Buscar

Apostila Quimica SENAI

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 63 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 63 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 63 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

APOSTILA DE QUÍMICA 
APLICADA
Curso Superior de Tecnologia em Automação Industrial
1
REVISÃO DE QUÍMICA
A Química é uma ciência natural1 que estuda a composição, a estrutura e as 
propriedades das substâncias e suas transformações.
Os conhecimentos de Química são empregados na explicação e resolução de muitos 
problemas, com base em aspectos científicos e técnicos. Por exemplo: o efeito da chuva 
ácida nas obras civis; os riscos ao meio ambiente da utilização de certos produtos químicos 
em estações de tratamento de águas de abastecimento ou residuária; produção de 
materiais alternativos na construção civil; contaminação por metais pesados provenientes 
de tintas e vernizes; etc.
A Química é uma ciência quantitativa e suas relações são expressas 
satisfatoriamente em linguagem matemática.
A Química pode ser dividida em:
• Química Orgânica: estuda os compostos do elemento carbono.
• Química Inorgânica: estuda os compostos dos demais elementos químicos.
• Físico - Química: relaciona a física com a química.
• Química Analítica: trata das análises qualitativa e quantitativa de um sistema químico, 
definindo quais as espécies químicas presentes no sistema e quais as suas quantidades.
2.1. MATÉRIA, SUBSTÂNCIA, ELEMENTO, COMPOSTO E MISTURAS
Todos os corpos que nos rodeiam, fazem parte da matéria do universo. Cada espécie 
de matéria é uma substância. A substância é constituída de elementos. E a união de duas 
ou mais substâncias forma uma mistura.
2.1.1. Matéria
Tudo que tem massa e ocupa lugar no espaço. A matéria é descrita através de uma 
especificação de uma extensão ou quantidade.
1 As ciências naturais são: química, física, biologia, geologia, astronomia, etc., e estudam de forma sistemática os 
fatos e idéias que descrevem nosso mundo. Ciência é uma palavra latina que significa conhecimento.
2
2.1.1.1 – Estados da Matéria
A matéria pode ser apresentada em 5 estados físicos:
• sólido
• líquido
• gasoso
• 4o estado (plasma)
• 5o estado
No estado sólido, a matéria apresenta forma própria e volume definido. No estado 
líquido, a matéria apresenta volume constante mas, a forma é aquela do recipiente que a 
contém. No estado gasoso, a matéria não apresenta forma própria e nem tem volume 
constante. No 4o estado, o plasma, os átomos da matéria encontram-se ionizados (exemplo: 
bolhas de plasma da coroa solar, constituída basicamente de gás hélio ionizado). No 5o 
estado, os átomos estão com uma temperatura próxima do zero absoluto, ficam 
praticamente imóveis e muito concentrados (exemplo: supercondutores).
2.1.1.2 – Propriedades da Matéria
As propriedades da matéria podem ser: físicas e químicas:
2.1.1.2.1 - Propriedades Físicas: são utilizadas para identificar a substância (ex.: ponto de 
fusão, ponto de ebulição, densidade, solubilidade, calor 
específico, massa, volume, etc.).
2.1.1.2.2 - Propriedades Químicas: não são utilizadas para identificar a substância, são 
usadas para prever transformações (ex.: reatividade, 
eletronegatividade, afinidade eletrônica, energia de 
ionização).
2.1.2. Substância
É a matéria formada por moléculas iguais entre si. Um só tipo de molécula constitui a 
substância pura (ex.: água, sal, ferro, açúcar e oxigênio, etc.). As substâncias puras podem 
ser formadas de elementos e de compostos, são denominadas substâncias simples ou 
substâncias compostas, respectivamente.
As substâncias são reconhecidas pelas suas características ou propriedades. As 
propriedades de uma substância informam o emprego a que se destinam.
3
2.1.2.1 - Substância Simples
Formada por um único elemento químico, um só tipo de átomo na molécula (ex.: 
ferro metálico – Fe, gás oxigênio – O2, gás ozônio – O3, etc.).
2.1.2.2 - Substância Composta
Formada por átomos de mais de um elemento químico, mais de um tipo de átomo na 
molécula (ex.: gás clorídrico – HCl, gás carbônico – CO2, etc.).
2.1.3. Elemento
É uma substância pura, simples, fundamental e elementar (ex.: sódio, cloro, 
hidrogênio, oxigênio, ferro, etc.). Um elemento não pode ser separado ou decomposto em 
substâncias mais simples. Cada elemento pode ser representado por um símbolo. Assim, a 
palavra elemento normalmente é relacionada ao símbolo químico da substância simples.
A primeira tentativa de relacionar os diferentes elementos químicos da natureza foi 
realizada por Lavoisier, em 1789, compondo uma lista de 33 substâncias tomadas como 
elementos, porém um pouco mais de 20 eram realmente elementos. Hoje em dia se 
conhecem 111 elementos.
2.1.4. Composto
É uma substância pura constituída de dois ou mais elementos combinados sempre 
nas mesmas proporções (ex.: sal de cozinha - NaCl, açúcar – C12H22O11, sal de sulfato de 
cobre pentahidratado – CuSO4.5H2O, etc.). Os compostos são representados por fórmulas. 
Um composto pode ser separado ou decomposto em substâncias mais simples.
Proust elaborou a Lei das Proporções Definidas ou Lei da Composição Constante cujo 
enunciado é:
“um composto puro, qualquer que seja sua origem,
contém sempre as mesmas proporções definidas, ou constantes, 
dos elementos que os constituem”
2.1.5. Mistura
É a composição de duas ou mais substâncias misturadas fisicamente. As misturas 
podem ser identificadas através do “olho nu”, lupas ou microscópios. Exemplo: granito 
(observa-se a “olho nu” os grânulos de quartzo branco), mica preta, feldspato rosa 
concreto, madeira, óleo de motor e ligas metálicas). Algumas misturas são difíceis de serem 
caracterizadas, como por exemplo a água salgada, que é uma mistura de água e sal. As 
misturas podem ser classificadas em: homogêneas e heterogêneas.
4
2.1.5.1 – Misturas Homogêneas
São uniformes em relação a todas as propriedades, são monofásicos e são chamadas 
de solução (ex.: ar, água salgada, gasolina, vidro, etc.).
2.1.5.2 – Misturas Heterogêneas
São constituídos de misturas homogêneas (fases) separadas por superfícies bem 
definidas (interface), onde ocorrem mudanças bruscas de propriedades (ex.: água e óleo; 
areia e água, água gaseificada - água e dióxido de carbono, etc.).
2.1.5.3 – Diferença entre Substância Pura e Mistura
Uma diferença importante entre substância pura e mistura é o comportamento no 
aquecimento ou resfriamento, a pressão constante. A substância pura quando muda o seu 
estado físico, a temperatura se mantém constante, enquanto que a mistura apresenta uma 
variação de temperatura durante a mudança do estado físico.
Algumas misturas especiais se comportam como substância pura durante a fusão (e 
solidificação) ou a ebulição (e condensação). Estas misturas são conhecidas como misturas 
eutéticas e misturas azeotrópicas. As misturas eutéticas apresentam ponto de fusão (ou 
solidificação) constante, por exemplo: algumas ligas metálicas, e as misturas azeotrópicas 
apresentam ponto de ebulição (ou condensação), por exemplo: água e álcool.
2.2. ESTRUTURA ATÔMICA
O átomo é a menor parte de um elemento2 que ainda preserva as propriedades 
daquele elemento. Desta forma, existe uma inter-relação entre a estrutura atômica, 
estrutura da matéria e suas propriedades físicas e químicas.
A estrutura do átomo irá determinar como os átomos vão interagir entre si, e essa 
interação irá definir o comportamento físico e químico da matéria.
2.2.1. Evolução do Modelo Atômico
450 – 500 a.C. – Demócrito de Abdera e Leucipo de Mileto (filósofos gregos).
Demócrito e Mileto imaginaram que se um corpo qualquer fosse dividido sucessivas 
vezes, haveria um certo momento em que essa divisão não seria mais possível. Assim, se 
chegaria ao átomo. Este pensamento filosóficonão tinha base experimental.
Em grego, a palavra tomo significa parte e a significa não, assim, átomo quer dizer 
indivisível.
2 Substância que contêm átomos do mesmo tipo.
5
Demócrito aceitava a idéia da existência de apenas quatro elementos: terra, ar, fogo 
e água. Esta idéia foi rejeitada algum tempo depois por Aristóteles, que acreditava no 
modelo da matéria contínua.
1800 – Comunidade Científica
Nesta época, os cientistas já conheciam uma grande quantidade de informações 
(fatos isolados) sobre as propriedades físicas e químicas dos elementos conhecidos.
Becker e Stahl relataram que “alguma coisa” era perdida pelas substâncias quando 
queimadas, o produto era menos denso que a substância original, e denominaram este 
fenômeno de flogístico.
William Nicholson e Anthony Carlisle (químicos ingleses) demonstraram a 
decomposição da água nos gases hidrogênio e oxigênio por eletrólise, surgindo a primeira 
evidência da relação entre matéria e eletricidade.
1803 – John Dalton (cientista inglês)
Dalton propôs uma teoria para explicar as leis: da conservação da massa (postulada 
por Lavoisier) e da composição definida (enunciada por Proust).
A Lei da Conservação da Massa estabelece que a massa não se modifica quando a 
matéria sofre uma transformação. E a Lei da Composição Definida estabelece que as 
matérias ao sofrerem uma transformação, elas o fazem sempre numa mesma proporção.
A Teoria Atômica de Dalton criou um modelo atômico retomando o antigo conceito 
dos filósofos gregos, com base no seguinte modelo:
1. Toda matéria é composta de partículas fundamentais, os átomos;
2. Os átomos são permanentes e indivisíveis, eles não podem ser criados e nem 
destruídos;
3. Os elementos são caracterizados por seus átomos. Todos os átomos de um dado 
elemento são idênticos em todos os aspectos. Átomos de diferentes elementos têm 
diferentes propriedades;
4. As transformações químicas consistem em uma combinação, separação ou rearranjo de 
átomos;
5. Compostos químicos são formados de átomos de dois ou mais elementos em uma razão 
fixa.
