Buscar

Apostila-ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA-UFBA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

NOTAS DE AULA 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA 
 
 
 
ERON E ISABEL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SALVADOR – BA 
2007 
 
 
 
 
 
 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“Ants”. M. C. Escher 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 3 
VETORES – UM POUCO DE HISTORIA 
 
A lei do paralelogramo para a adição de vetores é tão intuitiva que sua origem é desconhecida. 
Pode ter aparecido em um trabalho, agora perdido, de Aristóteles (384-322 a.C.), e está na Mecânica 
de Heron (primeiro século d.C.) de Alexandria. Também era o primeiro corolário no Principia 
Mathematica (1687) de Isaac Newton (1642-1727). No Principia, Newton lidou extensivamente com o 
que agora são consideradas entidades vetoriais (por exemplo: velocidade e força), mas nunca com o 
conceito de um vetor. O estudo sistemático e o uso de vetores foram fenômenos do século XIX e início 
do século XX. 
Vetores nasceram nas primeiras duas décadas do século XIX com as representações 
geométricas de números complexos. Caspar Wessel (1745-1818), Jean Robert Argand (1768-1822), 
Carl Friedrich Gauss (1777-1855) e pelo menos um ou dois outros, conceberam números complexos 
como pontos no plano bidimensional, isto é, como vetores bidimensionais. Matemáticos e cientistas 
trabalharam com estes novos números e os aplicaram de várias maneiras; por exemplo, Gauss fez um 
uso crucial de números complexos para provar o Teorema Fundamental da Álgebra (1799). Em 1837, 
William Rowan Hamilton (1805-1865) mostrou que os números complexos poderiam ser considerados 
abstratamente como pares ordenados ( , )a b de números reais. Esta idéia era parte de uma campanha de 
muitos matemáticos, incluindo Hamilton, para procurar uma maneira de estender os “números” 
bidimensionais para três dimensões; mas ninguém conseguiu isto preservando as propriedades 
algébricas básicas dos números reais e complexos. 
Em 1827, August Ferdinand Möbius publicou um pequeno livro, The Barycentric Calculus, no 
qual introduziu diretamente segmentos de reta que eram denotados por letras do alfabeto, vetores na 
essência, mas não no nome. No seu estudo de centros de gravidade e geometria projetiva, Möbius 
desenvolveu uma aritmética destes segmentos de reta; adicionou-os e mostrou como multiplicá-los por 
um número real. Seus interesses estavam em outro lugar, contudo, e ninguém se importou em notar a 
importância destes cálculos. 
Depois de muita frustração, Hamilton estava finalmente inspirado a desistir da procura por um 
sistema “numérico” tridimensional e em vez disso, inventou um sistema de quatro dimensões que 
chamou de quatérnios. Nas suas próprias palavras: 16 de outubro de 1843, 
 
O que parecia ser uma segunda-feira e um dia de Conselho da Academia Real Irlandesa - eu 
estava caminhando para participar e presidir, …, ao longo do Canal Real, … uma sub-
corrente de pensamento estava na minha mente, que finalmente deu um resultado, o qual não 
é muito dizer que logo senti a importância. Um circuito elétrico pareceu fechar; e uma faísca 
surgiu, ... Não pude resistir ao impulso ... escrever com uma faca sobre uma pedra da ponte 
Brougham, quando passamos por ela, a fórmula fundamental... . 
 
