Buscar

Mecânica Analítica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 193 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 193 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 193 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

MECÂNICA GERAL
ANTONIO EDSON GONÇALVES
24 de Outubro de 2010
2
Antonio Edson Gonçalves
Depto de Física - Centro de Ciências Exatas
Universidade Estadual de Londrina
Cx. Posta 86100 -Londrina - Paraná
goncalve@uel.br
01.07.2010
Conteúdo
1 Matrizes, Vetores e Cálculo Vetorial 13
1.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 O conceito de escalar . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Transformação das coordenadas . . . . . . . . . . . . . . . . 15
1.4 Propriedades das Matrizes de Rotações . . . . . . . . . . . . 20
1.5 Operações com Matrizes . . . . . . . . . . . . . . . . . . . . 26
1.6 Algumas Propriedades e Definições Adicionais . . . . . . . . 27
1.7 O Significado Geométrico das Matrizes de Transformações . 32
1.8 Definição de Escalar e Vetor em Termos das Propriedades de
Transformações . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.9 Operações Elementares com Vetores e Escalares . . . . . . . 40
1.10 O Produto Escalar ou Interno de Dois Vetores. . . . . . . . . 41
1.11 Vetores Unitários . . . . . . . . . . . . . . . . . . . . . . . . 43
1.12 O Produto Vetorial . . . . . . . . . . . . . . . . . . . . . . . 45
1.13 Derivada de um Vetor com Relação a um Escalar . . . . . . 50
1.14 Exemplos de Derivadas . . . . . . . . . . . . . . . . . . . . . 53
1.14.1 Vetor Posição, Velocidade e Aceleração em Coordena-
das Cartesianas. . . . . . . . . . . . . . . . . . . . . 53
1.15 Coordenadas Curvilineares . . . . . . . . . . . . . . . . . . . 54
1.15.1 Cossenos Diretores . . . . . . . . . . . . . . . . . . . 55
1.15.2 Fatores de Escala ou Coeficientes de Lamé . . . . . . 57
1.15.3 O Elemento de Volume e Operadores Diferenciais em
Coordenadas Curvilineares. . . . . . . . . . . . . . . 64
1.16 Os vetores Posição, Velocidade e Aceleração em Coordena-
das Curvilineares . . . . . . . . . . . . . . . . . . . . . . . . 68
1.16.1 Os Vetores Velocidade e Aceleração em Coordenadas
Polares (r, φ) . . . . . . . . . . . . . . . . . . . . . . 69
1.16.2 Os Vetores Velocidade e Aceleração em Coordenadas
Cilindricas (ρ, φ, z) . . . . . . . . . . . . . . . . . . 70
3
4 CONTEÚDO
1.16.3 Vetores Velocidade e Aceleração em Coordenada Es-
féricas (r, θ. φ) . . . . . . . . . . . . . . . . . . . . . 71
1.17 A velocidade Angular . . . . . . . . . . . . . . . . . . . . . 73
1.18 O Operador Gradiente . . . . . . . . . . . . . . . . . . . . . 77
1.19 Integral de Vetores . . . . . . . . . . . . . . . . . . . . . . . 81
2 Mecânica Newtoniana - Dinâmica de uma partícula. 97
2.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.2 As Leis de Newton . . . . . . . . . . . . . . . . . . . . . . . 97
2.3 Sistemas de Coordenas . . . . . . . . . . . . . . . . . . . . . 99
2.4 As Equações de Movimeto de uma Partícula. . . . . . . . . . 101
2.4.1 Atrito . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.5 Teoremas de Conservação . . . . . . . . . . . . . . . . . . . 126
2.5.1 Energia . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.6 Os Limites de Validade da Mecânica Clássica. . . . . . . . . 146
3 Oscilações 153
3.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.2 O Oscilador Harmônico Simples . . . . . . . . . . . . . . . . 154
3.3 Oscilações Harmônicas em Duas Dimensões. . . . . . . . . . 158
3.3.1 Solução da equação de movimento (3.13) em coor-
denadas cartesianas . . . . . . . . . . . . . . . . . . 158
3.3.2 Solução da equação de movimento (3.13) em coor-
denadas polares. . . . . . . . . . . . . . . . . . . . . 160
3.3.2.1 Solução via Equação de Movimento . . . . 160
3.3.2.2 Solução via Integral Primeira de Movimento. 163
4 Gravitação 165
4.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.2 O Potencial Gravitacional . . . . . . . . . . . . . . . . . . . 168
4.2.1 O Significado Físico do Potencial Gravitacional . . . 170
4.3 A Lei de Gauss e a Equação de Poisson . . . . . . . . . . . . 172
A Equações Diferencias de 2a Ordem Inomogêneas. 179
A.1 Funções de Green em Uma Dimensão . . . . . . . . . . . . . 179
A.1.1 Algumas Propriedades da Função de Green . . . . . 181
B Tópicos em Funções Analíticas 185
B.1 O Teorema de Cauchy . . . . . . . . . . . . . . . . . . . . . 185
B.2 A função de Heaviside ou Degrau . . . . . . . . . . . . . . . 187
B.3 Solução Partícular da Equação Diferencial . . . . . . . . . . 189
CONTEÚDO 5
B.4 Solução da Equação Homogênea . . . . . . . . . . . . . . . 190
Appendix 178
Referências Bibliográficas 191
Índice 192
6 CONTEÚDO
Lista de Figuras
1.1 Grandeza escalar com relação aos sistemas S e S’ . . . . . . 14
1.2 Coordenadas do ponto P com relação ao sistemas de coor-
denadas S e S ′. . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Rotação de S ′com relação a S ao redor do eixo x1 . . . . . . 19
1.4 Segmento de linha (hipotenusa) definido pelo ponto de co-
ordenadas (α, β, γ). Adiciona-se outro segmento de linha
definido pelo ponto de coordenadas (α′, β′, γ′). . . . . . . 20
1.5 Cosenos diretores em coordenadas cartesianas e coordena-
das esféricas . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Rotação de um ângulo θ do sistema de coordenadas, o ponto
P é mantido fixo. Rotação de um ângulo θ do ponto P . . . . 25
1.7 Rotação do ponto P . . . . . . . . . . . . . . . . . . . . . . 25
1.8 Rotação do sistema ao redor do eixo x3 . . . . . . . . . . . . 33
1.9 Rotação do sistema ao redor do eixo x1 . . . . . . . . . . . . 34
1.10 Composição de rotações: o sitema é girado de 90o no sah ao
redor do eixo x3para em seguida ser girado no sah, também
de 90o, ao redor do novo eixo x′1. . . . . . . . . . . . . . . . 35
1.11 Exemplo da não comutatividade de rotações. . . . . . . . . 36
1.12 Sistema de coordenadas S que foi girado de um angulo θ no
sah ao redor do eixo x3 . . . . . . . . . . . . . . . . . . . . 36
1.13 Inversão total dos eixos do sistema S . . . . . . . . . . . . . 38
1.14 Componente A1,, A2, A3 do vetor A no sistema de coorde-
nadas x1, x2, x3. Também é mostrado o angulo α entre o
vetor A e o eixo x1 . . . . . . . . . . . . . . . . . . . . . . . 42
1.15 Projeção do vetor B na direção do vetor A . . . . . . . . . . 45
1.16 O módulo do vetor C = A×B é igual ao valor da área do
paralelograma AB sin θ, onde θ é o angulo entre os vetores
A e B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.17 Trajetória Γ(s) traçada pela exteremidade do vetorA quando
o parâmetro s varia . . . . . . . . . . . . . . . . . . . . . . 52
7
8 LISTA DE FIGURAS
1.18 Família de superfícies ortogonais cujas intersecções definem
os vetores unitários ortonormais de um sistema de coorde-
nadas curvilineares. . . . . . . . . . . . . . . . . . . . . . . 54
1.19 Coordenadas polares . . . . . . . . . . . . . . . . . . . . . . 69
1.20 Coordenadas cilindricas . . . . . . . . . . . . . . . . . . . . 71
1.21 Movimento circular de uma partícula . . . . . . . . . . . . . 74
1.22 Rotação infinitesimal . . . . . . . . . . . . . . . . . . . . . . 76
1.23 Significado geométrico do gradiente . . . . . . . . . . . . . 79
1.24 Elemento diferencial de área da e sua direção normal à su-
perfície . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
1.25 O elemento diferencial de área de uma superfície que limita
o volume V . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
1.26 a figura mostra um contorno C que limita uma superfície
aberta e orientada. A dorientação do vetor unitário foi esco-
lhida de tal forma que um observador caminhando na fon-
teira da superfície (curva C) tem o interior a sua esquerda.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
1.27 Geometria da integração. . . . . . . . . . . . . . . . . . . . 86
1.28 Geometria da integral do fluxo do campo A através de um
octantedo cilindro. . . . . . . . . . . . . . . . . . . . . . . . 87
1.29 Geometria da integração esférica . . . . . . . . . . . . . . . 89
1.30 Volume de integração . . . . . . . . . . . . . . . . . . . . . 90
2.1 Sistema de Coordenadas não inercial . . . . . . . . . . . . . 100
2.2 Bloco no plano inclinado: (a) deslizando sem atrito e (b) em
repouso com coeficiente de atrito estático µe. . . . . . . . . 101
2.3 Partícula em movimento horizontal com atrito . . . . . . . . 104
2.4 Gráficos das funções x(t) e v(t) com κ = 1/s e v0 = 10m/s. . 106
2.5 Partícula em queda livre num meio resistivo. . . . . . . . . . 107
2.6 Gráfico da velocidade para diferentes valores do módulo da
velocidade inicial v0. . . . . . . . . . . . . . . . . . . . . . . 109
2.7 Movimento de um projétil num meio sem atrito e com campo
graviatacional uniforme de módulo g. . . . . . . . . . . . . 111
2.8 Gráfico da trajetória y(x) para as condições iniciais reais
do Canhão Kaiser Wilhelm Geschütz: v0 = 2000m/s, θ =
55opara κ = 0, 10−2, 10−3. . . . . . . . . . . . . . . . . . . . 117
2.9 Tempo de voo T em função do coeficiente κ. Condições Ini-
ciais v0 = 2000m/s, θ = 55o, g ∼ 10m/s2. . . . . . . . . . . . 120
2.10 Partícula de massa m e carga elétrica e em um campo eletro-
magnético externo. . . . . . . . . . . . . . . . . . . . . . . . 123
2.11 Trajetória gerada pelas curvas paramétricas x(t), y(t) e z(t) . 126
LISTA DE FIGURAS 9
2.12 Diferentes trajetórias de integração . . . . . . . . . . . . . . 129
2.13 Disco de raio R que gira com velocidade angular constante ω0 132
2.14 Energia Total, Cinética e Potencial . . . . . . . . . . . . . . . 135
2.15 Pontos de equilírio . . . . . . . . . . . . . . . . . . . . . . . 136
2.16 Potencial da molécula de amônia . . . . . . . . . . . . . . . 146
2.17 Figura do problema 2.0.6 . . . . . . . . . . . . . . . . . . . 148
3.1 Força restauradora . . . . . . . . . . . . . . . . . . . . . . . 154
3.2 Energias cinética, potencial e total . . . . . . . . . . . . . . 156
3.3 Pendulo simples . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.4 Trajetorias para A = B e δ = 0, pi, 2pi, pi/2, 3pi/2, pi/3, 2pi/3 159
3.5 Coordenadas polares de uma partícula sob a ação de uma
força F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.1 Sistema referência para força gravitacional . . . . . . . . . . 166
4.2 Experimento de Cavandish . . . . . . . . . . . . . . . . . . . 167
4.3 Integral volumétrica da força de interação gravitacional . . 167
4.4 Superfície arbitrária envolvendo uma massa m . . . . . . . 173
4.5 Camada de massa com raio interno b e externo a . . . . . . 175
A.1 Contorno C para a integral da função de Green . . . . . . . 181
A.2 Contorno no semi-plano superior par o cálculo da integral I 184
B.1 Função de Heaviside . . . . . . . . . . . . . . . . . . . . . . 187
B.2 Contornos de integração para a função degrau . . . . . . . . 188
10 LISTA DE FIGURAS
Lista de Tabelas
11
12 LISTA DE TABELAS
Capítulo 1
Matrizes, Vetores e Cálculo
Vetorial
1.1 Introdução
A descrição1 de um dado fenômeno físico, deve ser independente da esco-
lha do sistema de coordenadas utilizados para descrevê-lo, por exemplo a
escolha de coordenadas polares, cartesianas ou esféricas não deve interferir
no resultado final. Isto porque uma medida de uma determinada grandeza
física tal como velocidade de uma partícula ou sua massa não pode ser
afetada pela escolha do sitema de coordenadas. Certamente essa escolha
é determinada pela simplicidade da forma que as equações de movimento
terão num dado sitema de coordenadas.
