Logo Studenta

UNIVERSIDAD NACIONAL.johnpool

¡Estudia con miles de materiales!

Vista previa del material en texto

UNIVERSIDAD NACIONAL 
DE SAN AGUSTIN
FACULTAD DE INGENIERIA GEOLOGICA GEOFISICA Y MINAS
ESCUELA PROFESIONAL DE INGENIERIA DE MINAS
CURSO:
“FISICO QUIMICA”
SEPTIMO Y OCTAVO REPORTE DE LABORATORIO
TEMA: 
 Equilibrio Químico- Construcción de Celdas 
DOCENTE:
Dra. Virginia Pérez M.
ALUMNO:
Paucar Alfaro John Pool
	 AÑO : 2º
 	 AREQUIPA -PERÚ
Séptimo laboratorio
Aplicación del equilibrio químico
	
	Ácido Acético
	Hidróxido de Potasio
	Indicador
	Color en medio Acido
	Color en medio Básico
	Anaranjado de Metilo
	Anaranjado
	Amarillo
	Azul de Bromofenol
	Amarillo
	Azulado
	Fenoftaleina
	Incoloro
	Rojo Grosella
	Purpura de Bromocrisol
	Amarillo 
	Azul clarito (celeste)
	Rojo Fenol
	Amarillo Fuerte
	Rojo Sangre
Octavo laboratorio
Construcción de Celdas 
Primera actividad: La celda de Daniell
Pila Daniell
La pila Daniell o celda de Daniell (a veces escrito como celda Daniel), también llamada celda de gravedad o celda de pata de gallo (llamada así por la forma del electrodo de zinc) fue inventada en 1836 por John Frederic Daniell, que era un químico británico y meteorólogo. Esta pila supuso una gran mejora sobre la pila voltaica que fue la primera celda galvánica desarrollada. La fuerza electromotriz, o voltaje o tensión teórica de esta pila es de 1,10 voltios, y la reacción química que tiene lugar es:
Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s). Eº=1,10 V
Diseño Original
La celda o pila Daniell original (hacia 1836) consiste de un ánodo de zinc metálico central inmerso en una vasija de barro poroso que contiene una disolución de sulfato de zinc. La vasija de barro, a su vez, está sumergida en una disolución de sulfato de cobre contenida en una vasija de cobre de mayor diámetro, que actúa como cátodo de la celda. El uso de una barrera porosa (vasija de barro) evita que los iones de cobre de la disolución de sulfato de cobre alcancen el ánodo de zinc y sufran una reducción directa. Esto haría ineficaz la celda porque se llegaría al equilibrio, por transferencia directa de electrones entre Zn y Cu2+, sin generar la corriente eléctrica que se obtiene al obligar a los electrones a ir por el circuito exterior.
El material poroso opone mucha resistencia al paso de los iones por lo que la celda tiene una gran resistencia que disminuye la corriente obtenida.1 No obstante, si no permitiese el paso de aniones entre las dos disoluciones (en sentido inverso a los electrones) 
la pila se polarizaría rápidamente y dejaría de funcionar.
Segunda actividad: Construcción de Celdas
Grupo A:
	
	SO4 Cu Concentrado
	SO4 Cu Diluido
	Na Cl
	1.062
	1.031
	Zn SO4
	1.016
	0.977
Grupo B:
	