Os quatérnios de Hamilton foram escritos, q w ix jy kz= + + + , onde w, x, y, e z eram números 
reais. Hamilton rapidamente percebeu que seus quatérnios consistiam de duas partes distintas. O 
primeiro termo, o qual chamou de escalar e “x, y, z para suas componentes retangulares, ou projeções 
em três eixos retangulares, ele [referindo-se a si próprio] foi induzido a chamar a expressão trinomial 
propriamente dita, assim como a reta a qual ela representa, de um VETOR”. Hamilton usou suas 
“fórmulas fundamentais”, 2 2 2 1i j k ijk= = = − = − , para multiplicar quatérnios, e imediatamente 
descobriu que o produto, 1 2 2 1q q q q= − , não era comutativo. 
Hamilton tinha se tornado cavaleiro em 1835, e era um cientista conhecido que já tinha feito 
um trabalho fundamental em Ótica e Física Teórica na época que inventou quatérnios, por isso foi 
imediatamente reconhecido. Em troca, devotou os 22 anos restantes de sua vida ao seu 
desenvolvimento e promoção. Escreveu dois livros completos sobre o assunto, Lectures on 
Quaternions (1853) e Elements of Quaternions (1866), detalhando não apenas a álgebra dos quatérnios 
mas também como poderiam ser usados em Geometria. Em certo ponto Hamilton escreveu, “eu ainda 
devo afirmar que esta descoberta me parece ser tão importante para a metade do século XIX como a 
descoberta de flúxions foi para o final do século XVII”. Ele teve um discípulo, Peter Guthrie Tait 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 4 
(1831-1901), que, na década de 1850, começou a aplicar quatérnios a problemas em eletricidade e 
magnetismo e a outros problemas em Física. Na segunda metade do século XIX, a defesa de Tait dos 
quatérnios provocou reações calorosas, ambas positivas e negativas, na comunidade científica. 
Ao redor da mesma época que Hamilton descobriu os quatérnios, Hermann Grassmann (1809-
1877) estava escrevendo The Calculus of Extension (1844), agora muito conhecido pelo seu título em 
alemão, Ausdehnungslehre. Em 1832, Grassmann começou a desenvolver “um novo cálculo 
geométrico” como parte do seu estudo da teoria de marés, e subseqüentemente usou estas ferramentas 
para simplificar partes de dois trabalhos clássicos, o Analytical Mechanics de Joseph Louis Lagrange 
(1736-1813) e o Celestial Mechanics de Pierre Simon Laplace (1749-1827). Em seu 
Ausdehnungslehre, primeiro Grassmann expandiu o conceito de vetores a partir da familiar 2 ou 3 
dimensões para um número arbitrário, n, de dimensões; isto estendeu grandemente as idéias de espaço. 
Segundo, e ainda mais geralmente, Grassmann antecipou grande parte da álgebra matricial e linear 
moderna e análise vetorial e tensorial. 
Infelizmente, o Ausdehnungslehre tinha dois pontos contra si. Primeiro, era muito abstrato, 
faltando exemplos explicativos e foi escrito em um estilo obscuro com uma notação extremamente 
complicada. Mesmo depois de tê-lo estudado, Möbius não tinha sido capaz de entendê-lo 
completamente. Segundo, Grassmann era um professor de ensino médio sem uma reputação científica 
importante (comparado a Hamilton). Embora seu trabalho tenha sido amplamente ignorado, 
Grassmann promoveu sua mensagem nas décadas de 1840 e 1850 com aplicações em eletrodinâmica e 
geometria de curvas e superfícies, mas sem muito sucesso geral. Em 1862, publicou uma segunda 
edição revisada do seu Ausdehnungslehre, mas também era escrito de maneira obscura e era muito 
abstrato para os matemáticos de sua época e praticamente teve a mesma sina da primeira edição. No 
final de sua vida, Grassmann distanciou-se da matemática e iniciou uma segundacarreira de pesquisa 
muito bem sucedida, em fonética e lingüística comparada. Finalmente, nas décadas de 1860 e 1870, o 
Ausdehnungslehre começou lentamente a ser entendido e apreciado e Grassmann começou a receber 
algum reconhecimento favorável por sua matemática visionária. Uma terceira edição do 
Ausdehnungslehre foi publicada em 1878, ano seguinte de sua morte. 
Durante a metade do século XIX, Benjamin Peirce (1809-1880) era, de longe, o mais 
proeminente matemático nos Estados Unidos, e se referiu a Hamilton como, “o monumental autor dos 
quatérnios”. Peirce foi um professor de matemática e astronomia em Harvard de 1833 a 1880 e 
escreveu um enorme livro chamado System of Analytical Mechanics (1855; segunda edição 1872), no 
qual, surpreendentemente não incluiu quatérnios. Em vez disso, Peirce expandiu o que chamou de 
“esta maravilhosa álgebra do espaço” ao escrever seu livro Linear Associative Algebra (1870), um 
trabalho totalmente de álgebra abstrata. Dizia-se que quatérnios era o assunto favorito de Peirce e ele 
teve muitos alunos que se tornaram matemáticos e que escreveram um bom número de livros e artigos 
sobre o assunto. 
James Clerk Maxwell (1831-1879) foi um proponente dos quatérnios perspicaz e crítico. 
Maxwell e Tait eram escoceses, tinham estudado juntos em Edimburgo e na Universidade de 
Cambridge e dividiam os mesmos interesses em Física-Matemática. No que chamou de “classificação 
matemática de quantidades físicas”, Maxwell dividiu as variáveis da Física em duas categorias, 
escalares e vetoriais. Então, em termos desta estratificação, apontou que usar quatérnios tornava 
transparente as analogias matemáticas em Física que tinham sido descobertas por Lord Kelvin (Sir 
William Thomson, 1824-1907) entre o escoamento de calor e a distribuição de forças eletrostáticas. 
Contudo, nos seus artigos, especialmente em seu muito influente Treatise on Electricity and 
Magnetism (1873), Maxwell enfatizou a importância do que descreveu como “idéias de quatérnios... 
ou a doutrina de vetores” como um “método matemático... um método de pensar”. Ao mesmo tempo, 
apontou a natureza não homogênea do produto de quatérnios, e avisou cientistas para não usar “os 
métodos de quatérnios” com seus detalhes envolvendo os três componentes vetoriais. Essencialmente, 
Maxwell estava sugerindo uma análise puramente vetorial. 
William Kingdon Clifford (1845-1879) expressou “admiração profunda” pelo 
Ausdehnungslehre de Grassmann e era claramente a favor de vetores, os quais freqüentemente 
chamava de passos, em lugar de quatérnios. Em seu Elements of Dynamic (1878), Clifford decompôs o 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 5 
produto de dois quatérnios em dois produtos vetoriais muito diferentes, os quais chamou de produto 
escalar e produto vetorial. Para análise vetorial, disse “minha convicção é que seus princípios 
exerceram uma ampla influência sobre o futuro da ciência matemática”. Embora o Elements of 
Dynamic fosse supostamente o primeiro de uma seqüência de livros-texto, Clifford não teve a 
oportunidade de seguir estas idéias porque morreu jovem. 
O desenvolvimento da álgebra vetorial e da análise vetorial como conhecemos hoje foi 
revelado primeiramente em um conjunto de notas de aula feitos por J. Willard Gibbs (1839-1903) feito 
para seus alunos na Universidade de Yale. Gibbs nasceu em New Haven, Connecticut (seu pai também 
foi professor em Yale) e suas conquistas científicas principais foram em Física, termodinâmica 
propriamente dita. Maxwell apoiava o trabalho de Gibbs em termodinâmica, especialmente as 
apresentações geométricas dos resultados de Gibbs. Gibbs tomou conhecimento dos quatérnios quando 
leu o Treatise on Electricity and Magnetism de Maxwell, e Gibbs também estudou o 
Ausdehnungslehre de Grassmann. Concluiu que vetores forneceriam uma ferramenta mais eficiente 
para seu trabalho em física. Assim, começando em 1881, Gibbs imprimiu por conta própria notas de 
aulas sobre análise vetorial para seus alunos, as quais foram amplamente distribuídas para estudiosos 
nos Estados Unidos, na Inglaterra e na Europa. O primeiro livro moderno sobre análise vetorial em 
inglês foi Vector Analysis (1901), as notas de Gibbs colecionadas por um de seus alunos de pós-
graduação, e Edwin B. Wilson (1879-1964). Ironicamente, Wilson cursou a graduação em Harvard 
(B.A. 1899) onde tinha aprendido sobre quatérnios com seu professor, James Mills Peirce (1834-
1906), um dos filhos de Benjamin Peirce. O livro de Gibbs/Wilson foi reimpresso em uma edição em 
1960. Uma outra contribuição para o moderno entendimento e uso de vetores foi feita por Jean Frenet 
(1816-1900). Frenet entrou na École normale supérieure em 1840, então estudou em Toulouse, onde 
escreveu sua tese de doutorado em 1847. A tese de Frenet continha a teoria de curvas espaciais e as 
fórmulas conhecidas como as fórmulas de Frenet-Serret (o triedro de Frenet). Frenet contribuiu com 
apenas seis fórmulas enquanto que Serret contribui com nove. Frenet publicou esta informação no 
Journal de mathematique pures et appliques em 1852. 
Na década de 1890 e na primeira década do século XX, Tait e alguns outros ridicularizaram 
vetores e defenderam quatérnios enquanto outros cientistas e matemáticos desenharam seu próprio 
método vetorial. Oliver Heaviside (1850-1925), um físico autodidata que foi grandemente influenciado 
por Maxwell, publicou artigos e seu livro Electromagnetic Theory (três volumes, 1893, 1899, 1912) 
nos quais atacou quatérnios e desenvolveu sua própria análise vetorial. Heaviside tinha recebido cópias 
das notas de Gibbs e falou muito bem delas. Ao introduzir as teorias de Maxwell sobre eletricidade e 
magnetismo na Alemanha (1894), os métodos vetoriais foram defendidos e vários livros sobre análise 
vetorial em alemão se seguiram. Os métodos vetoriais foram introduzidos na Itália (1887, 1888, 1897), 
na Rússia (1907) e na Holanda (1903). Vetores agora são a linguagem moderna de grande parte da 
Física e da Matemática Aplicada e continuam tendo seu próprio interesse matemático intrínseco. 
 
 
Fonte: George B. Thomas Cálculo vol I e II. Pearson Education. 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 6 
ÁLGEBRA VETORIAL 
 
 
Grandezas escalares e vetoriais. As grandezas físicas se subdividem em escalares e vetoriais. As 
grandezas escalares são caracterizadas por sua intensidade ou tamanho (um número e sua unidade 
correspondente), como por exemplo: tempo, comprimento, massa, temperatura, etc. As grandezas 
vetoriais se caracterizam por três componentes: intensidade, direção e sentido, como por exemplo: a 
força, momento linear, velocidade, deslocamento, etc. 
 
Grandezas escalares 
• 50 kg de massa 
• 30 minutos 
• 15 m de comprimento 
 
Grandezas vetoriais 
 
i. Uma força de 5 N fazendo um ângulo de 30° com a 
reta x e tendo o sentido da esquerda para a direita. 
Veja a figura ao lado 
 
 
 
 
ii. Uma velocidade de 10 m/s na direção da reta s e 
no sentido da direita para a esquerda. Veja figura 
ao lado. 
 
 
1. Segmento orientado é um segmento determinado por um par ordenado de pontos, onde o primeiro 
é chamado origem e o segundo, extremidade. Isto define a orientação ou sentido do segmento. 
Notação: (A, B) ou AB B 
 
 
 A 
2. Segmento nulo é aquele cujaorigem coincide com a extremidade: (A,A) ou AA . 
 
3. Segmentos opostos: o segmento orientado BA diz-se oposto do segmento orientado AB . 
B 
 
 
 A 
 
4. Medida de um segmento – comprimento. Fixada uma unidade de comprimento, fica associado a 
cada segmento orientado AB um número real não negativo, seu comprimento, que é a sua medida em 
relação àquela unidade. 
 B 
 | Obs: med( AB ) = med( BA ) 
 | med( AB ) = 3 med( AA) = 0 
 A 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 7 
5. Direção e sentido. Dois segmentos orientados não nulos AB e CD têm a mesma direção se as 
suas retas suportes são paralelas ou coincidentes. 
 
AB , DC e EF têm a mesma direção. 
AB
 e EF têm o mesmo sentido. 
AB
 e DC têm sentidos opostos 
 
 
 
Observação. Só podemos comparar os sentidos de dois segmentos orientados se eles possuem a 
mesma direção. 
 
6. Segmentos eqüipolentes. Um segmento orientado AB é eqüipolente a um segmento orientado 
CD , se e somente se: 
 
 
i) ambos são nulos; 
ii) se não são nulos, têm mesmo comprimento e mesmo sentido. 
 