Toda matéria é formada por átomos.
Os átomos são esferas maciças,
homogêneas, indivisíveis e indestrutíveis.
(Modelo Bola de Bilhar)
6
Como o modelo de Dalton explicava naquela época muitos dos fenômenos 
observados experimentalmente, a idéia de usar modelos para compreender melhor a 
constituição elementar da matéria foi muito bem aceita pelos cientistas (Brady e Humiston, 
1986).
1832 – Michael Faraday (químico inglês)
Faraday relatou que uma transformação química podia ser causada pela passagem 
de eletricidade através de soluções aquosas de compostos químicos. Estas experiências 
demonstraram que a matéria apresentava natureza elétrica.
 1850 – William Crookes (físico inglês)
Os físicos começaram a investigar a condição da corrente elétrica em tubos de 
descarga de gás.
Os tubos de descarga em gás eram de vidros, totalmente vedados e com uma peça 
de metal (eletrodos) em cada extremidade.
Os tubos de descarga de gás ou tubos Crookes eram construídos com pouco ar 
atmosférico (vácuo parcial) ou completamente sem ar atmosférico (vácuo). Quando uma 
alta voltagem, 20.000 volts, era aplicada através dos eletrodos, podia-se observar uma 
corrente elétrica (descarga elétrica) e o ar residual no interior do tubo se iluminava ou não 
havia iluminação na ausência de ar.
Exemplos de tubos de descarga em gases são:
•Letreiros e anúncios luminosos de néon: onde o gás residual é o neônio;
•Lâmpadas de sódio: o gás residual é o vapor de sódio, que confere uma luz amarela 
característica. São usadas na iluminação de vias públicas e de túneis;
•Lâmpadas fluorescentes de mercúrio: utilizam o vapor de mercúrio, que emite luz violeta e 
ultravioleta. O tubo é revestido com uma tinta especial (fluorescente3) cuja função é 
absorver a luz emitida e reemiti-la como luz branca. São usadas em residências, escritórios 
e algumas vias públicas;
•Tubo de imagem da televisão: é um tubo de alto vácuo com mudanças complexas capazes 
de dar origem às imagens na tela.
Observou-se que, ao se colocar um anteparo coberto de sulfeto de zinco entre os 
eletrodos dentro de tubo de descargas sem ar, o anteparo brilhava do lado que estava o 
eletrodo negativo (cátodo). Isto significava que a descarga elétrica se originava no cátodo e 
fluía para o eletrodo positivo (ânodo). Essa descarga elétrica foi chamada de raios catódicos 
(Brady e Humiston, 1986).
3 Alguns materiais, quando absorvem luz ultravioleta, emitem de volta luz visível. Esse fenômeno é chamado 
genericamente de luminescência. Quando a emissão ocorre imediatamente após a incidência da luz ultravioleta, o 
fenômeno é chamado de fluorescência; se, por outro lado, a emissão demorar alguns segundos ou até mesmo 
horas, denomina-se de fosforescência (ex.: interruptores).
7
Os raios catódicos:
a) Caminham em linha reta,
b) Delineiam sombras,
c) Giram pequenos moinhos,
d) Aquecem uma folha metálica,
e) Curvam-se sob campo magnético ou elétrico.
f) São sempre os mesmos independente da natureza do material dos eletrodos ou do gás 
residual no interior do tubo.
1869 – Dmitri Mendeleev (químico russo) e Julius Lothar Meyer (químico alemão)
Os químicos Mendeleev e Meyer, independentemente, ordenaram os elementos 
químicos conhecidos em tabelas periódicas similares.
1874 – G. J. Stoney
Stoney propôs a existência de partículas de eletricidade, os elétron.
1886 – E. Goldstein (físico alemão)
Usou um tubo Crookes modificado, o cátodo tinha uma fenda afastada da 
extremidade do tubo. Durante uma descarga elétrica, os elétrons emitidos do cátodo 
colidiam com os átomos neutros do gás residual, arrancando-lhes os elétrons. Os átomos, 
pela perda dos elétrons, tornavam-se íons positivos. Estes íons positivos eram atraídos em 
direção ao cátodo. Alguns colidiam com o cátodo e outros atravessavam a fenda e um fluxo 
incandescente surgia na parte de trás do cátodo. Esse fluxo foi denominado como raios 
canais.
1887 – Joseph Thomson (físico inglês)
As observações nos tubos Crookes sugeriram que os raios catódicos eram formados 
de partículas energéticas, carregadas negativamente e que faziam parte da constituição de 
todas substâncias. Estas partículas foram chamadas de partículas fundamentais, e eram na 
verdade, os elétrons descritos por Stoney.
O elétron foi descoberto quantitativamente por Thomson.
1896 – Henri Becquerel
Becquerel descobre a radiatividade. Os átomos de alguns elementos não são 
estáveis. Eles emitem espontaneamente, radiações naturais por desintegração de seus 
núcleos, de vários tipos, denominadas de radiatividade. A partir do elemento químico 
chumbo (Pb), de número atômico 82, o núcleo dos elementos seguintes começam a 
tornarem-se instáveis. As radiações também podem ser geradas artificialmente.
1898 – Joseph Thomson
8
Fundamentado na descoberta do elétron e na descoberta da radiatividade, Thomson 
sugeriu que:
O átomo deveria ser formado por uma esfera positiva,
não maciça e incrustada de elétrons (carga negativa),
de modo que a carga total fosse nula.
(Modelo Pudim de Passas)
1905 – Albert Einstein (físico alemão)
Einstein mostrou que existe uma relação entre massa e energia.
2mcE = (2.1)
Sendo, c = velocidade da luz.
Variações de energia que ocorrem durante as reações químicas, são acompanhadas 
por variação de massa, as variações na massa são extremamente pequenas para serem 
detectadas experimentalmente.
1911 – ErnestRutherford, E. Marsden e H. Geiger (físicos ingleses)
Rutherford atribuiu a dois dos seus estudantes a tarefa de medir o espalhamento das 
partículas alfa que se projetavam contra a uma lâmina.
As partículas alfa foram emitidas por uma pequena quantidade do elemento radiativo 
polônio em várias folhas finas de diversos materiais como mica, papel e ouro. Observou-se 
que embora muitas partículas atravessassem as folhas em linha reta, algumas foram 
espalhadas, ou desviadas da linha reta. As partículas foram detectadas através de pontos 
luminosos em um anteparo revestido com uma película de sulfeto de zinco fosforescente.
Rutherford e seus discípulos esperavam que as partículas α passassem através da 
folha sem serem perturbadas, já que o “Modelo Pudim de Passas” previa uma distribuição 
mais ou menos uniforme das cargas positivas e negativas. Entretanto, o que se verificou foi 
que a maioria das partículas α atravessou facilmente as lâminas, algumas partículas foram 
defletidas com ângulos extremamente grandes de sua trajetória original e, poucas foram 
refletidas em ângulo oposto ao choque.
Rutherford e seus discípulos concluíram que o átomo:
 Era formado de grandes espaços vazios,
 Possuía um núcleo central pequeno e denso, e
 O núcleo apresentava carga positiva.
Assim, o átomo assemelhava-se ao Sistema Solar, como os elétrons localizados ao 
redor do núcleo. Este modelo atômico foi denominado modelo planetário.
 1913 – Niels Bohr (físico dinamarquês)
O modelo planetário de Rutherford apresentava duas falhas:
9
a) Se os elétrons estivessem parados ao redor do núcleo, eles seriam atraídos pelo núcleo, 
fazendo com que o sistema entrasse em colapso. Esta hipótese foi rejeitada.
b) Se os elétrons estivessem em movimento ao redor do núcleo, eles precisariam modificar 
a direção constantemente para se manterem em órbita do núcleo. Uma carga negativa 
colocada em movimento ao redor de uma carga positiva estacionária, sofre uma 
aceleração. Essa carga em movimento perde energia, emitindo radiação. Os elétrons ao 
perderem energia gradualmente adquiririam um movimento espiralado em direção ao 
núcleo, acabando por colidir com ele. Esta hipótese também foi rejeitada.
O átomo no seu estado normal não emite radiação.
O modelo de Rutherford não explicava os espectros atômicos.
Para tentar explicar os espectros atômicos, Bohr formulou uma série de postulados 
fundamentados nas idéias de Max Planck e Albert Einstein. Planck defendia a idéia que a luz 
possuía propriedades ondulatórias, representada por E = h.ν, sendo E = energia, h = 
constante de Max Planck e ν = freqüência. Já Einstein acreditava na dualidade entre matéria 
e energia, em que uma se transformava em outra dependendo da condições; assim a luz, 
apresentava propriedades de partícula, obedecendo a lei da relatividade, E = mc2. A série 
de postulados formulados por Bohr foram os seguintes:
•Os elétrons nos átomos movimentam-se ao redor do núcleo em trajetória circulares 
(camadas ou níveis),
•Cada um desses níveis possui um valor determinado de energia,
•Um elétron não poderia permanecer entre dois níveis,
•Um elétron poderia passar de um nível de menor energia para um de maior energia, 
absorvendo energia externa - elétron excitado,
•O retorno do elétron ao nível inicial se faz acompanhar da liberação de energia na forma de 
ondas eletromagnéticas (luz visível ou ultravioleta).
Assim, um elétron num átomo só pode ter certas energias específicas – energia 
quantizada, e cada uma delas corresponde a uma órbita particular. Todos os elétrons estão 
nos níveis de energia mais baixo – estado fundamental. Quanto maior a energia do elétron, 
mais a sua órbita estará afastada do núcleo. Este é o Modelo Orbital.
O elétron ao receber energia externa, de uma chama ou descarga elétrica, salta para 
uma órbita mais afastada do núcleo, o átomo fica no estado excitado. Quando a energia 
externa cessa, o elétron irradia essa energia (fóton), em certo comprimento de onda (λ) e 
salta para a sua órbita normal, que é a mais estável.