Neste contexto, a descrição de fenômenos físicos utilizando o forma-
lismo vetorial é apropriado já que permite apresentar as equações de forma
concisa, compacta, de forma invariante com relação as transformações or-
togonais e independente da origem do sistema de coordenadas.
O conceito de vetor como uma quantidade que possui módulo, direção
e sentido é útil para o desenvolvimento conceitual e para uma identifica-
ção mais direta (menos abstrata) de algumas grandezas físicas. Conside-
rando que o estudante já possui este conhecimento, os vetores são discuti-
dos no contexto de matrizes para evidenciar suas propriedades com relação
as transformações de coordenadas. A notação matricial e a convenção de
soma de Einstein serão amplamente utilizadas em todas as operações com
matrizes, objetivando expor ao estudante a notação utilizada no forma-
lismo tensorial.
1O material deste capítulo é, em parte, baseado na referência 5.
13
14 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Figura 1.1: Grandeza escalar com relação aos sistemas S e S’
1.2 O conceito de escalar
Considere o arranjo de esferas mostrados na figura 1.1 . Este consiste de
esferas com diferentes cores, aqui representado uma propriedade física do
sistema, por exemplo a massa ou o número quântico “color” que na Eletro-
dinâmica Quântica descreve uma propriedade física dos quarqs. No sistema
de coordenadas S, a propriedade cor de uma esfera pode ser representada
pelo par de números (x, y), por exemplo
M(1, 2) = vermelho,
M(2, 2) = verde.
Já, no sitema S ′ a cor é representada pelo par de números (x′, y′), por
exemplo
M ′(1, 41′; 1, 41′) = verde.
Como a cor ou a massa não mudam quando descritos ou medidos com
relação a diferentes sistemas de coordenadas, definimos um escalar como
uma grandeza que sob transformação de coordenadas transforma-se
como
M(x, y) = M ′(x′, y′). (1.1)
Em conclusão, a massa ou “cor ” de uma partícula pode ser descrita por
um número com relação a um dado sistema de coordenadas, entretanto
1.3. TRANSFORMAÇÃO DAS COORDENADAS 15
outras grandezas físicas que caracterizam a partícula (por exemplos distân-
cia ou velocidade) não podem ser descritas de forma tão simples, para isto
será necessário a utilização de vetores. Análogamente ao escalar que per-
manece invariante sob transformações do sistema de coordenadas, o vetor
pode ser definido em termos de suas propriedades sob transformações do
sistema de coordenadas.
Para estudar estas transformações, iniciamos com as transformações das
coordenadas de um ponto quando o sistema de referência é girado com
relação a um eixo comum as duas origens.
1.3 Transformação das coordenadas
O objetivo desta seção é encontrar a relação entre as coordenadas de um
ponto referido a dois sistemas de coordenadas.
Considere um ponto P representado pela 3−upla (x1, x2, x3) represen-
tando as coordenadas de P , no sistema de coordenadas 2S. Este mesmo
ponto pode ser referido com relação a outro sistema de coordenadas, diga-
mos S ′, obtido do primeiro por rotação3, e neste representado pela coorde-
nadas (x′1, x
′
2, x
′
3) . A figura 1.2 fornece uma representação esquemática
desta situação.
Desta, obtem-se as equações:
a = x1 cos θ, b = x2 sin θ,
c = x1 sin θ, d = x
′
2
(1.2)
c+ d = x2 cos θ,
a+ b = x′1,
(1.3)
que fornecem as equações relacionando as coordenadas do ponto P nos
dois sistemas S e S ′
x′1 = x1 cos θ + x2 sin θ = x1 cos θ + x2 cos
(pi
2
− θ
)
,
x′2 = −x1 sin θ + x2 cos θ = x1 cos
(
θ +
pi
2
)
+ x2 cos θ.
(1.4)
2Sistema de coordenadas: Conjunto de três retas perpendiculares fixas com origem nas
intersecções, utilizado para localizar pontos no espaço.
3O sistema S′pode ser obtido de forma geral por rotação e translação, para a discussão
inicial será considerada somente rotação
16 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Figura 1.2: Coordenadas do ponto P com relação ao sistemas de coorde-
nadas S e S ′.
Uma mudança de notação mostra-se apropriada. O angulo θ que aparece
nas equações anteriores é o angulo entre os eixos x′1 e x1, que será repre-
sentado como
(x′i, xj),
e o número cos(x′i, xj) por
λij ≡ cos(x′i, xj). (1.5)
Utilizando a figura 1.2 encontra-se osdiversos números λij
λ11 = cos(x
′
1, x1) = cos θ,
λ12 = cos(x
′
1, x2) = cos(
pi
2
− θ) = sin θ
λ21 = cos(x
′
2, x1) = cos(
pi
2
+ θ) = − sin θ,
λ22 = cos(x
′
2, x2) = cos θ.
Destas equações encontramos que
λ11 = λ22; λ12 = −λ21;
1.3. TRANSFORMAÇÃO DAS COORDENADAS 17
esta propriedades serão responsáveis pelas propriedades da matriz que es-
tudaremos logo adiante. Em função deste parâmetros (λij) as equações
(1.4) tornam-se
x′1 = λ11x1 + λ12x2,
x′2 = λ21x1 + λ22x2.
(1.6)
Estas equações evidenciam a vantagem desta notação: em λ,os índices da
esquerda referem-se as coordenadas de S ′, enquanto que os da direita de
S. Estendendo os cálculos anteriores a três dimensões, com o eixo z per-
pendicular ao plano xy encontra-se para λij :
λ11 = cos(x
′
1, x1) = cos θ,
λ12 = cos(x
′
1, x2) = cos(
pi
2
− θ) = sin θ,
λ13 = cos(x
′
1, x3) = cos
pi
2
= 0,
λ21 = cos(x
′
2, x1) = cos(
pi
2
+ θ) = − sin θ,
λ22 = cos(x
′
2, x2) = cos θ,
λ23 = cos(x
′
2, x3) = cos(
pi
2
) = 0,
λ31 = cos(x
′
3, x1) = cos
pi
2
= 0,
λ32 = cos(x
′
3, x2) = cos
pi
2
= 0,
λ33 = cos(x
′
3, x3) = cos 0 = 1,
e para as equações de transformação
x′1 = λ11x1 + λ12x2 + λ13x3,
x′2 = λ21x1 + λ22x2 + λ23x3,
x′3 = λ31x1 + λ32x2 + λ33x3,
as quais podem ser escritas numa forma concisa como
x′i =
3∑
j=i
λijxj
Notaçao de Einstein−−−−−−−−−−−−−−−→
Conv. soma indices repetidos
x′i = λijxj, i, j = 1, 2, 3. (1.7)
A transformação inversa é
x1 = x
′
1 cos(x
′
1, x1) + x
′
2 cos(x
′
2, x1) + x
′
3 cos(x
′
3, x1)
= x′1λ11 + x
′
2λ21 + x
′
3λ31
= λ11x
′
1 + λ21x
′
2 + λ31x
′
3,
18 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
note como “aparentemente ” a posição dos índices foi alterada. De fato os
índices de λ permanecem fixos, o que foi alterado foram as posições das
variáveis xi e x′i nas equações. Na notação de Einstein a expressão para a
coordenada x1 generalizada a todas dimensões torna-se
xi = x
′
jλji = λjix
′
j, i, j = 1, 2, 3. (1.8)
Os parâmetros λij são denominados de cosenos diretores dos eixos x′i
com relação aos eixos xi, na representação matricial possuem a forma
λ =
 λ11 λ12 λ13λ21 λ22 λ23
λ31 λ32 λ33
 . (1.9)
Uma vez encontrado os cosenos diretores, as equações de transformação
(1.7) e (1.8) ficam determinadas e desta forma determinando as relações
entre as coordenadas do ponto com relação aos sistemas S e S ′.
λ definido desta forma tem informações das propriedades de transfor-
mação das coordenadas do ponto P , por isto a matriz (1.111) é denomi-
nada de matriz de transformação ou rotação.
Example 1.3.1. As coordenadas de um ponto P no sistem S são (2, 1, 3),
e no sistema S ′,(x′1, x
′
2, x
′
3). Considerando que o sistema S
′ foi girado de
30ocom relação ao sistema S, ao redor do eixo x1, veja a figura 1.3, encontre
as coordenadas do ponto P no sitema S ′.
