Buscar

apostila de química e laboratório de química geral.

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 86 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 86 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 86 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Terceira Edição 
Francisco Klebson Gomes dos Santos 
Kalyanne Keyly Pereira Gomes 
Marta Ligia Pereira da Silva 
Laboratório de Química Geral e 
Química Básica 
 
 
Prefácio 
 
 
Este material didático tem por objetivo inteirar o aluno aos conhecimentos básicos 
de um laboratório de química, tornando-o capaz de reconhecer as principais vidrarias e 
outros equipamentos utilizados em um laboratório, além de executar práticas laboratoriais 
através de experimentos elaborados de acordo com a teoria abordada na disciplina de 
química geral. 
O primeiro capítulo introduz alguns aspectos de segurança, indispensáveis a um 
laboratorista, mostrando algumas regras básicas, a importância do uso de EPIs e EPCs, 
dentre outros. 
No capítulo dois são apresentados equipamentos, vidrarias, algumas manipulações, 
acessórios e procedimentos utilizados em um laboratório de química. 
Nos demais capítulos são oferecidos uma variedade de experimentos abordando 
assuntos dentro do escopo da disciplina de química geral. 
O professor fará uso desse material de forma a aproveitá-lo da melhor maneira 
possível. O mesmo utilizará as mais diversas técnicas de avaliação, podendo ser cobrados 
relatórios, pré-laboratórios, pós-laboratórios, realização de outros trabalhos e mini-testes, 
assim como prova escrita. Cada professor tem a livre escolha da avaliação. 
É oferecida também nesse material, uma tabela periódica, distribuída pela 
Pensalab1, e algumas tabelas de conversão de unidades. 
 
 
 
 
 
1
 Disponível em: www.pensalab.com.br 
 
 
 
Conversão de unidades 
 
 
 Massa 
 g Kg u.m.a. ton 
1 grama (g) 1 0,001 6,024x1023 0,000001102 
1quilograma (Kg) 1000 1 6,024x1026 0,001102 
1 slug 14590 14,59 8,789x1027 0,01609 
1 u.m.a. 1,66x10-24 1,66x10-27 1 1,829x10-30 
1 onça 28,35 0,02835 1,708x1025 0,00003125 
1 libra (lb) 453,6 0,4536 2,732x1026 0,0005 
1 ton 907200 907,2 5,465x1029 1 
 
 Comprimento 
 cm m km in ft mi 
1 centímetro (cm) 1 0,01 0,00001 0,3937 0,0328 0,000006214 
1 metro (m) 100 1 0,001 39,3 3,281 0,0006214 
1 quilômetro (km) 100000 1000 1 39370 3281 0,6214 
1 polegada (in) 2,54 0,0254 0,0000254 1 0,08333 0,00001578 
1 pé (ft) 30,48 0,3048 3,048 12 1 0,0001894 
 
Volume 
 m³ cm³ l ft³ in³ 
1 metro cúbico(m³) 1 1000000 1000 35,31 61020 
1 centímetro 
cúbico(cm³) 0,000001 1 0,001 
0,000035
31 0,06102 
1 litro(l) 0,001 1000 1 0,03531 61,02 
1 pé cúbico(ft³) 0,02832 28320 28,32 1 1728 
1 polegada cúbica(in³) 0,00001639 16,39 0,01639 0,0005787 1 
 
Vários 
Comprimento 1m=3,281pés=39,37pol 
Área 1m²=10,76pés²=1.550pol² 
Volume 1m³=35,3pés³=1.000litros 
Volume 1galão(USA)=3,8litros 1galão(GB)=4,5 litros 
Massa 1kg=2,2 lb 1lb=0,45kg 1 onça=28,35g 
Pressão 1atm=1,033kgf/cm²=14,7lbf/pol²(PSI) 
Pressão 1bar=100kPa=1,02atm=29,5polHg 
Energia 1kWh=860kcal 1kcal=3,97Btu 
Energia 1kgm=9,8J 1Btu=0,252kcal 
Temperatura ºF=32+1,8 ºC K=273+ºC R=460+ºF 
 
 
Sumário 
 
UNIDADE I VII 
CAPÍTULO I - SEGURANÇA NO LABORATÓRIO 1 
CAPÍTULO II – EQUIPAMENTOS, VIDRARIAS, MANIPULAÇÕES E OUTROS ACESSÓRIOS E PROCEDIMENTOS 
INDISPENSÁVEIS EM LABORATÓRIO DE QUÍMICA 8 
PÓS-LABORATÓRIO 22 
CAPÍTULO III - DENSIDADE DE SÓLIDOS E LÍQUIDOS 23 
METODOLOGIA 24 
PRÉ-LABORATÓRIO 26 
PÓS-LABORATÓRIO 26 
CAPÍTULO IV - DESTILAÇÃO SIMPLES 27 
PRÉ-LABORATÓRIO 30 
PÓS-LABORATÓRIO 30 
CAPÍTULO V - CONSERVAÇÃO DA MASSA 31 
METODOLOGIA 32 
PRÉ-LABORATÓRIO 33 
PÓS-LABORATÓRIO 33 
UNIDADE II 34 
CAPÍTULO VI – DETERMINAÇÃO DA VISCOSIDADE DE UM LÍQUIDO 35 
METODOLOGIA 36 
PÓS-LABORATÓRIO 38 
CAPÍTULO VII - EXTRAÇÃO LÍQUIDO-LÍQUIDO 39 
METODOLOGIA 39 
PRÉ-LABORATÓRIO 43 
PÓS-LABORATÓRIO 43 
CAPÍTULO VIII - SOLUÇÕES 44 
METODOLOGIA 45 
PRÉ-LABORATÓRIO 47 
CAPÍTULO IX - ANÁLISE VOLUMÉTRICA 48 
METODOLOGIA 49 
PRÉ-LABORATÓRIO 50 
PÓS-LABORATÓRIO 50 
UNIDADE III 51 
CAPÍTULO X - CALORIMETRIA 52 
METODOLOGIA 56 
 
PRÉ-LABORATÓRIO 60 
PÓS-LABORATÓRIO 60 
CAPÍTULO XI - FATORES QUE INFLUENCIAM A VELOCIDADE DE UMA REAÇÃO QUÍMICA 61 
METODOLOGIA 62 
PRÉ-LABORATÓRIO 65 
PÓS-LABORATÓRIO 65 
CAPÍTULO XII - EQUILÍBRIO QUÍMICO 66 
METODOLOGIA 69 
PRÉ-LABORATÓRIO 73 
CAPÍTULO XIII - SOLUÇÃO TAMPÃO 74 
METODOLOGIA 77 
PRÉ-LABORATÓRIO 79 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Unidade I 
 
 
 
 
 
 
1 
 
CAPÍTULO I - Segurança no laboratório 
 
Regras básicas 
 
Um laboratório de Química é um local onde são manipuladas substâncias tóxicas, inflamáveis, 
corrosivas, etc. A minimização dos riscos de acidentes no laboratório passa pela obediência a certas 
normas. A seguir encontram-se algumas normas que deverão ser observadas e seguidas pelos alunos 
antes, durante e após as aulas práticas. 
Não é permitido brincadeiras em um laboratório. O laboratório de química é um lugar de 
trabalho. 
Não beba nem coma no laboratório, pois qualquer alimento que esteja no ambiente laboratorial 
está sujeito a contaminação. 
 Siga rigorosamente as instruções fornecidas pelo professor, não mexendo em qualquer coisa 
que esteja fora do escopo da prática. 
Durante a sua permanência no laboratório use sempre os equipamentos de proteção individual 
(EPI) indispensáveis: Calça comprida, calçado fechado e bata apropriada. Outros EPIs serão 
fornecidos quando necessário, como por exemplo, óculos de segurança e luvas. 
Caso tenha cabelo comprido, mantenha-o preso durante a realização das experiências. 
Recomenda-se a não utilização de lentes de contato sempre que possível. 
Todas as experiências que envolvam a libertação de gases e/ou vapores tóxicos devem ser 
realizadas na capela, que é um compartimento fechado e envidraçado, contendo um exaustor, que serve 
para proteger dos gases tóxicos que venham a ser liberados durante a manipulação de determinadas 
substâncias. 
Ao preparar soluções aquosas de um ácido, coloque o ácido concentrado sobre uma razoável 
quantidade de água. Nunca adicione água diretamente ao ácido concentrado. 
Nunca usar a boca para pipetar. Fazer uso dos pipetadores. 
Nunca aqueça o tubo de ensaio, apontando a extremidade aberta para um colega ou para si 
mesmo, pois pode ocorrer uma ejeção de fluido quente. 
Não coloque sobre a bancada de laboratório bolsas, agasalhos ou qualquer material estranho ao 
trabalho que irá ser realizado. 
2 
 
No caso de contato de um produto químico com os olhos, boca ou pele, lave abundantemente 
com água. A seguir, procure atendimento médico. 
Saiba a localização e como utilizar o chuveiro de emergência, extintores de incêndio e lava 
olhos. 
Nunca teste um produto químico pelo sabor. 
Não é aconselhável identificar um produto químico pelo odor, porém caso seja necessário, não 
coloque o frasco sob o nariz. Desloque suavemente com a mão, para a sua direção, os vapores que se 
desprendem do frasco. 
Não aqueça líquidos inflamáveis em chama direta. Usar sempre um aquecedor elétrico ou uma 
manta de aquecimento. 
Abra os frascos o mais longe possível do rosto e evite aspirar ar naquele exato momento. Faça 
isso na capela. 
Os frascos contendo reagentes devem ser sempre identificados. Indicar o nome da substância, 
sua concentração, o nome do responsável e a data da fabricação. 
Nunca volte a colocar no frasco um produto químico retirado em excesso e não usado. Ele 
pode ter sido contaminado. 
Quando sair do laboratório, verifique se não há torneiras (água, gás ou outros) abertas. Desligue 
todos os aparelhos, deixe todo o equipamento limpo e lave as mãos. 
 
Equipamentos de proteção coletiva (EPCs) 
 
São denominadosEPCs os equipamentos que, quando utilizados de forma correta, permitem 
executar operações em boas condições de salubridade para o operador e as demais pessoas no 
laboratório. Estes equipamentos permitem também eliminar ou reduzir o uso de alguns Equipamentos 
de Proteção Individual (EPIs) como será visto mais adiante. 
A capela é um bom exemplo de EPC. Seu revestimento interno deve ser resistente aos 
produtos com os quais se vai operar. O sistema de exaustão deve ter potência suficiente para promover 
a exaustão dos gases. Deve haver um sistema de iluminação adequado. Os equipamentos elétricos e 
interruptores devem ser à prova de explosão. 
A Figura 1.1 ilustra exemplos de capelas. 
3 
 
 
 
 
 
 
 
 
 
Figura 1.1. Exemplos de capelas. 
Só deve-se operá-la com os sistemas de exaustão e iluminação ligados e em perfeito 
funcionamento. Aconselha-se remover vidrarias e frascos desnecessários ao trabalho. Deve-se manter a 
janela (guilhotina) com a menor abertura possível. Ao terminar o trabalho, é necessário deixar o 
exaustor funcionando de 10 a 15 minutos, depois, então, desocupar e limpar a capela, se necessário. 
O chuveiro de emergência auxilia o laboratorista nos primeiros socorros, principalmente em 
casos de derramamento de ácidos ou outras substâncias que provoquem queimaduras. Ele deve estar 
bem identificado e disposto em local de fácil acesso. Devem ser alimentados com água de boa 
qualidade e de fonte ininterrupta. 
A Figura 1.2 ilustra um chuveiro de emergência e seu funcionamento. 
 