10
2.2.2. Mecânica Quântica ou Mecânica Ondulatória
A Mecânica Clássica ou Mecânica Newtoniana explica com sucesso a influência de 
várias forças no movimento dos objetos e falha na descrição dos movimentos de pequenas 
partículas, tais como os elétrons. A mecânica clássica pode ser considerada como uma 
versão simplificada da mecânica quântica quando aplicada para explicar e prever o 
movimento de objetos grandes.
A Mecânica Ondulatória ou Mecânica Quântica explica o comportamento dos elétrons 
no átomo através de sua natureza dual onda - partícula.
Como a energia total de qualquer partícula é E = mc2, segundo Einstein e a energia 
de uma onda é E = hν, de acordo com Planck.
 1924 – De Broglie
De Broglie resolveu combinar as expressões de Einstein e Planck, obtendo: m = h/λ
c, que relaciona os dois aspectos da natureza dualística da luz. Diferentemente da luz, os 
elétrons movimentam-se em diferentes velocidades, onde c é substituído por v (m = h/λv).
Assim, De Broglie concluiu que os elétrons se movimentavam ao redor do núcleo 
como uma onda estacionária tridimensional.
2.2.2.1 – Ondas Estacionárias
Contrariamente a uma onda corrente ou onda viajante, uma onda estacionária não 
movimenta em uma única direção, a onda se movimenta dentro de uma região (RUSSEL, 
1982). Existem três tipos de ondas estacionárias:
2.2.2.1.1 - Onda Estacionária Unidimensional: é exemplificada pela onda produzida por um 
toque de uma corda de guitarra, onde a corda se movimenta 
para cima e para baixo; portanto, a onda se movimenta em 
uma única dimensão (z).
2.2.2.1.2 - Onda Estacionária Bidimensional: é exemplificada pela onda produzida pela 
vibração da parte superior do tambor, semelhante também 
pela ondulação formada por uma pedra lançada em um lago, 
com propagação de duas frentes de onda (x, z).
2.2.2.1.3 - Onda Estacionária Tridimensional: é exemplificada pela onda produzida por sino 
soando, no ar de uma sala fechada com alto - falante em seu 
interior, na terra durante a ocorrência de um terremoto e na 
vibração de recipientes contendo gelatina.
11
 1924 – Erwin Schrödinger
Em 1926, Erwin Schrödinger aplicou a matemática para investigar as ondas 
estacionárias no átomo de hidrogênio, este novo campo de estudo foi denominado de 
mecânica ondulatória ou mecânica quântica.
Schrödinger resolveu uma equação chamada de equação de onda e obteve um 
conjunto de funções matemáticas denominadas de funções de onda (ψ), que descrevem as 
formas e as energias das ondas eletrônicas.
Cada uma das diferentes ondas possíveis é chamada de um orbital. Cada orbital em 
um átomo possui uma energia característica, que é a descrição espacial da região em torno 
do núcleo onde se espera encontrar o elétron.
2.3. PERIODICIDADE QUÍMICA
A idéia dos quatros elemento (fogo, ar, terra e água) foi mudando com o tempo. 
Lavoisier definia a substância elementar como aquela que não podia ser decomposta por 
meio dos processos químicos conhecidos na época.
Somente após a descoberta dos prótons é que foi possível formular um critério 
para a identificação das substâncias simples, que são substâncias formadas por átomos 
iguais, no qual esses átomos possuem o mesmo número de prótons em seu núcleo.
Porém antes da descoberta dos prótons, Mendeleev e Lothar Meyer (1869) 
ordenaram os elementos conhecidos na época, em uma tabela, de acordo com as suas 
propriedades físicas e químicas.
2.3.1. Representação do Elemento Químico
Por simplicidade, na prática, um único átomo é denominado de Elemento Químico, 
onde a quantidadede prótons contido em seu núcleo passou a ser designado como Número 
Atômico (Z) ou Número de Prótons. Assim, o Número Atômico é usado para identificar o 
Elemento Químico.
Outro número característico do Elemento Químico é a sua massa atômica (A), assim 
o elemento é representado na Tabela Periódica com:
Figura 2.1 – Representação do elemento químico.
12
Como núcleo de um átomo é constituído de prótons e nêutrons, para um mesmo 
elemento químico, o número de prótons é o mesmo, porém o número de nêutrons pode 
variar. Esse fenômeno é conhecido como isotopia (Tabela 2.1).
Tabela 2.1 – Exemplos de Isótopos.
Elemento Químico Isótopos Representação No de Prótons No de Nêutrons
Hidrogênio Comum
Deutério
Trítio
1H1
2H1
3H1
1
1
1
0
1
2
Cloro Cloro 35
Cloro 37
35Cl17
37Cl17
17
17
18
20
Outro número significativo é o número de massa, que expressa a massa do átomo 
através da somatória do número de prótons (igual ao número atômico - Z) com o número 
de nêutrons (A = Z + N).
A maioria dos elementos químicos ocorre na natureza sob a forma de isótopos, as 
formas mais abundantes são aquelas dispostas na Tabela Periódica.
Atualmente são conhecidos mais de 100 elementos químicos, mas nem todos são 
naturais. Os elementos encontrados na natureza têm número atômico variando entre 1 e 
92. A partir de 1940, começaram a ser obtidos, artificialmente, elementos com números 
atômicos maiores que 92.
Apesar da grande quantidade de elementos químicos, muitos deles apresentam 
propriedades semelhantes. Durante o século XIX ocorreram varias tentativas de se 
agruparem os elementos de acordo com essas propriedades em comum. A questão chave 
para essa organização era o critério a ser utilizado.
2.3.2. Disposição dos Elementos Químicos na Tabela Periódica
A Tabela Periódica atual tem sua origem na proposta lançada por Mendeleev, na 
metade do século XIX, época em que eram conhecidos aproximadamente 60 elementos. 
Mendeleev tinha um grande conhecimento das propriedades físicas e químicas desses 
elementos e organizou a tabela colocando-os em ordem crescente de suas massas atômicas 
(A), procurando agrupar os elementos que possuíam propriedades semelhantes, uns 
debaixo dos outros. Por isso a tabela ficou conhecida como tabela periódica, uma vez que as 
propriedades se repetiam periodicamente.
O número de elementos conhecidos não era suficiente para que Mendeleev 
preenchesse todos os espaços da tabela, obrigando-o a deixar alguns espaços em branco. O 
poder organizativo do quadro de Mendeleev permitia prever as propriedades desses 
13
elementos ainda não conhecidos, e forneceu um verdadeiro ”mapa da mina” para suas 
descobertas.
Antigamente, a listagem dos elementos químicos era feita em ordem crescente de 
massa atômica (A), ordenação efetuada por Mendeleev e Lothar Meyer (1869), em função 
das propriedades físicas e químicas das substâncias simples.
Atualmente, a periodicidade é feita em ordem crescente de número atômico (Z), 
número de prótons existentes no núcleo atômico. Esta classificação periódica foi possível 
após o enunciado da Lei de Moseley (1913), que conceituou o número atômico.
Analisando as freqüências dos raios-X de vários elementos, Moseley descobriu que 
essas freqüências podiam ser relacionadas à localização dos elementos na tabela periódica. 
Assim, Moseley atribuiu um número inteiro, o número atômico (Z), que era igual ao número 
da posição na Tabela Periódica.
A partir do modelo atômico de Rutherford e seus discípulos (1911), modelo 
planetário, na qual concluíram que o átomo era formado de grandes espaços vazios, possuía 
um núcleo central pequeno e denso, e o núcleo apresentava carga positiva. Moseley 
concluiu que o número atômico representava o número de prótons no núcleo.
A lei periódica estabelece quando os elementos são listados seqüencialmente em 
ordem crescente de número atômico, que é observada uma repetição periódica em suas 
propriedades físicas e químicas.
2.3.2.1. Famílias e Períodos
A Tabela Periódica é organizada em colunas verticais chamadas grupos ou famílias e 
filas horizontais chamadas de períodos.
2.3.2.1.1 - Famílias ou Grupos: a classificação dos grupos segue regras diferentes de 
acordo com dois órgãos científicos de química – o Chemical Abstract 
Service Group e, a IUPAC (International Union of Pure and Applied 
Chemistry - União Internacional de Química Pura e Aplicada).
De acordo com Chemical Abstract Service Group, os grupos são divididos nos 
seguintes grupos (Figura 2.2):
• elementos representativos (grupos A) e;
• elementos de transição (grupos B).
14
Figura 2.2 – Classificação do Chemical Abstracts Service Group.
Os grupos A são conhecidos por nomes especiais como:
• Grupo IA (ou Grupo 1): metais alcalinos
• Grupo IIA (ou Grupo 2): metais alcalinos terrosos
• Grupo IIIA (ou Grupo 13): família do boro
• Grupo IVA (ou Grupo 14): família do carbono
• Grupo VA (ou Grupo 15): família do nitrogênio
• Grupo VIA (ou Grupo 16): família dos calcogênios (os que geram calor)
• Grupo VIIA (ou Grupo 17): família dos halogênios (os que geram sais)
• Grupo 0 (ou Grupo 18): família dos gases nobres ou inertes
Já a IUPAC recomenda uma numeração de 1 até 18 para designar os grupos.
Os grupos reúnem elementos de configurações eletrônicas, distribuição dos elétrons 
ao redor do núcleo, semelhantes; portanto, com propriedades semelhantes.
2.3.2.1.2 – Períodos: Os períodos ou linhas são enumerados de 1 a 7, onde representa os 
níveis de energia ocupados pelos elétrons. Reúnem elementos de 
configurações eletrônicas diferentes; portanto, com propriedades 
diferentes.
2.3.2.2. Tabela Periódica
Os elementos se distribuem na tabela periódica como ilustrado na Figura 2.3.
15
Figura 2.3 – Tabela periódica.