Para encontrar os valores das coordenadas do ponto P no sistema S ′ é
necessário calcular os cosenos diretores, λ, para esta rotação que se deu ao
redor do eixo x1. Note que na discussão efetuada no texto não foi explici-
tado, mas uma rotação foi realizada ao redor do eixo x3. Como a rotação
1.3. TRANSFORMAÇÃO DAS COORDENADAS 19
Figura 1.3: Rotação de S ′com relação a S ao redor do eixo x1
se deu ao redor do eixo x1tem-se
λ11 = cos(x
′
1, x1) = cos 0 = 1,
λ12 = cos(x
′
1, x2) = cos
pi
2
= 0,
λ13 = cos(x
′
1, x3) = cos
pi
2
= 0,
λ21 = cos(x
′
2, x1) = cos
pi
2
= 0,
λ22 = cos(x
′
2, x2) = cos
pi
6
= 0, 866,
λ23 = cos(x
′
2, x3) = cos(
pi
2
− pi
6
) = 0, 5,
λ31 = cos(x
′
3, x1) = cos
pi
2
= 0,
λ32 = cos(x
′
3, x2) = cos(
pi
2
+
pi
6
) = −0, 5,
λ33 = cos(x
′
3, x3) = cos
pi
6
= 0, 866.
A forma matricial dos cosenos diretores é:
20 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
λ =
 1 0 00 0, 866 0, 5
0 −0, 5 0, 866
 .
Utilizando as equações (1.7), encontra-se que
x′1 = λ11x1 + λ12x2 + λ13x3 = x1 = 2,
x′2 = λ21x1 + λ22x2 + λ23x3 = 0, 866x2 + 0, 5x3 = 2, 37,
x′3 = λ31x1 + λ32x2 + λ33x3 = −0, 5x2 + 0, 866x2 = 2, 1,
fornecendo para a 3-upla de coordenadas do ponto P em S ′ os valores
(2, 2, 37, 2, 1). A distância entre a origem dos sistemas de coordenadas O
e o ponto P é invariante (um escalar!), portanto possui o mesmo valor
d =
√
x21 + x
2
2 + x
2
3 =
√
x′21 + x
′2
2 + x
′2
3 = 3, 74.
1.4 Propriedades das Matrizes de Rotações
Para estudar as propriedades das matrizes de rotação é necessário conhecer
a relação que um dado eixo do sistema de coordenadas S ′ possui com os
três eixos do sistema de coordenads S,certamente estamos discutindo rota-
ções em 3 − d. Esta relação fornecerá informações de alguma propriedade
dos cosenos diretores λij. Na figura 1.4 estão esquematizados dois sistemas
de coordenadas
Figura 1.4: Segmento de linha (hipotenusa) definido pelo ponto de coorde-
nadas (α, β, γ). Adiciona-se outro segmento de linha definido pelo ponto
de coordenadas (α′, β′, γ′).
1.4. PROPRIEDADES DAS MATRIZES DE ROTAÇÕES 21
sendo que um contém um seguimento de linha definido pela origem
e pelo ponto (α, β, γ) e no outro um segmento de linha definido pela
origem e pelo ponto (α′, β′, γ′), foi acrescentado, θ é o angulo entre eles.
O seguimento de linha O(α, β, γ) pode ser decomposto ao longo dos eixos
x1,,x2, e x3 nos seguimentos de linhas
Ox1 = O(α, β, γ) cosα,
Ox2 = O(α, β, γ) cos β,
Ox3 = O(α, β, γ) cos γ,
que, via Pitágoras, podem ser usados para calcular-se a diagonal princi-
pal, o seguimento de linha O(α, β, γ). Antes, porém é necessário calcu-
lar o comprimento da projeção da diagonal O(α, β, γ) no plano xy, seja
O(α, β, γ)xy. Obtem-se imediatamente que(
O(α, β, γ)
xy
)2
=
(
Ox1
)2
+
(
Ox2
)2
=
(
O(α, β, γ) cosα
)2
+
(
O(α, β, γ) cos β
)2
=
(
O(α, β, γ)
)2 (
cos2 α + cos2 β
)
;
e consequentemente(
O(α, β, γ)
)2
=
(
O(α, β, γ)
xy
)2
+
(
Ox3
)2
=
(
O(α, β, γ)
)2 (
cos2 α + cos2 β + cos2 γ
)
,
donde segue que
cos2 α + cos2 β + cos2 γ = 1 (1.10)
Uma outra solução, muito mais simples. A idéia é usar coordenadas
cartesianas e esféricas para localiar um ponto no espaço a uma distância
unidade da origem do sistema de coordenadas. A configuração do pro-
blema esta esquematizada na figura 1.5.
As projeções do segmento de linha OP nos eixos x1, x2, e x3 são
cosα = sin θ cosφ,
cos β = sin θ sinφ,
cos γ = cos θ.
Da figura encontra-se
cos2 θ + sin2 θ = 1⇐⇒ cos2 γ + sin2 θ = 1;
22 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Figura 1.5: Cosenos diretores em coordenadas cartesianas e coordenadas
esféricas
porem, das equações anteriores obten-se que sin2 θ = cos2 α + cos2 β, que
substituida na equação anterior fornece a equação
cos2 γ + cos2 α + cos2 β = 1. (1.11)
Outra relação entre o angulo θ e os angulos α, α′, β, β′, γ, γ′, neces-
sária para a obtenção das propriedades da matriz de rotação, é4
cos θ = cosα cosα′ + cos β cos β′ + cos γ cos γ′, (1.12)
que não será demonstrada aqui mas será pedida como problema.
Considere que o seguimento OP
′
da figura (1.4) seja um dos eixos do
sistema de coordenadas S ′, por exemplo o eixo x′1. Isto possibilita identifi-
car os cosenos diretores com os parâmetros λij, e de fatos são as mesmas
quantidades! Neste caso à equação (1.11) corresponderá a relação
λ211 + λ
2
12 + λ
2
13 = 1, (1.13)
devido a correspondencia
λ11 = cos(x
′
1, x1) = cosα,
λ12 = cos(x
′
1, x2) = cos β,
λ13 = cos(x
′
1, x3) = cos γ,
4Para obter esta relação utilize a lei dos cosenos
1.4. PROPRIEDADES DAS MATRIZES DE ROTAÇÕES 23
Para os dois eixos do sistema S ′, por exemplo OP ↔x′1 e OP ′ ↔ x′2 a
equação (1.12) escrita em função dos parâmetros λ torna-se
λ11λ21 + λ12λ22 + λ13λ23 = cos θ = cos(
pi
2
) = 0. (1.14)
As equações (1.100) e (1.14) podem ser reescritas como
3∑
j=1
λ21j = 1,
e
3∑
j=i
λ1jλ2j = 0.
Quando escritas para todos os três eixos obtem-se três equações do tipo
(1.100) e três do tipo (1.14), todas podem ser escritas em uma forma com-
pacta como
3∑
j=1
λ2ij = 1, i = 1, 2, 3.
3∑
k=i
λikλjk = 0, i, j = 1, 2, 3.
(1.15)
As equações (1.11) e (1.12) quando escritas para os parâmetros λij eviden-
ciam as seis relações existentes entres estes nove parâmetros, como resul-
tado obten-se somente três parâmetros independentes5. O conjunto de seis
equações (1.15) pode ser escrito de forma compacta como
3∑
k=1
λikλjk = δij, i, j = 1, 2, 3. (1.16)
O simbolo δij denominado de delta de Kronecker, é definido como
δij =
{
1, i = j,
0, i 6= j. (1.17)
5Estes três parametros podem ser, por exemplo, os ângulos de Euler utilizados na des-
crição de rotações de sólidos em três dimensões.
O número de parâmetros independentes é igual ao número total de parâmetros menos
o número de equações relacionando os parâmetros.
24 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
podendo ser representado por
(δij) =

∂x
∂x
∂x
∂y
∂x
∂z
∂y
∂x
∂y
∂y
∂y
∂z
∂z
∂x
∂z
∂y
∂z
∂z
 =
 1 0 00 1 0
0 0 1
 ≡ I. (1.18)
Nesta altura da discussão algumas observações são pertinentes:
1. A escolha do ângulo θ = 90ona equação (1.12) resultando em (1.14)
caracteriza uma classe de transformações denominada de transfor-
mações ortogonais já que os eixos dos sistemas de coordenadas trans-
formados, são ortogonais.
2. A representação matricial do simbolo de Kronecker é a matrix iden-
tidade I, que na forma (1.18) reflete a ortogonalidade dos eixos do
sistema de coordenadas S ′.
Se a transformação discutida anteriormente fosse realizada com o sistema
S ′ fixo e o sistema S girado o que implicaria na decomposição dos eixos
sem linha em função dos eixos com linha, as equações de transformação
seriam
3∑
k=1
λkiλkj = δij, i, j = 1, 2, 3. (1.19)
Note a posição dos índices que são somados. Eles estão no local das coorde-
nadas do sistema com linha, isto expressa a ortogonalidade do sistema sem
linha6. Em resumo a equação 1.16 expressa uma transformação ortogonal
entre dois sistemas de coordenadas, o S que é ortogonal por escolha e o S ′
que foi girado com relação a S e escolhido ortogonal (θ = pi/2 na equação
(1.12)). Já, a equação (1.19) também expressa uma transformação ortogo-
nal entre dois sistemas de coordenadas, só que neste caso o sitema girado
foi o S e para ele foi feita a escolha do valor θ = pi/2, para o angulo entre
seus eixos.
Finalmente é necessário acrescentar que nada impede que ao invés de
girar o sistema de coordenadas, giremos o estado7 ou o ponto representa-
tivo 8 do sistema. Esta situação está esquematizada na figura 1.6.
6Na equação 1.12 aplicada a esta situação devemos escolher o angulo θ = pi/2, indi-
cando que ois eixos do sistema de coordenadas S são ortogonais.
7O estado do sistema pode ser representado por uma função de onda no espaço de
Hilbert
8Neste caso o estado do sistema pode ser representado por um ponto no espaço de
configuração ou um ponto no espaço de fase.
1.4. PROPRIEDADES DAS MATRIZES DE ROTAÇÕES 25
Figura 1.6: Rotação de um ângulo θ do sistema de coordenadas, o ponto P
é mantido fixo. Rotação de um ângulo θ do ponto P .
Figura 1.7: Rotação do ponto P
Para este procedimento e utilizando a configuração esquematizada na
figura 1.7 obtem-se para as coordenadas do ponto P
x1 = OP cosα,
x2 = OP sinα.
e para as coordenadas do ponto P ′:
x′1 = OP ′ cos(α− θ) = OP cosα cos θ +OP sinα sin θ = x1 cos θ + x2 sin θ,
x′2 = OP
′
sin(α− θ) = OP sinα cos θ −OP sin θ cosα = x2 cos θ − x1 sin θ,
OP = OP
′
. Estas equações são iguais as equações de transformação (1.4)
obtidas da rotação do sistema de coordenadas.