4 
 
 
 
Figura 1.2. Chuveiro de emergência. 
O lava olhos, assim como o chuveiro de emergência, auxiliam o laboratorista em primeiros 
socorros. No caso de queimaduras nos olhos com agentes corrosivos, lavar o olho durante 10 a 15 
minutos e consultar um médico imediatamente. 
A Figura 1.3 ilustra um lava olhos e seu funcionamento. 
 
Figura 1.3. Lava olhos. 
Os extintores de incêndio são equipamentos indispensáveis. Têm a finalidade de extinguir ou 
controlar incêndios em casos de emergência. Em geral estão dispostos na forma de um cilindro que 
pode ser carregado até o local do incêndio, contendo um agente extintor sob pressão. 
A Figura 1.4 ilustra extintores de incêndio. 
5 
 
 
 
Figura 1.4. Extintores de incêndio. 
O agente extintor mais apropriado para cada tipo de incêndio depende do material que está em 
combustão. Em alguns casos, alguns agentes extintores não devem ser utilizados pois colocam em risco 
a vida do operador do equipamento. Os extintores trazem em seu corpo as classes de incêndio para as 
quais é mais eficiente, ou as classes para as quais não devem ser utilizados: 
• Classe A: Incêndio em materiais sólidos cuja queima deixa resíduos ocorrendo em superfície e 
em profundidade, como madeira, papel, tecidos, borracha. Para esta classe é recomendado o 
uso de extintores contendo água ou espuma. 
• Classe B: Incêndio em líquidos e gases cuja queima não deixa resíduo e ocorre apenas na 
superfície, como a gasolina, o álcool, o GLP (gás liquefeito de petróleo). Para esta classe é 
recomendado o uso de extintores contendo espuma, dióxido de carbono e pó químico. 
• Classe C: Incêndio que envolva materiais condutores que estejam potencialmente conduzindo 
corrente elétrica. Neste caso o agente extintor não pode ser um condutor para não eletrocutar o 
operador. Para esta classe devem ser utilizados apenas os extintores contendo dióxido de 
carbono e pó químico. 
• Classe D: Incêndio que envolva metais pirofóricos (combustão que se inicia espontaneamente 
no ar) como, por exemplo, potássio, alumínio, zinco ou titânio. Requerem extintores com 
agentes especiais que extinguem o fogo por abafamento, como os de cloreto de sódio. 
 
 
 
 
6 
 
Equipamentos de proteção individual (EPIs) 
 
Os equipamentos de proteção individual, conhecidos por EPIs, destinam-se a proteger o 
trabalhador ou o analista em operações em que a proteção coletiva não é suficiente para garantir a 
saúde e integridade física da pessoa. 
Por exemplo, quando há riscos de exposição a vapores ou pós, fora da capela, faz-se necessário 
o uso de uma máscara e, essa, dependendo da substância que for manipular, deve conter filtros. 
A Figura 1.5 mostra alguns EPIs. 
 
 
 
 
 
 
 
Figura 1.5. Exemplos de EPIs – máscaras, óculos de proteção, luvas, protetores auriculares, 
bata ou jaleco, capacete e botas. 
Outro exemplo de EPI são as luvas, que, dependendo da situação poderá ser de diversos tipos, 
como luvas de borracha, luvas de couro etc. 
Os óculos de segurança são bastante utilizados em manipulação de reagentes químicos que 
liberem vapores ou espirrem produtos químicos, quando se trabalha com reagentes em pó, materiais 
particulados diversos ou proteção contra projéteis, radiações ultravioleta e infravermelho, e a própria 
proteção da face; há também os protetores faciais que podem atuar como óculos de segurança. 
Os protetores auriculares são indispensáveis quando se trabalha em ambientes com ruídos 
acima do permitido pela legislação, superiores a 60 decibéis. Os limites de tolerância para ruídos, 
contínuo ou intermitente, vão depender do nível do ruído e do tempo de exposição ao mesmo. 
7 
 
É importante frisar que devemos procurar obter as melhores condições possíveis no laboratório 
no que diz respeito às instalações (iluminação, ventilação, uso de capelas etc.), para que o uso 
obrigatório de EPIs se dê em último caso. Por outro lado, os EPIs, quando necessários, devem ser de 
boa qualidade e proporcionar o máximo conforto possível. Deve-se também realizar a inspeção dos 
equipamentos de proteção segundo os prazos estabelecidos de acordo com as normas técnicas de 
segurança. 
 
Referências 
 
Verga Filho, A. F. Manual de Segurança em Laboratórios. Conselho Regional de Química - IV 
Região (SP). Campinas, 13 de setembro de 2008. 
Pereira, M. M.; Estronca, T. M. R.; Nunes, R. M. D. R. Guia de segurança no laboratório de 
química. Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 
2ª. Edição, Secção de textos – FCTUC. 
8 
 
CAPÍTULO II – Equipamentos, vidrarias, manipulações e outros acessórios e 
procedimentos indispensáveis em laboratório de química 
 
Equipamentos e vidrarias 
 
Vários equipamentos e vidrarias são utilizados em um laboratório de química e o manuseio 
adequado destes é fundamental para o analista. 
O Quadro 2.1 relaciona alguns equipamentos de uso comum no laboratório e suas aplicações. 
Quadro 2.1. Relação de alguns equipamentos de laboratório e algumas de suas aplicações. 
 
Tubo de ensaio: Usado 
principalmente testes de 
reação. 
 
Becker: Usado 
para 
aquecimento de 
líquidos, reações 
de precipitação, 
etc. 
 
 
Erlemnmeyer: Usado 
para titulações e 
aquecimento de 
líquidos. 
 
Balão de fundo 
chato: Usado para 
aquecimento e 
armazenamento de 
líquidos. 
 
Balão de fundo redondo: 
Usado para aquecimento de 
líquidos e reações com 
desprendimento de gases. 
 
Balão de destilação: Usado 
em destilações. Possui 
saída lateral para a 
condensação de vapores. 
 
Pipeta 
volumétrica: 
Usada para 
medir volumes 
fixos de 
líquidos. 
 
Pipeta graduada: 
Usada para medir 
volumes variáveis de 
líquidos. 
 
Proveta: Usado 
para medidas 
aproximadas de 
volume de 
líquidos. 
 
Funil de vidro: Usado em 
transferências de líquidos e 
em filtrações. 
9 
 
 
Frasco de reagentes: Usado 
para o armazenamento de 
soluções. 
 
Bico de Bunsen: 
Usado em 
aquecimentos 
de laboratório.Tela de amianto: 
Usado para distribuir 
uniformemente o 
calor em 
aquecimentos de 
laboratório. 
 
 
Tripé de ferro: 
Usado para 
sustentar a tela de 
amianto. 
 
Cadinho de porcelana: 
Usado para aquecimentos à 
seco no bico de Bunsen e 
Mufla. 
 
 
 
 
Estante para tubos de 
ensaio: suporte de tubos de 
ensaio. 
 
Bureta: Usada 
para medidas 
precisas de 
líquidos. 
 
Triângulo de 
porcelana: Usado 
para sustentar 
cadinhos de 
porcelana em 
aquecimento no bico 
de Bunsen. 
 
Funis de 
decantação: Usado 
para separação de 
líquidos imicíveis. 
 
 
 
Pinça de madeira: Usada 
para segurar tubos de 
ensaio em aquecimento no 
bico de Bunsen. 
 
Almofariz e pistilo: Usado 
para triturar e pulverizar 
sólidos. 
 
Placa de Petri: 
usada para fins 
diversos. 
 
Vidro de relógio: 
Usado para cobrir 
beckers em 
evaporações, 
pesagens etc 
 
Pisseta: Usada para 
lavagens, remoção 
de precipitados e 
outros fins. 
 
Picnômetro: Usado para 
determinar a densidade de 
líquidos. 
 
10 
 
 
Cuba de vidro: Usada para 
banhos de gelo e fins 
diversos. 
 
Cápsula de 
porcelana: 
Usada para 
evaporar 
líquidos em 
soluções. 
 
Bastão de vidro: 
Usado para agitar 
soluções, transporte 
de líquidos na 
filtração e outros 
 
Dessecador: Usado 
para resfriar 
substâncias em 
ausência de 
umidade. 
 
Pinça metálica Casteloy: 
Usada para transporte de 
cadinhos e outros fins. 
 
Balão volumétrico: Usado 
para preparar e diluir 
soluções. 
 
Termômetro: 
Usado para 
medidas de 
temperatura. 
 
Funil de Buchner: 
Usado para filtração 
a vácuo. 
 
Kitassato: Usado 
para filtração a 
vácuo. 
 
Garra metálica: Usada em 
filtrações, sustentação de 
peças, tais como 
condensador, funil de 
decantação e outros fins. 
 
 
Suporte universal. 
 
Anel para funil 
 
Mufa: Suporte para a 
garra de 
condensador. 
 
Escovas de 
limpeza: Usada 
para limpeza de 
tubos de ensaio e 
outros materiais. 
 
 
Pinça de Hoffman: Usada 
para impedir ou diminuir 
fluxos gasosos. 
 
 
 
11 
 
 
Pêra: Usada para pipetar 
soluções. 
 
 
Condensadores: Usado para condensar 
os gases ou vapores na destilação. 
 
Espátulas: Usada para transferência de 
substâncias sólidas. 
 
 
Estufa: Usada para 
secagem de materiais (até 
200°C). 
 
 
Mufla: Usada para calcinações (até 
1500°C) 
 
 
Sistema de destilação: Usado na separação de 
duas ou mais substâncias com base em suas 
diferentes volatilidades. 
 
 
Operações no laboratório e aparelhagem 
 
Em experiências químicas, como as realizadas em aulas práticas, são usados equipamentos 
específicos de química. A seguir são apresentadas algumas das aparelhagens utilizadas em laboratório, 
assim como as principais operações realizadas. 
 
