A maior rede de estudos do Brasil

Grátis
18 pág.
Transformadores

Pré-visualização | Página 3 de 4

1-φ 
separados mas idênticos ou por uma única unidade 3-φ contendo enrolamentos trifásicos. 
Os enrolamentos dos transformadores (três no primário e três no secundário) podem ser 
ligados para formar um conjunto 3-φ de qualquer uma das quatros formas comuns Fig. 1.7. 
Cada enrolamento primário é ligado ao enrolamento secundário desenhado paralelo a ele. 
 Na figura estão indicadas as tensões e as correntes em função da tensão V de linha 
aplicada ao primário e da corrente da linha I, onde a = N1 / N2 , a razão entre o número de 
espiras do primário e do secundário. A tensão de linha é a tensão entre duas linhas, 
enquanto a tensão de fase é a tensão através do enrolamento de um transformador. A 
corrente de linha é a corrente em uma das linhas, enquanto a corrente de fase é a corrente 
no enrolamento do transformador. As especificações de tensão e de corrente dos 
transformadores individuais dependem das ligações mostradas (Fig. 1.7) e estão indicadas 
na forma de uma tabela (Tabela 2-1) para maior conveniência de cálculos. Supõe-se que 
os transformadores sejam ideais. A especificação em quilovolt-ampère de cada 
transformador é um terço da especificação em quilovolt-ampère do conjunto, 
independentemente das ligações usadas nos transformadores. 
 
 (a) Triângulo com triângulo (∆-∆). (b) Estrela com estrela (Υ-Υ). 
 
Transformadores 
 13 
 (c) Estrela com triângulo (Υ-∆). (b) Triângulo com estrela (∆-Υ). 
Fig. 1.7 - Ligações comuns de transformadores 3-φφφφ. Os enrolamentos dos 
transformadores são indicados através das linhas em negrito. a = N1 / N2 
O uso de transformadores individuais é preferível a uma unidade polifásica, quando 
se requer continuidade no serviço. Por exemplo, uma bancada ∆-∆ (delta-delta) pode ser 
operada em V-V (delta aberto ou V-V) com um transformador removido. O sistema 
continua a suprir potência trifásica às cargas ligadas em ∆ ou Υ sem alteração nas 
tensões, porém com uma capacidade de 57,7% da potência total da bancada. 
Tabela 2-1. Relações de tensão e corrente para ligações comuns de transformadores 3-φ. 
Ligação do PRIMÁRIO SECUNDÁRIO 
Transformador Linha Fase Linha Fase 
( primário e 
secundário ) Tensão Corrente Tensão Corrente Tensão Corrente Tensão Corrente 
∆∆∆∆-∆∆∆∆ V I V I 3
 