	SO4 Cu Concentrado
	SO4 Cu Diluido
	Na Cl
	1.023
	1.019
	Zn SO4
	1.017
	1.005
Reacción Ocurrida
Zn (s) + Cu2+ (ac) → Zn2+ (ac) + Cu (s)
Tercera actividad: Obtencion del cobre electrolitico
Procesos industriales de electrólisis
La industria moderna no podría funcionar como lo hace hoy en día sin las reacciones de electrólisis. Muchos elementos se producen casi exclusivamente por electrólisis, por ejemplo, el aluminio, el magnesio, el cloro y el flúor. Entre los compuestos químicos producidos por electrólisis están el NaOH, K2Cr2O7, KMnO4, Na2S2O8 y gran número de compuestos orgánicos.
Afino electrolítico
El afino electrolítico de metales, implica el depósito de metal puro en un cátodo, a partir de una disolución conteniendo el ión metálico. El cobre que se obtiene por tostación de sus minerales tiene bastante pureza para algunas aplicaciones como tuberías, pero no las suficientes para aplicaciones que requieren una gran conductividad eléctrica. Para estas últimas hace falta cobre con una pureza superior al 99,5%.
Se toma como ánodo un trozo de cobre impuro y como cátodo una lámina delgada de cobre metálico puro. Durante la electrólisis el Cu2+ producido en el ánodo se desplaza a través de una disolución de ácido sulfúrico y sulfato de cobre hasta el cátodo, donde se reduce a Cu(s). el cátodo de cobre puro aumenta su tamaño, mientras que el trozo de cobre impuro se consume.
Depósito electrolítico
En el depósito o baño electrolítico se deposita un baño de un metal sobre otro metal por electrólisis. Este procedimiento se lleva a cabo por motivos decorativos o para proteger de la corrosión al segundo metal. Los cubiertos de baño de plata por ejemplo, consisten en una base de hierro con un recubrimiento fino de plata metálica. En un proceso de depósito electrolítico el objeto a bañar constituye el cátodo de la célula electroquímica. El electrólito contiene iones del metal que constituyen el baño. Estos iones son atraídos hacia el cátodo, donde se reducen a átomos metálicos.
Galvanotecnia
Proceso electroquímico por el cual se deposita una capa fina de metal sobre una base generalmente metálica. Los objetos se galvanizan para evitar la corrosión, para obtener una superficie dura o un acabado atractivo, para purificar metales (como en la refinación electrolítica del cobre), para separar metales para el análisis cuantitativo o como es el caso de la electrotipia, para reproducir un molde. Los metales que se utilizan normalmente en galvanotecnia son: cadmio, cromo, cobre, oro, níquel, plata y estaño. Las cuberterías plateadas, los accesorios cromados de automóvil y los recipientes de comida estañados son productos típicos de galvanotecnia.
En este proceso, el objeto que va a ser cubierto se coloca en una disolución (baño) de una sal del metal recubridor, y se conecta a un terminal negativo de una fuente de electricidad externa. Otro conductor, compuesto a menudo por el metal recubridor, se conecta al terminal positivo de la fuente de electricidad. Para el proceso es necesaria una corriente continua de bajo voltaje, normalmente de 1 a 6 V. Cuando se pasa la corriente a través de la disolución, los átomos del metal recubridor se depositan en el cátodo o electrodo negativo. Esos átomos son sustituidos en el baño por los del ánodo (electrodo positivo), si está compuesto por el mismo metal, como es el caso del cobre y la plata. Si no es así, se sustituyen añadiendo al baño periódicamente la sal correspondiente, como ocurre con el oro y el cromo. En cualquier caso, se mantiene un equilibrio entre el metal que sale y el metal que entra en la disolución hasta que el objeto está galvanizado. Los materiales no conductores pueden ser galvanizados si se cubren antes con un material conductor como el grafito. La cera o los diseños de plástico para la electrotipia, y las matrices de los discos fonográficos se recubren de esta manera.
Para asegurar una cohesión estrecha entre el objeto a ser recubierto y el material recubridor, hay que limpiar el objeto a fondo, ya sea sumergiéndolo en una disolución ácida o cáustica, o bien utilizándolo como ánodo en un baño limpiador durante un instante. Para eliminar irregularidades en las depresiones de la placa y asegurar que la textura de su superficie es de buena calidad y propicia para el refinado, hay que controlar cuidadosamente la densidad de la intensidad de corriente (amperios por metro cuadrado de superficie de cátodo) y la temperatura. 
Cuarta actividad: Procesos Electroliticos
Procesos electroliticos
La electrólisis consiste en la descomposición química de una sustancia por medio de la electricidad (electro = electricidad y lisis = destrucción).