Notação: AB ~ CD 
 
 
 
7. Propriedades da eqüipolência 
i) AB ~ AB (reflexiva) 
ii) AB ~ ⇒CD CD ~ AB (simétrica) 
iii) AB ~ CD e CD ~ EF ⇒ AB ~ EF (transitiva) 
iv) Dado um segmento orientado AB e um ponto C, existe um único ponto D tal que 
CDAB ~ . 
v) AB ~ ⇒CD BA ~ DC 
vi) AB ~ ⇒CD AC ~ BD 
 
 
 
8. Vetor. Chama-se vetor determinado por um segmento 
orientado AB o conjunto de todos os segmentos 
eqüipolentes a AB . Denotamos por AB
uuur
 ou B – A ou ainda 
por uma letra minúscula v . 
 
 
 
Observações: 
• Os segmentos nulos determinam um único vetor, chamado vetor nulo. Denotação: 0 AA=
uuurr
. 
• AB
uuur
 = CD ⇔ AB ~CD . 
 
A 
B 
v
r
 
C 
 D 
A 
B 
A B C D 
 E F 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 8 
9. Vetor oposto. O vetor BA diz-se oposto de AB
uuur
. Se AB
uuur
 é representante de um vetor vr , o vetor 
oposto de vr é indicado por v−r . 
 
10. Módulo (norma ou comprimento) de um vetor é o comprimento de qualquer um de seus 
representantes. Notação: v
r
 ou v
r
. 
 
11. Vetor unitário é o vetor cujo módulo (norma) é 1, ou seja, um vetor vr é dito unitário se 1v =r . 
 
12. Direção (sentido). 
 
A direção (o sentido) de um vetor não nulo vr é a direção (o sentido) de qualquer um dos seus 
representantes. 
 
13. Versor de um vetor não nulo vr é o vetor unitário que tem mesmo sentido de vr . Denotamos o 
versor de vr por ovr ou vˆ . 
 
14. Vetores paralelos são aqueles que têm a mesma direção. 
 
Observamos que o vetor nulo é paralelo a qualquer vetor. 
 
15. Vetores coplanares são aqueles que têm representantes num mesmo plano. 
 
16. Vetores colineares são aqueles que têm representantes numa mesma reta. 
 
17. Proposição. Dado um ponto A e um vetor vr , existe um único ponto B tal que ABv = , isto é 
B A v= + r , ou ainda, v B A= −r . 
 
A este ponto é interessante observar a etimologia da palavra vetor. Vetor é o particípio passado 
do verbo latino vehere: transportar, levar. De fato, esta palavra é pertinente ao conteúdo da 
proposição anterior: o ponto A é “transportado” até o ponto B. 
 
18. Propriedades envolvendo ponto e vetor. 
i. 0A A+ =
r
 
ii. ( )A v v A− + =r r 
iii. A v B v A B+ = + ⇒ =r r 
iv. A v A u v u+ = + ⇒ =r r r r 
v. A AB B+ =
uuur
 
C 
 D 
 B 
 A 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 9 
OPERAÇÕES COM VETORES 
 
SOMA DE VETORES 
 
1. Definição. Dados dois vetores ur , vr e um ponto A, tomemos um ponto B tal que B A u= + r e um 
ponto C tal que C B v= + r . Os pontos A e C determinam um vetor s u v= +
r r r
, chamado soma de 
u
r
 e v
r
. 
Obs: o vetor sr não depende do ponto A. 
 
 , e , A B C AC AB BC∀ = +
uuur uuur uuur
 
 
Regra do paralelogramo. Escolhendo representantes de ur e 
v
r
 com a mesma origem A, o vetor soma tem como 
representante a diagonal do paralelogramo formado pelos 
vetores u
r
 e v
r
. 
 
 
 
2. Propriedades da adição de vetores. Sejam , e u v wr r r vetores quaisquer. Então, 
 
i. u v v u+ = +r r r r comutativa 
ii. ( ) ( )u v w u v w+ + = + +r r r r r r associativa 
iii. 0u u+ =
rr r
 elemento neutro 
iv. ( ) 0u u+ − = rr r elemento oposto 
 
 
3. Diferença de vetores. Dados dois vetores ur e vr , chama-se diferença dos vetores ur e vr ao vetor 
( )d u v= + −
r r r
 e é indicado por d u v= −
r r r
. 
 
4. Exemplos 
Observemos a soma dos vetores indicados nas figuras abaixo: 
 
a) b) 
 
 
 AHAFACAB =++ FCDCFOAO =++ 
 
 
u
r
 
 
v
r
 
 
s
r
 
A 
B 
C v
r
 
 
v
r
 
 
u
r
 
 
u
r
 
 
s
r
 
A B
C
G
E
F
D
H
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 10 
PRODUTO DE UM NÚMERO REAL POR UM VETOR 
 
1. Definição. Sejam Ra ∈ e vr um vetor. 
a. Se 0a = ou 0v =
rr
 então 0a v⋅ =
rr
. 
b. Se 0a ≠ e 0v ≠
rr
, então o vetor va ⋅ caracteriza-se por: 
• vva //⋅ (a direção do vetor resultante é a mesma de vr ); 
• va ⋅ e v
r
 têm o mesmo sentido, se 0a > ; 
• va ⋅ e v
r
 têm sentidos contrários, se 0a < ; 
• a v a v⋅ = ⋅
r r
. 
 
2. Propriedades. Sejam Rba ∈, e ur e vr vetores quaisquer. 
i. ( )a u v au av+ = +r r r r 
ii. ( )a b v av bv+ = +r r r 
iii. ( ) ( )a bv ab v=r r 
iv. vv =1 
 
Observações: 
• Se 0a ≠ , 1 v
a
⋅
r
 é indicado por v
a
r
. 
• Se 0v ≠
rr
, ˆ
v
v
v
=
r
r é o versor de v
r
. 
 
3. Regras de sinais. Sejam Ra ∈ e vr um vetor. 
i. ( ) ( )a v av− ⋅ = −r r 
ii. ( ) ( )a v av⋅ − = −r r 
iii. ( ) ( )a v av− ⋅ − =r r 
 v
r
 
2vr 1
2
v−
r
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 11 
DEPENDÊNCIA LINEAR 
 
1. Combinação linear. Dados n vetores 1 2, , , nv v v
r r r
K
 e n escalares 1 2, , , na a aK , o vetor 
1 1 2 2 n nv a v a v a v= + + +
r r r r
L
 é dito uma combinação linear dos vetores 1 2, , , nv v v
r r r
K
 com 
coeficientes 1 2, , , na a aK . 
 
Exemplo: s u v= +
r r r, o vetor s
r
 é combinação linear de ur e vr . 
 
 
2. Independência linear. Dados n vetores 1 2, , , nv v v
r r r
K , dizemos que esses vetores são linearmente 
independentes (LI) se, e somente se, a equação 1 1 2 2 0n na v a v a v+ + + =
rr r r
L
 admite apenas a 
solução nula 1 2 0na a a= = = =K . 
Se existe algum escalar não nulo como solução da equação acima, então os vetores são ditos 
linearmente dependentes (LD). 
 
Exemplos: 
 
a) b) 
 
 
u
r
 e v
r
 são LD, pois 2 0v u− =
rr r
. u
r
 e v
r
 são LI, pois 0 0 0v u+ =
rr r
. 
 
 
 
 
ALGUNS TEOREMAS SOBRE (IN)DEPENDÊNCIA LINEAR 
 
3. Teorema. n vetores são LD se, e somente se, um deles for escrito como combinação linear dos 
outros. 
 
4. Teorema. Um vetor vr é LD se, e somente se, 0v =
rr
. 
 
5. Teorema. ur e vr são LD se, e somente se, ur e vr são paralelos. 
 
6. Corolário. Se 0v ≠
rr
, então dados ur e vr vetores paralelos, existe um único Rk ∈ tal que 
vku = . 
 
7. Teorema. Três vetores são LD se, e somente se, são coplanares. 
 
v
r
 
u
r
 
v
r
 
 
v
r
 
u
r
 
 
u
r
 
 
s
r
 
u
r
 
2v u=r r 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 12 
8. Corolário. Se ur e vr são LI e wr é coplanar com ur e vr , então existe um único par de números 
Rba ∈, , tal que w au bv= +r r r . 
 