2.3.3. Distribuição dos Elétrons nos Orbitais
A disposição dos elétrons nos orbitais de um átomo em estado fundamental é 
chamada de configuração eletrônica. Os elétrons se distribuem segunda a regra de Hund, o 
que significa que os elétrons se encontram nos menores níveis de energia disponível.
A localização do elétron é indicada pelos seguintes números quânticos:
•Número Quântico Principal
•Número Quântico Secundário ou Azimutal
•Número Quântico Magnético
•Número Quântico Spin
2.3.3.1. Número Quântico Principal (n)
O número quântico principal designa o nível em que o elétron se encontra, sendo n = 
1, 2, 3, ..... O número quântico principal indica a distância média entre o elétron e o núcleo 
do átomo. Quanto maior n maior a energia média dos níveis (Figura 2.4).
Figura 2.4 – Níveis de energia contendo elétrons.
16
2.3.3.2. Número Quântico Secundário ou Azimutal (ℓ)
O número quântico secundário designa a subcamada em que o elétron se encontra, 
sendo ℓ = 0, 1, ...., n-1. O número quântico secundário indica a forma espacial do orbital, 
em que: ℓ = 0 designa o subnível s (sharp), ℓ = 1 designa o subnível p (principal), ℓ = 2 
designa o subnível d (diffuse) e ℓ = 3 designa o subnível f (fundamental). O número de 
subníveis em qualquer nível é simplesmente igual ao seu valor n (Figura 2.5).
Figura 2.5 – Subníveis de energia contendo elétrons.
2.3.3.3. Número Quântico Magnético (m)
O número quântico magnético indica a orientação no espaço em relação aos outros 
orbitais, onde m assume os valores inteiros no intervalo de –l até +l. Os orbitais de um 
determinado subnível possuem diferentes energias quantizadas, ou seja, diferentes 
orientações no espaço, na presença de um campo magnético.
2.3.3.4. Número Quântico de Spin (s)
O número quântico spin indica o sentido da rotaçãodo elétron no orbital, onde s 
pode ser igual a +1/2 e –1/2.
A cada elétron em um átomo poderá ser associado um conjunto de 4 números 
quânticos que determinarão o orbital no qual o elétron será encontrado e a direção na qual 
o elétron estará girando. O princípio de exclusão de Pauli estabelece que dois elétrons em 
um átomo não podem ter todos os 4 números quânticos iguais. Assim, o número máximo 
de elétrons nos orbitais s, p, d e f são: 2, 6, 10 e 14, como demonstrado na Tabela 2.3.
Tabela 2.3 – Número máximo de elétrons nos orbitais s, p, d e f.
Orbitais Número de Orbitais Número Máximo de Elétrons Diagrama Orbital
s 1 2 _
p 3 6 _ _ _
d 5 10 _ _ _ _ _ 
f 7 14 _ _ _ _ _ _ _
17
O movimento circular de carga elétrica faz com que o elétron atue como um 
eletroímã da mesma forma como uma corrente elétrica, passando através de um fio 
enrolado em torno de um prego, faz com que o prego se torne magnetizado.
Os elétrons podem girar no sentido horário e anti-horário. Dois elétrons próximos 
apresentando spins contrários se repelem eletricamente, porém se atraem 
magneticamente; e dois elétrons próximos apresentando spins iguais se repelem elétrica e 
magneticamente.
O spin do elétron é também responsável pela maioria das propriedades magnéticas 
que se encontram associadas aos átomos e moléculas. Os materiais podem apresentar as 
seguintes propriedades magnéticas:
• diamagnetismo;
• paramagnetismo, e;
• ferromagnetismo.
Os materiais que são diamagnéticos não sofrem atração quando submetidos a um 
campo magnético (são repelidos ligeiramente). Nestas substâncias, existem números iguais 
de elétrons de cada spin. Os materiais paramagnéticos são fracamente atraídos em 
presença de um campo magnético. As substâncias paramagnéticas são fortemente atraídas 
em presença de um campo magnético.
A distribuição dos elétrons nos orbitais é feita através de um método gráfico 
chamado de Diagrama de Linus Pauling (Figura 2.6). O preenchimento dos orbitais, formado 
pelos subníveis (s, p, d, f), com elétrons, é realizado seguindo as flechas diagonais 
descendentes.
Verifica-se que o subnível s do orbital 4 é menos energético que o subnível 3d, assim 
como o 5s é menos energético que o 4d e o 6s possui menor energia que o 4f, e assim 
sucessivamente.
Figura 2.6 – Diagrama de Linus Pauling.
18
A configuração eletrônica é realizada através de uma notação cujo número quântico 
principal (n) é escrito antes da letra indicativa do subnível, a qual possui um “expoente” que 
indica o número de elétrons contidos nesse subnível. Como por exemplo: 3p5, que significa: 
no nível 3 (número quântico principal = 3, ou seja camada M ), existe o subnível p, 
contendo 5 elétrons.
Como exemplo, tem-se a configuração eletrônica do ferro cujo número atômicos é Z 
= 26, ilustrada na Figura 2.7.
Figura 2.7 – Configuração eletrônica do ferro.
Observa-se que, 4 elétrons giram sozinhos no mesmo sentido, isto gera um campo 
magnético, conferindo a propriedade de ferromagnetismo.
2.3.4. Periodicidade na Configuração Eletrônica
A periodicidade na distribuição eletrônica justifica a periodicidade nas propriedades 
dos elementos químicos.
A Figura 2.8 ilustra as configurações eletrônicas do nível mais externo (camada de 
valência4) do átomo dos elementos apresentados na Tabela Periódica, na qual se dispõem 
da seguinte forma: ns1 para o hidrogênio e os elementos do grupo IA, ns2 para o hélio e os 
elementos do grupo IIA, ns2np1 e ns2np6 para os elementos dos grupos IIIA a 0, (n-1)d para 
os elementos dos grupos B e (n-2)f para os elementos das séries de lantanóides (terras-
raras) e actnóides (terras-raras pesadas).
4 A palavra valência significa capacidade de combinação.
19
Figura 2.8- Periodicidade nas distribuições eletrônicas dos átomos (Fonte: BRADY 
e HUMISTON, 1986).
2.3.5. Periodicidade nas Propriedades
A periodicidade nas propriedades das substâncias simples (ou elementos) 
apresentadas na tabela periódica podem ser: atômicas, físicas e químicas.
2.3.5.1. Periodicidade nas Propriedades Atômicas
As propriedades raio atômico, energia de ionização e afinidade eletrônica variam 
periodicamente em função do número atômico.
2.3.5.1.1 - Raio Atômico: Nos grupos, o aumento do raio atômico ocorre de cima para 
baixo, pois a adição de camadas faz com que os elétrons fiquem mais 
distantes do núcleo. Nos períodos, o aumento do raio atômico ocorre 
da esquerda para direita, pois ao longo do período ocorrem as 
adições dos elétrons na mesma camada e o aumento simultâneo dos 
prótons no núcleo, aumentando a carga nuclear. A carga nuclear atrai 
mais efetivamente a camada de elétrons.
2.3.5.1.2 – Energia de Ionização: Energia de ionização é a mínima energia necessária 
para remover um elétron de um átomo isolado, no seu estado 
fundamental. A energia de ionização aumenta da direita para a 
esquerda, pois a carga nuclear aumenta através do período 
dificultando a remoção do elétron
2.3.5.1.3 – Afinidade Eletrônica: Afinidade eletrônica é a quantidade de energia necessária 
para um átomo isolado, no seu estado fundamental, receber um 
elétron formando um íon negativo.
20
2.3.5.2. Periodicidade nas Propriedades Físicas
As propriedades físicas densidade e ponto de fusão variam periodicamente em 
função do número atômico.
2.3.5.2.1 – Densidade: Por definição densidade é a razão entre a massa da substância e seu 
volume. Esta propriedade física é uma propriedade intensiva. A 
periodicidade na densidade em função do número atômico é uma 
sucessão de máximos e mínimos, porém estas variações não são 
muito regulares devido as diferentes características estruturais da 
substância.
2.3.5.2.2 – Ponto de Fusão: A periodicidade do ponto de fusão em função do número 
atômico, também, é uma sucessão de máximos e mínimos, 
demonstrando uma relação entre o ponto de fusão com a 
configuração eletrônica. As propriedades químicas são: reatividade e 
configuração eletrônica que variam também com o número atômico.
2.3.5.3. Periodicidade nas Propriedades Químicas
As propriedades químicas estão relacionadas aos metais, não-metais e metalóides.
2.3.5.3.1 – Dos Metais: A maioria dos elementos químicos são metais e estão posicionados 
à esquerda da tabela periódica, são bons condutores de calor e de 
eletricidade, maleáveis, dúcteis, possuem alta refletividade e brilho 
metálico característico. Os metais tendem a ceder elétrons e se 
tornarem carregados positivamente:
M → M+ + e- (2.2)
em que são denominados de cátions (Russel, 1994). A carga do íon 
metálico cátion depende do número de elétrons perdidos pelo átomo, 
como por exemplo: Na+, Mg2+, Al3+, Fe2+, Fe3+, etc, sendo esta carga 
chamada de número de valência, número de oxidação ou, 
simplesmente, nox.
2.3.5.3.2 – Dos Não-Metais: Os não-metais são na maior parte gases (exemplos: cloro e 
oxigênio) e são caracterizados por serem pobres condutores térmicos 
e elétricos, no estado sólido são duros e quebradiços (exemplos: 
enxofre e fósforo), e não apresentam alta refletividade e nem brilho 
metálico. O bromo é o único não-metal líquido à temperatura 
ambiente. Suas principais características são explicadas devido a sua 
estrutura eletrônica e elevada afinidade eletrolítica. Os não-metais 
tendem a receber elétrons e se tornarem carregados negativamente:
21
M + e- → M- (2.3)
em que são denominados de ânions. A cargado íon não-metálico 
ânion depende do número de elétrons ganhos, como por exemplo: 
Cl-, O2-, OH-, F-, etc, sendo esta carga também chamada de número 
de valência ou nox.
