Engenharia Estrutural, 
Brasília, Distrito Federal, 2002. 
 
EL DEBS, Mounir Khalil, TAKEYA, Toshiaki, Introdução as pontes de concreto, 
Notas de aula, EESC, São Carlos, 2007 
 
 
39 
FRÝBA, Ladislav, Vibration of solids and structures under moving loads, 3ª ed. 
República Checa, Thomas Telford Books, 1999 
 
GILLESPIE, T. D., KARAMIHAS, S. M., CEBON, D., et al, Effects of heavy vehicle 
characteristics on pavement response and performance, The University of Michigan 
Transportation Research Institute, UMTRI 92-2, 1992 
 
GREEN, M. F., CEBON, D., Dynamic response of highway bridges to heavy vehicle 
loads: Theory and experimental validation, Journal of Sound and Vibration, n° 170, p. 
51-78 
 
JANSSEN, H. H., SPAANS, L., Record span splice bulb-tee girders used in Highland 
View Bridge, PCI Journal, v.39, n.1, p.12-19, 1994 
 
KRΫLOV, A. N., Mathematical collection of papers of the Academy of Sciences, vol. 
61, São Petesburgo, 1905 
 
LEONHARDT, Fritz, Construções de concreto – Princípios básicos da construção de 
pontes de concreto, vol. 6, 1ª ed. Rio de Janeiro, Editora Interciência, 1979 
 
LUCHI, Lorenzo Augusto Ruschi e, Reavaliação do trem-tipo à luz das cargas reais 
nas rodovias brasileiras, Tese de Doutorado, USP, São Paulo, 2006 
 
PFEIL, Walter, Pontes em concreto armado, 1ª ed. Rio de Janeiro, LTC, 1979 
 
PINHO, Fernando Ottoboni, BELLEI, Ildony Hélio, Pontes e viadutos em vigas 
mistas, 1ª ed. Rio de Janeiro, IBS/CBCA, 2007 
 
PINHO, Mauro Ottoboni, Transporte e montagem, 1ª ed., Rio de Janeiro, IBS/CBCA, 
2005 
 
ROCHA, Samuel Silveira, BARBOSA, Flávio de Souza, Modelagem computacional 
da interação veículo-estrutura em vias férreas, Anais do X Encontro de Modelagem 
Computacional, Nova Friburgo, Rio de Janeiro, 2007 
 
40 
ROSSIGALI, Carlos Eduardo, Estudos probabilísticos para modelos de cargas 
móveis em pontes rodoviárias no Brasil, Tese de Mestrado, UFRJ, Rio de Janeiro, 
2006 
 
SHCALLENKAMP, A., Schwigungen Von Trägern bei bewegten Lasten. Ingenieur-
Archiv, 182-198, 1937 
 
TIMOSHENKO, S. P., Forced vibration of prismatic bars, Izvestiya Kievskogo 
politekhnicheskogo instituta, 1908 
 
TIMOSHENKO, S. P., On the forced vibration of bridges, Philosoph Magazine, 1922 
 
MASON, Jayme, Pontes em concreto armado e protendido, 1ª ed. Rio de Janeiro, 
Livros Técnicos e Científicos, 1977 
 
MATTOS, Tales Simões, Programa para análise de superestruturas de pontes de 
concreto armado e protendido, Tese de Mestrado, UFRJ, Rio de Janeiro, 2001 
 
MELO, Eduardo Souza de, Interação dinâmica veículo-estrutura em pequenas 
pontes rodoviárias, Tese de Mestrado, UFRJ, Rio de Janeiro, 2007 
 
WILLIS, R. et al., Preliminary essay to the Appendix B.: Experiments for determining 
the effects produced by causing weights to travel over bars with different velocities, 
Em: GREY G. et al.: Report of the commissioners appointed to inquire into the 
application of iron to railway structures. Londres, W. Clowes and Sons, 1849

Outros materiais