As duas abordagens são matematicamente equivalentes.
26 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
1.5 Operações com Matrizes
A matriz λ definida na equação (1.111) é uma matriz quadrada, ou seja
possui o mesmo número de linhas e colunas. Existem diversos tipos de
matrizes: quadradas, retangulares, linhas ou colunas a b cd e f
g h i
 ;
 a b cd e f
g h i
 ; ( a b c ) ;
 ad
g
 .
Adotaremos a matriz na forma coluna, 3× 1, para representar as coordena-
das de um ponto em um espaço de três dimensões
x =
 x1x2
x2
 , (1.20)
enquanto que a matriz transposta (obtida trocando-se as linhas pelas colu-
nas) será
xt =
(
x1 x2 x3
)
. (1.21)
A operação de multiplicação matricial pode ser utilizada para escrevermos
a equação (e todas as outras análogas) (1.7)
x′i =
3∑
j=i
λijxj,
na forma matricial
x′ = λx⇐⇒
 x′1x′2
x′2
 =
 λ11 λ12 λ13λ21 λ22 λ23
λ31 λ32 λ33
 x1x2
x2
 , (1.22)
que após ser múltiplicada adquire a forma
x′1 = λ11x1 + λ12x2 + λ13x3
x′2 = λ21x1 + λ22x2 + λ23x3
x′3 = λ31x1 + λ32x2 + λ33x3
 . (1.23)
Esta equação exemplifica a multiplicação de uma matriz quadrada 3×3 por
uma matriz coluna 3× 1, resultando em matriz coluna 3× 1. Para recordar,
a multiplicação de uma matriz A por uma matriz B é definida somente se
o número de colunas da primeira matriz for igual ao número de linhas da
segunda, ou seja na mltiplicação matricial
C = AB,
1.6. ALGUMAS PROPRIEDADES E DEFINIÇÕES ADICIONAIS 27
o número de colunas da matriz A deve ser igual ao número de linhas da
matriz B; a matriz resultante C terá o número de linhas da matriz A e o
número de colunas da matrizB. Isto se evindencia ainda mais na expressão
Cij = (AB)ij = AikBkj, (1.24)
onde o índice k representa simultaneamente o número de colunas da matriz
A e o número de linhas da matriz.
Example 1.5.1. Como exemplo faremos a multiplicação de uma matriz A,
2× 3, por uma matriz B,3× 2:
A =
(
1 2 3
4 5 6
)
, B =
 a bc d
e f
 ;
a matriz C resultante do produto destas duas matrizes é
C =
(
1 2 3
4 5 6
) a bc d
e f
 = ( a+ 2bc+ 3e b+ 2d+ 3f
4a+ 5c+ 6e 4b+ 5d+ 6f
)
,
que é uma matriz 2× 2!
Uma característica muito importante da múltiplicação matricial é a sua
não comutatividade, por exemplo, para as mesmas matrizes do exemplo
anterior obterem-se
D = BA =
 a bc d
e f
( 1 2 3
4 5 6
)
=
 a+ 4b 2a+ 5b 3a+ 6bc+ 4d 2c+ 5d 3c+ 6d
e+ 4f 2e+ 5f 3e+ 6f
 ,
que é evidente da definição dop produto matricial
D = BA =⇒ Dij = BikAkj, (1.25)
onde agora o número de linhas da matriz D é igual ao número de linhas da
matriz A e o número de colunas é igual ao número de colunas da matriz
A. Resumidamente
AB 6= BA. (1.26)
1.6 Algumas Propriedades e Definições Adicio-
nais
Definition 1.6.1. A matriz transpostaAtde uma matrizA é obtida trocando-
se linhas por colunas.
28 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Portanto pela definição, em termos de elemento de matriz, teremos
λtij = λji . (1.27)
É imediato verificar que (
λt
)t
= λ. (1.28)
Tendo definido a matriz transposta, a equação (1.8), para a transformação
inversa das coordenadas, pode ser escrita na forma matricial
xi = x
′
jλji = λjix
′
j,
xi = λjix
′
j
= λtijx
′
j =⇒
x = λtx′,
(1.29)
ou na forma matricial x1x2
x2
 =
 λ11 λ21 λ31λ12 λ22 λ32
λ13 λ23 λ33
 x′1x′2
x′2
 , (1.30)
Definition 1.6.2. Matriz Identidade é a matriz que ao multiplicar qualquer
outra não altera esta última.
Representando a matriz identidade por 1 ou I e uma matriz genérica
qualquer por A teremos
IA = AI = A.
A matriz identidade (ou unidade) I é diagonal e possui elememtos 0 ou 1,
em três dimensões ela possui a forma
I =
 1 0 00 1 0
0 0 1 , (1.31)
e seus elementos de matrix Iijpodem ser representados com a utilização da
delta de Kronecker
Iij = δij. (1.32)
Como uma interessante aplicação da matriz transposta, considere o pro-
duto da matriz λ por sua transposta λtem duas dimensões
λλt =
(
λ11 λ12
λ21 λ22
)(
λ11 λ21
λ12 λ22
)
=
(
λ211 + λ
2
12 λ11λ21 + λ22λ12
λ11λ21 + λ22λ12 λ
2
21 + λ
2
22
)
.
1.6. ALGUMAS PROPRIEDADES E DEFINIÇÕES ADICIONAIS 29
Usando as condições de ortogonalidade, equação (1.16), encontramos
λ211 + λ
2
12 = λ
2
21 + λ
2
22 = 1,
λ11λ21 + λ22λ12 = λ11λ21 + λ22λ12 = 0,
de forma que
λλt =
(
1 0
0 1
)
= 1. (1.33)
Esta é a equação que expressa a ortogonalidade da matriz λ, a equação
(1.16) na forma matricial. De fato a equação (1.16) é que define a condição
de ortogonalidade da matriz de rotação λ, entretanto qualquer matriz A
que satisfaz a condição
AAt = I,
é por definição uma matriz ortogonal.
Definition 1.6.3. Uma matriz A é ortogonal se satisfizer a condição
AAt = I. (1.34)
Neste ponto podemos introduzir o conceito de matriz inversa, dada a
semelhança da expressão anterior com a operação
aa−1 = 1, a 6= 0 a ∈ R.
Seja A−1a matriz inversa da matriz A, então
AA−1 = A−1A = I. (1.35)
Comparando as equações (1.34) e (1.37), encontramos a importante pro-
priedade
At = A−1 , (1.36)
ou seja
Corollary 1.6.4. Seja A uma matriz ortogonal não singular, então é válida
a equação
At = A−1.
A utilização desta propriedade (válida para matrizes ortogonais) simpli-
fica imensamente o cálculo da matriz inversa. Se a matriz não for ortogonal
é necessário fazer o cálculo na força bruta utilizando um dos métodos de se
calcular a inversa, por exemplo dada uma matrizX qualquer, não singular9,
a sua inversa é:
9Uma matriz é singular se o seu determinante for nulo.
30 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Definition 1.6.5. A matriz X−1, inversa da matriz X é
X−1 =
1
detX
(CofX)t , (1.37)
onde detX é o determinante da matriz X calculado, por exemplo, da forma
detX = εijkx1ix2jx3k, (1.38)
para uma matriz X3×3. Os termos x1i, x2j, x3k representam os elemen-
tos das linha 1, 2 e 3, respectivamente da matrix X. O simbolo εijk precisa
ser definido! Ele é denominado de simbolo totalmente antisimétrico defi-
nido como
εijk =

1, se i, j, k são permutações pares de 1,2,3, e i 6= j 6= k;
0 se pelo menos um índice (qualquer) for repetido,
−1 se i, j, k são permutações ímpares de 1,2,3, e i 6= j 6= k.
(1.39)
Alguns exemplos:
ε123 = 1,
ε231 = ε123=1,
ε132 = −ε123 = −1,
ε321 = ε213 = −ε123 = −1,
ε121 = ε223 = 0.
É interessante observar, embora ainda não tenhamos definido, que este
simbolo, (também conhecido como o tensor de Levi-Civita) está associado
ao produto vetorial misto, por exemplo
i · (k× j) = 1,
i · (j× k) = −1
i · (k× i) = 0.
,
\boldsymbol{\lambda}^{t} Uma outra definição muito utilizada em me-
cânica quântica e outras teorias também:
A Matriz Adjunta de uma matriz genérica X é definida como
Adj X = (CofX)t (1.40)
A matriz dos cofatores é definda como:
1.6. ALGUMAS PROPRIEDADES E DEFINIÇÕES ADICIONAIS 31
Definition 1.6.6. Seja A a matriz, n × n dos cofatores da matriz B tam-
bém n × n, então um elemento aij da matriz A é construido utilizando os
elementos da matriz B, da seguinte forma
aij ≡ (−1)i+jMij = (−1)i+j detB(n−1)×(n−1)|sem linha i; sem coluna j. (1.41)
A expressão anterior define o menor Mij :
Mij ≡ detB(n−1)×(n−1)|sem linha i; sem coluna j (1.42)
Com certeza um exemplo faz-se necessário.
Example 1.6.7. Calcule a matriz adjunta A, da matriz
B =
 b11 b12 b13b21 b22 b23
b31 b32 b33
 .
Primeiramente calculamos a matriz dos cofatores:
a11 = (−1)1+1M11 = (−1)1+1
∣∣∣∣ b22 b23b32 b33
∣∣∣∣ = b22b33 − b32b23;
a12 = (−1)1+2M12 = (−1)1+2
∣∣∣∣ b21 b23b31 b33
∣∣∣∣ = −(b21b33 − b31b23);
a13 = (−1)1+3M13 = (−1)1+3
∣∣∣∣ b21 b22b31 b32
∣∣∣∣ = b21b32 − b31b22;
a21 = (−1)2+1M21 = (−1)1+2
∣∣∣∣ b12 b13b32 b33
∣∣∣∣ = −(b12b33 − b32b13);
a22 = (−1)2+2M22 = (−1)2+2
∣∣∣∣ b11 b13b31 b33
∣∣∣∣ = b11b33 − b31b13;
a23 = (−1)2+3M23 = (−1)2+3
∣∣∣∣ b11 b12b31 b32
∣∣∣∣ = −(b11b32 − b31b12);
a31 = (−1)1+3M31 = (−1)1+3
∣∣∣∣ b12 b13b22 b23
∣∣∣∣ = b12b23 − b22b13;
a32 = (−1)3+2M32 = (−1)3+2
∣∣∣∣ b11 b13b21 b23
∣∣∣∣ = −(b11b23 − b21b13);
a33 = (−1)3+2M33 = (−1)3+3
∣∣∣∣ b11 b12b21 b22
∣∣∣∣ = b11b22 − b21b12.