2.3.5.3.3 – Dos Semimetais: Os semimetais são elementos com propriedades 
intermediárias entre os metais e os não-metais, são bons 
semicondutores e quando sofrem dopagem5, se transformam em 
bons condutores de eletricidade.
2.4. ESTEQUIOMETRIA
A estequiometria é a parte da química em que se investigam as proporções dos 
elementos que se combinam ou dos compostos que reagem. Essas proporções são 
determinadas por meio de cálculos estequiométricos.
RUSSEL (1994) define estequiometria como:
“Estudo quantitativo da composição química (composto e 
fórmula estequiométrica) e transformações químicas (reação 
e equação estequiométrica).”
Os cálculos estequiométricos têm importância fundamental em todos os campos da 
química, especialmente na análise quantitativa e na síntese de compostos.
Na Química Aplicada à Engenharia do Meio, o profissional precisa freqüentemente 
conhecer ou deduzir relações entre as quantidades de substâncias que participam de 
reações químicas em meios aquáticos, atmosfera e solo. Para tanto, os conceitos de massa 
atômica, massa molecular, mol, entre outros, devem ser revistos.
2.4.1. Conceitos Fundamentais da Estequiometria
A seguir serão revistos os conceitos de fórmulas químicas, massa atômica, massa 
molecular, mol, número de Avogadro, massa molar.
2.4.1.1. Fórmulas Químicas
As fórmulas químicas são empregadas para representar compostos ou agregados de 
átomos. Existem basicamente 2 tipos de fórmulas: as moleculares e as estruturais.
As fórmulas moleculares são formadas pelos símbolos dos átomos e um subíndice 
5 É quando o semicondutor puro recebe pequenas quantidades de outros elementos.
22
para indicar a quantidade de átomos existente na molécula, dando a quantidade real de 
átomos, como por exemplo, a molécula da glicose representada pela fórmula C6H12O6.
As fórmulas estruturais são aquelas que mostram as ligações entre os átomos, como 
por exemplo, a fórmula estrutural do sabão (Figura 2.9).
Figura 2.9 - Fórmula estrutural do sabão.
2.4.1.2. Massa Atômica
Como é impossível fisicamente se determinar a massa ou peso de um átomo foi 
necessário criar um padrão de unidade (teórico), denominada de “unidade de massa 
atômica”, simbolizada por “uma” ou “u”.
A “uma – unidade de massa atômica” foi estabelecida em função de 1/12 da massa 
do átomo de carbono (C) isótopo 12, como demonstrado na Tabela 2.4.
Tabela 2.4 – Composição dos isótopos de carbono.
Elemento Químico Isótopos Representação Números de Prótons Números de Nêutrons
Carbono Carbono 12
Carbono 14
12C6
14C6
6
6
6
8
que equivale a:
1/12 da massa de C = 1 uma = 1 u = 1,66.10-24 g
Portanto, a massa atômica é a massa de um átomo expresso em unidades de massa 
atômica (uma), como por exemplo, massa atômica do flúor = 18,998 uma.
2.4.1.3. Massa Molar
Como os átomo podem se agrupar para formar conjuntos bem definidos, 
denominados moléculas. Assim, molécula é a menor parte da matéria que caracteriza uma 
substância pura.
Aqui cabe lembrar a definição de elemento químico ou substância simples, que é um 
conjunto de átomos iguais, de mesma espécie. E substância pura é um conjunto de 
moléculas iguais.
É sabido que os átomos que reagem, sempre guardando entre si relações simples de 
números inteiros, como por exemplo, átomos de hidrogênio e de oxigênio, combinam-se 
numa proporção de 2:1 para formar moléculas de água; átomos de enxofre, carbono e 
nitrogênio, por outro lado, formam o íon tiocianato (SCN-), quando se combinam numa 
23
razão de 1:1:1.
A massa molecular é a soma das massas atômicas de todos os átomos constituintes 
da molécula. Como por exemplo, a massa molecular da propanona é igual a 58,09 u; a 
massa molecular do perclorato de potássio = 122,44 u.
2.4.1.4. Mol
A palavra mol vem do latim e significa um amontoado ou pilha de pedras para conter 
as águas do mar (quebra-mar). Por analogia, o termo mol representa um amontoado de 
átomos, moléculas, elétrons, íons ou outras partículas.
Esse amontoando contém sempre 6,02.1023 unidades, do mesmo modo de 1 dúzia 
que corresponde a 12 unidades. Por conseguinte, como uma dúzia de ovos contém 12 
unidades de ovos; um mol de ovos corresponde a 6,02.1023 unidades de ovos; um mol de 
elétrons corresponde a 6,02.1023 unidades de elétrons; um mol de moléculas corresponde a 
6,02.1023 unidades de moléculas e assim por diante.
Uma vez que átomos, íons ou moléculas são pequenos de mais para serem tratados 
individualmente no laboratório, na prática se trabalha com os moles destas partículas. 
Assim, pode-se pesar um mol de qualquer substância em uma balança comum; por 
exemplo, 1 mol de limalha de ferro equivale à massa atômica do elemento químico Fe 
expresso em gramas. Logo,
1 mol de ferro (Fe) = 6,02.1023 átomos de ferro = 55,845 g
2.4.1.5. Número de Avogrado
O número de Avogrado, 6,02.1023, foi instituído para expressar quantas partículas 
(átomos, íons, moléculas, etc) existem em 1 mol. O número de Avogrado significa a 
presença de 6,02.1023 partículas de átomos, íons, moléculas, etc.
2.4.1.6. Massa Molar
A massa molar de um elemento é a massa de 6,02.1023 átomos do mesmo elemento 
em gramas. Ou, a massa molar de uma substância é a massa de 6,02.1023 de moléculas da 
mesma substância em gramas.
A massa molar de qualquer substância química, por sua vez, corresponde à massa 
de um mol de partículas daquela substância. Para um mesmo composto, a massa molar é 
numericamente igual à massa molecular com a diferença de que a massa molar é expressa 
24
em g/mol. Logo a massa molar da propanona = 58,09 g/mol e do perclorato de potássio = 
122,44 g/mol.
Assim, os termos massa molecular e massa molar podem ser utilizados sem 
distinção, para compostos moleculares e não moleculares.
2.4.1.7. Equação Química
A equação química é uma representação simbólica da reação química, como por 
exemplo, a combustão do carvão ou coque (carbono) pelo oxigênio para formar o dióxido de 
carbono.
C (s) + O2 (g) → CO2 (g)
em que, C (s) e O2 (g) são os reagente e o CO2 é o produto; (s) e (g) significam o estado 
físico dos reagentes e produto, sólido e gasoso, respectivamente. Além dessas abreviações, 
existem (ℓ) para líquido, (aq) para substâncias dissolvidas em água (solução aquosa), (↓) 
para formação de precipitado e (↑) para geração de gás.
A equação química guarda as seguintes relações de quantidades:
C (s) + O2 (g) → CO2 (g)
1 átomo de carbono _
___
1 molécula de oxigênio _
___
1 molécula de dióxido de carbono
1 mol de carbono _
___
1 mol de oxigênio _
___
1 molde dióxido de carbono
6,02.1023 átomos de carbono _
___
6,02.1023 moléculas de oxigênio _
___
6,02.1023 moléculas de carbono
12 g de carbono _
___
32 g de oxigênio _
___
44 g de dióxido de carbono
Uma equação química deve estar sempre balanceada, onde as quantidades de 
átomos presentes nos reagentes são correspondentes as quantidades de átomos nos 
produtos.
2.5. LIGAÇÕES QUÍMICAS
Os átomos possuem a capacidade de se combinar entre si para produzirem espécies 
mais complexas. Eles se combinam para ficarem estáveis, adquirindo a configuração 
eletrônica dos gases nobres.
Os gases nobres não fazem ligações químicas com os demais elementos, pois 
apresentam grande estabilidade. Esta estabilidade é conseqüência da configuração 
eletrônica que apresentam8 elétrons na camada de valência. Os outros elementos 
estabelecem as ligações químicas para adquirirem a configuração eletrônica idêntica a dos 
gases nobres. Desta forma, a Regra do Octeto dita que:
“Os átomos tendem a ganhar ou perder elétrons
25
até que existam oito elétrons
em sua camada de valência.”
Assim como os átomos, as moléculas de algumas substâncias também são capazes 
de reagir com outras moléculas para formar novas substâncias. Estas combinações são 
ocasionadas pelos diferentes tipos de ligações químicas.
As ligações químicas são forças que unem os átomos formando agrupamento de 
átomos, agrupamentos de partículas carregadas (os íons) ou moléculas. Os tipos de 
ligações químicas determinam as propriedades características das substâncias.
2.5.1. Principais Tipos de Ligações Químicas
Basicamente existem 3 tipos de ligações químicas mais importantes:
• ligação iônica;
• ligação metálica;
• ligação covalente.
Entretanto, existem algumas interligações moleculares que conseguem explicar 
determinadas propriedades peculiares de algumas substâncias. Vale lembrar, que um tipo 
de ligação química não predomina sozinha, ocorre uma ligação intermediária entre os tipos 
puros definidos pelos modelos, pois entendê-los isoladamente se torna mais simples e mais 
didático.
2.5.1.1. Ligação Iônica
A ligação iônica ocorre quando um ou mais elétrons são transferidos da camada de 
valência de um átomo para a camada de valência de outro, resultando na atração 
eletrostática entre uma partícula de carga positiva (íon positivo) e outra de carga negativa 
(íon negativo).
As substâncias iônicas são caracterizadas pelas seguintes propriedades:
• possuem elevados ponto de fusão (PF) e ponto de ebulição (PE);
• são solúveis em solventes polares;
• conduzem a corrente elétrica quando fundidos (fase líquida) ou em solução aquosa, 
situações onde existem íons livres na solução;
• sólidos em temperatura ambiente;
• formam cristais quebradiços.
2.5.1.2. Ligação Metálica
A ligação metálica consiste na formação de uma rede cristalina onde estão 
localizados os íons positivos circundados por uma nuvem de elétrons livres.