Bico de Bunsen 
Para obter calor nas experiências em laboratório usa-se comumente um aparelho denominado 
bico de Bunsen. Neste aparelho, cujo esquema aparece na Figura 2.1, a mistura gás-ar é queimada no 
tubo, gerando uma chama que pode ser de combustão completa (azulada) ou incompleta (amarelada). 
A forma correta de usar o bico de Bunsen é fechar a entrada de ar no anel, abrir a válvula de gás 
e acender. A chama será larga e amarela. Então, abre-se a entrada de ar até que a chama fique azul, que 
12 
 
é a ideal para o uso. Na mistura gás-ar, pode-se distinguir dois cones de cores distintas: um mais interno 
de cor azul e outro mais externo de cor laranja. A chama laranja é oxidante, a amarela é redutora e a 
azul é neutra, sendo o ponto mais quente o ápice do cone azul. 
 
Figura 2.1. Representação do bico de Bunsen. 
 
Balança e pesagem 
No laboratório, a massa de substâncias químicas é determinada com o uso de balanças. Na 
maioria das análises, uma balança analítica precisa ser utilizada para se obter massas altamente exatas. As 
balanças de laboratório menos exatas também são empregadas para as medidas de massa quando a 
demanda por confiabilidade não for crítica. 
A precisão a ser utilizada depende do trabalho a ser desenvolvido. É importante salientar que 
não se devem realizar pesagens de produtos químicos diretamente sobre o prato da balança. Costuma-
se usar um vidro de relógio ou outra vidraria. 
A Figura 2.2 ilustra uma balança analitica com uma vidraria adequada para realização de 
pesagens. 
13 
 
 
Figura 2.2. Balança analitica com uma vidraria adequada para realização de pesagens. 
 
Tipos de Balanças Analíticas 
Por definição, uma balança analítica é um instrumento usado na determinação de massas com 
uma capacidade máxima que varia de 1 g até alguns quilogramas, com uma precisão de pelo menos 1 
parte em 105 em sua capacidade máxima. A precisão e a exatidão de muitas balanças analíticas 
modernas excedem a 1 parte em 106 em sua capacidade total. 
As balanças analíticas mais comumente encontradas (macrobalanças) têm uma capacidade 
máxima que varia entre 160 e 200 g. Com essas balanças, as medidas podem ser feitas com um desvio-
padrão de ±0,1 mg. As balanças semi-microanalíticas têm uma carga máxima de 10 a 30 g com uma 
precisão de ±0,01 mg. Uma balança microanalítica típica tem capacidade de 1 a 3 g e uma precisão de 
±0,001 mg. 
A primeira balança analítica de prato único surgiu no mercado em 1946. A velocidade e 
conveniência de pesar com essa balança eram amplamente superiores ao que se podia realizar com a 
balança de dois pratos tradicional. Conseqüentemente, essa balança substituiu rapidamente a anterior na 
maioria dos laboratórios. A balança de prato único está sendo substituída atualmente pela balança 
analítica eletrônica, que não tem braço nem cutelo. A conveniência, a exatidão e a capacidade de 
controle e manipulação de dados por computador das balanças analíticas asseguram que as balanças 
mecânicas de prato único vão eventualmente desaparecerem de cena. 
 
Precauções no uso de uma Balança Analítica 
A balança analítica é um instrumento delicado que você precisa manusear com cuidado. 
Consulte seu professor para obter as instruções detalhadas com relação ao processo de pesagem em seu 
modelo específico de balança. Observe as seguintes regras gerais no trabalho com uma balança 
analítica, não obstante a marca ou modelo. 
14 
 
1. Centralize tanto quanto possível a carga no prato da balança. 
2. Proteja a balança contra a corrosão. Os objetos a serem colocados sobre o prato devem ser 
limitados a metais inertes, plásticos inertes e materiais vítreos. 
3. Observe as precauções especiais para a pesagem de líquidos. 
4. Consulte o professor se julgar que a balança precisa de ajustes. 
5. Mantenha a balança e seu gabinete meticulosamente limpos. Um pincel feito de pêlos de camelo é 
útil na remoção de material derramado ou poeira. 
6. Sempre deixe que um objeto que tenha sido aquecido retome à temperatura ambiente antes de 
pesá-lo. 
7. Utilize uma pinça para prevenir a absorção da umidade de seus dedos por objetos secos. 
 
Utilização de uma Balança Analítica 
Existem duas técnicas para pesagens dependendo do tipo de balança. Uma delas é pesar 
previamente a vidraria e em seguida o reagente químico, determinando a massa deste por diferença. A 
outra consiste em zerar a balança com a vidraria a ser utilizada na pesagem sobre o prato, obtendo-se 
diretamente a massa do reagente. 
Para se fazer as pesagens adotam-se os seguintes procedimentos: 
a) Observa-se se a balança está no nível; casonão esteja, deve-se regular girando-se os “pés”. 
b) Fecham-se as portas de vidro. 
c) Zera-se a balança pressionando o botão “tara”. 
d) Abre-se a porta, coloca-se o que se deseja pesar e fecha-se a porta. 
e) Espera-se até que o mostrador digital não flutue mais e anota-se a massa. Preste atenção a 
unidade de medida (mg, g, ...). 
f) A última casa decimal é a incerteza. 
 
Medidas de volume 
Os aparelhos para medir volume de líquidos em laboratório, os quais aparecem descritos na 
Figura 2.3, podem ser classificados em dois grupos: 
a) Aparelhos volumétricos, os quais são calibrados para a medida de um único volume de líquido. 
Ex.: Balão volumétrico e pipeta volumétrica. 
b) Aparelhos graduados, os quais possuem uma escala graduada, a qual permite a medida de 
diversos volumes de um líquido. 
Ex.: Pipeta graduada, proveta e bureta. 
 
15 
 
A Figura 2.3 ilustra exemplos de aparelhos volumétricos. 
 
 
Figura 2.3. Exemplos de aparelhos volumétricos. 
 
A superfície de um líquido raramente é plana. Dependendo da natureza das forças 
intermoleculares existentes no líquido, a sua superfície geralmente apresenta-se curva, podendo ser 
côncava ou convexa. Para efetuar a leitura, deve-se comparar o menisco (ponto de máximo ou de 
mínimo da curvatura da superfície do líquido) com as linhas no aparelho, conforme Figura 2.4. 
 
Figura 2.4. Tipos de meniscos. Um menisco é a superfície curva de um liquido na sua interface com 
a atmosfera. 
 
Qualquer medida de volume feita com aparelhos desta natureza está sujeita a erros devido a: 
a) Dilatação e contração do material de vidro provocado pela variação de temperatura; 
b) Ação da tensão superficial sobre a superfície líquida; 
c) Imperfeita calibração dos aparelhos volumétricos; 
d) Erro de paralaxe, o qual se origina no momento da leitura. Para evitar este erro, deve-se sempre 
posicionar o aparelho de forma que o nível do líquido esteja na altura dos olhos. 
16 
 
Na leitura de volumes, o olho precisa estar no nível da superfície do líquido, para se evitar o 
erro devido à paralaxe, uma condição que faz com que o volume pareça menor que seu valor 
verdadeiro, se o menisco for visto de cima, e maior, se o menisco for visto de baixo. 
A paralaxe é o deslocamento aparente do nível de um líquido ou de um ponteiro, à medida que 
o observador muda de posição e ela ocorre quando um objeto pode ser visto a partir uma posição que 
não seja a do ângulo correto para a sua observação. 
 
Sistema Internacional de medidas 
 
Em 1971, a 14ª Conferência Geral de Pesos e Medidas escolheu sete grandezas como 
fundamentais, formando assim a base do Sistema Internacional de Unidades, abreviado como SI e 
popularmente conhecido como sistema métrico. As unidades foram escolhidas de modo que os valores 
dessas grandezas numa “escala humana” não fossem excessivamente grandes ou excessivamente 
pequenos. 
Muitas unidades secundárias (ou derivadas) são definidas em termos das unidades das grandezas 
fundamentais. Assim, por exemplo, a unidade de potências no SI, que recebeu o nome watt (abreviação 
W), é definida em termos das unidades de massa, comprimento e tempo. 
1 watt = 1 W = 1 Kg . m2 / s3 
A Tabela 2.1 mostra as principais grandezas, com símbolo, do sistema internacional de 
unidades, SI. 
 
Tabela 2.1. Algumas grandezas fundamentais e suas unidades, no SI. 
Grandeza Nome da unidade Símbolo 
Comprimento Metro m 
Tempo Segundo s 
Massa Quilograma kg 
Corrente Elétrica Ampère A 
Temperatura 
Termodinâmica 
Kelvin K 
Intensidade Luminosa Candeia cd 
Quantidade de Matéria Mol mol 
17 
 
Matemática básica 
 
Em um laboratório de química é fundamental o conhecimento de algumas propriedades básicas 
da matemática. Dentre tantas, segue-se uma pequena revisão das principais. 
 
Logaritmo 
Definição de logaritmo: Chama-se logaritmo de x na base a um número b tal que se elevarmos 
a ao expoente b obtemos x; isto é, logax=b↔a
b=x 
 
Condição de existência de um logaritmo: 
Para logab existir, deve-se ter: 
Logaritmo positivo: b > 0 
Base positiva e diferente de 1: a > 0 e ≠ 1 
 
Consequência da definição: 
loga1 = 0, pois a
0 =1 
logaa =1, pois a
1 = a 
logaa
m = m, pois logaa
m=p↔ap=am . Portanto, p=m e, então, logaa
m=m 
alogab = b, pois ax=b ↔x = logab, substituindo x por logab em ax = b, resulta alogab=b 
 
Propriedades do logaritmo: 
loga(M.N) = logaM + logaN 
loga(M/N) = logaM – logaN 
loga M
N = N . logaM 
 
Cologaritmo: 
loga(1/b) = - logab = cologab, com b >0 e 1 ≠ a > 0 
 
Os logaritmos que tem por base o número e (base de Neeper) chama-se logaritmo neperiano ou 
logaritmo normal e escreve-se muitas vezes da seguinte forma: Logex= ln 
 
 
 
 
18 
 
Cálculo de erros 
Ao trabalhar com dados experimentais em laboratório, é necessário que se realize várias vezes 
um mesmo experimento, pelo fato de que em cada procedimento que acontece estão incluídos alguns 
erros. Que podem ser: 
Grosseiro: Pode ser provocado por falhas ocasionais e/ou anormais dos instrumentos, do 
observador ou de outros parâmetros intervenientes. 
Sistemático: Normalmente decorrente da má condução da experiência, má calibração dos 
instrumentos e dos descuidos de planejamento. 
Aleatório: Naturalmente decorrente da própria experiência, uma vez que o rigor absoluto ou 
reprodução exata dos valores em sucessivas medições não são os esperados. 
 