El paso de la corriente eléctrica as través de un electrólito (en disolución o fundido), por ejemplo, NaCl fundido, nos demuestra que en el cátodo o polo negativo el catión sodio (Na+) se reduce a Na0 por ganancia, en cambio en el ánodo o polo positivo los aniones cloruro (Cl-) entregan sus electrones oxidándose a Cl2(gaseoso).
En resumen, el proceso de electrólisis se caracteriza porque:
a) Es un fenómeno redox no espontáneo producido por una corriente eléctrica
b) La reducción se lleva aefecto en el polo negativo o cátodo y la oxidación en el ánodo o polo positivo.
El proceso electrolítico se realiza debido a que, la corriente eléctrica circula desde el cátodo hacia el ánodo, siempre que entre ellos esté presente una sustancia conductora (electrólito)
En algunas electrólisis, si el valor de la diferencia de potencial aplicada están sólo ligeramente mayor que el calculado teóricamente, la reacción es lenta o no se produce, por lo que resulta necesario aumentar el potencial aplicado. Este fenómeno se da, sobre todo, cuando en algunos e los electrodos se produce algún desprendimiento gaseoso. El potencial añadido en exceso en estos casos recibe el nombre de sobretensión.
La cantidad de producto que se forma durante una electrólisis depende de los 2 factores siguientes:
a) De la cantidad de electricidad que circula a través de la pila electrolítica.
b) De la masa equivalente de la sustancia que forma el electrólito.
La cantidad de electricidad que circula por una cuba electrolítica puede determinarse hallando el producto de la intensidad de la corriente, expresada en amperios por el tiempo transcurrido, expresado en segundos. Es decir, Q (culombios) = I · t.
Tras efectuar múltiples determinaciones, Faraday enunció las 2 leyes que rigen la electrólisis y que son las siguientes:
Aplicaciones de la electrólisis:
La separación de los elementos de los electrólitos (disueltos o fundidos) se utiliza industrialmente para obtener gases puros como el hidrógeno y el oxígeno y obtener metales refinados como el hierro, cobre, aluminio, magnesio, potasio, etc.
Otra aplicación importante se encuentra en la galvanoplastia y galvanostegia:
a) La galvanoplastia: Consiste en obtener copias metálicas de algunos objetos, con huecos y relieves. Entre los productos que se pueden citar para esta técnica podríamos señalar lozas y porcelanas.
b) La galvanostegia: Consiste en recubrir los metales de una capa metálica resistente para darles un mejor aspecto o para aumentar su duración y resistencia a la corrosión. Entre las aplicaciones podemos citar el galvanizado (cincado), cobreado, latonado, plateado, dorado, etc.
El cobre electrolítico consiste en una placa de cobre catódico, en donde los iones Cu++ de una solución se han reducido y adherido al cátodo de una celda electrolítica. La semirreacción del cobre catódico es:
Cu++ + 2e- (cátodo)---> Cu0
Galvanizado: Técnica electrolítica que se realiza con el fin de cubrir metales con una capa de cinc. Por ejemplo, las planchas para techados de construcciones.
Cobreado: Técnica que se emplea para recubrir de cobre algunos objetos (se utiliza CuSo4 como electrólito). El siguiente esquema ilustra un sistema de cobreado de una cuchara:
Cobre electrolítico: el proceso de obtención del cobre electrolítico es una derivación de la técnica de cobreado.
Afinación del cobre: Los ánodos de cobre en bruto se suspenden en un baño de sulfato cúprico acidulado con ácido sulfúrico. Los cátodos son láminas delgadas de cobre puro recubierto de grafito, para que el metal depositado por la corriente eléctrica pueda separarse después fácilmente; las láminas se suspenden alternativamente con los ánodos en el mismo baño. Cuando pasa la corriente, los iones cobre se descargan en el cátodo, que va engrosando gradualmente por el metal puro adherido, a la vez que en el ánodo se disuelve una cantidad equivalente de cobre, formando iones cúpricos. Si las impurezas del cobre son de elementos mas activos, situados encima de él en la serie electromotriz de los metales, pasan a la disolución y quedan en ella. Si están por debajo del cobre en dicha serie, no se disuelven, y caen al fondo del as cubas, debajo de los ánodos, como barro anódico, del que se recuperan el oro, la plata y el platino, muchas veces en cantidades suficientes para pagar el proceso de afinación.
Algunos ejemplos de electrólisis:
1. Electrólisis del Cloruro de Sodio fundido.
2. Electrólisis de una solución acuosa de Cloruro de Sodio.
3. Electrólisis de una solución acuosa de ácido sulfúrico.

Otros materiales