32 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
analogamente para os outros termos. A matriz dos cofatores da matriz B é
CofB =
 b22b33 − b32b23 −(b21b33 − b31b23) b21b32 − b31b22−(b12b33 − b32b13) b11b33 − b31b13 −(b11b32 − b31b13)
b12b23 − b22b13 −(b11b23 − b21b13) b11b22 − b21b12
 .
Utilizando a matrix CofB, calcula-se a matriz
A = AdjB = (CofB)t =
 b22b33 − b32b23 −(b12b33 − b32b13) b12b23 − b22b13−(b21b33 − b31b23) b11b33 − b31b13 −(b11b23 − b21b13)
b21b32 − b31b22 −(b11b32 − b31b13) b11b22 − b21b12

A título de curiosidade, a matriz dos menores da matriz B é
MB =
 b11b22 − b12b21 b11b23 − b13b21 b12b23 − b13b22b11b32 − b12b31 b11b33 − b13b31 b12b33 − b13b32
b21b32 − b22b31 b21b33 − b23b31 b22b33 − b23b32

O produto matricial, embora não comutativo é associativo
A(BC) = (AB)C, (1.43)
e a soma de matrizes é feita somando-se seus respectivos elementos: C =
A+B significa que
Cij = Aij +Bij. (1.44)
1.7 O Significado Geométrico das Matrizes de
Transformações
Considere uma rotação de 900 no sentido anti-horário ao redor do do eixo
x3, como esquematizado na figura (1.8)
Após esta rotação os cosenos diretores λij (somente os diferentes de
zero) podem se calculados
λ12 = cos(x
′
1, x2) = 1,
λ21 = cos(x
′
2, x1) = −1,
λ33 = cos(x
′
3, x3) = 1.
de forma que a matriz dos cosenos diretores será
λ1 =
 0 1 0−1 0 0
0 0 1
 .
1.7. O SIGNIFICADO GEOMÉTRICO DASMATRIZES DE TRANSFORMAÇÕES33
Figura 1.8: Rotação do sistema ao redor do eixo x3
Os novos eixos, ou seja os eixos do sistema S ′ estão relacionados aos eixos
do sistema S pelas equações x′1 = x2, x
′
2 = −x2 e x′3 = x3, imediatamente
obtida com a utilização da matriz de transformação λ1.
Na sequência, considere uma rotação de 900 no sentido anti-horário ao
redor do do eixo x1, como esquematizado na figura (1.9).
Novamente, calculamos os cosenos diretores λij (somente os diferentes
de zero)
λ23 = cos(x
′
2, x3) = 1,
λ32 = cos(x
′
2, x1) = −1,
λ11 = cos(x
′
1, x1) = 1.
de forma que a matriz dos cosenos diretores será
λ2 =
 1 0 00 0 1
0 −1 0
 .
Temos duas transformações individuais
x1 = λ1x,
x2 = λ2x,
que podemos usar para construir a transformação composta de duas trans-
formações sucessivas
x′ = λ1x,
x′′ = λ2x′ = λ2λ1x.
(1.45)
34 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Figura 1.9: Rotação do sistema ao redor do eixo x1
Na forma matricial esta equação torna-se
 x′′1x′′2
x′′2
 =
 1 0 00 0 1
0 −1 0
 0 1 0−1 0 0
0 0 1
 x1x2
x2

=
 0 1 00 0 1
1 0 0
 x1x2
x2
 =
 x2x3
x1
 .
O significado deste resultado é que as duas matrizes de rotações podem ser
combinadas para representarem uma rotação composta. Note que fizemos
uma composição de rotações, a primeira com λ1transformando o sistema
S em S ′ e a segunda transformação devido a λ2 que transforma o sistema
S ′ em S ′′, como esquematizado na figura (1.12)
λ3 = λ2λ1 =
 0 1 00 0 1
1 0 0
 , (1.46)
sendo
x′′1 = x2, x
′′
2 = x3, x
′′
3 = x1
a orientação final dos novos eixos. Como o produto matricial não é comu-
tativo, a ordem da operação das matrizes de transformações nos vetores é
importante. Se fizermos primeiro uma transformação no eixo x1, para em
1.7. O SIGNIFICADO GEOMÉTRICO DASMATRIZES DE TRANSFORMAÇÕES35
Figura 1.10: Composição de rotações:o sitema é girado de 90o no sah ao
redor do eixo x3para em seguida ser girado no sah, também de 90o, ao
redor do novo eixo x′1.
seguida transformarmos com relação ao eixo x3, teremos como resultado
uma nova matriz de transformação
λ4 = λ1λ2 =
 0 1 0−1 0 0
0 0 1
 1 0 00 0 1
0 −1 0
 =
 0 0 1−1 0 0
0 −1 0
 6= λ3.,
(1.47)
implicando em uma diferente orientação final dos eixos.
A figura (1.11) ilustra as diferentes orientações de um livro submetido
as mesmas rotações λ2 e λ3 compostas em diferentes ordens: na figura
(1.11) superior a composição é λ2λ3 e na inferior λ3λ2. Note como as
configurações finais são claramente diferentes.
A rotação esquematizada na figura (1.12) possui os seguintes cossenos
diretores
36 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Figura 1.11: Exemplo da não comutatividade de rotações.
Figura 1.12: Sistema de coordenadas S que foi girado de um angulo θ no
sah ao redor do eixo x3
1.7. O SIGNIFICADO GEOMÉTRICO DASMATRIZES DE TRANSFORMAÇÕES37
λ11 = cos(x
′
1, x1) = cos θ,
λ12 = cos(x
′
1, x2) = cos(
pi
2
− θ) = sin θ,
λ13 = cos(x
′
1, x3) = cos
pi
2
= 0,
λ21 = cos(x
′
2, x1) = cos(
pi
2
+ θ) = − sin θ,
λ22 = cos(x
′
2, x2) = cos θ,
λ23 = cos(x
′
2, x3) = cos(
pi
2
) = 0,
λ31 = cos(x
′
3, x1) = cos
pi
2
= 0,
λ32 = cos(x
′
3, x2) = cos
pi
2
= 0,
λ33 = cos(x
′
3, x3) = cos 0 = 1,
a representação matricial desses cossenos diretores, ou seja a matriz λ é
λ5 =
 cos θ sin θ 0− sin θ cos θ 0
0 0 1
 , (1.48)
que representa uma rotação do sistema ao redor do eixo x3.
Uma outra transformação, importante no contexto de simetrias em par-
tículas elementares e teoria de campos, é a chamada inversão total. Em três
dimensões esta trasnformação é efetuada pelas operações x′1 = −x1, x′2 =
−x2, x′3 = −x3 e sua representação matricial é
λ6 =
 −1 0 00 −1 0
0 0 −1
 . (1.49)
O resultado de uma inversão total em 3−d é representado na figura (1.13).
Nos exemplos anteriores obtivemos a matriz de transformação λ3como
resultado de duas rotações sucessivas, cada rotação é uma transformação
ortogonal como já provamos na equação (1.19). O que faremos agora será
verificar se a composição de transformações ortogonais λ3 = λ2λ1resultará
em uma transformação ortogonal. Para isto considere
x′i = λijxj, x
′′
k = µklx
′
l;
que pode ser combinada como
x′′k = µklx
′
l = µklλljxj = [µλ]kj xj,
38 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Figura 1.13: Inversão total dos eixos do sistema S
que é a representação matricial da composição de duas transformações or-
togonais λ e µ que muda o sistema de S para S ′′. A transformação com-
posta será ortogonal se a matriz [µλ] for ortogonal, ou seja se [µλ]t =
[µλ]−1. Para verificar se está matriz é ortogonal vamos usar a propriedade,
sem demonstração pois será pedida como problema,
(AB)t = BtAt, (1.50)
ou seja a transposta do produto de matrizes é igual ao produto das transpostas
em ordem reversa. Portanto
[µλ]t = λtµt, (1.51)
que usada no cálculo
[µλ]tµλ = λtµtµλ = λtµ−1µλ = λtIλ = λ−1λ = I.
Este cálculo é a demonstração que o produto de matrizes ortogonais µ e λ
resulta em uma matriz [µλ] que também é ortogonal. A equação anterior
pode ser reescrita como
[µλ]tµλ = I =⇒ [µλ]t = [µλ]−1 . (1.52)
O determinante de matrizes 3 × 3 podem ser calculados explicitamente
como
1.8. DEFINIÇÃO DE ESCALAR E VETOR EM TERMOS DAS PROPRIEDADES DE TRANSFORMAÇÕES39
detλ = εijkλ1iλ2jλ3k
= ε123λ11λ22λ33 + ε231λ12λ23λ31 + ε312λ13λ21λ32
+ ε132λ11λ23λ32 + ε213λ12λ21λ33 + ε321λ13λ22λ31
= λ11(λ22λ33 − λ23λ32) + λ12(λ23λ31 − λ21λ33) + λ13(λ21λ32 − λ22λ31).
Em particular, para matrizes ortogonais pode-se calcular o determinante
utilizando a propriedade
λt = λ−1 =⇒
λλt = λλ−1 = I.
Utilizando as propriedades que serão pedidas como problemas
detλt = detλ, (1.53)
det(AB) = detA detB, (1.54)
encontra-se que
detλλt = detλ detλt = (detλ)2 = det I = 1 =⇒ detλ = ±1. (1.55)
A equação (1.55) posui um importante significado: todas as trasnformações
ortogonais possuem determinante ±1, as rotações, também denominadas de
transformações próprias possuem determinante igual a 1 enquanto que as
inversões, ou transformações impróprias possuem o determinante −1. Um
resultado muito importante é que uma transformação própria não pode ser
reduzida a imprópria e vice-versa, assim não é possível pela composição de
várias rotações obter uma reflexão!
Ainda que um pouco fora do contexto do curso, observamos que a pró-
priedade de o determinante de transformações ortogonais possuir os va-
lores ±1possibilita classificar o grupo de rotações em duas categorias dis-
juntas: o das transformações próprias ou rotações e o das trasnformações
impróprias ou reflexões. Existem outras transformações.
1.8 Definição de Escalar e Vetor em Termos das
Propriedades de Transformações
Considere a trasnformação das coordenadas do tipo, equação (1.7),
x′i =
3∑
j=i
λijxj
40 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
com os cosenos diretores satisfazendo a equação (condição de ortogonali-
dade) (1.16)
3∑
k=1
λikλjk = δij.
Se sob esta transformação, uma dada quantidade φ não é alterado,
então φ é denominado de escalar ou escalar invariante. Quando φ
for uma função de uma ou várias variáveis contínua e diferenciável
(exceto possivelmente em alguns polos) costuma-se denominá-la de
campo escalar.