Numericamente o erro pode ser calculado: 
Erro% = |Valor teórico – Valor experimental|*100 
 Valor teórico 
 
Média e desvio padrão 
A média é o valor para onde mais se concentram os dados. Esse valor pode ser calculado a 
partir do postulado de Gauss: "O valor mais provável que uma série de medidas de igual confiança nos 
permite atribuir a uma grandeza é a média aritmética dos valores individuais da série". 
= (∑Xi) /N 
Onde N é o número de vezes que se repete o experimento. 
À medida que seus valores são mais próximos dessa média, estes também serão mais 
consistentes e próximos do verdadeiro. Dessa forma, quanto mais afastados dessa média, menos 
consistentes serão os valores. É a partir desse raciocínio que se conclui a variação dos resultados em 
torno do ponto, denominando-se desvio padrão, que se pode calcular referente à média da seguinte 
forma: 
σ = ∑(│Xi ─ │) / N 
Sua representação será: X= ± σ 
Exemplo: 
Com auxilio de uma régua milimetrada, mede-se certo comprimento 5 vezes. Qual deve ser a 
valor médio o desvio padrão. 
 
 
19 
 
N SN (cm) (S) (cm) 
1 5,82 0,01 
2 5,83 0,00 
3 5,85 0,02 
4 5,81 0,02 
5 5,86 0,03 
N=5 SN = 29,17 N= 0,08 
 
Valor médio de S = (5,82 + 5,83 + 5,85 + 5,81 + 5,86) / 5 = 5,83 cm. 
1 = | 5,83 - 5,82 | = 0,01 
2 = | 5,83 - 5,83 | = 0,00 
3 = | 5,83 - 5,85 | = 0,02 
4 = | 5,83 - 5,81 | = 0,02 
5 = | 5,83 - 5,86 | = 0,03 
médioS = (0,01 + 0,00 + 0,02 + 0,02 + 0,03) / 5 = 0,02 
O valor medido de S mais provável, portanto, será dado como: 
S = 5,83 ± 0,02 
 
Linearização e extrapolação de dados 
Outra ferramenta que facilitará a análise em diversas situações em laboratório será a linearização 
de dados, podendo fazer um gráfico do primeiro grau e prever vários resultados. Ao se obterem os 
resultados experimentais, devem-se usar as seguintes fórmulas para encontrar o coeficiente angular (b) e 
linear (a) da reta que mais se aproxima do resultado desejado: 
 
ˆY a bX= + 
 
y b x
a Y bX
n
−
= = −
∑ ∑
 
 
20 
 
A partir do resultado obtido, pode-se calcular o coeficiente de correlação(r) que varia de -1 a 1 e 
em suma informa a confiabilidade desta reta. Portanto, quanto maispróximo de zero, menos indicada 
ela se torna. 
 
 
Ao desenhar a reta estamos interpolando os dados. Interpolação é o preenchimento dos 
espaços em branco entre os dados experimentais através de uma curva contínua que supostamente 
mostra o comportamento dos próprios pontos. 
Outra relação importante é a extrapolação, que consiste em prolongar a curva fora dos limites 
dos valores medidos, sob o pressuposto que o comportamento da curva permanece sendo o mesmo 
fora do intervalo do experimento. 
A Figura 2.5 mostra a curva de solubilidade do bicarbonato de sódio, NaHCO3, em água, onde 
são exibidos os dados experimentais, o ajuste linear, uma extrapolação dos dados experimentais, a 
equação do ajuste e o coeficiente de correlação. 
 
y = 6,078x - 38,34
R² = 0,996
0
10
20
30
40
50
60
70
0 5 10 15 20
T
em
pe
ra
tu
ra
 (º
C
)
g NaHCO3/ 100g H2O
Curva de solubilidade do NaHCO3
Dados experimentais
Extrapolação dos dados 
experimentais
Ajuste linear
 
Figura 2.5. Curva de solubilidade do NaHCO3. 
 
Percebe-se que, partir da extrapolação dos dados experimentais, é possível se estimar, por 
expemplo, qual a solubibidade do bicarbonato de sódio a uma temperatura de zero graus celcius. Pode-
se também prever, qual a solubilidade a uma temperatura de 25ºC, a aprtir de uma interpolação dos 
dados experimentais. 
 
21 
 
Algarismo Significativo 
Em cálculo trabalha-se com valores extremamente grandes como também muito pequenos. Por 
isso, se faz necessário saber como se deve representar o valor experimental. Por exemplo, se ao medir 
certo comprimento com um paquímetro, e caso a incerteza desse equipamento for de ±0,1 mm, a 
leitura deve ser registrada até o décimo do milímetro. 
O Algarismo significativo de um número está em referência aos dígitos de certo resultado. E a 
melhor forma de representá-lo é quando o último digito apresenta-se com um algarismo duvidoso. 
Assim, vamos observar o exemplo: 514,0mm 
O algarismo mais a esquerda não-nulo é o algarismo mais significativo. 
Exemplo: 0,051 40m; 
O algarismo mais a direita é o menos significativo, mesmo sendo zero. 
Exemplo: 51,40mm; 
Todos os algarismos entre o mais e o menos significativos são contados como significativos. 
Exemplo: 0, 051 40m = 5, 140 cm = 51,40mm = 5, 140 × 104 µm 
*Todos com 4 algarismos significativos e expressando a mesma medida de um comprimento. 
OBS: Os zeros à esquerda não são considerados algarismos significativos como no exemplo: 0, 
000123, que contém apenas três algarismos significativos. 
 
Arredondamento 
Na regra de arredondamento existem três casos: 
Quando o algarismo incerto for maior que 5, arredonda-se o penúltimo número para uma 
unidade a mais: Exemplo: 5,4987 = 5,499 
Quando o algarismo incerto for menor que 5, o penúltimo número permanece o mesmo: 
Exemplo: 2,1921 = 2,192 
Quando o algarismo incerto for 5 observa-se o penúltimo número, se for par, mantém-se igual. 
Se for ímpar, aumenta uma unidade na mesma. Exemplo: Par: 3, 2845 = 3, 284 / Ímpar: 9, 135 = 9,14 
 
Referências 
 
HARRIS, Daniel C. Análise química quantitativa. 6. ed. Rio de Janeiro: LTC, 2008. 862 p. 
MANDIN, Daniel. Estatística descomplicada. 1ª edição, Vestcon. 
SILVA, W. P.; Silva, C. M. D. P. S. Tratamento e dados Experimentais. 2ª Ed., Editora 
Universitária/UFPB, João Pessoa, 1998. 
 
22 
 
Pós-Laboratório 
 
1) Represente esquematicamente as principais zonas da chama de um bico de Bunsen, indicando o 
ponto mais quente. 
2) Descreva como você procederia para realizar uma pesagem, por diferença, de 5,6643g de NaCl, 
sendo a massa do recipiente (vidro de relógio) igual a 10,2590g. 
3) O que significa erro de paralaxe e como podemos evitá-lo? 
4) Para a preparação de uma solução a partir de um reagente líquido, qual o material utilizado, o 
procedimento a ser adotado e os cuidados necessários? 
5) Faça o arredondamento dos números abaixo, para três casas decimais após a vírgula. 
a) 120, 4784 = __________ b) 83, 1236 = __________ 
c) 71, 2315 = __________ d) 457,1025 = __________ 
 
23 
 
CAPÍTULO III - Densidade de sólidos e líquidos 
 
Objetivos 
 
Medir a densidade de líquidos e de sólidos utilizando a técnica de picnometria e o princípio de 
Arquimedes. 
 
Introdução 
 
A densidade absoluta de uma substância é definida como sendo a relação entre a massa e o 
volume dessa substância. A densidade é função da temperatura. As unidades de densidade absoluta 
podem ser descritas como: g/cm3, Kg/m3, lb/ft3 etc. 
A densidade relativa de uma substância é a razão entre a densidade absoluta dessa substância e a 
densidade absoluta de uma substância padrão, tomada como referência, como a água, obviamente nas 
mesmas e na mesma temperatura de operação. 
A picnometria é uma técnica laboratorial utilizada para fazer a determinação da densidade de 
líquidos. Pode também determinar-se a densidade de sólidos, devendo antes ser dissolvido. 
 
 
O picnômetro é um recipiente de vidro com tampa esmerilhada, vazada por 
tubo capilar, que permite seu completo enchimento com líquidos. A 
capacidade volumétrica do instrumento é facilmente determinável pela 
pesagem de um líquido tomado como padrão de densidade, na temperatura 
de operação. O picnômetro é uma vidraria especial que possui baixo 
coeficiente de dilatação. 
Arquimedes foi um dos mais importantes cientistas da antiguidade, que dentre outras invenções 
notáveis estão a alavanca e a hidrostática. 
Descobriu a relação existe entre a massa de um corpo e seu volume, e fundamentou a teoria do 
empuxo. "Todo corpo imerso, total ou parcialmente, num fluido em equilíbrio, dentro de um campo 
gravitacional, fica sob a ação de uma força vertical, com sentido ascendente, aplicada pelo fluido; esta 
força é denominada empuxo, cuja intensidade é igual à do peso do fluido deslocado pelo corpo." 
24 
 
O empuxo é a força que provoca a flutuação dos corpos nos líquidos, sendo proporcional a 
densidade, ao volume do corpo e a aceleração da gravidade. 
 
 
Um instrumento que rege esse princípio é o densímetro. Esse instrumento 
mede a densidade dos líquidos. Trata-se de um tubo de vidro com certa 
quantidade de chumbo na base. Na parte de cima do tubo há uma escala 
desenhada. Ao mergulhar o densímetro no líquido, ele afunda até deslocar um 
volume de fluido cujo peso se iguale ao dele. A superfície do líquido indica 
determinado ponto na escala, isto é, sua densidade. Esses instrumentos são 
muito usados em postos de gasolina para verificar por meio da densidade o grau 
de pureza do álcool usado como combustível. 
 
Metodologia 
Materiais e reagentes 
• Picnômetro 
• Funil simples pequeno 
• Pisseta 
• Provetas de tamanhos variados 
• Solução de hidróxido de sódio 0,5 M 
• Amostras de materiais sólidos 
 
O aço é uma liga metálica formada essencialmente por ferro e carbono, com percentagens deste 
último variando entre 0,008 e 2,11%. Distingue-se do ferro fundido, que também é uma liga de ferro e 
carbono, mas com teor de carbono entre 2,11% e 6,67%. A diferença fundamental entre ambos é que o 
aço, pela sua ductibilidade, é facilmente deformável por forja, laminação e extrusão, enquanto que uma 
peça em ferro fundido é fabricada pelo processo de fundição ou usinagem. No entanto, o valor teórico 
da densidade do aço, exibido posteriormente, Tabela 3.1, é um valor médio. 
Vale salientar que, a partir dos valores de densiade é possível, dentre outras coisas, caracterizar 
um determinado material, observando inclusive o grau de pureza. 
25 
 
A Tabela 3.1 mostra os valores teóricos das densidades das amostras de materiais sólidos, a 
20°C,utilizadas no experimento. 
Tabela 3.1. Valores teóricos das densidades das amostras de materiais sólidos, aço, alumínio e 
cobre, a 20°C. 
Amostra de material Valor teórico da densidade a 20°C 
d (kg/m³) d (g/cm³) 
Aço 7860 7,860 
Alumínio 2697 2,697 
Cobre 8920 8,920 
 
Procedimento experimental 
Picnometria 
a) Pese o picnômetro (com a tampa) vazio e seco; 
b) Coloque água destilada no picnômetro até que o volume do líquido fique acima do colo; 
c) Coloque a tampa capilar, verifique se ficou cheio e enxugue cuidadosamente o excesso de 
líquido; 
d) Pese o picnômetro com água destilada; 
e) Esvazie o picnômetro; 
f) Lave inteiramente o picnômetro com a solução a ser analisada (NaOH 0,5 mol/L); 
g) Coloque a solução no picnômetro até que o nível do líquido fique acima do colo; 
h) Coloque a tampa capilar e enxugue cuidadosamente o excesso de líquido; 
i) Pese o picnômetro com a solução. 
 