9. Teorema. Quatro vetores são sempre LD no R³. 
 
10. Corolário. Se 1 2 3, ,v v v
r r r
 são LI e wr é um vetor qualquer, então existe um único terno de números 
Rcba ∈,, , tal que 1 2 3w av bv cv= + +
r r r r
. 
 
 
BASE 
 
1. Definições 
 
1.1. Um conjunto de vetores V munido das operações definidas anteriormente de multiplicação 
por um número real e adição, é chamado espaço vetorial sobre R. 
 
1.2. Seja V um espaço vetorial. Sejam 1 2, ,..., nv v v V∈r r r . Dizemos que 1 2, ,..., nv v vr r r geram V, se para 
todo w V∈r , 1 1 2 2 n nw a v a v a v= + + +
r r r r
L , ou seja, wr pode ser escrito como combinação linear 
de 1 2, ,..., nv v v
r r r
. 
1.3. Dizemos que { }1 2, ,..., nv v vr r r é uma base de V, se esses vetores geram V e se são LI. 
 
 
2. Exemplos: 
a) O conjunto unitário de qualquer 0v ≠
rr
 constitui uma base para um conjunto de vetores paralelos 
a v
r
. 
 
 
b) O conjunto de quaisquer dois vetores { }1 2,v vr r LI constitui uma base para o conjunto de vetores 
coplanares com 1 2 e v v
r r
. 
 
 
 
c) O conjunto de quaisquer três vetores { }1 2 3, ,v v vr r r LI constitui uma base para o conjunto de 
vetores do espaço R³. 
Seja { }1 2 3, ,E e e e= r r r uma base para o R³. Se 3Rv ∈ , temos 1 1 2 2 3 3v a e a e a e= + +r r r r . Costuma-se 
expressar vr da forma ( )1 2 3, , Ev a a a=r que são as coordenadas de vr na base E ou ( )1 2 3, ,v a a a=r 
sem o índice E quando não se há dúvida quanto à base utilizada. 
 
r 
v
r
 
1v
r
 
2v
r
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 13 
3. Teorema. Sejam ( )1 2 3, ,u a a a=r e ( )1 2 3, ,v b b b=r expressos pelas suas coordenadas numa mesma 
base E e seja Rk ∈ . Então, 
 
3.1. 1 1 2 2 3 3 , e u v a b a b a b= ⇔ = = =
r r
 
3.2. ( )1 1 2 2 3 3, ,u v a b a b a b+ = + + +r r 
3.3. ( )1 2 3, ,k u ka ka ka⋅ =r 
 
Exemplo. Sendo ( )1,2,0u = −r e ( )3, 3,5v = −r , determine 3 2w u v= − +r r r . 
( ) ( ) ( ) ( ) ( )3 1,2,0 2 3, 3,5 3, 6,0 6, 6,10 9, 12,10w = − − + − = − + − = −r 
 
4. Teorema. ( )1 2 3, ,u a a a=r e ( )1 2 3, ,v b b b=r são LD ⇔ 1 1 2 2 3 3, e a kb a kb a kb= = = para 
algum escalar Rk ∈ . 
 
Exemplos: 
a) ( )1,2,0u = −r e ( )2, 4,0v = −r são LD, pois 2v u= −r r . 
b) 0 e ur são LD, pois 0 0 u= ⋅
r r
. 
 
5. Teorema. ( )1 2 3, ,u a a a=r , ( )1 2 3, ,v b b b=r e ( )1 2 3, ,w c c c=r são LD ⇔ 
1 1 1
2 2 2
3 3 3
0
a b c
a b c
a b c
= . 
 
6. Corolário. ( )1 2 3, ,u a a a=r , ( )1 2 3, ,v b b b=r e ( )1 2 3, ,w c c c=r são LI ⇔ 
1 1 1
2 2 2
3 3 3
0
a b c
a b c
a b c
≠ . 
 
Exemplo: ( ) ( ) ( )1, 2,3 , 0,1, 2 e 1, 2, 1u v w= = = −r r r são LI, pois 
1 0 1
2 1 2 4 0
3 2 1
= − ≠
−
. 
 
7. Vetores ortogonais. Dois vetores ur e vr são ortogonais se podem ser 
representados por segmento orientados ortogonais. 
 
Denotamos u v⊥r r (lê-se “ ur é ortogonal a vr ”). 
 
 
 
Aplicando o teorema de Pitágoras e a sua recíproca, temos: 2 2 2 u v u v u v⊥ ⇔ + = +r r r r r r . 
 
Observações: 
a) o vetor nulo é ortogonal a todo vetor. 
b) ( ) e u v u w u v w⊥ ⊥ ⇒ ⊥ +r r r r r r r . 
c) vkukvu ⊥⇒∈⊥ R e . 
 
u v+
r r
 
u
r
 
v
r
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 14 
8. Base ortonormal. Uma base é ortonormal se é formada por vetores unitários, ortogonais dois a 
dois. 
O conjunto { }, ,i j krr r é a base canônica do R³, onde ( )1,0,0i =r , ( )0,1,0j =r , ( )0,0,1k =r . 
 
 
9. Sistema de coordenadas cartesianas é um conjunto formado por um ponto O e uma base. 
Indicamos um sistema de coordenadas cartesianas no espaço por { }, , ,O i j krr r , se usarmos a base 
canônica do R³. O ponto O é chamado de origem do sistema e os eixos que passam por O e tem 
as direções dos vetores da base, no caso, de , e i j k
rr r
 são chamados de eixo das abscissas, eixo 
das ordenadas e eixo das cotas, respectivamente. 
Consideremos as coordenadas do vetor OP
uuur
 em relação à base { }, ,i j krr r : 
OP xi yj zk= + +
uuur rr r
 ou ( ), ,OP x y z=uuur . 
Chamamos coordenadas do ponto P em relação ao sistema { }, , ,O i j krr r , as coordenadas do vetor 
OP
uuur
. Portanto, para ( ), ,OP x y z=uuur tem-se ( ), ,P x y z . 
 
10. Propriedades. Seja { }, , ,O i j krr r um sistema de coordenadas 
a. Se ( )1 1 1, ,P x y z e ( )2 2 2, ,Q x y z , então ( )2 1 2 1 2 1, ,PQ Q P x x y y z z= − = − − −
uuur
. 
b. Se ( )1 1 1, ,P x y z e ( ), ,v a b c=r , então ( )1 1 1, ,P v x a y b z c+ = + + +r . 
c. O ponto médio de PQ é o ponto 




 +++
2
,
2
,
2
212121 zzyyxxM . 
 
 
 
Exemplo: (1, 2,3)P , (2,3,5)Q , ( )1,1, 2PQ OA= =uuur uuur 
 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 15 
11. Módulo de um vetor a partir de suas coordenadas. Seja { }, ,i j krr r uma base ortonormal. 
Se v xi yj zk= + +
rr rr
, então 2 2 2v x y z= + +r . 
 
Exemplo: ( ) ( )22 21, 1,2 1 1 2 6v v v= − ⇒ = + − + ⇒ =r r r . 
 
12. Propriedades do módulo (ou da norma) de um vetor 
 
1. 0≥v e 00 =⇔= vv . 
 
2. vkvk ⋅= onde Rk ∈ . 
 
3. vuvu +≤+ (desigualdade triangular) 
 
 
13. Distância entre dois pontos. Considere dois pontos 1 1 1(, , )A x y z e 2 2 2( , , )B x y z , a distância 
entre A e B , ( , )d A B , é dada por 
( , ) | | | |d A B BA B A= = −uuur . 
 
Exemplo: Considere os pontos (0, 2, 1)A − e (3,0,1)B , a distância entre esses pontos é dada por 
2 2 2( , ) | | | (3, 2,2) | 3 ( 2) 2 17d A B BA= = − = + − + =uuur 
 
 
14. Vetor unitário (versor) associado a um vetor. Dado um vetor 0v ≠ rr , podemos associar a este 
vetor um vetor unitário vˆ do seguinte modo: ˆ | |
v
v
v
=
r
r . 
 
Exemplo: Seja (0, 2, 1)u = −r , o vetor unitário associado a ur é 
(0,2, 1) 2 1
ˆ 0, ,| | 5 5 5
u
u
u
− − 
= = =  
 
r
r . 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 16 
PRODUTO ESCALAR 
 
 
1. Definição. Dados ur e vr vetores não nulos e escolhido um ponto O, podemos escrever 
A O u= + r e B O v= + r . O ângulo θ determinado pelos representantes OA
uuur
 e OB
uuur
 de ur e vr , 
respectivamente, é denominado ângulo dos vetores ur e vr (ou medida angular entre ur e vr ). 
 