Se o conjunto de quantidades (3-uplas) (A1, A2, A3) se transforma
como as coordenadas xi do ponto P , conforme a equação (1.16), ou
equivalentemente em outras palavras Se a quantidade (A1, A2, A3) se
transforma do sistema xi para o sistema x′i via a matriz ortogonal λ,
como
A′i = λijAj, i, j = 1, 2, 3; (1.56)
então a quantidade A = (A1, A2, A3) é denominada de vetor.
1.9 Operações Elementares com Vetores e Esca-
lares
Nas equações seguintes, A e B são vetores com componentes Ai e Bi;φ, ψ
e ξ são escalares.
Adição
Ai +Bi = Bi + Ai, Comutatividade da adição (1.57)
Ai + (Bi + Ci) = (Ai +Bi) + Ci, Associatividade da adição (1.58)
φ+ ψ = ψ + φ, Comutatividade da adição (1.59)
φ+ (ψ + ξ) = (φ+ ψ) + ξ, Associatividade da adição (1.60)
Multiplicação por um escalar
ξA = (ξA1, ξA2, ξA3) = B é um vetor (1.61)
1.10. O PRODUTO ESCALAR OU INTERNO DE DOIS VETORES. 41
ξφ = ψ, é um escalar. (1.62)
Na equação (1.61) assumimos que o resultado da multiplicação de um es-
calar por um vetor, resulta em um vetor. De fato este resultado deve ser
verificado e isto pode ser feito utilizando a definição de vetor. Se B é um
vetor ele deve se transformar como
B′ = λB = λξA = ξλA = ξA′,
uma vez que o campo escalar é um invariante e A é um vetor. O resultado
anterior implica que B é um vetor. O procedimento anterior também pode
ser desenvolvido em função das componente dos vetores A e B.
1.10 O Produto Escalar ou Interno de Dois Ve-
tores.
O produto interno (representado por um ponto ·) de dois vetores A e B é
definido como
A ·B = AiBi, i = 1, 2, 3. (1.63)
O vetor A = (A1, A2, A3), de componente Ai possui módulo
|A| ≡ A = +
√
A21 + A
2
2 + A
2
3. (1.64)
Dividindo ambos os lados da equação (1.63) por AB obtem-se
A ·B
AB
=
Ai
A
Bi
B
, (1.65)
onde Ai/A é o cosseno diretor do vetor A com o eixo i dos sistema de
coordenadas, da mesma forma, Bi/B é o cosseno diretor do vetor B com o
eixo i do sistema de coordenadas (veja a Figura (1.14)) .
Note que interessante, chamando de cos(A, B) o cosseno do angulo
entre os vetores A e B a equação (1.65) fornece
cos θ =
A1
A
B1
B
+
A2
A
B2
B
+
A3
A
B3
B
= cosα cosα′ + cos β cos β′ + cos γ cos γ′
que é análoga à equação (1.12). Isto não é coincidência já que os dois veto-
res A e B podem ser considerador os eixos x′1 e x
′
2 do sistema transformadoS ′ com relação ao sistema S. De forma geral, sem dar nomes aos angulos,
o lado direito da equação (1.65) pode ser escrita na forma
cos(A, B) = ΛAi Λ
B
i , (1.66)
42 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Figura 1.14: Componente A1,, A2, A3 do vetor A no sistema de coorde-
nadas x1, x2, x3. Também é mostrado o angulo α entre o vetor A e o eixo
x1
onde
ΛAi ≡
Ai
A
, ΛBi ≡
Bi
B
. (1.67)
Utilizando as equações (1.66) e (1.67), a equação (1.65) pode ser reescrita
como
A ·B
AB
= cos(A, B) =⇒ A ·B = AB cos(A, B) , (1.68)
Proposition 1.10.1. O produto interno de dois vetores é uma grandeza esca-
lar.
Demonstração. A e B são vetores portanto transformam-se sob a matriz
ortogonal λ da forma
A′i = λijAj, B
′
i = λijBj;
e o produto interno desses vetores ´e
A′ ·B′ = λijλikAjBk = δjkAjBk = AkBk = A ·B,
utilizando a equação (1.16). Este resultado, ou seja
A′ ·B′ = A ·B (1.69)
1.11. VETORES UNITÁRIOS 43
afirma que o produto interno é invariante sob transformações ortogonais,
neste caso rotações representadas pela matriz λ; portanto o produto in-
terno de vetores é um escalar invariante porque ele permanece inalterado
pela transformação ortogonal λ.
Este resultado pode ser usado para mostrar que a distância entre dois
pontos ou o módulo de um vetor (distância desde a origem do sistema de
coordenadas até um dado ponto no espaço) também é um invariante
|d| =
√
d · d =
√
x21 + x
2
2 + x
2
3 =
√
xixi (1.70)
Em geral a distância entre dois pontos√
(x1 − y1)2 + (x2 − y2)2 + (x2 − y3)2 =
√
(A−B) · (A−B) = |A−B|
(1.71)
é um invriante. Em resumo temos a seguinte afirmação:
Claim 1.10.2. Transformações ortogonais preservam a distância entre dois
pontos.
Podemos nos perguntar também sobre o que acontece com o angulo
entre dois vetores transformados. Para verificar esta questão, considere a
definição do angulo entre dois vetores, equação (1.68):
A ·B
AB
= cos(A, B).
O angulo antre os vetores A e B é função do produto interno desses ve-
tores e de seus módulos, que são todas quantidades invariantes como já
demonstrado anteriormente. Portanto:
Claim 1.10.3. Transformações ortogonais preservam o angulo entre veto-
res.
Para completar esta seção observamos que o probuto interno é comuta-
tivo e distributivo:
A ·B = AiBi = BiAi = B ·A
A · (B+C) = Ai(B + C)i = Ai(Bi + Ci) = AiBi + AiCi = A ·B+A ·C.
1.11 Vetores Unitários
É apropriado representar vetores em função de suas componentes nas três
direções de um dado sistema de coordenadas. Para este propósito introduz-
se vetores unitários, que são vetores que possuem o comprimento unidade
44 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
no sistema de coordenadas em consideração. Por exemplo o vetor unitário
ao longo da direção radial em coordenadas esféricas é construido como
er =
r
r
.
Em geral um vetor unitário é definido como
uA =
A
A
, (1.72)
e representado por diferentes notações equivalentes, por exemplo
i, j, k em coordenadas cartesianas,
e1, e2, e3 em um sistema de coordenadas curvilineares qualquer,
er, eθ, eφ em coordenadas esféricas,
rˆ, θˆ, φˆ em coordenadas esféricas.
(1.73)
Analogamente, um vetor pode ser representado por uma das seguintes for-
mas
A = (A1, A2, A3),
A = A1e1 + A2e2 + A3e3,
A = A1i+ A2j+ A3k.
(1.74)
Neste texto adotaremos a notação e1, e2, e3 para os vetores unitários por
causa da convenção da soma:
A = Aiei,
cujas componentes são
Ai = ei ·A, i = 1, 2, 3. (1.75)
Em geral (a menos que se afirme o contrário) trabalharemos com bases
ortogonais, portanto os vetores unitários satisfazem
ei · ej = δij, (1.76)
expressando a ortogonalidade da base.
Example 1.11.1. Dado dois vetores A = i + 2j − 2k e B = 4i + 2j − 3k
em coordenadas cartesianas, calcule a distância AB entre os pontos OA e
1.12. O PRODUTO VETORIAL 45
Figura 1.15: Projeção do vetor B na direção do vetor A
OB, o angulo entre os vetores e o valor da projeção do vetor B ao longo
do vetor A.
A distância entre o pontos OA e OB é
|A−B| = |B−A| =
√
(1− 4)2 + (2− 2)² + (−2 + 3)2 = √9 + 1 =
√
10,
o angulo entre os vetores é obtido de
cos θ =
A ·B
AB
=
(i+ 2j− 2k) · (4i+ 2j− 3k)√
1 + 4 + 4
√
16 + 4 + 9
=
4 + 4 + 6√
9× 29 =
14
3
√
29
= 0.867,
portanto
θ = 30◦.
A projeção de B na direção de A vale (Veja a figura (1.15))
A ·B = AB cos θ =⇒ B cos θ = A ·B
A
= eA ·B.
A quantidade eA ·B mede exatamente o quanto do vetor B esta na direção
do vetor A, o vetor eA é um vetor unitário na direção do vetor A, veja a
equação (1.72). Portanto
eA ·B = B cos θ =
√
29× 0.867 = 4.67.
1.12 O Produto Vetorial
Dois vetores podem ser combinados de forma a forncecer como resultado
um outro vetor10, a esta operação dá-se o nome de produto vetorial. Para
10De fato o resultado do produto vetorial não é um vetor verdadeiro mas sim um pseudo
vetor. Um vetor verdadeiro é invertido sub reflexão enquanto que um pseudo vetor não.
46 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
dois vetores A e B este produto é representado como
C = A×B (1.77)
onde C é o vetor resultante desta operação. As componentes do vetor C
são definidas pela equação
Ci ≡ εijkAjBk , (1.78)
onde εijk é o tensor de Levi-Civita, definido na equação (1.39). Utilizando
esta notação, as componentes do vetor C são calculadas como
C1 = ε123A2B3 + ε132A3B2
= A2B3 − A3B2;
C2 = A3B1 − A1B3;
C3 = A1B2 − A2B1.
(1.79)
Considere a expansão da quantidade [AB sin θ]2 :
(AB)2 sin2 θ = (AB)2(1− cos2 θ)
= (AB)2 − (AB)2 cos2 θ
= (AB)2 − (A ·B)2
= A2iB
2
j − (AiBi)2
= (A2B3 − A3B2)2 + (A3B1 − A1B3)2 + (A1B2 − A2B1)2,
após um pouco de álgebra. Por outro lado
|A×B|2 = |C|2 = C2 = C21 + C22 + C23 ,
com Ci dados na equação (1.79). Comparando estas duas equações (com
as componentes Ci dadas nas equações (1.79)) encontramos que
C = +AB sin θ. (1.80)
O significado desta equação é: se C = A ×B, então o módulo do vetor C
é igual ao módulo de A vezes o módulo de B vezes o seno do angulo entre
eles. No contexto geométrico interpretamos o módulo do produto vetorial
A×B como a área do paralelograma definido pelos vetores A e B, veja a
figura (1.16)
Por exemplo a velocidade é um vetor e o momento angular, um pseudo vetor.
1.12. O PRODUTO VETORIAL 47
Figura 1.16: O módulo do vetor C = A×B é igual ao valor da área do
paralelograma AB sin θ, onde θ é o angulo entre os vetores A e B.
Example 1.12.1. Usando as equações (1.63) e (1.78), mostre que
A · (B×D) = D · (A×B).