Método de Arquimedes 
a) Em uma balança, pese os materiais sólidos e anote as massas; 
b) Coloque um determinado volume de água, suficiente para submergir a amostra de material 
sólido; faça isso para os três materiais; 
c) Coloque a amostra do material sólido na proveta; 
d) Anote o valor do volume de água deslocado; 
e) Calcule as densidades dos materiais. 
 
26 
 
 Resultados 
Tabela 3.2. Dados experimentais. 
Objeto massa (g) Vi (mL) Vf (mL) Vobjeto (mL) 
Vobjeto (cm
3) 
1mL = 1cm3 
Aço 
Alumínio 
Cobre 
Picnômetro vazio 
Picnômetro com água 
Picnômetro com NaOH 
 
Referências 
 
ATKINS, Peter e JONES, Loretta. Princípios de Química: Questionando a vida moderna e o 
meio ambiente. 1a. Ed. Porto Alegre: Bookman, 2001. 
BROWN, T. L.; LEMAY, E.; BURSTEN, B. E. Química – A Ciência Central. 9ª ed.; Pearson; 
São Paulo; 2006. 
RUSSELL, John B., Química geral, 2ª. Ed, vol 1,São Paulo, Ed Pearson Makron Books,1994. 
 
Pré-Laboratório 
1. Explique a diferença entre densidade absoluta e densidade relativa. 
2. O que é picnometria? 
3. Descreva o princípio de Arquimedes. 
 
Pós-Laboratório 
1. A partir dos dados obtidos na prática calcule o volume do picnômetro e a densidade da solução 
analisada. 
2. Efetue os cálculos das densidades das amostras sólidas. 
3. Efetue os cálculos dos erros percentuais das densidades. 
4. Comente os possíveis erros. 
 
 
27 
 
CAPÍTULO IV - Destilação Simples 
 
Objetivos 
 
Realizar uma destilação simples, se inteirando sobre o aparato utilizado nessa destilação e, 
realizar um teste do destilado. 
 
Introdução 
 
A destilação é um dos métodos mais utilizados para separação de líquidos, pois é bastante 
simples e, se tomados todos os cuidados necessários, apresenta grande qualidade na separação. Pode 
ocorrer de duas formas, a simples e a fracionada. 
A destilação simples apresenta boa versatilidade, pois pode ser usada para separar líquidos de 
outras substâncias que podem ser sólidas ou líquidas também, desde que tenham pontos de ebulição 
bem distintos; basta aquecer a mistura de substâncias até uma temperatura acima do ponto de ebulição 
da mais volátil, esta irá entrar em ebulição e passará ao estado vapor, que após ser resfriado em um 
condensador, retornará ao estado líquido. 
Já a destilação fracionada é usada para separar substâncias com pontos de ebulição próximos, a 
mistura deve ser aquecida até uma temperatura ligeiramente acima da substância de maior ponto de 
ebulição, este tipo de destilação requer um sistema mais robusto, onde uma coluna de fracionamento 
deve favorecer logo na entrada a condensação da sustância com maior ponto de ebulição fazendo com 
esta retorne ao recipiente de origem, e a substância de menor ponto de ebulição seguirá ao 
condensador. 
Um exemplo de destilação fracionada é a destilação do petróleo, onde o mesmo é submetido a 
um processo de onde são obtidos diversos produtos, de acordo com seus pontos de ebulição, desde 
gases, a gasolina, óleos lubrificantes entre outros. 
Metodologia 
Materiais e reagentes 
Materiais/Quantidade Reagentes 
• Balão de destilação – 01 • Cloreto de sódio NaCl 
• Termômetro – 01 
• Pedras de destilação 
• Nitrato de prata AgNO3 
• Erlenmeyer de 125 mL – 01 
28 
 
• Funil simples – 01 
• Garra metálica – 01 
• Aquecedor – 01 
• Adaptador para condensador – 01 
• Condensador – 01 
• Suporte – 01 
• Proveta – 01 
• Suporte para bureta – 01 
• Tubo de ensaio – 02 
• Mufa, rolha, mangueiras, estante para tubos de 
ensaio 
 
Procedimento Experimental 
Parte I (Destilação) 
a) Adicione ao balão de destilação 3 pedras de ebulição; 
b) Colete 50 mL de uma solução de NaCl para dentro do balão com o auxílio de uma proveta 
(para medir o volume); 
c) Com o auxílio de um funil de vidro de haste longa, transfira os 50 mL da solução de NaCl 
para o balão de fundo redondo; 
d) Monte um sistema de destilação simples como mostrado na Figura 4.1; 
e) Inicie o aquecimento do sistema; 
f) Observe atentamente o sistema enquanto ocorre o aquecimento, constantemente 
observando a temperatura que é registrada no termômetro; 
g) Observe o início da destilação, atentando para o que ocorre, visualmente, com a amostra; 
h) Numa destilação os primeiros 5% (em relação à quantidade inicial contida no balão) devem 
ser descartados por ainda conter impurezas. Os últimos 5% também devem ser descartados. Assim 
colete os aproximadamente 2,5 mL num Becker. Em seguida, troque este Becker outro Becker limpo; 
i) A destilação prosseguirá até que se obtenha de 15 a 20 mL do destilado. 
 
29 
 
 
 
Figura 4.1. Sistema de destilação simples (Brown et al, 2005). 
Parte II (Teste do Destilado) 
 Após a destilação se faz necessário um teste para verificar se a destilação foi bem sucedida. 
Assim, deve-se testar o destilado a fim de saber se ainda existe a presença do NaCl. Para tanto siga os 
passos descritos abaixo: 
a) Adicione 1 mL de solução de AgNO3 (Nitrato de prata) a dois tubos de ensaio.; 
b) Numere-os como tubo 1 e tubo 2, respectivamente; 
c) Ao tubo 1 adicione 1 mL de solução de NaCl. Observe que ocorre a formação de um 
precipitado de coloração branca. O precipitado formado é o AgCl (cloreto de prata). Assim, o tubo 1 
servirá como referência para o tubo 2; 
d) Adicione 1 mL do destilado ao tubo 2. Observe o que acontece. 
 
Tabela de Resultados 
Observações 
 
 
 
 
 
30 
 
 Referências 
 
ATKINS, Peter e JONES, Loretta. Princípios de Química: Questionando a vida moderna e o 
meio ambiente. 1a. Ed. Porto Alegre: Bookman, 2001. 
BROWN, T. L.; LEMAY, E.; BURSTEN, B. E. Química – A Ciência Central. 9ª ed.; Pearson; 
São Paulo; 2006. 
 
 
Pré-Laboratório 
1. Em que se baseia o princípio da destilação simples e em que tipos de amostra ela pode ser usada? 
2. Esquematize um sistema de destilação simples, enumerando cada componente, citando o nome e 
sua função. 
 
Pós-Laboratório 
3. Qual a função das pedras de ebulição? 
4. Qual reação explica a formação do precipitado branco de AgCl? 
5. Se no tubo 2, após adicionar a solução AgNO3, houver a turvação do destilado o que pode ter 
ocorrido? 
31 
 
 
CAPÍTULO V - Conservação da Massa 
 
Objetivos 
 
Verificar a Lei da conservação da massa através da determinação da massa total antes e depois 
de ocorrerem às seguintes reações: 
 
Reação 1: Na2CO3 + CaCl2 → 2NaCl + CaCO3↓ 
Reação 2: 2NaCl + CaCO3 + H2SO4 → 2NaCl + CaSO4 + H2CO3 
 
Introdução 
 
Em 1774 Antoine Lavoisier enunciou a lei da conservação da massa, também conhecida como 
lei de Lavoisier, onde afirmava, baseado em resultados de uma série de experimentos, quemesmo com 
uma reação química não era possível criar massa, o que ocorria era apenas a modificação dos 
compostos, conservando-se, desde que em um sistema fechado, todos os átomos presentes antes das 
reações, apesar de os produtos se apresentarem com configurações químicas e estado físico distintos 
dos reagentes. 
 
Antoine-Laurent de Lavoisier nasceu em Paris, em 26 de agosto de 1743 e 
morreu em Paris, em 8 de maio de 1794. Era químico, e foi considerado o 
criador da química moderna. Foi o primeiro cientista a enunciar o princípio da 
conservação da matéria. Além disso, identificou e batizou o oxigênio e participou 
na reforma da nomenclatura química. Célebre pela sua frase "Na Natureza nada 
se perde, nada se cria, tudo se transforma." 
Por volta de 1905, Albert Einstein publicou a teoria da relatividade, revolucionando os 
conhecimentos da época. Segundo a teoria, um objeto que se movimente com velocidade próxima à 
velocidade da luz sofre efeitos como o aumento da sua massa entre outros. 
Juntamente com a equação da equivalência entre a massa e a energia, E=m·c2, testes 
comprovaram a veracidade da teoria da relatividade mediante o estudo das reações nucleares, onde 
ocorre a liberação de imensas quantidades de energia, resultantes da perda de massa do sistema. 
32 
 
Apesar de ocorrer liberação de energia durante as reações químicas comuns, as quantidades são 
demasiadamente inferiores às liberadas durante as reações nucleares, e, portanto, não é mensurável a 
conversão de massa em energia nestas reações, verificando-se assim a lei da conservação da massa em 
sistemas reacionais não nucleares. 
Metodologia 
Materiais e reagentes 
Materiais Reagentes 
• Balança analítica • Carbonato de sódio 0,1 M 
• Frascos pequenos • Cloreto de cálcio ,1 M 
• Beckeres • Ácido sulfúrico 0,1 M 
• Pipetas de 5 e 10 mL 
• Pipetadores 
 
 
Procedimento experimental 
a) Pipetar 5 ml de solução de Na2CO3 (0,1 M) e colocar em um frasco. Fechar o frasco; 
b) Pipetar 5 ml de solução de CaCl2 (0,1 M) e colocar em um frasco. Fechar o frasco; 
c) Pipetar 10 ml de solução de H2SO4 (0,1 M) e colocar em um frasco. Fechar o frasco; 
d) Pesar os três frascos juntos. Anotar a massa do conjunto; 
e) Fora da balança, adicionar a solução de CaCl2 (0,1 M) na solução de Na2CO3 (0,1 M) e 
tampar ambos os frascos. Agitar levemente o frasco que contém as duas soluções e verificar 
o que ocorre; 
f) Pesar novamente o conjunto de frascos e anotar a massa; 
g) Novamente fora da balança, adicionar a solução de H2SO4 (0,1 M) no frasco que contém a 
solução. Tampar o frasco rapidamente e agitar. Observar o que ocorre. 
h) Pesar mais uma vez o conjunto e anotar a massa. 
 