26
As substâncias metálicas são caracterizadas pelas seguintes propriedades:
• possuem elevados ponto de fusão (PF) e ponto de ebulição (PE) (exceção: mercúrio, 
césio e frâncio);
• na forma metálica são insolúveis em solventes polares e apolares;
• ótimos condutores de corrente elétrica, mesmo na fase sólida devido a presença dos 
elétrons livre;
• são dúcteis e maleáveis;
• são ótimos condutores de calor.
2.5.1.3. Ligação Covalente
A ligação covalente é uma das ligações mais resistentes e mais energéticas, 
consistindo no compartilhamento de um par de elétrons entre os átomos.
As substâncias formadas por ligações covalentes são caracterizadas pelas seguintes 
propriedades:
• possuem pontos de fusão e ponto de ebulição variáveis;
• não conduzem corrente elétrica (exceção: grafita)
• podem ser sólidos (glicose), líquidos (água) ou gasosos (oxigênio) em temperatura 
ambiente;
• moléculas polares são solveis em solventes polares, moléculas apolares são solúveis em 
solventes apolares.
2.5.2. Tipos de Ligações Químicas Intermoleculares
As outras ligações, menos energética e uma pouco mais fraca que as ligações citadas 
anteriormente, são:
• forças de Van der Waals, forças de London ou dipolo induzido;
• forças dipolo permanente;
• ligações de hidrogênio.
2.5.2.1. Forças de Van der Waals, Forças de London ou Dipolo Induzido - Dipolo Induzido
As forças de Van der Waals, forças de London ou dipolo induzido - dipolo induzido 
ocorrem entre moléculas apolares ou entre átomos de gases nobres, quando por um motivo 
qualquer ocorre uma assimetria na nuvem eletrônica, gerando um dipolo que induz as 
demais moléculas ou átomos a também formarem dipolos. São de intensidade fraca. Ex.: 
H2; N2; O2; I2; Br2; CO2; BF3; He; Ne; Ar.
27
2.5.2.2. Forças Dipolo Permanente - Dipolo Permanente
Ocorrem em moléculas polares, de modo que a extremidade negativa do dipolo de 
uma molécula se aproxime da extremidade positiva do dipolo de outra molécula. São mais 
fortes que as forças de London; Ex.: HCl; HBr; HI; H2S; PH3.
2.5.2.3. Pontes de Hidrogênio
As pontes de hidrogênio são forças de natureza elétrica do tipo dipolo permanente - 
dipolo permanente, porém bem mais intensas. O corre quando a molécula é polar e possui 
H ligado a elemento muito eletronegativo e de pequeno raio (F, O, N), de modo que o 
hidrogênio de uma molécula estabelece uma ligação com o átomo muito eletronegativo de 
outra molécula. Ex.: H2O; HF; NH3.
Na prática as forças intermoleculares podem atuar em conjunto, e a interação entre 
as moléculas é calculada pela soma dos diversos tipos de forças intermoleculares atuantes. 
Por exemplo na água a principal força de interação molecular são as pontes de hidrogênio, 
embora também haja interações do tipo dipolo permanente. Entre as moléculas com 
interações do tipo dipolo permanente existem também interações do tipo forças de Van der 
Waals.
2.6. SOLUÇÕES
A solução é uma dispersão ou mistura uniforme de átomos, íons ou moléculas de 
duas ou mais substâncias. Freqüentemente, uma das substâncias numa solução é um 
líquido. Os componentes de uma solução podem ser misturados em varias proporções. Cada 
porção de uma dada solução apresenta composição e propriedades idênticas. Por exemplo, 
quando a sacarose (C12H22O11) é dissolvida em água (H2O), suas moléculas se espalham e se 
misturam completamente com a água. Cada gota da solução contém sacarose e água nas 
mesmas proporções.
Pelo fato de uma solução ser um tipo de mistura (mistura homogênea), seus 
componentes podem ser separados fisicamente. Por exemplo, pode-se separar os 
componentes da solução de sacarose acima evaporando a água por fervura. Entretanto, os 
componentes de uma solução não se separam por si só, e nem podem ser separados por 
filtração.
Estas propriedades podem ser entendidas se imaginarmos uma solução como um 
arranjo ao acaso de minúsculas partículas: átomos, íons ou pequenas moléculas. As 
partículas de uma solução são pequenas demais para serem puxadas pela gravidade e 
sedimentarem, e também para serem retiradas por papel de filtro. As partículas do soluto 
não se separam do solvente sob a ação de ultracentrifugas, não são retiradas por ultrafiltros 
e não são vistas através de microscópios potentes.
28
Além disto, soluções líquidas são geralmente transparentes. Pode-se ver através 
delas porque as partículas são pequenas demais para bloquearem a transmissão de luz 
através da solução.
2.6.1. Componentes da Solução
Uma solução consiste de dois componentes principais:
• soluto;
• solvente.
O soluto é a substância dissolvida e o solvente é a substância que dissolve. Diz-se 
que uma solução se forma, dissolvendo-se um soluto num solvente. O soluto pode também 
ser definido como a substância presente em menor quantidade na solução. O solvente é a 
substância presente em maior quantidade; é o componente mais abundante da solução, que 
retém o seu estado físico original após a adição do soluto. Muitas soluções contêm água 
como solvente e são chamadas soluções aquosas.
As soluções podem ser preparadas de várias maneiras. Tanto o soluto como o 
solvente pode ser um elemento ou um composto, e eles podem estar presentes como 
sólidos, líquidos ou gases (com algumas exceções).
2.6.2. Tipos de Dispersão
A solução é uma dispersão homogênea de duas ou mais espécies de substânciasmoleculares ou iônicas, na qual apresenta partículas do disperso (soluto) com diâmetro 
inferior a 10 Å. Existem outros tipos de dispersões como demonstrado na Tabela 2.5.
Tabela 2.5 – Tipos de dispersão.
Dispersão Diâmetro das Partículas Exemplo
homogênea ou solução 
homogênea
< 10 Å água e cloreto de sódio
coloidal ou solução 
coloidal
10 a 1000 Å gelatina, goma arábica, algumas dispersões 
de proteínas (como albumina bovina), fumaça
grosseira > 1000 Å leite de magnésia (aglomerados de Mg+2 e OH- 
em água)
2.6.3. Classificação das Soluções
As soluções são classificadas quanto:
• ao estado físico da matéria;
• a condução de corrente elétrica;
• ao potencial hidrogeniônico;
• a concentração de soluto.
29
2.6.3.1. Quanto ao Estado Físico da Matéria
As soluções podem existir em qualquer dos três estados da matéria (gasoso, líquido 
e sólido), como apresentado na Tabela 2.6.
Tabela 2.6 – Tipos de soluções quanto ao estado físico da matéria.
Solução Soluto em Solvente Exemplo
gás em gás ar, O2 e gases nobres em N2 (g) a 250C e 1 atm
Gasosa líquido em gás gás nitrogênio úmido H2O (líq.) em N2(g) a 250C e 1 atm
sólido em gás iodo, I2 (g) em nitrogênio em N2(g) a 250C e 1 atm
gás em líquido amoníaco, NH3 (g) em água H2O (líq.)
Líquida líquido em líquido ácido acético (H3CCOOH) em água
gás em líquido nitrato de potássio em água
gás em Sólido hidrogênio H2 (g) em paládio Pd (s)
Sólido líquido em sólido mercúrio [Hg (líq.)] em cobre [Cu (s)]
sólido em sólido ligas metálicas. Ex.: Cu em Ag
2.6.3.2. Quanto a Condução de Corrente Elétrica
Em 1884, Arrhenius afirmava que a dissolução de certas substâncias em água 
produziam íons que se moviam livremente na solução e eram os responsáveis pela 
condução da corrente elétrica nas soluções, propondo assim, a Teoria Iônica das Soluções 
para explicar a condutividade das soluções.
As soluções são classificadas quanto a condução de corrente elétrica em:
• soluções eletrolíticas;
• soluções não eletrolíticas.
As soluções eletrolíticas são formadas pela dissolução de substâncias iônicas ou 
moleculares, que produzem íons cátions e ânions e possibilitam a passagem de corrente 
elétrica. As soluções eletrolíticas podem ser fortes ou fracas, sendo caracterizadas pelo grau 
de dissociação. As substâncias iônicas se dissociam quase totalmente e as substâncias 
moleculares produzem poucos íons.
As soluções não eletrolíticas não possuem íons para promover a condução de 
corrente elétrica. Geralmente são formadas de substâncias moleculares, onde as moléculas 
são eletricamente neutras.
Existem uma diferença conceitual entre os termos técnicos dissociação e ionização. A 
dissociação é empregada quando a substância é iônica e se dissocia em íons, isto quer dizer 
que os íons já existem (substâncias iônicas – são formadas por íons positivos e negativos, 
unidos por atração eletrostática), o solvente apenas os separa. Exemplo:
NaCl + H2O  Na+ (aq.) + Cl- (aq.)
30
A água solvata6 os íons cátions e ânions separando-os.
A ionização é empregada para substâncias moleculares ou átomos que produzem 
íons, neste caso, os íons são produzidos, a molécula do soluto apresenta uma certa 
polaridade, constituindo-se num dipolo, sendo solvente o promotor da separação desses 
pólos. Exemplo:
HCl + H2O  H+ (aq.) + Cl- (aq.)
A molecular do ácido clorídrico é polar, a água promove a formação dos íons cátions 
H+ e ânions Cl-.
2.6.3.3. Quanto ao Potencial Hidrogeniônico
As soluções podem ser classificadas de acordo com o potencial hidrogeniônico (pH), 
ou seja, pela concentração de íons prótons (H+) em solução, em:
• soluções ácidas;
• soluções básicas;
• soluções neutras.
A definição clássica de substância ácida e básica foi proposta pelo químico suíço 
Arrhenius. Um ácido é um composto que, dissociado em água, libera íons de hidrogênio 
(H+), conhecido também por próton, produzindo uma solução ácido, e bases são compostos 
que, dissociam em água, libera íons de hidróxidos (íon hidrônio ou íon hidroxônio, OH-), 
produzindo solução básica ou alcalina. A mistura de uma solução ácida com uma solução 
básica produz uma solução neutra, formando sal e água.