O lado esquerdo desta equação pode ser escrito como
A · (B×D) = AiεijkBjDk
= AiεkijBjDk
= DkεkijAiBj
= D · (A×B).
Também pode-se converser-se da igualdade acima lembrando que o pro-
duto interno é um escalar invariante. Se nesta equação faz-se a escolha
A = B obten-se
A · (A×D) = D · (A×A) = 0,
mostrando que A é perpendicular à A×D.
O vetor A × B = C é perpendicular ao plano definido pelos vetores A
e B já que A · (A × B)=0 e B · (A × B)=0 . A área de um plano pode
ser representada por um vetor normal ao plano e cuja magnetude é igual a
área do plano. A orientação é aquela do sistema destrógiro para o sistema
48 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
de coordenadas (portanto para o produto vetorial) e a superfície orientada
com Jacobiano +1.
A definição do produto vetorial está completa: as componentes, o mó-
dulo, sentido e interpretação geométrica foram apresentadas. Tudo indica
que C é realmente um vetor, entretanto devemos lembrar que não aplica-
mos a C a definição de vetor! Ou seja, como esta quantidade se transforma
sob rotações? Para responder esta questão considere a quantidade;
C′ = A′ ×B′ = (λA)× (λB)
C ′i = (A
′ ×B′)i = [(λA)× (λB)]i
= εijkλjpApλkqBq
= εijkλjpλkqApBq.
(1.81)
O determinante da matriz λ, que é ortogonal, é igual a1,
detλ = εijkλi1λj2λk3 = 1.
Este resultado pode ser utilizado para se obter
εijkλi1λj2λk3 = 1 =⇒
εijkλirλjpλkq = εrpq =⇒
εijkλirλjpλkq = δrlεlpq =⇒
εijkλirλjpλkq = λsrλslεlpq =⇒
λtrεijkλirλjpλkq = λtrλsrλslεlpq =⇒
εijkλtrλirλjpλkq = δstλslεlpq =⇒
εijkδitλjpλkq = λtlεlpq =⇒
εtjkλjpλkq = λtlεlpq
Finalmente provamos que
εijkλjpλkq = λilεlpq . (1.82)
Substituindo este resultado na equação (1.81) para a componente C ′i obtem-
se que
C ′i = εijkλjpλkqApBq
= εlpqλilApBq
= λilCl.
(1.83)
1.12. O PRODUTO VETORIAL 49
De outra forma
C′ = λC =⇒
C ′i = λijCj = λijεjklAkBl,
(1.84)
que concorda plenamente com o resultado anteiror. As equações (1.81)
(1.83) expressam o resultado do produto vetorial das componentes trans-
formadas, enquanto que a equação (1.84) é a transformação do produto
vetorial. Os dois resultados são iguais e se transformam segundo a lei de
transformações de vetores.
A seguir demonstramos alguma propriedades básicas do produto veto-
rial:
A×B = εijkeiAjBk = −εijkeiBjCk = B×A (1.85)
A× (B×C) = εijkeiAjεkpqBpCq = (δipδjq − δiqδjp)eiAjBpCq =
= eiAjBiCj − eiAjBjCi = B(A ·C)−C(A ·B);
(1.86)
(A×B)×C = εijkeiεjpqApBqCk
= − (δipδkq − δiqδkp) eiApBqCk
= eiAkBiCk − eiAiBkCk
B(A ·C)−A(B ·C).
(1.87)
Comparando as equações (1.86) e (1.87) conclui-se que
A× (B×C) 6= (A×B)×C, (1.88)
ou seja o produto vetorial de três vetores não é associativo.
Nos cálculos anteriores utilizamos uma importante propriedade do ten-
sor de Levi-Civita, cuja demonstração será pedida como problema;
εijkεipq = δjpδkq − δjqδkp . (1.89)
Existem outras que também serão utilizadas, estas são
εijkεijq = 2δkq, (1.90)
εijkεijq = 3! (1.91)
De forma geral (em 3− d) podemos utilizar a forma
εijkεpqr =
∣∣∣∣∣∣
δip δiq δir
δjp δjq δjr
δkp δkq δkr
∣∣∣∣∣∣ . (1.92)
50 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Example 1.12.2. Utilizando as propriedades do tensor de Levi-Civita, es-
creva o produto mixto
(A×B) · (C×D)
somente em função do produto interno de vetores.
Solução. Utiliza-se a propriedade (1.89) porque na espressão aparece
um duplo produto vetorial:
(A×B) · (C×D) = εijkAjBkεipqCpDq = εijkεipqAjBkCpDq
= (δjpδkq − δjqδkp)AjBkCpDq
= AjBkCjDk − AjBkCkDj
= (A ·C)(B ·D)− (B ·C)(A ·D)
A ortogonalidade dos vetores unitários de uma base ortogonal pode ser
escrita como
ei × ej = εijkek. (1.93)
A título de observação, as equações seguintes são formas equivalentes de
se excrever o produto vetorial em 3− d:
C = A×B = εijkeiAjBk =
∣∣∣∣∣∣
e1 e2 e3
A1 A2 A3
B1 B2 B3
∣∣∣∣∣∣ , (1.94)
em coordenadas cartesianas! Esta expressão não é válida em coordenadas
curvilineares.
1.13 Derivada de um Vetor com Relação a um
Escalar
Se uma função escalar φ = φ(s) é derivada com relação ao parâmetro esca-
lar s obteremos como resultado uma função (campo) escalar já que tanto a
função quanto o parâmetro são escalares. A definição de escalar, equação
(1.1), implica que φ(x) = φ′(x′), o parâmetro s, que também é um escalar
satisfaz s = s′, portanto
dφ(s)
ds
=
dφ′(s′)
ds′
=
(
dφ(s)
ds
)′
. (1.95)
Analogamente, definine-se a derivada de um vetor com relação ao parâme-
tro escalar:
1.13. DERIVADA DE UM VETOR COM RELAÇÃO A UM ESCALAR 51
d
ds
A(s) =
d
ds
Ai(s)ei(s), (1.96)
em geral. No sistema de coordenadas cartesianos os vetores unitários são
constantes, portanto não dependem do parâmetro s, qualquer que seja, e a
expressão anterior reduz-se a
d
ds
A(s) = ei
d
ds
Ai(s), (1.97)
em um sistema de coordenadas Cartesianos! Coloca-se agora a seguinte
questão: A derivada de um vetor também é um vetor? Para responder a
esta questão utiliza-se a definição de vetor! Em outras palavras, deve-se
verificar como se comporta a derivada sob uma transformação ortogonal
11. Considere então a derivada das componente do vetor A no sistes S ′,
sendo que d/ds = d/ds′ tem-se que
dA′i
ds′
=
d
ds′
λijAj = λij
dAj
ds
=⇒
(
dAi
ds
)′
= λij(
dAj
ds
). (1.98)
Ou seja, as grandezas dAi/ds trasnformam como as componentes de um
vetor e por isto são as componentes de um vetor que na forma vertorial
escrevemos como aparece na equação (1.96).
As condições de analíticidade das funções e a existência das derivadas
também se aplicam ao vetores (certamente porque os vetores são campos
ou funções com várias variáveis)12. Estendendo a definição de derivada de
11O motivo de introduzir uma notação diferente para a componenteAi do vetorA é que
em coordenadas curvilineares tem-se os coeficientes de Lamé multiplicando cada compo-
nente, ou seja a expressão para um vetor em termos de suas componentes em coordenadas
cartesianas é
A = Aiei,
entretanto, em coordenadas curvilineares ortogonais a expressão é
A = Aξeξ.
12As condições de exitência ou continuidade de uma função em um ponto são:
f(z0) existe;
lim
z→z0
f(z) existe,
lim
z→z0
f(z) = f(z0).
52 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
Figura 1.17: Trajetória Γ(s) traçada pela exteremidade do vetor A quando
o parâmetro s varia .
funções à vetores analíticos13 escrevemos que
dA
ds
= lim
∆s→0
A(s+ ∆s)−A(s)
∆s
, (1.99)
que possui o seguinte significado geométrico: considere a figura (1.17) que
esquematiza a extremidade do vetor A(s) descrevendo uma curva contínua
Γ(s), quando o parâmetro s varia. No ponto P da curva Γ(s) A = A(s) e
no ponto Q, distante de P de ∆s a curva possui o valor Γ(s+ ∆s) e o vetor
A = A(s + ∆s). A diferença entre os valores do vetor A nos pontos P e
Q para distâncias infinitesimais é igual ao valor da derivada do vetor A no
ponto s.
A derivada de um vetor satisfaz as mesmas propriedades das derivadas
de funções;
d
ds
(A+B) =
dA
ds
+
dB
ds
, (1.100)
d
ds
(A ·B) = dA
ds
·B+A · dB
ds
, (1.101)
d
ds
(A×B) = dA
ds
×B+A× dB
ds
, (1.102)
d
ds
(φB) =
dφ
ds
B+ φ
dB
ds
. (1.103)
13Exemplos clássicos de campos vetorias que descrevem fenômenos físicos são, por
exemplo, o campo gravitacional e eletromagnéticos. Estes campos não são analíticos para
partículas puntiformes! Eles possuem singularidades na origem do sistema de coordena-
das.
1.14. EXEMPLOS DE DERIVADAS 53
e similarmente para as outras propriedades.
1.14 Exemplos de Derivadas
1.14.1 Vetor Posição, Velocidade e Aceleração em Coor-
denadas Cartesianas.
A descrição da dinâmica de partículas e dos sistemas de partículas com a
utilização de vetores simplifica a descrição e reduz o números de equações
por causa da notação vetorial ser compacta, ou seja as três dimensões estão
implicita em um único termo.
Para esta abordagem é necessário descrever na forma vetorial a posição,
velocidade e aceleração das partículas que compões o sistema. Costuma-se
especificar a posição com relação a um dado sistema de referência, a esta
posição associamos um vetor denominado de raio vetor representado por
r(t) = x1(t)e1 + x2(t)e2 + x3(t)e3, (1.104)
que depende continuamente do parâmetro t que neste caso representará o
tempo. A velocidade e aceleração são definidas como
v(t) ≡ dr(t)
dt
= r˙(t), (1.105)
a(t) ≡ dv(t)
dt
= v˙(t) =
d2r(t)
dt2
= r¨(t). (1.106)
Nesta notação os pontos sobre as variáveis dinâmicas representam deriva-
das com relação ao tempo: um ponto significa derivada primeira e dois
pontos, derivada segunda. Em coordenadas cartesianas retangulares os ve-
tores posição, velocidade e aceleração podem ser escritos como

r = x1e1 + x2e2 + x3e3 = xiei Vetor posição,
v = r˙ = x˙iei Vetor velocidade,
a = v˙ = r¨ = x¨iei Vetor aceleração .