Tabela 5.1. Dados experimentais. 
Objeto Massa 
 
 
 
 
33 
 
Referências 
 
ATKINS, Peter e JONES, Loretta. Princípios de Química: Questionando a vida moderna e o 
meio ambiente. 1a. Ed. Porto Alegre: Bookman, 2001. 
BROWN, T. L.; LEMAY, E.; BURSTEN, B. E. Química – A Ciência Central. 9ª ed.; Pearson; 
São Paulo; 2006. 
RUSSELL, John B., Química geral, 2ª. Ed, vol 1,São Paulo, Ed Pearson Makron Books,1994. 
 
Pré-Laboratório 
1. O que diz a lei da conservação da massa, conhecida também por lei de Lavoisier? 
2. Calcule o número de mols de cada solução utilizada nesse experimento. 
3. Verificar se há reagente em excesso nas proporções em que foram utilizadas. 
4. Considere a reação 2Na3PO4 + 3Ba(NO3)2 → Ba3(PO4)2 + 6NaNO3. Suponha que uma solução 
contendo 3,5 g de Na3PO4 é misturada com uma solução contendo 6,4 g de Ba(NO3)2. Quantos 
gramas de fosfato de bário podem ser formados? 
 
Pós-Laboratório 
1. Com base nos dados obtidos, como é possível interpretar a Lei da Conservação da Massa? 
2. Qual a origem da turvação observada na primeira reação? 
3. Calcule a média e o desvio padrão da massa do conjunto. Estime o erro experimental. Comente 
o resultado. 
 
 
 
 
 
 
 
34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Unidade II 
 
 
 
 
 
 
 
 
 
 
35 
 
 
CAPÍTULO VI – Determinação da viscosidade de um líquido 
 
Objetivo 
 
Determinar a viscosidade de um líquido utilizando o método de Stokes. 
 
Introdução 
 
Por causa da interação das camadas adjacentes de moléculas, os líquidos realizam uma 
viscosidade ou resistência contra o escoamento. Poiseuille mostrou que o volume V de um líquido que se 
escoa sem turbulência em (t) segundos por um capilar de raio (r) e comprimento (l) é dado por: 
V=Π. r4.∆P.t 
 8.η.l 
(1) 
onde P é a pressão hidrostática e η o coeficiente de viscosidade, ou simplesmente viscosidade. Quando as 
grandezas da Equação (1) são expressas em unidades de CGS, a unidade de viscosidade chama-se Poise. 
Nos livros encontram-se muitas vezes o milipoise (10-3 poise) abreviando mP, e centipoise (10-2 poise) 
abreviado cP. Dos inúmeros métodos para determinar a viscosidade de um líquido aplicamos aqui o 
método de Stokes baseado na Lei de Stokes. 
Um corpo sólido caindo em um líquido sofre a ação de uma força de atrito para cima. 
Para uma esfera de raio (r), esta força de atrito é segundo a Lei de Stokes, que diz: A resistência 
encontrada por um sólido que se desloca em um líquido é proporcional a 6Π, ao raio do corpo sólido (r), 
ao coeficiente de viscosidade (η) e a velocidade do corpo (Vo). 
F = 6.Π.η. Vo (2) 
Além da força de atrito agem sobre a esfera a força gravitacional e a força do empuxo: P = 4/3 
Π. r3.ρs.g e É =
4/3 Π. r3.ρliq.g, respectivamente. No momento da queda, em que a esfera tem uma 
velocidade constante, as forças se compensam e a velocidade de esfera é dada pela equação abaixo: 
Vo= 2 .r2.g (ρs - ρliq) 
 9η 
(5) 
 
36 
 
onde ρs = densidade do sólido e ρliq = densidade do líquido. A velocidade da esfera será influenciada 
pela proximidade das paredes da proveta. Por isso é recomendável deixar cair a esfera no centro da 
proveta. 
A relação entre a velocidade constante (V), numa proveta de raio (R) e a velocidade de queda da 
esfera (Vo) de raio (r) é dada pela equação: 
 Vo = V(l + 2,4r/R) (6) 
onde V = velocidade desenvolvida no movimento retilíneo uniforme. 
 
Metodologia 
Materiais e reagentes 
• Óleo de soja • Bolinhas de vidro 
• Balança Analítica • Cronômetro 
• Termômetro • Régua Graduada 
• Proveta de 2000 mL 
 
 
Procedimento experimental 
Com o método de Stokes vai ser determinada a viscosidade do óleo de soja (ρliq = 0,92 g/cm3) 
com auxílio de bolinhas de vidro (ρs = 2,57 g/cm3). 
Para determinar o raio das bolinhas de vidro pese simultaneamente 05 bolinhas na balança 
analítica. 
Meça a distância entre os pontos marcados na proveta e em seguida o diâmetro da 
proveta. 
Ponha uma bolinha de vidro na superfície do óleo de soja e no centro da proveta e 
deixa-a cair. Use o cronômetro para determinar o tempo em que a bolinha percorre o trajeto. 
Repita a experiência com as outras quatro bolinhas. 
 
 
 
 
 
 
 
37 
 
Resultados 
 
Pressão Atmosférica: 
Temperatura Ambiente Inicial: 
Temperatura Ambiente Final: 
Peso das 05 bolinhas: 
Distância entre os pontos marcados na proveta: 
Diâmetro Interno da proveta: 
 
Bolinha Tempo (s) 
1 
2 
3 
4 
5 
 
Obs: 
_________________________________________________________________________________
_________________________________________________________________________________
_________________________________________________________________________________
_________________________________________________________________________________
_________________________________________________________________________________Referências Bibliográficas 
 
Castellan, G. Fundamentos de Físico-Química, Tradução de Cristina M. P. dos Santos e Roberto B. 
Farias, LTC, Rio de Janeiro, 1986. 
Moore, W. J. Físico-Química, Tradução da 4ª. Edição americana, Helena Lichum e outros. Edgard 
Blucher, São Paulo, 1976. 
 
 
38 
 
Pós-Laboratório 
 
1) A partir dos dados experimentais, calcule a viscosidade do óleo. 
2) Calcule o erro experimental. 
3) Explique as possíveis fontes de erro. 
4) Faça uma pesquisa sobre outros métodos de se determinar a viscosidade. 
 
 
 
 
 
 
 
 
 
 
39 
 
CAPÍTULO VII - Extração líquido-líquido 
 
 Objetivo 
 
Determinar o teor de álcool em uma amostra de gasolina. 
 
Introdução 
 
A gasolina é uma das frações do petróleo. Trata-se de uma mistura de hidrocarbonetos 
de cadeias que podem variar de 5 (cinco) a 10 (dez) átomos de carbono. Seu principal 
constituinte é o iso-octano. Ela pode ser obtida por vários métodos, como destilação 
fracionada, isomerização, alquilação e craqueamento catalítico. No Brasil adiciona-se etanol 
(álcool etílico) à gasolina, com a finalidade, dentre outras, de reduzir as emissões de poluentes 
oriundos da queima do combustível fóssil. 
O teor de álcool etílico anidro na gasolina é fixado por portaria do Ministério da 
Agricultura, conforme Decreto Nº 3.966/2001. O percentual máximo de álcool etílico anidro 
adicionado à gasolina é de 25% desde 07/2007. 
O álcool utilizado como combustível, nos postos de gasolina, é o etanol hidratado. O 
etanol pode ser obtido por vários processos químicos, como do próprio petróleo, pela 
fermentação da beterraba, como é feito na Europa, ou do milho, nos Estados Unidos. No 
Brasil, o etanol é produzido a partir da cana-de-açúcar. A cana é processada em usinas, 
passando por diversas operações como moagem, fermentação e destilação. 
Enquanto os compostos presentes na gasolina são moléculas apolares, o etanol é uma 
molécula anfifílica, ou seja, possui uma parte polar e outra apolar. As moléculas anfifílicas são 
conhecidas como moléculas tensoativas ou sufactantes. Veja, no esquema a seguir, a molécula 
do etanol, destacando a calda, apolar, e a cabeça, polar. 
 
 
 
A parte polar da molécula é hidrofílica, ou seja, tem afinidade por água, enquanto a 
parte apolar é hidrofóbica, ou seja, tem repulsão à água. 
Cabeça 
CH3-CH2- OH 
Calda 
 
40 
 
Devido a essa dupla afinidade, a molécula de etanol pode se misturar tanto com a 
gasolina, que é apolar, quanto com a água, que é polar. No entanto, a contribuição hidrofílica 
da molécula de etanol é superior à hidrofóbica. Dessa forma, quando se mistura água com 
gasolina, a água consegue extrair o álcool presente na mistura. 
Do ponto de vista das interações intermoleculares, as pontes de hidrogênio, formadas 
entre a água e o álcool, são mais fortes do que as interações dipolo-dipolo, presentes nas 
moléculas da gasolina. Vamos revisar um pouco essas interações. 
As forças intermoleculares são forças existentes entre as moléculas de compostos que 
formam ligações covalentes. Essas forças são bem mais fracas do que as ligações químicas. 
A Figura 7.1 ilustra a diferença entre uma ligação química e atração intermolecular. 
 
Figura 7.1. Ilustração da diferença entre ligação química e atração intermolecular 
(Brown et al, 2005). 
 
As forças intermoleculares podem ser do tipo: dipolo-dipolo, íon-dipolo, força de 
dispersão de London e pontes/ligações de hidrogênio. 
As forças dipolo-dipolo ocorrem em compostos polares, ou seja, compostos onde 
existe uma diferença de eletronegatividade entre os elementos ligantes. As moléculas se atraem 
quando o lado positivo de uma está próximo do lado negativo de outra. Ex: H-Cl 
As forças do tipo íon-dipolo ocorrem entre compostos polares e na presença de íons 
em suspensão. Esse tipo de força intermolecular é mais forte do que a dipolo-dipolo. Ex: H-Cl 
em solução salina de Na+Cl- 
As forças de dispersão de London ocorrem entre moléculas apolares. Um momento de 
dipolo instantâneo, bastante pequeno, pode ser criado devido o movimento de eletros em um 
átomo ou molécula. Ex: N2, O2, CH4 
 
41 
 
As pontes ou ligações de hidrogênio são forças intermoleculares mais fortes. Elas 
ocorrem em compostos polares onde a diferença de eletronegatividade é mais pronunciada. É 
formada entre o hidrogênio (H) e outro elemento demasiadamente eletronegativo como o 
Flúor, Oxigênio, Nitrogênio (F, O, N). Ex: H2O, HF 
O Fluxograma (Brown et al, 2005) a seguir, Figura 7.2, resume os tipos de forças 
intermoleculares. 
 