 
• Notação: ( ),u vθ = r r , onde 0 180θ° ≤ ≤ ° 
• Se 0θ = , ur e vr têm mesmo sentido. 
• Se 180θ = ° , ur e vr têm sentidos opostos. 
• ( ) ( ), e ,u v u v−r r r r são ângulos suplementares 
 
 
 
2. Definição. O produto escalar ou produto interno dos vetores ur e vr , indicado por u v⋅r r ou 
,u v
r r
 é o número real cosu v u v θ⋅ = ⋅ ⋅r r r r , ( ),u vθ = r r . 
• 0u v⋅ >r r indica que cos 0θ > , o que ocorre quando θ é ângulo agudo. 
• 0u v⋅ <r r indica que cos 0θ < , o que ocorre quando θ é ângulo obtuso. 
• 0u v⋅ =r r indica que: 
 
a) um dos vetores é nulo, 
b) os vetores são ortogonais, pois cos90 0° = . 
 
3. Propriedades. Quaisquer que sejam os vetores ur , vr e wr e qualquer que seja Rk ∈ , vale: 
3.1. Se ur e vr são não nulos e ( ),u vθ = r r , então cos u v
u v
θ ⋅=
⋅
r r
r r . 
3.2. u u u= ⋅r r r 
3.3. u v v u⋅ = ⋅r r r r 
3.4. ( ) ( ) ( )k u v ku v u kv⋅ = ⋅ = ⋅r r r r r r 
3.5. ( )u v w u v u w⋅ + = ⋅ + ⋅r r r r r r r 
3.6. Se 0u ≠
rr
, então 0u u⋅ >r r . 
 
 
4. Interpretação geométrica do produto escalar. Sejam ur e vr 
vetores não nulos. O vetor vr se exprime de maneira única 
1 2v v v= +
r r r
, onde 1 2// e v u v u⊥
r r r r
. 
1v
r
 diz-se projeção ortogonal do vetor vr na direção do vetor ur . 
Denotamos 1 projuv v= rr r . 
 
 
 
Prova. Como 1 //v u
r r
, temos 1 , .v ku k= ∈
r r
� Segue-se que 
( ) 2 22 2( ) 0v u ku v u k u u v u k u k u⋅ = + ⋅ = ⋅ + ⋅ = ⋅ + = ⋅r r r r r r r r r r r ⇒ 2v uk
u
⋅
=
r r
r . Ainda, 1 2
v u
v u
u
 
⋅
 =
 
 
r r
r r
r . 
Logo, 2proju
v u
v u
u
 
⋅
 =
 
 
r
r r
r r
r e 
v u
u
⋅
r r
r é a medida algébrica da projeção de vr na direção de ur . 
 
v
r
 
2v
r
 
u
r
 
1v
r
 
A 
B 
u
r
 
v
r
 
O 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 17 
5. Expressão cartesiana do produto escalar. Fixada uma base ortonormal { }, ,i j krr r , o produto 
escalar dos vetores 1 1 1u x i y j z k= + +
rr rr
 e 2 2 2v x i y j z k= + +
rr rr
 é o número real 
1 2 1 2 1 2x x y y z z⋅ + ⋅ + ⋅ . Ou seja, 
 
1 2 1 2 1 2u v x x y y z z⋅ = ⋅ + ⋅ + ⋅
r r
. 
Prova: 
( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
1 1 1 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 2 1 2
 
 
u v x i y j z k x i y j z k
x x i i x y i j x z i k y x j i y y j j y z j k
z x k i z y k j z z k k
⋅ = + + ⋅ + + =
= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅
+ ⋅ + ⋅ + ⋅
r rr r r rr r
r rr r r r r r r r r r
r r r rr r
 
Como 0i j i k j k⋅ = ⋅ = ⋅ =
r rr r r r
 e 1i i j j k k⋅ = ⋅ = ⋅ =
r rr r r r
, a expressão acima reduz-se a: 
1 2 1 2 1 2u v x x y y z z⋅ = ⋅ + ⋅ + ⋅
r r
 
 
 
Exemplo: Dados ( )3,0,4u =r e ( 1,2,0)v = −r , temos: 
• ( )3 1 0 2 4 0 3u v⋅ = ⋅ − + ⋅ + ⋅ = −r r 
• ( ) ( )3 3 3 5 3 5cos , , arccos
25 255 59 16 1 4
u v u v
 
−
= = − = − ⇒ = −  + ⋅ +  
r r r r
 
• u
3 9 12proj ,0,
25 25 25
v u
−   
= ⋅ = − −   
   
r
r r
 
• medida algébrica da u
3proj
5
v =r
r
 
 
6. Cossenos diretores de um vetor. Fixada uma base ortonormal { }, ,i j krr r , chamamos cossenos 
diretores de vr , 0v ≠
rr
, os cossenos dos ângulos que vr forma com os vetores da base. 
 
Sejam ( ) ( ) ( ), , , e ,v i v j v kα β γ= = = rr rr r r . Para v xi yj zk= + + rr rr , temos as seguintes expressões: 
cos
v i x
vv i
α
⋅
= =
⋅
rr
r rr ; cos
v j y
vv jβ
⋅
= =
⋅
rr
r rr ; cos
v k z
vv k
γ ⋅= =
⋅
rr
r rr 
Logo, ( ), , cos ,cos ,cosv x y z
v v v v
α β γ = =  
 
r
r r r r , ou seja, as coordenadas de um versor são as 
coordenadas dos cossenos diretores do vetor e, portanto, 2 2 2cos cos cos 1α β γ+ + = . 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 18 
PRODUTO VETORIAL 
 
 
1. Orientação do espaço 
Consideremos as bases { }321 ,, eee e { }321 ,, fff tais que possamos expressar 
 3322111 eaeaeaf ++= , 
 3322112 ebebebf ++= , 
 3322113 ecececf ++= . 
Se 0
321
321
321
>=∆
ccc
bbb
aaa
, dizemos que as bases{ }321 ,, eee e { }321 ,, fff têm mesma orientação. Se 
0<∆ , elas têm orientações opostas. 
As bases ficam divididas em duas classes. As bases da classe fixada são ditas positivas e as de 
orientação oposta à classe fixada são ditas negativas. 
Adotamos, por convenção, uma base positiva do espaço R³, a que é formada por três vetores cujos 
sentidos são os sentidos dos dedos médio, indicador e polegar da mão esquerda, nesta ordem. 
 
Exemplos: 
a) { }kji ,, é uma base positiva. 
b) { }kij ,, é uma base negativa, pois tem orientação oposta à base { }kji ,, . 
c) { }jik ,, é uma base positiva, pois tem a mesma orientação da base { }kji ,, . 
 
2. Definição 
Fixada uma orientação no espaço, o produto vetorial dos vetores u e v , indicado por vu × , é um 
vetor tal que: 
2.1. se u e v são LD, então 0=× vu ; 
2.2. se u e v são LI e ( )vu,=θ , então 
 a) θsen⋅⋅=× vuvu , 
 b) vu × é ortogonal a u e a v , 
 c) u , v e vu × formam uma base positiva. 
 
Exemplos: 
I) Dada a base ortonormal positiva { }kji ,, 
a) kkjjii ×=×=× 
b) jikikjkji =×=×=× ,, 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 19 
 II) Sejam u e v vetores com representantes no plano α , conforme a figura, onde 4=u , 5=v e 
( ) °= 30,vu . Temos, 
 
10
2
14530sen
e
10
2
15430sen
=⋅⋅=°⋅⋅=×
=⋅⋅=°⋅⋅=×
uvuv
vuvu
 
 
3. Propriedades 
Quaisquer que sejam os vetores u , v e w e qualquer que seja o número real k, vale: 
3.1. 0=× uu 
3.2. ( )uvvu ×−=× 
3.3. ( ) ( ) ( )vkuvukvuk ×=×=× 
3.4. ( ) ( ) ( )wuvuwvu×+×=+× 
 
4. Expressão cartesiana do produto vetorial 
Fixada uma base ortonormal positiva{ }kji ,, e dados os vetores ( )111 ,, zyxu = e ( )222 ,, zyxv = , o 
produto vetorial de vu e é dado por 
 
k
yx
yxj
xz
xz
i
zy
zy
vu ⋅+⋅+⋅=×
22
11
22
11
22
11
 
 
que é o desenvolvimento de Laplace em relação à primeira linha do determinante simbólico 
 
222
111
zyx
zyx
kji
. 
 