A grau de acidez ou basicidade de uma solução é determinada pelo método 
potenciométrico, na qual se mede o pH através do pHmêtro. O pHmêtro mede a 
concentração de íons [H+] na faixa de uma escala de 0 a 14, onde pH = 7 indica solução 
neutra, pH < 7 indica solução ácida e pH > 7 indica solução alcalina.
A determinação do pH consiste em medir a concentração de íons H+ disperso em 
uma solução. Esta determinação está entre as grandezas químicas mais importante e mais 
determinadas em todos os processos químicos.
A grandeza pH foi definida pela IUPAC como sendo igual a logaritmo negativo da 
atividade do íon hidrogênio:
[ ]+−= HpH log (2.8)
O método mais operacional para determinar o pH é o método eletroquímico, que 
6 É a formação de camadas de solvente ao redor da partícula. Quando o solvente é água e ela soltada a partícula 
iônica, este fenômeno é denominado de hidratação.
31
utiliza eletrodos sensíveis ao íon hidrogênio, como o eletrodo de vidro. Neste método o pH é 
determinado pela força eletromotriz produzida em um eletrodo sensível ao pH contra um 
eletrodo de referência, mais comumente o Ag+/AgCl. O eletrodo de vidro não é um eletrodo 
reversível ao par H2/2H+ e por isso requer calibrações constantes.
A calibração do pHmêtro consiste na construção de uma curva de calibração do tipo 
ilustrados na Figura 2.10.
Figura 2.10 – Curva de calibração de pH (Fonte: Covington et al., 1985).
2.6.3.4. Quanto a Concentração de Soluto
As soluções são classificadas em:
• solução saturada;
• solução não saturada;
• solução supersaturada
• solução diluída;
• solução concentrada.
Solução saturada é aquela em que existe um equilíbrio entre o soluto não dissolvido 
(gasoso, líquido ou sólido) e o soluto presente na solução. A concentração do soluto na 
solução em equilíbrio é chamada solubilidade do soluto nesse solvente à temperatura 
considerada.
A solubilidade de qualquer substância (gás, líquido ou sólido) não depende da 
quantidade do soluto em excesso, isto é, em contato com a solução. De fato, a mesma 
concentração de equilíbrio é encontrada em uma solução saturada, quer seja pequena ou 
grande a quantidade do excesso que está em contato com a solução.
Se a quantidade de soluto na solução corresponde a uma quantidade menor do que a 
da concentração de equilíbrio, a solução é não saturada. Em uma solução não saturada a 
32
quantidade do soluto presente em solução pode variar desde um mero traço, até uma 
concentração imediatamente inferior à de uma solução saturada.
Quanto à relação existente entre soluto e solvente, as soluções não saturadas podem 
ser diluídas e concentradas.
Solução diluída é aquela que apresenta uma quantidade relativamente pequena do 
soluto para uma dada quantidade de solvente., a uma dada temperatura. Ex: 10,0 g de 
AgNO3, dissolvidos em 100 g de água a 25oC.
Solução concentrada é aquela que apresenta quantidade relativamente grande do 
soluto para uma dada quantidade do solvente, a uma dada temperatura. Ex: 70,0 g de 
AgNO3, dissolvidos em 100 g de água a 25oC.
Naturalmente, se há soluto não dissolvido em contato com uma solução não 
saturada, ele se dissolve até desaparecer ou até atingir o equilíbrio.
Uma solução que contenha mais soluto do que corresponde a concentração de 
equilíbrio é uma solução supersaturada. Ela nãoé estável e manifesta sua instabilidade 
particularmente se entrar em contato com qualquer quantidade de soluto não dissolvido. 
Uma solução supersaturada é portanto, um sistema metaestável. As soluções 
supersaturadas tendem a atingir um estado de equilíbrio; se ficar em repouso, o excesso de 
soluto se separa da solução até que a concentração atinja o valor da saturação. No entanto, 
na ausência de perturbações, uma solução supersaturada pode assim permanecer por um 
tempo bastante longo.
Uma solução supersaturada e uma não saturada apresentam uma característica em 
comum: nenhuma tem a concentração de equilíbrio. No entanto, uma solução não saturada 
não pode, por si mesma, atingir o estado de equilíbrio (saturar), a não ser que acrescente-
se soluto, evapore o solvente ou varie a temperatura, enquanto que uma solução 
supersaturada pode, e geralmente o faz, espontaneamente atingir o estado de equilíbrio, 
simplesmente cedendo o excesso de soluto dissolvido. Logo, as soluções não saturadas só 
existem por não conter soluto suficiente no sistema; as soluções supersaturadas podem se 
manter durante algum tempo porque a mudança: solução supersaturada→ solução saturada 
+ soluto não dissolvido, embora termodinamicamente favorável, pode envolver uma energia 
de ativação elevada e, por isso, ocorrer muito lentamente.
As soluções saturadas podem ser tomadas como padrões de referência, porque tanto 
as não saturadas como as supersaturadas tendem a formar uma solução saturada quando 
as condições o permitem. Por exemplo, quando cristais do soluto silo adicionados a urna 
solução não saturada ou a unia solução supersaturada, ambas tendem a se aproximar das 
condições de equilíbrio. A solução não saturada aproxima-se do equilíbrio dissolvendo 
cristais, e a solução supersaturada aproxima-se do equilíbrio depositando cristais.
33
As soluções supersaturadas de gases com líquidos são bastante comuns. Por 
exemplo, as bebidas carbonatadas são soluções supersaturadas de dióxido se carbono em 
água sob pressão relativamente elevada. Quando as garrafas são destampadas, escapa 
algum gás, mas a solução remanescente pode, por algum tempo, continuar supersaturada 
de dióxido de carbono. Pode-se obter soluções supersaturadas de substâncias sólidas, 
fazendo-se a evaporação lenta do solvente ou reduzindo-se a temperatura de unia solução 
saturada, desde que não haja contato da solução com partículas sólidas que possam agir 
como núcleo de cristalização. Algumas substâncias formam facilmente soluções 
supersaturadas outras somente sob condições experimentais cuidadosamente controladas.
No que se refere a soluções de diferentes sais em água, o efeito da temperatura 
sobre a solubilidade varia de um sal para outro. Os sais, geralmente, são mais solúveis a 
temperaturas elevadas do que baixas.
2.6.4. Unidades de Concentração
Concentração de uma solução é a relação entre a quantidade do soluto e a 
quantidade do solvente ou da solução. Uma vez que as quantidades de solvente e soluto 
podem ser medidas em massa, volume ou quantidade de matéria (número de mols), há 
diversas unidades de concentração de soluções. As mais utilizadas são:
• mg/L ou g/L;
• %;
• mol/L;
• N.
2.6.4.1. Concentração em Miligramas por Litro ou Gramas por Litro
Esse termo é utilizado para indicar a relação entre a massa do soluto (m), expressa 
em gramas, e o volume (V), da solução, em litros.
)(
)(
LV
gmC = (2.5)
2.6.4.2. Concentração em Composição Percentual
É um método bastante comum de expressar a concentração de uma solução.
Esta unidade de concentração relaciona a massa (m) ou o volume (V) do soluto com 
a massa ou o volume do solvente ou da solução, conduzindo a notações tais como:
% (m/m); % (m/V) ou % (V/V)
A relação m/m corresponde a base percentual mais usada na expressão da 
concentração de soluções aquosas concentradas de ácidos inorgânicos como ácido clorídrico, 
34
ácido sulfúrico e ácido nítrico. Ex. o ácido sulfúrico encontrado no comércio contém cerca de 
98% (em massa) de soluto (H2SO4 líquido), ou seja, 100 g do ácido comercial contém 98 g 
de H2S04 e ± 2g de água.
Os termos diluído e concentrado são apenas termos relativos. Uma solução diluída 
contém somente uma fração do soluto contido numa solução concentrada. Ex. Uma solução 
a 3%(m/m) de ácido nítrico é diluída em comparação com uma solução de 1-1N03 a 30% 
em massa.
2.6.4.3. Concentração em Quantidade de Matéria
É a relação entre a quantidade de matéria do soluto (n) e o volume da solução (V), 
expresso em litros.
)(
)(
LV
molnC = (2.6)
No passado, essa unidade de concentração era denominada molaridade ou 
concentração molar, que hoje encontra-se em desuso.
Atualmente, de acordo com a International Union of Pure and Applied Chemistry 
(IUPAC), o uso desses termos deve ser evitado.
2.6.4.4. Concentração Normal
Denominada de normalidade, no passado esta unidade foi muito utilizada em 
cálculos relacionados com titulações. Atualmente, o uso da normalidade não é recomendado 
pela IUPAC, uma vez que o emprego desta unidade de concentração não enfatiza a 
estequiometria da reação química. Além disso, o valor numérico do equivalente-grama de 
alguns compostos químicos varia de uma reação para outra. Está em desuso.
A conversão da concentração normal para mol/L é realizada de acordo com a 
seguintes equação:
∆= MN (2.7)
sendo,
N = concentração normal;
M = concentração mol/L;
∆ = número de oxidação (nox).
2.6.6. Hidrólise
Hidrólise é a reação da água sobre um composto, quebrando este composto, com a 
fixação de íons hidrogênio ou de íons hidroxila.
35
Quando um sal é dissolvido em água ele se dissocia totalmente, para produzir 
cátions e ânions, que devem subseqüentemente, reagir quimicamente com o solvente, por 
meio de hidrólise.
A hidrólise ocorre para íons provenientes de ácidos ou bases fortes. Por exemplo, o 
cátion (proveniente de uma base forte) de um sal sofre a seguinte reação de hidrólise:
M+ + H2O  MOH + H+
Assim, tem-se um sal ácido.
Então, um ânion (proveniente de um ácido forte) de um sal, sofre a seguinte reação 
de hidrólise:
X- + H2O  HX + HO-
tem-se, desta forma, um sal básico.