 
Figura 7.2. Fluxograma com os tipos de forças intermoleculares (Brown et al, 2005). 
 
Metodologia 
Materiais e reagentes 
• Becker de 100 mL 
• Proveta de 100 mL, com tampa 
• Luvas 
• Óculos de segurança 
• Gasolina comum 
• Solução de cloreto de sódio 10%w 
 
42 
 
Procedimento experimental 
a) Colocar 50 mL da amostra de gasolina na proveta de 100 mL, previamente limpa, 
desengordurada e seca, observando a parte inferior do menisco; 
b) Em outra proveta de 100 mL, medir 50 mL de solução de cloreto de sódio 10%w, 
tomando os mesmos cuidados do passo anterior; 
c) Colocar os 50 mL de solução de cloreto de sódio 10%w na proveta com a gasolina; 
d) Tampar de forma adequada a proveta; 
e) Misturar as camadas de água e gasolina através de três inversões sucessivas da proveta, 
evitando agitação enérgica; 
f) Deixar a proveta em repouso por 5 minutos de modo a permitir a separação completa 
das duas camadas; 
g) Anotar o aumento da camada aquosa em mililitros. 
 
Para calcular o teor de álcool, faça a seguinte regra de três: 
100*%
_ gasolinainicial
álcool
V
V
=
 
Para se determinar quantos mililitros de álcool estão presentes em um litro da amostra 
de gasolina, efetua-se a seguinte operação: 
05,0
álcoolV
L
mL
= 
A Figura 7.3 exibe o esquema do experimento, mostrando cada etapa. 
 
 
Figura 7.3. Esquema do experimento: (a) Proveta preenchida com 50 mL de gasolina; (b) 
Adição de 50 mL de solução de cloreto de sódio 10%w; (c) Captura do álcool presente na 
gasolina. 
(a) (b) (c) 
 
43 
 
Referências 
 
BROWN, T. L.; LEMAY, E.; BURSTEN, B. E. Química – A Ciência Central. 9ª ed.; 
Pearson; São Paulo; 2006. 
 
Pré-laboratório 
1. O que são forças intermoleculares? 
2. Quais os tipos de forças intermoleculares? 
3. Dê a definição de cada força intermolecular, citando um exemplo de cada. 
4. Por que no Brasil se adiciona álcool à gasolina? 
5. Faça uma pesquisa sobre as principais frações do petróleo, com definição, principais 
usos, características físicas etc. 
6. Faça uma pesquisa, mostrando em poucas linhas, como é produzido o álcool no Brasil. 
 
Pós-laboratório 
1. Qual dos líquidos tem maior densidade? Como você deduziu sua resposta? 
2. Por que a água extrai o álcool da gasolina? 
3. Qual o teor de álcool na gasolina em % e em mL/L? 
4. Calcule o erro experimental baseado na percentagem de álcool permitida na gasolina. 
Comente os possíveis erros. 
 
44 
 
CAPÍTULO VIII - Soluções 
 
Objetivos 
 
Inteirar o aluno com os cálculos e preparo de soluções. 
 
Introdução 
 
Soluções são misturas homogêneas de duas ou mais substâncias. 
Nas soluções, o disperso recebe o nome de soluto, e o dispersante é denominado 
solvente. Assim, por exemplo, quando dissolvemos açúcar em água, o açúcar é o soluto e a 
água, o solvente. 
Em geral as substâncias inorgânicas são polares, enquanto as orgânicas são apolares. 
Uma substância polar tende a dissolver num solvente polar. Uma substância apolar tende a se 
dissolver num solventeapolar. 
 
Principais tipos de concentrações 
 Concentração comum: indica a massa de soluto presente em cada litro de solução. 
 
 
Título: é a relação entre a massa do soluto e a massa da solução. 
 
 
Molaridade: é a quantidade de mols de soluto presente em cada litro de solução. 
 
 
Fração molar: é a relação entre o número de mols do soluto (ou de solvente) e o número 
de mols da solução. 
 
45 
 
 
 
Molalidade: é a relação entre o número de mols do soluto, e a massa do solvente (em Kg). 
 
 
Metodologia 
Materiais e reagentes 
Materiais Reagentes 
• Balão volumétrico de 50 mL • Acido clorídrico (HCl), ρ=1,19g/mL, τ=37,5% 
• Balão volumétrico de 100 mL • Hidróxido de sódio (NaOH) 
• Bastão de vidro 
• Becker de 100 mL 
• Espátula 
• Funil simples 
• Pipetas 
• Pissetas 
 
Procedimento experimental 
Preparo da solução de HCl 0,5 mol/L. 
a) Em uma capela, meça numa proveta, 10,4 mL de HCl concentrado; 
b) Coloque cerca de 100 mL de água destilada em um balão volumétrico de 250 mL e 
transfira o volume de ácido medido para este balão; 
c) Espere o balão esfriar até a temperatura ambiente e complete, até o menisco, com água 
destilada; 
d) Faça uma homogeneização por inversão; 
e) Transfira a solução preparada para um frasco de vidro e rotule com os dados da 
solução e o número de sua turma; 
 
 
 
46 
 
Preparo da solução de HCl 0,1 mol/L. 
f) Meça 10 mL da solução de HCl, 0,5 mol/L, preparada anteriormente, e transfira para 
um balão de 50 mL; 
g) Complete com água destilada até o menisco, seguindo o procedimento de preparo 
indicado anteriormente. 
Preparo da solução de NaOH 0,5 mol/L. 
h) Pese 2,0 g de NaOH em um Becker limpo e seco; 
i) Dissolva-o, no próprio Becker, com água destilada; 
j) Transfira a solução para um balão de 100 mL, e siga os procedimentos de preparo de 
soluções; 
k) Transfira a solução para um frasco de plástico e rotule. 
l) Guarde as soluções preparadas em um armário para utilização nas próximas 
experiências. 
 
 
Referências 
 
ATKINS, Peter e JONES, Loretta. Princípios de Química: Questionando a vida 
moderna e o meio ambiente. 1a. Ed. Porto Alegre: Bookman, 2001. 911 p. 
BROWN, T. L.; LEMAY, E.; BURSTEN, B. E. Química – A Ciência Central. 9ª ed.; 
Pearson ; São Paulo; 2006. 
MAHAN, Bruce M. e MYERS, Rollie J. Química: um curso universitário. 4a. ed. São 
Paulo: Edgard Blücher, 1995. 582 p. 
 
 
 
 
 
 
 
 
 
 
 
47 
 
Pré-Laboratório 
1. O que é solução? 
2. Descreva o procedimento adequado pra preparar uma solução quando o soluto é um 
líquido. 
3. Descreva o procedimento adequado pra preparar uma solução quando o soluto é um 
sólido. 
4. Qual o procedimento para preparar uma solução diluída a partir de uma solução 
concentrada de uma determinada substância? 
5. Calcule o volume de HCl necessário para preparar 250 mL de solução de HCl 0,5 
mol/L, partindo de uma solução de HCl a 37% em massa e ρ = 1,19 g/mL. 
6. Calcule o volume de HCl necessário para preparar 25 mL de solução de HCl 0,1 
mol/L, partindo da solução de solução de HCl 0,5 mol/L. 
7. Calcule a massa de NaOH necessária para preparar 250 mL de solução NaOH 0,5 
mol/L. 
8. Converta HCl 0,5M para concentração comum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
48 
 
CAPÍTULO IX - Análise volumétrica 
 
Objetivos 
Familiarizar o aluno com a análise volumétrica, através da padronização da solução 
preparada na prática anterior. 
 
Introdução 
A análise volumétrica consiste na medida de volumes de duas soluções que reagem 
entre si. Uma delas apresenta concentração previamente conhecida, atuando como padrão de 
medida; a outra contém a espécie de concentração desconhecida que se deseja analisar. 
Geralmente a solução padrão é adicionada gota a gota, por meio de uma bureta, à 
solução de concentração desconhecida (contida num erlenmeyer). Este tipo de operação 
recebe o nome de titulação. 
 
 
Como não é possível visualmente perceber o ponto de equivalência, é necessário que 
se utilize um indicador, no erlenmeyer, para indicar, através da mudança de cor, o ponto final 
da titulação. 
Indicadores, de um modo geral, são bases ou ácidos orgânicos fracos, apresentando 
cores diferentes quando nas formas protonada ou não-protonada. Consequentemente, a cor 
do indicador dependerá do pH. 
 
Bureta: Solução titulante (concentração conhecida e volume medido) 
Erlenmeyer: Solução titulada (volume conhecido + indicador ácido-base) 
 
49 
 
Metodologia 
Materiais e reagentes 
Materiais/Quantidade Reagentes 
• Becker de 50 mL – 02 • Ácido clorídrico 0,5 mol/L 
• Bureta de 25 mL – 01 • Hidróxido de sódio 0,5 mol/L 
• Erlenmeyer de 125 mL – 01 • Fenolftaleína 1% 
• Funil simples – 01 
• Garra para bureta – 01 
• Pipeta conta gotas – 01 
• Pipeta conta gotas – 01 
• Pipeta volumétrica de 5 mL – 01 
• Pisseta – 01 
• Proveta de 10 mL – 01 
• Suporte para bureta – 01 
 
Procedimento experimental 
a) Encha a bureta com a solução de hidróxido de sódio 0,5 mol/L; 
b) Abra a torneira da bureta e deixe escoar a solução até o desaparecimento de bolhas: 
c) Complete o volume com a solução e zere a bureta; 
d) Junte 20 mL de solução padrão de ácido clorídrico e transfira para um erlenmeyer de 
125 mL; 
e) Adicione duas gotas de solução de fenolftaleína; 
f) Abra cuidadosamente a torneira da bureta, de modo que a solução da base seja 
adicionada gota a gota ao erlenmeyer, até o aparecimento de uma coloração rósea persistente. 
g) Anote o valor de hidróxido de sódio gasto na titulação 
 
Tabela 9.1. Dados experimentais 
Volume inicial Volume Final 
 
 
 
 
 
 
 
50 
 
Referências 
ATKINS, Peter e JONES, Loretta. Princípios de Química: Questionando a vida 
moderna e o meio ambiente. 1a. Ed. Porto Alegre: Bookman, 2001. 911 p. 
MAHAN, Bruce M. e MYERS, Rollie J. Química: um curso universitário. 4a. Ed. São 
Paulo: Edgard Blücher, 1995. 582 p. 
JEFFERY, G. H. et al. Análise Química Quantitativa. 5a. Ed. Editora Guanabara 
Koogan S/A. Rio de Janeiro, 1992. 
 