Prova: ( ) ( )kzjyixkzjyixvu 222111 ++×++=× 
 ( ) ( ) ( ) ( ) ( ) ( ) +×+×+×+×+×+×= kjzyjjyyijxykizxjiyxiixx 212121212121 
 ( ) ( ) ( ) kkzzjkyzikxz ×+×+×+ 212121 
 ( ) ( ) ( )kxyyxjzxxziyzzyvu 212121212121 −+−+−=× 
 
 
 
 
 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 20 
Exemplo: Dados ( ) ( )1,0,1 e2,2,1 −=−= vu , temos 
kjikji
kji
vu 22
01
21
11
12
10
22
101
221 −−−=+
−
−
+
−
−
=
−
−=× 
ou 
( )2,1,2 −−−=× vu 
 
Regra prática: 1 2 -2 1 2 
 1 0 -1 1 0 
 
 vu × = ( -2 , -1 , -2 ) 
 
5. Interpretação geométrica do produto vetorial 
 
Seja ABCD o paralelogramo abaixo 
 
 
 
hABSABCD ⋅= , onde θsenADh ⋅= 
ADABS
senADABS
ABCD
ABCD
×=
⋅⋅= θ
 
 
Observamos também que a área do triângulo ABD é dada por 
2
ADAB
SABD
×
= . 
 
Exercício resolvido 
De um triângulo ABC sabemos que 3 ,2 == ACAB e 33=⋅ ACAB . Determine a área deste 
triângulo. 
 
( ) ( )
2
1
,
2
3
32
33
,cos33 =⇔=
⋅
=⇔=⋅ ACABsenACABACAB 
2
3
2
32
2
2
1
=
⋅⋅
=
×
=
ACAB
SABC u.a. 
A B
CD
h
θ
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 21 
PRODUTO MISTO 
 
1. Definição 
Sejam u , v e w vetores quaisquer. O produto misto dos vetores u , v e w , indicado por [ ], ,u v wr r r , é o 
número real ( ) wvu ⋅× . 
Exemplo: Dados os vetores ( ) ( ) ( )2,3,1e2,3,1,1,0,1 =−=−= wvu , tem-se: 
 [ ] ( ) ( )( ) ( ) ( ) ( ), , 1,0, 1 1,3, 2 1,3,2 3, 1,3 1,3, 2 3 3 6 6u v w = − × − ⋅ = − ⋅ = − + =r r r 
 
2. Expressão cartesiana do produto misto 
Fixada uma base ortonormal { }kji ,, e dados os vetores 
kzjyixu 111 ++= 
kzjyixv 222 ++= 
kzjyixw 333 ++= 
tem-se o produto misto 
[ ]
[ ]
1 1 1 1 1 1
3 3 3
2 2 2 2 2 2
1 1 1
2 2 2
3 3 3
, ,
, ,
y z z x x y
u v w x y z
y z z x x y
x y z
u v w x y z
x y z
= ⋅ + ⋅ + ⋅
=
r r r
r r r
 
 
Exemplo: Dados os vetores ( ) ( ) ( )2,3,1e2,3,1,1,0,1 =−=−= wvu , refazendo o cálculo, 
[ ]
1 0 1
, , 1 3 2 6
1 3 2
u v w
−
= − =
r r r
 
3. Propriedades 
Quaisquer que sejam os vetores u , v e w e qualquer que seja o número real k, vale: 
a. [ ], ,u v wr r r = 0 ⇔ u , v e w são LD 
b. [ ] [ ] [ ] [ ], , , , , , , ,k u v w ku v w u kv w u v kw⋅ = = =r r r r r r r r r r r r 
c. [ ] [ ] [ ]1 2 1 2, , , , , ,u u v w u v w u v w+ = +r r r r r r r r r r 
d. [ ] [ ] [ ], , , , , ,u v w v w u w u v= =r r r r r r r r r 
e. [ ] [ ], , , ,u v w v u w= −r r r r r r 
f. [ ] [ ] [ ], , , , , , 0u u v v u u u v u= = =r r r r r r r r r 
 
A demonstração de todas estas propriedades é imediata, usando as propriedades dos determinantes. 
 
 
 
 
 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 22 
 
4. Interpretação geométrica do produto misto 
O módulo de [ ], ,u v wr r r é igual ao volume do paralelepípedo de arestas , e u v wr r r . 
 
 
 
Consideremos o paralelepípedo de arestas , eAB u AD v AE w= = =
uuur uuur uuurr r r
. 
O volume deste paralelepípedo é dado por hSV bP ⋅= , onde 
vuSb ×= e θcos⋅= wh . 
Lembremos que vu × tem a direção da altura h do paralelepípedo, pois é ortogonal a e a u vr r , do 
que observamos que ( ),w u vθ = ×r r r . 
Logo, ( ) [ ]cos , ,PV u v w u v w u v wθ= × ⋅ ⋅ = × ⋅ =r r uur r r ur r r r 
 
 
Exemplo: Considere o paralelepípedo da figura abaixo. Em relação a uma base ortonormal 
positiva são dados os vetores (1,0,1),AB =
uuur
 ( )1,1,1BE =uuur e ( )0,3,3AD =uuur . Calcule: 
a) o volume do paralelepípedo ABCDEFGH; 
b) a altura deste paralelepípedo em relação à base ABCD. 
 
 
 
a) , ,PV AB AD AE =  
uuur uuur uuur
, onde ( ) ( ) ( )1,0,1 1,1,1 2,1,2AE AB BE= + = + =uuur uuur uuur 
[ ] 3
212
330
101
,, −==AEADAB e o volume do paralelepípedo é 33 =− . 
b) ( )
( )
AB AD
AE AB AD
h proj AE
AB AD×
⋅ ×
= =
×
uuur uuur
uuur uuur uuur
uuur
uuur uuur , onde ( ) ( ) ( )1,0,1 0,3,3 3, 3,3AB AD× = × = − −uuur uuur , 
3 3AB AD× =
uuur uuur ( ) 3e AE AB AD⋅ × = −uuur uuur uuur . Daí, 3 333 3h = = . 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 23 
Também podemos afirmar que o módulo de [ ], ,u v wr r r é igual a seis vezes o volume do tetraedro de 
arestas , e u v w
r r r
. 
 
wAE
vAD
uAB
=
=
=
 
O volume do tetraedro ABDE é dado por hSV bT ⋅⋅= 3
1
, onde 
2b
u v
S
×
=
r r
 e θcos⋅= wh . 
Logo, ( )1 1 1cos , ,3 2 6 6T
u v
V w u v w u v wθ
×
 = ⋅ ⋅ ⋅ = ⋅ × ⋅ = ⋅  
r r
uur r r ur r r ur
 
 
 
Exercício 
Em relação a uma base ortonormal positiva são dados os vetores ( )1,2, 1u = −r , 
( ) ( )0,3, 4 , 1,0, 3v w= − =r r e ( )0,0, 2t =r . Calcule o volume do tetraedro ABCD, sabendo 
que vAB proj u= r
uuur r
, AC é o vetor oposto do versor de wr e ( )tBD proj AB AC= ×r
uuur uuur uuur
. 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 24 
REFERÊNCIAS BIBLIOGRÁFICAS 
 
 
1. CAMARGO, Ivan de, BOULOS, Paulo. Geometria Analítica. 3ª ed. revisada e ampliada – 
São Paulo: Prentice Hall, 2005. 
 
2. STEINBRUCH, Alfredo, WINTERLE Paulo, Geometria Analítica, Makron Books. 
 
3. CAROLI, Alésio, CALLIOLI Carlos A., FEITOSA Miguel O., Matrizes, Vetores e 
Geometria Analítica, Ed. Nobel, 1991. 
 
4. VENTURINI, Jacir J., Álgebra Vetorial e Geometria Analítica, 8ª edição (atualizada) 
disponível no site www.geometriaanalítica.com.br . 
 