2.6.6.1. Hidrólise de Sais Ácidos, Básicos e Neutros
Os sais quando dissolvidos em água podem produzir soluções ácidas, básicas ou 
neutras.
2.6.6.1.1 – Hidrólise de Sais Ácidos: Um sal é dito ácido quando ele é formado pela reação 
de um ácido forte com uma base fraca. Por exemplo, o sal de NH4Cl 
(cloreto de amônio).
HCl + NH4OH → NH4Cl + H2O
 ácido forte base fraca sal ácido água
Assim, esse sal quando é dissolvido em água produz um meio ácido cujo pH < 7.
H2O
NH4Cl NH4+ + Cl-
OH-
- Sofre hidrólise: NH4+ + H  OH NH4OH + H+
- Sofre hidratação: Cl-
O íon amônio sofre hidrólise porque é pouco eletropositivo, e o íon coreto sofre 
hidratação porque é muito eletro negativo.
2.6.6.1.2 – Hidrólise de Sais Básicos: Um sal é dito básico quando ele é formado pela 
reação de uma base forte com um ácido fraco. Por exemplo, o sal de 
NaCH3COO (ou NaC2H3O2 – acetato de sódio).
CH3COOH + NaOH NaCH3COO + H2O
 ácido fraco base forte sal básico água
36
Assim, esse sal quando é dissolvido em água produz um meio básico cujo pH > 7.
 H2O
NaCH3COO Na+ + CH3COO-
- Sofre hidratação: Na+
H+- Sofre hidrólise: CH3COO- + HOH HCH3COO + OH-
O íon amônio sofre hidrólise porque é pouco eletropositivo, e o íon coreto sofre 
hidratação porque é muito eletro negativo.
2.7. REAÇÕES QUÍMICAS
A reação ou transformação química é uma reorganização dos átomos das 
substâncias, na qual uma espécie de matéria, ou mais de uma, se transforma em nova 
espécie de matéria ou em diversas novas espécies de matéria. O enferrujamento do ferro, 
no qual o ferro se combina com o oxigênio da atmosfera para formar a ferrugem, é uma 
transformação química. As substâncias iniciais, ferro e oxigênio, combinam-se 
quimicamente e não podem ser separadas por procedimentos físicos.
As reações químicas ocorrem em nível microscópico, onde a visão humana não 
consegue alcançar, por outro lado é necessário apoiar-nos em parâmetros macroscópicos 
que evidencie se uma reação ocorreu ou não durante aos procedimentos práticos. Algumas 
evidências de ocorrência de uma reação química são: desprendimento de gás, turvação, 
mudança de cor, mudança de cheiro e produção de energia.
2.7.1. Tipos de Reações Químicas
Existem basicamente 3 tipos de reações químicas:
• reações de precipitação;
• reações ácido-base;
• reações de oxidação-redução.
2.7.1.1. Reações de Precipitação
As reações de precipitação ocorrem da mistura de duas soluções de substâncias 
iônicas para formar uma substância iônica sólida, chamada de precipitado. Precipitado é um 
composto sólido insolúvel formado durante a reação química em solução.
Para prever se haverá ou não formação de um precipitado, basta saber as regras de 
solubilidade (Tabela 2.7).
37
Tabela 2.7 – Regras de Solubilidade de Compostos Iônicos.
Regr
a
Aplica-se aos 
íons
Enunciado Exceções
1 Li+, Na+, K+, 
NH4+
compostos do grupo IA e do íon 
amônio são solúveis
-
2 C2H3O2-, NO3- acetatos e nitratos são solúveis -
3 Cl-, Br-, I- cloretos, brometos e iodetos são 
solúveis
cloretos, brometos e iodetos 
de Ag, Hg e Pb
4 SO42- sulfatos são solúveis sulfatos de Ca, Ba, Sr, Ag, Hg 
e Pb
5 CO32- carbonatos são insolúveis carbonatos do grupo IA e NH4+
6 PO43- fosfatos são insolúveis fosfatos do grupo IA e NH4+
7 S2- sulfetos são insolúveis sulfetos do grupo IA e NH4+
8 OH- hidróxidos são insolúveis hidróxidos do grupo IA, Ca, Ba 
e Sr
Como exemplos, tem-se as seguintes reações:
AgNO3 + HCl  AgCl ↓ + HNO3
Na2CO3 + HCl  NaCl + H2CO3
2.7.1.2. Reações de Ácido - Base
As reações de ácido - base ocorrem quando uma substância ácida reage com uma 
substância básica produzindo sal mais água. Estes tipos de reações também são conhecidas 
como reações de neutralização, quando as quantidades de ácido e base são equivalentes. 
Por exemplo,
NaOH + HCl  NaCl + H2O
Ca(OH)2 + H2SO4  CaSO4 + 2 H2O
Quando as quantidades de ácido ou base são excedentes no meio, elas podem ser 
detectadas utilizando-se indicadores, que são substâncias orgânicas (ácidos ou bases 
orgânicas fracas) adicionadas em pequenas quantidades ao meio, dando uma coloração 
característica.
Os indicadores são muito empregados nas titulações de ácido – base, para que o 
operado consiga visualizar o ponto de viragem (ponto de equivalência) da titulação. Como a 
mudança de coloração do meio para cada indicador ocorre em uma determinada faixa de pH 
(Figura 2.11), é necessário que se escolha o pH adequado para cada ponto de equivalência 
da titulação.
38
Figura 2.11 – Indicadores e suas respectivas faixa de mudança de coloração do 
meio (Fonte: ROSSETTI, 2004).
2.7.1.3. Reações de Oxidação - Redução
As reações de oxidação - redução ocorrem quando existe a transferência de elétrons 
entre os reagentes, onde um elemento químico sofre oxidação e o outro elemento sofre 
redução. Oxidação é processo de perda de elétrons e redução é o processo de aquisição de 
elétrons.
As reações de oxidação-redução podem ser do tipo: combinação, decomposição, 
deslocamento e combustão. Como por exemplos:
a) Combinação: Na (s) + Cl2  2 NaCl
b) Decomposição: CaCO3 CaO (s) + CO2 (g)
c) Deslocamento: Zn (s) + 2 HCl (aq)  ZnCl2 (aq) + H2 (g)
d) Combustão: 4 Fe (s) + 3O2  Fe2O3
O balanceamento de uma equação de oxidação-redução pode ser feito de acordo 
com o passo-a-passo a seguir:
1o Passo: Indicar os números de oxidação (nox) de cada elemento químico;
2o Passo: Identificar qual o elemento químico em que ocorre mudança do nox;
3o Passo: Identificar qual o elemento químico sofre redução;
4o Passo: Identificar qual o elemento químico sofre oxidação;
5o Passo: Determinar a quantidade de elétrons para redução;
6o Passo: Determinar a quantidade de elétrons para oxidação;
7o Passo: Balancear as quantidades de elétrons, multiplicando cruzado;
8o Passo: Colocar, como índice no primeiro termo da equação, o número determinado pelo 
balanceamento;
9o Passo: Verificar as quantidades de átomos dos elementos químicos diferentes do 
hidrogênio e oxigênio;
39
10o Passo: Balancear as quantidades de oxigênio e hidrogênio por último.
Exemplos:
a) HI + H2SO4  H2S + I2 + H2O.
Resposta: 8HI + H2SO4  H2S + 4I2 + 4H2O.
b) K2Cr2O7 + HBr → KBr + CrBr3 + Br2 + H2O
Resp.: K2Cr2O7 + 14HBr → 2KBr + 2CrBr3 + 3Br2 + 7H2O
c) Ag + HNO3 → AgNO3 + NO + H2O
Resp.: 3Ag + 4HNO3 → 3AgNO3 + NO + 2H2O
2.8. TERMOQUÍMICA
A termoquímica estuda as energias envolvidas nas reações químicas. Toda reação 
química implica no rearranjo dos átomos em suas diferentes ligações. Estas transformações 
são acompanhadas por absorção ou desprendimento de energia sob a forma de luz, 
eletricidade ou calor.
A maioria das reações químicas envolvem as transformações de energia térmica, nas 
quais são transferidas sob a forma de calor. Uma reação química acompanhada de 
desprendimento de calor para o meio é denominada de reação exotérmica, e uma reação 
química acompanhada por absorção de calor do meio é denominada de reação endotérmica.
Estes estudos são fundamentados na termodinâmica, ciência macroscópica que 
estuda as relações entre as diferentes propriedades de equilíbrio de um sistema e as trocas 
das propriedades de equilíbrio nos processos.
A energia liberada ou absorvida nas reações química são extremamente importantes 
nos processos bioquímicos do nosso ecossistema, como por exemplo, a absorção de energia 
luminosa pelas plantas durante a fotossíntese.
As energias envolvidas nas reações químicas são:
• energia interna;
• entalpia;
• entropia;
• energia livre.
2.8.1. Energia Interna
A Energia Interna (E) é a energia armazenada nas ligações das moléculas e nos 
retículos iônicos e se origina das energias potencial e cinética dos elétrons (Ucko, 1992).
A variação da energia interna (∆E) é uma função termodinâmica que depende do 
40
estado inicial e final da reação, e ocorre quando a reação absorve ou libera de calor em um 
sistema com volume constante (V = constante). Se ∆E é positivo, a reação é endotérmica, e 
se ∆E é negativo, a reação é exotérmica (Figura 2.13).
O calor liberado (∆E) a volume constante é medido na prática por uma bomba 
calorimétrica (ou calorímetro), porém como a maioria das reações químicas ocorrem em 
sistemas abertos e à pressão atmosférica constante, é mais prático medir a entalpia do 
sistema.
2.8.2. Entalpia
A Entalpia (∆H) é uma palavra de origem alemã, enthalen, que significa “conteúdo de 
calor”, é o calor absorvido ou liberado à pressão constante (P = constante). Se a entalpia é 
negativa (∆H = -), a reação é exotérmica e se a entalpia é positiva (∆H = +), a reação é 
endotérmica (Figura 2.12).
Figura 2.12

Outros materiais

Perguntas Recentes