Pré-Laboratório 
1) O que é titulação e qual sua finalidade? 
2) Para que serve um indicador? 
Pós-Laboratório 
3) Explique quando se deve suspender a adição de solução padrão em uma titulação. 
4) Calcule a concentração verdadeira de HCl. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51 
 
 
 
 
 
 
 
 
 
 
 
 
Unidade III 
 
 
 
 
 
 
 
 
52 
 
 
CAPÍTULO X - Calorimetria 
 
Objetivos 
 
Determinar a capacidade calorífica de um calorímetro, o calor específico de um 
metal e o calor de neutralização de uma reação de um ácido forte com uma base forte. 
 
Introdução 
 
Calorimetria é a medida do calor liberado ou absorvido numa transformação. O 
aparelho utilizado nessa medida é o calorímetro, sendo o mais simples deles, o calorímetro 
de água. 
Quando uma transformação ocorre no interior de um calorímetro de água, a água 
que ele contém sofre aquecimento ou resfriamento. Medindo-se a elevação ou abaixamento 
da temperatura dessa massa de água, é possível calcular a quantidade de calor liberada ou 
absorvida na transformação através da expressão: 
Q = m.cp.∆t 
onde: 
Q = quantidade de calor liberado ou absorvido (J ou cal); 
m = massa da substância (g); 
cp = calor específico da substância a pressão constante (J/g °C ou cal/g °C); 
∆t = variação de temperatura (°C). 
 
a) Determinação da Capacidade Calorífica ou Equivalente em Água do 
Calorímetro (C) 
 
Esta determinaçãoé necessária porque o calorímetro troca calor com o sistema que 
está sendo investigado no seu interior. Este processo é denominado de calibração. 
A calibração é feita pela mistura, no interior do calorímetro, de quantidades 
conhecidas de água fria e quente. 
A capacidade calorífica (C) é definida (de modo simplificado) como sendo a 
quantidade de energia absorvida por um corpo para que sua temperatura aumente em 1°C. 
 
53 
 
Geralmente, a capacidade calorífica de um calorímetro é determinada colocando-se 
uma certa quantidade de água (mágua fria) a uma determinada temperatura (tágua fria) em seu 
interior e mistura-se uma outra quantidade de água (mágua quente) a uma outra temperatura 
(tágua quente). Mede-se a temperatura final (tequilíbrio), e calcula-se C a partir da relação entre calor 
recebido (Qrecebido) e calor cedido (Qcedido). 
Qcedido + Qrecebido = 0 
Qcedido (água quente) + Qrecebido pelo calorímetro + Qrecebido (água fria) = 0 
mágua quente.cágua quente.(tequilíbrio–tágua quente)+mcalorímetro.ccalorímetro.(tequilíbrio–tágua fria)+mágua fria.cágua fria.(tequilíbrio–
tágua fria) = 0 
 
Para o mesmo calorímetro → mcalorímetro.ccalorímetro = C 
Assim, 
 
A Figura 10.1mostra um calorímetro de mistura e os acessórios utilizados no 
experimento. 
 
 
Figura 10.1. Calorímetro de mistura e os acessórios utilizados no experimento. 
 
 
 
 
54 
 
b) Determinação do Calor Especifico de um Metal 
 
Para determinar o calor específico de um metal utilizando o método das misturas, 
ou seja, aquece-se o metal a uma temperatura maior que a do ambiente e em seguida ele é 
imerso na água contida no calorímetro que está à temperatura ambiente. 
O metal vai ceder calor para água e para o calorímetro, até atingir a temperatura de 
equilíbrio térmico. Aplicando o princípio da conservação de energia, como no item 
anterior, temos: 
Qcedido + Qrecebido = 0 
Qcedido metal + Qrecebido pelo calorímetro + Qrecebido (água fria) = 0 
mmetal.cmetal.(tequilíbrio–tmetal)+mcalorímetro.ccalorímetro.(tequilíbrio–tágua)+mágua.cágua.(tequilíbrio–tágua) = 0 
mmetal.cmetal.(tequilíbrio–tmetal)+C.(tequilíbrio–tágua)+mágua.cágua.(tequilíbrio–tágua) = 0 
 
 O calor específico de alguns metais está representado na Tabela 10.1. 
 
Tabela 10.1. Calor específico de alguns metais. 
Metal c (cal/g °C) 
Cobre 0,093 
Latão 0,094 
Ferro 0,119 
Alumínio 0,219 
 
c) Determinação da ∆∆∆∆H de neutralização de um ácido forte (ácido clorídrico) 
por uma base forte (hidróxido de sódio). 
 
A variação de calor que ocorre em uma reação química entre produtos e reagentes, 
a pressão constante, é chamada de entalpia de reação (∆H). 
A entalpia de uma reação entre um ácido (AH) e uma base (BOH) é denominada 
calor de neutralização. Em solução aquosa os ácidos e bases fortes encontram-se 
completamente dissociados e o calor de neutralização é igual ao calor de dissociação da 
água (com sinal contrário), visto que: 
 
 
55 
 
 
 
 
ou resumidamente: 
 
 
 
O procedimento descrito no item 2.1 se aplica para a determinação do calor de 
neutralização e uma vez conhecida a capacidade calorífica do calorímetro, pode-se 
determinar o calor de neutralização, usando-se as relações: 
 
Qcedido + Qrecebido = 0 
Qcedido reação + Qrecebido pelo calorímetro + Qrecebido pela reação = 0 
Qcedido reação + mcalorímetro.ccalorímetro.(tequilíbrio-to) + msolução.csolução.(tequilíbrio-to) = 0 
Qcedido reação = -( msolução.csolução + C).( tequilíbrio-to) 
∆H = Q cedido reação (J ou cal) 
∆H / mol = ∆H /n (J/mol ou cal/mol) 
 
Onde: msolução = msolução HCl + msolução NaOH 
mcalorímetro.ccalorímetro = C 
n = número de moles de água formada 
to = (tácido + tbase)/2 
 
 
 
 
 
 
56 
 
d) Avaliação do erro. 
 
A validade das equações descritas nos itens anteriores pode ser afetada por vários 
fatores tais como: 
a) Falta de homogeneidade da temperatura no meio constituído por água e material, 
devido à lentidão da troca de calor da água para o material, etc.; 
b) Mau isolamento e perda de calor para o exterior. 
A homogeneidade pode ser melhorada de diversas formas: (i) decréscimo do 
tamanho do material, sobretudo para materiais com baixa condutividade térmica, (ii) 
agitação, (iii) aumento do intervalo de tempo até à leitura da temperatura. O tempo de 
homogeneização não deverá exceder 1 a 2 minutos quando os materiais são metais, 
cerâmicas, rochas ou vidros granulados. 
A agitação e o tempo também agravam a perda de calor para o exterior, 
provocando decréscimo da temperatura e dando origem a valores de calor específico 
sobreestimados. Essa perda de calor poderá ser atenuada com a utilização de recipientes 
térmicos ou melhoramento do isolamento. 
 
Metodologia 
Materiais e reagentes 
Materiais Reagentes 
• Calorímetro de alumínio – 01 • Água destilada 
• Calorímetro de vidro – 01 • Solução de HCl 0,5 mol/L 
• Termômetro – 02 • Solução de NaOH 0,5 mol/L 
• Chapa aquecedora e agitador – 02 
• Barra magnética – 01 
• Espátula – 01 
• Becker 250 mL – 02 
• Amostra de metal – 01 
• Piceta – 01 
• Proveta 100 mL – 03 
 
 
 
57 
 
Procedimento experimental 
 
a. Determinação da capacidade calorífica do calorímetro 
 
a) Utilizando uma proveta, medir 100 mL de água; 
b) Coloque a água no calorímetro de alumínio à temperatura ambiente e agite a água 
até a temperatura permanecer constante, isto é, atingir o equilíbrio térmico. Meça e anote o 
valor desta temperatura inicial da água (tágua fria) e da massa de água (mágua fria); 
c) Utilizando novamente a proveta, medir 100 mL de água (mágua quente) e aqueça em um 
becker até cerca de 50°C (tágua quente); 
d) Adicione rapidamente a água aquecida à água dentro do calorímetro, tampe-o. 
Resfrie o termômetro em água corrente, antes de introduzi-lo no calorímetro. Agite a água 
até a temperatura permanecer constante, isto é, até atingir o equilíbrio térmico. Anote o 
valor da temperatura final (tequilíbrio). 
 
Vágua fria = 100 mL → mágua fria = 
Vágua quente = 100 mL → mágua quente = 
tágua fria = 
tágua quente = 
tequilíbrio = 
 
Dados: 
1cal = 4,18J 
Calor específico da água = 1cal/g °C 
 
O Quadro 10.1 exibe a densidade da água, em g/mL, em diferentes temperaturas. 
 
 
 
 
 
 
 
 
58 
 
Quadro 10.1. Densidade da água em diferentes temperaturas. 
 Densidade (g/mL) 
T 
(°C) 
0 1 2 3 4 5 6 7 8 9 
0 0,9999 0,9999 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9999 0,9998 
10 0,9997 0,9996 0,9995 0,9994 0,9993 0,9991 0,9990 0,9988 0,9986 0.9984 
20 0,9982 0,9980 0,9978 0,9976 0,9973 0,9971 0,9968 0,9965 0,9963 0,9960 
30 0,9957 0,9954 0,9951 0,9947 0,9944 0,9941 0,9937 0,9934 0,9930 0,9926 
40 0,9922 0,9919 0,9915 0,9911 0,9907 0,9902 0,9898 0,9894 0,9890 0,9885 
50 0,9881 0,9876 0,9872 0,9867 0,9862 0,9857 0,9852 0,9848 0,9842 0,9838 
60 0,9832 0,9827 0,9822 0,9817 0,9811 0,9806 0,9800 0,9765 0,9789 0,9784 
70 0,9778 0,9772 0,9767 0,9761 0,9755 0,9749 0,9743 0,9737 0,9731 0,9724 
80 0,9718 0,9712 0,9706 0,9699 0,9693 0,9686 0,9680 0,9673 0,9667 0,9660 
90 0,9653 0,9647 0,9640 0,9633 0,9626 0,9619 0,9612 0,9605 0,9598 0,9591 
 
b. Determinação do calor especifico de um metal 
 
a) Coloque 100 mL de água (medidos com a proveta) no calorímetro de alumínio e 
meça a temperatura da água (tágua). Meça e anote o valor desta temperatura inicial da água 
(tágua) e da massa de água (mágua); 
b) Determine a massa do metal (mmetal) em uma balança; 
c) Coloque a peça de metal, presa por um fio, em um béquer com água 
(aproximadamente 100 mL) e aqueça o conjunto até atingir a temperatura de

Outros materiais