5. SANTOS, Reginaldo. Um Curso de Geometria Analítica e Álgebra Linear, disponível no 
site www.mat.ufmg.br/~regi . 
 
6. LEHMANN, Charles H. Geometria Analítica, Editora Globo. 
 
7. Apostilas Cálculo Vetorial – Professoras do Departamento de Matemática – UFBA 
disponível no site www.dmat.ufba.br . 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIAANALÍTICA ERON E ISABEL 25 
EXERCÍCIOS DE FIXAÇÃO 
 
 
1) Verifique se é verdadeira ou falsa cada uma das afirmações e justifique a sua resposta. 
 
a) ABAB ∈ 
b) CDABCDAB //// ⇒ 
c) DBeCACDAB ==⇒= 
d) BDACCDAB ~⇒= 
e) φ=∩⇒= BDACCDAB 
f) CDABCDAB =⇒= 
g) CDABCDAB =⇒= 
h) Se CDAB = então existe um único 
plano contendo A, B, C e D. 
i) CDABCDAB =⇒~ 
j) Se w u v= +r r r , então | | | | | |w u v= +r r r . 
 
 
2) Na figura 1 os hexágonos são regulares. Em cada caso, determine a soma dos vetores indicados. 
 
 
3) Obtenha a soma dos vetores indicados em cada caso da figura 2. 
 (a) ABCDEFGH é um paralelepípedo. 
 (b) ABCDEFGH e EFGHIJLM são cubos de arestas congruentes. 
 (c) O cubo ABCDEFGH tem centro O e está dividido em oito cubos congruentes por 
 planos paralelos às faces. 
 
 
4) Utilize o paralelepípedo da figura 2(a) para determinar o vetor x em cada caso: 
 a) ABAEFEHEGHx ++−−= 
 b) BEAFBCDGCFHDx −+++−= 
 
5) Na figura 2(a), sejam .,, ACwAHvABu === Obtenha representantes dos vetores x e y tais 
que 0=++ xvu e 0=+++ ywvu . 
 
Figura 1 
Figura 2 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 26 
6) O ponto P na figura 3 divide AB em dois segmentos. Expresse OP como combinação linear dos 
vetores OBOA e . 
 
 
 
7) Na figura 4, ADDC ⋅= 2 . Expresse BD em função de . e BCBA 
 
8) Sejam M, N, P e O pontos coplanares e não colineares, tais que 2 .
5
MN PM= −
uuuur uuuur
 Escreva ON 
como combinação linear de OM e OP . 
 
9) Sejam A, B, C e D pontos coplanares tais que CBCD e são LI e 1
3
CD AB= −
uuur uuur
. 
 a) Expresse AD como combinação linear de . e ABAC 
 b) Trace um representante de AD a partir da combinação linear obtida. 
 
 
10) Sabendo-se que a distância entre os pontos )3,2,1(−P e (1, 1, )Q z− é 7 unidades, calcule z. 
 
 
11) Demonstre que n vetores são linearmente dependentes se, e somente se, um deles é combinação 
linear dos outros. 
 
 
12) Estude a dependência linear dos seguintes vetores: 
 
a) (0,0,5) e (0,0,7) 
b) (5,1,3), (0,0,0) e (-1,2,3) 
c) (1,0,-1) 
d) (-1,-1,2), (0,1,-1) e (1,1,1) 
 
13) Dados os vetores a = (1,1,1), b = (-1,-1,2), c = (0,1,-1) e d = (1,2,-3), pergunta-se: 
 
a) Esses vetores são L.I. ou L.D.? Justifique a resposta. 
b) Escreva um deles como combinação linear dos outros. 
 
14) Dados os vetores ( )1,,0 e 2,35 −=+=−= awnmvnmu , determine o valor de a para que os 
vetores wvu e, sejam LD, sabendo-se que ( )2,0,1−=m e ( )0,2,1=n 
 
15) Demonstre vetorialmente o teorema de Pitágoras. 
 
O
B 
P
. 
Figura 3 
A
A
B
C D
Figura 4 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 27 
16) Dada a base ( )kji ,, sejam: 
 
17) Demonstre que a soma dos quadrados das diagonais de um paralelogramo é igual à soma dos 
quadrados dos quatro lados; em outras palavras, provar que 
 
18) Verifique se os pontos A, B e C são colineares nos seguintes casos: 
 
 a) A(1,0,-1), B(1,0,0), C(5,2,1) 
 b) A( ½ ,0, 2), B( ½ ,-1, 2), C(2,3,1) 
 
19) Verifique se os pontos A(2,1,0), B(1,-1,0), C(3,1,5) e D(0,-1,2) são coplanares. 
 
20) Sabendo que o ângulo entre os vetores )1,1,2( −=ur e (1, 1, 2)v k= − +r é dado por rad
3
pi
, 
determine o valor de k . 
 
 
21) Qual o valor de α para que 5 4a i j kα= + −
rr rr
 e ( 1) 2 4b i j kα= + + +
r rr r
 sejam ortogonais ? 
 
 
22) Determine o valor de m para que o vetor ),2,1( mw =r seja simultaneamente ortogonal aos 
vetores 1 (2, 1,0)v = −
ur
 e 2 (1, 3, 1)v = − −
uur
. 
 
23) Sabendo-se que 3a =r , 2b =
r
 e 45o é o ângulo entre ar e b
r
, calcule a b×
rr
. 
 
24) Determine o vetor Xr tal que ( ) 2( )X i k i j k× + = + −
r rr r r r
 e 6X =
r
. 
 
 
25) Considere os vetores , e u v wr r r que determinam um 
tetraedro na figura. Determine: 
 
 a) a área da face do tetraedro oposta ao vértice O; 
 
 b) a área do paralelogramo determinado pelos vetores 
 e v w
r r
; 
 
 c) o ângulo formado entre ur e o eixo X . 
 
 
 
2 
2 
−−−− 2 
w
r
 
v
r
 u
r
3 
1 
3 
4 
O 
Z 
Y 
X 
( ) ( ) bases. são g,g,g e ,, se Verifique
7,4,32)
72,2,32)
321321
321
321
fff
kjigkjgkjigb
kjifkifkjifa
rrrrrrrrrrr
rrrrrrrrrrr
+−=+=+−=
+−=+−=++=
.22 2222 vuvuvu rrrrrr +=−++
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 28 
26) Determine a resultante das forças em cada item a seguir: 
 
27) Determine vr , paralelo ao vetor )2,1,1( −=ur tal que 18v u⋅ = −r r . 
 
28) Calcule x, sabendo-se que ( ,1,1)A x , (1, 1,0)B − e (2,1, 1)C − são vértices de um triângulo de 
área 20
2
. 
29) Dados os pontos A(1,-2,3), B(5,2,5) e M(-4,2,9), determine as coordenadas dos pontos C e D, 
tal que ABCD (nesta ordem) seja um paralelogramo, onde M é ponto médio do segmento AC . 
 
B. vérticedo scoordenada as calcule ),1,0,1(A e 
2
2
c é AC de diretores 
cossenos dos um que Sabendo .AB e 2AC 4, a igual área com ABC um Considere 32) o
=
==∆
αos
i
 
 
 
33) Do paralelogramo ABCD sabemos que B(1,2,3), C(1,-2,1) e M é ponto médio de BC. S é um 
1 2ponto de AM tal que DS DM DA e AM (1,0,2). Calcule a área do triângulo ASD.
3 3
= + =
uuur uuuur uuur uuuur
 
 
a) 1F 80kgf=
r
 , 2F 150kgf=
r
 e 3F 180kgf=
r
 b) 1F 120kgf=
r
 , 2F 100kgf=
r
 e 3F 120kgf=
r
 
 
 
( ) ( )
( )
1330) A medida algébrica da projeção de um vetor sobre o eixo é igual a . Sabendo-se que
3
 a) o eixo tem o mesmo sentido de AB, onde 6, 2, 2 e 8,3,0 ;
6
 b) o cos , 
7
v f
f A B
v i =
r
uuur
r r
e 7.
 Quais as coordenadas de ?
31) Os vetores AB, AD e AE têm para representantes as arestas de um cubo de base ABCD, onde 
1 1A(1,2,0), B(-1,4,1) e AE , ,0 . Determin
2 2
o
v
v
=
 
= − − 
 
r
r
uuur uuur uuur
uuur
e as coordenadas do vértice C.
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 29 
 
AM. vetor do scoordenada as Determine .2AE eA vérticeao relação em 
ABD triângulodo bissetriz é AC ,0EM D(-1,0,1), B(1,1,0), A(0,0,0), abaixo, figura Na34)
=
=⋅ AD
 
 
 
 
?coplanares são 
 vetoresEsses .34w e 52v ,3u vetoresdos misto produto o Calcule 35) kjikjikji +−=+−=++=
 
 
38) Dados 2,13 == ba e 24=⋅ba , calcule: 
 a) ba − 
 b) as coordenadas do vetor b , sabendo que os ângulos diretores de b são agudos e congruentes.39) Dados kjmibkmjia −+=++−= 2 e 3 , determine m de modo que ( )baba ×,, seja uma base 
ortogonal. 
 