V a
 
a I⋅
 
V a
 a I⋅ 3
 
ΥΥΥΥ-ΥΥΥΥ V I V 3
 
I V a
 
a I⋅
 
V a3 ⋅
 
a I⋅
 
ΥΥΥΥ-∆∆∆∆ V I V 3
 
I V a3 ⋅
 
3 ⋅ ⋅a I
 
V a3 ⋅
 
a I⋅
 
∆∆∆∆-ΥΥΥΥ V I V I 3
 
3 ⋅V a
 
a I⋅ 3
 
V a
 a I⋅ 3
 
 
Lista de Exercícios sobre Transformadores 
1- Um transformador com uma relação abaixadora de 10:1 é seguido de um transformador 
com uma relação abaixadora de 5:1. Qual é a tensão no secundário do segundo 
transformador se a tensão no primário do primeiro é de 1.200 V? 
2- Um transformador cujo primário está ligado a uma fonte de 110 V libera 11 V. Se o 
número de espiras do secundário for de 20 espiras, qual o número de espiras do 
Transformadores 
 14 
primário? Quantas espiras adicionais serão necessárias acrescentar ao secundário para 
que ele possa fornecer 33 V? 
3- O primário de um transformador tem 200 espiras e é alimentado por uma fonte de 60 
Hz, 220 V. Qual é o máximo valor de fluxo no núcleo? 
4- Uma tensão v=155,5 sem 377t + 15,5 sem 1131t (V) é aplicada no primário do 
transformador de 200 espiras, 60 Hz. Desprezando a dispersão magnética, determine o 
valor instantâneo do fluxo no núcleo. 
5- Um transformador é testado e descobriu-se ser capaz de fornecer 60 A em 230 V 
quando a corrente de primário é de 25 A. Calcule: (a) a relação de transformação, (b) a 
tensão do primário e (c) os kVA que podem ser fornecidos. 
6- Uma tensão de primário de 2.900 V é aplicada a um transformador de 3.000/120 V, de 
10 kVA. Determine: (a) a tensão de secundário e (b) os kVA que podem ser fornecidos 
nesta tensão mais baixa. 
7- Obs.: A corrente não pode ultrapassar o valor especificado (nominal) indiferentemente 
da tensão. 
8- Um transformador comercial de 220/30 V, 3 kVA, 60 Hz tem a relação de 3 V/espira. 
Calcule: (a) o número de espiras do lado de AT, (b) o número de espiras do lado de BT, 
(c) a relação de transformação, se utilizado como abaixador, (d) a relação de 
transformação, se utilizado como elevador, (e) a corrente nominal do lado de AT, e (f) a 
corrente nominal do lado de BT. 
9- Um transformador de 4,6 kVA, 2.300/115 V, 60 Hz foi projetado para ter uma fem 
induzida de 2,5 volts/espira. Imaginando-o um transformador ideal, calcule: (a) o número 
de espiras do enrolamento de alta, Na, (b) o número de espiras do enrolamento de 
baixa, Nb, (c) a corrente nominal para o enrolamento de alta, Ia, (d) a corrente nominal 
para o enrolamento de baixa, Ib, (e) a relação de transformação funcionando como 
elevador e (f) a relação de transformação funcionando como abaixador. 
10- O lado de AT de um transformador tem 750 espiras e o de BT 50 espiras. Quando o 
lado de AT é ligado a uma rede de 120 V, 60 Hz, e uma carga de 40 A é ligada ao lado 
de BT, calcule: (a) a relação de transformação, (b) a tensão secundária, (c) a resistência 
da carga, (d) a relação volts/espiras do primário e do secundário, e (e) a capacidade em 
VA do transformador. 
11- O lado de alta tensão de um transformador abaixador tem 800 espiras e o lado de baixa 
tensão tem 100 espiras. Uma tensão de 240 V é aplicada ao lado de alta tensão e uma 
Transformadores 
 15 
impedância de carga de 3 Ω é ligada ao lado de baixa tensão. Calcule: (a) a corrente e 
tensão secundárias, (b) a corrente primária, (c) a impedância de entrada do primário a 
partir da relação entre a tensão e a corrente primárias e (d) a impedância de entrada do 
primário por meio da relação de impedância. 
12- Um transformador retira 2,5 A em 110V e fornece 7,5 A em 24 V para uma carga com 
um FP unitário (1,0). Calcule o rendimento do transformador. 
13- Um transformador fornece 550 V em 80 mA com uma eficiência de 90 por cento. Se a 
corrente do primário for de 0,8 A, qual a potência de entrada em voltampères e a tensão 
do primário? 
14- Um transformador de 240/720 V e 5 kVA é submetido a um teste de perda no cobre 
através de curto-circuito. No início do teste, varia-se a tensão do primário até que o 
amperímetro através do secundário indique a corrente especificada para o secundário 
com carga máxima. A resistência medida do enrolamento do primário é de 0,05 Ω e a 
do enrolamento do secundário é de 1,5 Ω. Calcule a perda total no cobre. 
15- Num teste com circuito aberto para a verificação de perdas no núcleo no transformador 
de 5 kVA da questão anterior, quando a tensão do primário é fixada na tensão 
especificada de 240 V, o wattímetro no circuito do primário indica 80 W. Se o fator de 
potência da carga for de 0,8, qual a eficiência do transformador com carga máxima? 
16- Um transformador de 10 kVA e 2.400/240 V em 60 Hz tem uma resistência no 
enrolamento primário de 6 Ω e uma resistência no enrolamento secundário de 0,06 Ω. A 
perda no núcleo é de 60 W. Calcule (a) a perda no cobre com carga máxima, (b) a 
eficiência do transformador quando estiver completamente carregado com um FP de 0,9 
e (c) a sua eficiência se o FP for de 0,6. 
17- Um transformador de 20 kVA, 660 V/ 120 V tem perdas a vazio de 250 W e uma 
resistência do lado de AT de 0,2 Ω. Imaginando que as perdas relativas à carga nos 
enrolamentos são iguais, calcule: 
(a) a resistência do lado de BT, (b) a perda no cobre equivalente à plena carga. 
18- Um transformador abaixador de 20 kVA, 2300/230 V, é ligado conforme mostra a figura 
abaixo, com o lado de baixa tensão curto-circuitado. 
Transformadores 
 16 
 
. Os dados lidos no lado de alta tensão são: 
 
Leitura do wattímero = 250 W 
Leitura do voltímetro = 50 V 
Leitura do amperímetro = 
Calcule: 
a) A impedância, a reatância e a resistência

Crie agora seu perfil grátis para visualizar sem restrições.