40) Dados os pontos A(0,0,1), B(2,– 1, 2), C(0,2,2) e D(t,3t, t + 1) que constituem os vértices de um 
tetraedro ABCD, determine t sabendo que o volume deste tetraedro é 
3
5
. 
41) De um paralelogramo ABCD temos: A(1,2,3), B(5,2,3), C(7,3,4), AB ⊥ DM e 1DE DB
3
=
uuur uuur
. 
 Determine a área do triângulo MDE. 
 
 
 
 
 
B
E 
A M
E
D
 
C
B
ordenadas. das eixo no está mesmo o que se-sabendo D, ponto do scoordenada as Calcule 
 1. volumede ABCD tetraedroum de vérticessão C(2,-1,3) e B(3,0,1) A(2,1,-1), pontos Os )37
.wA D e vA C ,uAB onde ABCD 
 tetraedrodo volumeo e ABC triângulodo área a calcule ,2w e 32 ,u Sendo 36)
+=+=+=
−=+−=+= kjkjivji
A
D
M 
C
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 30 
42) Do tetraedro ABCD temos as seguintes informações: A(0,0,0), D(1,5,t), ABo
uuur
= (1,0,0), 
3
38
,8,0,
2
3
,
2
1
==⋅







= ABCDVACABAC
o
 e o triângulo ABC é eqüilátero. Determine as 
coordenadas do vértice D. 
 
 
 
 
ALGUMAS APLICAÇÕES 
 
• Considere que uma força constante Fr seja um vetor com direção diferente do eixo de 
deslocamento de um objeto. Se a força move o objeto de um ponto P ao ponto Q sobre um 
segmento reto, o vetor deslocamento é D PQ=
uuurr
. O trabalho realizado por essa força sobre o 
objeto é o produto escalar T F D= ⋅r r . 
 
Exemplo: 
 
1. Considere o conjunto de forças na figura ao 
lado. Determine o trabalho realizado pela força 
resultante dessas forças para deslocar, em linha 
reta, uma partícula que está na origem até o 
ponto (2, 3)Q − . Sabendo que 1F 120 kgf=
r
 , 
2F 100 kgf=
r
 e 3F 120 kgf=
r
. 
 
 
 
• Seja uma força Fr atuante em uma partícula única, 
situada no ponto P , cuja posição relativamente à 
origem O do referencial inercial é dada pelo vetor 
r
r
 (veja figura). Esses dois vetores, rr e Fr , estão 
contidos num plano. 
 
O momento vetorial ou vetor torque τ
r
 atuante sobre a 
partícula em relação á origem O é definido em temos do 
produto vetorial de rr e F
r
, isto é: 
r Fτ ×=
rrr
. 
 
 
 
O torque possui dimensões de força multiplicada por distância; em termos das nossas dimensões 
fundamentais M, L e T, ele tem dimensões ML²T-2, que são idênticas à do trabalho. Entretanto, torque 
e trabalho são grandezas físicas muito diferentes: o torque é um vetor, enquanto o trabalho é um 
escalar. A unidade de torque pode ser o Newton-metro (N.m) ou libra-pé (lb.ft), entre outras 
possibilidades. 
 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 31 
Exemplo: 
Suponha que uma força F
r
 com magnitude de 3 lb 
é aplicada ao conjunto alavanca-haste mostrado na 
figura ao lado. 
 
a) Determine as coordenadas da força Fr e do 
vetor r
r
 que liga a origem ao ponto onde F
r
 é 
aplicada; 
 
b) Determine o vetor torque de Fr em relação à 
origem. 
 
 
 
 
• Na molécula do metano (CH4), o átomo de carbono ocupa o centro de um tetraedro regular em 
cujos vértices estão os átomos de hidrogênio. Determine o ângulo entre duas das valências do 
carbono. 
Solução. O resultado deste problema está presente em todos os cursos de química orgânica. O estranho 
número fornecido pelo professor é aceito pelos alunos, mas, em geral, eles não têm a menor idéia de 
como esse resultado foi obtido. Para calcular esse ângulo, a geometria analítica é um método 
imbatível, aliada, é claro, com alguma inventividade. 
Em um sistema de coordenadas no espaço, consideremos inicialmente um cubo de aresta 2 (para 
facilitar) com um vértice na origem, outro no eixo X, outro no eixo Y e outro no eixo Z. Não é difícil 
escolher quatro vértices desse cubo que formem um tetraedro regular. 
Os pontos (0,0,0)A , (2, 2,0)B , (0, 2, 2)C e (2,0, 2)D formam um tetraedro regular (uma vez que as 
distâncias entre dois quaisquer deles são diagonais de faces do cubo) e são ocupados pelos 
hidrogênios. 
 
O ponto (1,1,1)P , centro do cubo e também centro do tetraedro, 
está ocupado pelo carbono. 
O resto é fácil. Para calcular, por exemplo, o ângulo ˆAPB , 
consideremos os vetores: 
 ( 1, 1, 1)u PA= = − − −
uuurr
 e (1,1, 1)v PB= = −
uuurr
. 
O cosseno do ângulo entre eles é: 1 1 1 1cos
33 3
α
− − +
= = − 
Com uma calculadora, determinamos um valor muito 
aproximado para esse ângulo: 109 28'16.395 ''α = ° . 
 
 
 
 
 
 
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA ERON E ISABEL 32 
RESPOSTAS DOS EXERCÍCIOS 
 
 
1) a) V b) V c) F d) V e) F f) F g) V h) F i) V j) F 
2) a) DB b) FC c) FC d) OD 
3) a) AF b) BL c) AF 4) a) AG b) HD 5) GAx = e FAy = 
6) OP = ( ) ROBOA ∈+− λλλ , 1 . 7) BD = BCBA 
3
1
 
3
2
+ 8) ON = OM
5
3
+ OP
5
2
 
9) a) AD = ABAC 
3
1
 − 10) z = -3 ou z = 9 
12) a) LD b) LD c) LI d) LI 13) a) L.D. b) cbd +−= 
14) a= – 1 
16) ( )321 ,, fff é base e ( )321 ,, ggg não é base. 
18) a) Não b) Não 19) Não são coplanares 20) k = – 4 21) 2ou3 =−= αα 
22) m = – 5 23) 3 24) ( )1,2,1−=X 
25) a) 
2
153
 b) 18 c) 
3
2
arccos 
26) a) ( )2905,290375 −−+=RF b) ( )40,120360 −−=RF 
27) ( )6,3,3 −−=v 28) 2ou2,1 == xx 
29) ( ) ( )13,2,13,15,6,9 −− DC 30) ( )2,3,6 −−=v ou 





=
5
6
,
5
17
,6v 
31) 






+
−− 122,
2
28
,
2
22
 32) ( )1,0,9 
 
33) 
3
21
=S 34) 





−=
2
1
,0,
2
1AM 35) [ ]wvu ,, = 26; não 
36) 
2
33
=S e 
2
1
=V 37) )0,2,0( ou (0,-1,0) 
38) a) 55 b) 






3
32
,
3
32
,
3
32
 39) m = 1 
40) t = 2 ou t = -2 41) 
3
2
=S 
42) )2,5,1( ou (1,5,-2)

Outros materiais