(1.107)
O cálculo destas quantidades em coordenadas cartesianas é direto porque
os vetores unitários são constantes ou fixos. O sistema de coordenadas
cartesiano (retangular) é o único sistema que possui os vetores unitá-
rios fixos!
54 CAPÍTULO1. MATRIZES, VETORES E CÁLCULO VETORIAL
Figura 1.18: Família de superfícies ortogonais cujas intersecções definem os
vetores unitários ortonormais de um sistema de coordenadas curvilineares.
De forma geral os vetores unitários não são fixos e com o movimento
da partícula no espaço, os vetores unitários podem mudar suas orienta-
ções (mas permanecem ortogonais entre si) e deixam de ser constantes no
tempo! Para descrever a posição, velocidade e aceleração faremos uma
breve incursão à descrição de coordenadas curvilineares.
1.15 Coordenadas Curvilineares
O interesse14 em discutir coordenadas curvilineares é devido a possibili-
dade de expressar as equações da física ( ou física matemática) em sistemas
de coordenadas nos quais a descrição do problema torna-se mais simples.
A discussão será restrita aos sistemas de coordenadas ortogonais onde as
três famílias de superfícies coordenadas são mutuamete ortogonais. Veja a
figura (1.18).
Um sistema de coordenadas generalizadas consiste em uma família de
superfícies cujas equações em termos de coordenadas cartesianas são
ξ1(x, y, z) = c,
ξ2(x, y, z) = c,
ξ3(x, y, z) = c.
(1.108)
Se as transformações não forem singulares, o determinante do Jacobiano
det J =
∣∣∣∣∂(ξ1, ξ2, ξ3)∂(x, y, z)
∣∣∣∣ 6= 0,
14O material desta seção é, em parte baseado na referência 4
1.15. COORDENADAS CURVILINEARES 55
possibilitando a inversão das equações que então fornecem as funções ξi i =
1, 2, 3 em função de x, y. z ou se for necessário x, y, z em função de
ξ1, ξ2, ξ3.
As linhas de intersecção das superfícies definem os novos eixos das coor-
denadas curvilineares ortogonais, aos quais associamos os vetores unitário
ortonormais eξ1 , eξ2 , eξ3 no ponto (ξ1, ξ2, ξ3) tangentes às curvas defini-
das pelas intersecções das superfícies. Estes são vetores unitários genéricos
(de um dado sistema de coordenadas curvilineares) em termos dos quais
espressaremos as componentes de um dado vetor. Estes vetores unitários
são mutuamente perpendiculares
ea · eb = δab, (1.109)
ea × eb = εabcec (1.110)
1.15.1 Cossenos Diretores
Os cossenos diretores (os mesmos que já discutimos anteriormente) entre
os novos eixos de coordenadas (ξ1, ξ2, ξ3) e o sistemas cartesiano são
λai = cos(ξa, xi), (1.111)
que também são elementos de uma matriz ortogonal λ
λaiλbi = δab. (1.112)
Nesta notação os índices a, b, c, · · · são associados às coordenadas curvili-
neares enquanto que os índices i, j, k, · · · são associados às coordenadas
cartesianas. Desta forma os vetores unitários das coordenadas curvilineares
podem ser expandidos na base cartesiana como
ea = λaiei, a, i = 1, 2, 3. (1.113)
Como a transformação não é singular a expressão anterior pode ser inver-
tida possibilitando escrever os vetores unitários do sistema cartesiano em
termos dos vetores unitários do sistema curvilinear
ei = λiaea. (1.114)
A matriz (λia) com elementos λia é a inversa (transposta já que a transfor-
mação é ortogonal) da matriz λai. Note que a ortogonalidade
λiaλja = δij, (1.115)
56 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
expressa a ortogonalidade da matriz λ nos eixos do sistema cartesiano! As
expansões anteriores podem ser escritas (como já feito anteriormente) na
forma de matricial e1e2
e3
 =
 λ1ξ1 λ1ξ2 λ1ξ3λ2ξ1 λ2ξ2 λ2ξ3
λ3ξ1 λ3ξ2 λ3ξ3
 eξ1eξ2
eξ3

 eξ1eξ2
eξ3
 =
 λξ11 λξ12 λξ13λξ21 λξ22 λξ23
λξ31 λξ32 λξ33
 e1e2
e3
 . (1.116)
As seguintes equações mostram a consistência das equações e notação:
ea · eb = δab ea = λaiei; (1.117)
ei · ej = δij, ei = λiaea, (1.118)
ea · eb = λaiei · λbjej = λaiλbjei · ej = λaiλbjδij = δab,
ei · ej = λiaea · λjbeb = λiaλjbea · eb = λiaλjbδab = δij.
Estas equações refletem a ortogonalidade nos eixos curvilineares e car-
tesianos, respectivamente.
Neste novo sistema de coordenada um dado vetor F é decomposto como
F = Faea, Fa = F · ea. (1.119)
Utilizando a equação (1.117), pode-se escrever as componentes do vetor F
do novo sistema de coordenadas, em função de suas coordenadas cartesia-
nas, da seguinte forma:
Fa = F · ea = F · (λaiei) = λaiF · ei
= λaiFi = λa1F1 + λa2F2 + λa3F3.
A expressão inversa é
Fi = F · ei = F · (λiaea) = λiaF · ea
= λiaFa = λiξ1Fξ2 + λiξ2Fξ2 + λiξ3Fξ3 .
Em resumo, as equações
Fa = λaiFi,
Fi = λiaFa,
(1.120)
1.15. COORDENADAS CURVILINEARES 57
definem a lei de transformação de vetores entre dois sistemas de coorde-
nadas curvilineares ortogonais. O conjunto de quantidades (Fx, Fy, Fz) e
(Fξ1 , Fξ2 , Fξ3) são vetores nos sitemas de coordenadas cortesianos e cur-
vilinear respectivamente, suas componentes são transformadas segundo a
equação (1.120). As quantidades λai são as componentes da matriz λ que
é ortogonal, equação (1.34),
λt = λ−1.
1.15.2 Fatores de Escala ou Coeficientes de Lamé
A grandeza básica fundamental para estabelecermos todas as equações de
transformações entre dois sistemas de coordenadas (em particular os curvi-
lineares que são tratados neste texto) na geometria diferencial é o elemento
de comprimento de arco infinitesimal ds também denominado de distância
infinitesimal entre dois pontos em um dado espaço. O quadrado do ele-
mento de comprimento de arco é escrito como
ds2 = gabdx
adxb, (1.121)
onde gab é o tensor métrico fundamental cujo número de componentes de-
pende da dimensão do espaço (superfície) em consideração. Para um es-
paço n−d (n-dimensional) o tensor métrico fundamental (gab) é uma matriz
quadrada de ordem n, portanto (gab) é uma matriz n×n. dxa é um desloca-
mento infinitesimal em uma dada direção. Para coordenads curvilineares
ortogonais o tensor métrico fundamental é diagonal
gab = δabh
2
b , (gab) =
 g11 g12 g13g21 g22 g23
g31 g32 g33
 =
 h21 0 00 h22 0
0 0 h23
 ; (1.122)
sem soma no índice b. Para as coordenadas curvilineares, o elemento de
comprimento de arco possui a seguinte forma reduzida
ds2 = gabdξ
adξb = δabh
2
bdξ
adξb = h2adξ
adξa (1.123)
Um conceito muito importante é o da invariância da distância entre dois
pontos. Este conceito, já foi discutido anteriormente quando definiu-se o
módulo de um vetor e a invariância da distância entre dois pontos, medida
de quaisquer sistemas de coordenadas ortogonais relacionados pela matriz
λ. Em particular, para os sistemas ortogonais que estamos considerando,
58 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
por exemplo o cartesiano e um curvilinear qualquer, esta invariância é ex-
pressa como
ds′2 = ds2 =⇒gabdξadξb = gijdxidxj = dxidxi,
gij = δij, em coordenadas cartesianas.
(1.124)
O elemento de comprimento de arco é um vetor que em 3 − d escreve-se
como
ds = eidx
i = haeadξa. sem soma no índice a (1.125)
Desta equação calcula-se
∂s
∂ξb
= hbeb =⇒ eb = 1
hb
∂s
∂ξb
,
∣∣∣∣ ∂s∂ξb
∣∣∣∣ = hb . (1.126)
Esta equação define os coeficientes de Lamé (ou as componentes do tensor
métrico fundamental) . Note que não há soma no índice b que aparece
nessa equação .
A forma explicita dos coeficientes de Lamé relacionando coordenadas
cartesianas com curvilineares é obtida da equação (1.127) fazendo:
gabdξ
adξb = gijdx
idxj = dxidxi =⇒
gab
∂ξa
∂ξc
∂ξa
∂ξd
=
∂xi
∂ξc
∂xi
∂ξd
=⇒
gabδacδbd =
∂xi
∂ξc
∂xi
∂ξd
=⇒
gcd = h
2
cδcd =
∂xi
∂ξc
∂xi
∂ξd
=⇒
h2c =
∂xi
∂ξc
∂xi
∂ξd
;
portanto
h2a =
∣∣∣∣ ∂s∂ξa
∣∣∣∣ = ( ∂x∂ξa
)2
+
(
∂y
∂ξa
)2
+
(
∂z
∂ξa
)2
=⇒
ha =
√(
∂x
∂ξa
)2
+
(
∂y
∂ξa
)2
+
(
∂z
∂ξa
)2
.
(1.127)
Na obtenção desta equação utilizou-se a equação (1.124). Os coeficientes
de Lamé ou fatores de escala das coordenadas ξa podem ser entendidos
1.15. COORDENADAS CURVILINEARES 59
como a mudança ξadξa produzida na curva coordenada (a−ésima curva
de intersecção entre as superfíciescoordenadas) por conta de um desloca-
mento infinitesimal dξa produzido na coordenada ξa.
Como exemplos apresenta-se as grandezas h′as resultante das relações
entre as coordenadas cartesianas e os sistemas de coordenadas mais co-
muns: cilindricas e esféricas.
Example 1.15.1. Coordenadas Cilindricas: (ξ1, ξ2, ξ3) ≡ (ρ, φ, z)
Em coordenadas cartesianas o vetor posição é
r = xi+ yj+ zk = r(x, y, z),
enquanto que em coordenadas cilindricas, as coordenadas de um ponto no
espaço são determinadas pelas coordenadas ρ, φ, z, o vetor posição de um
ponto no espaço, neste sistema de coordenadas, é função destas variáveis,
ou seja
r = r(ρ, φ, z).
As equações de transformação relacionando os dois conjuntos de coorde-
nadas são
x = x(ρ, φ, z) = ρ cosφ,
y = y(ρ, φ, z) = ρ sinφ,
z = z(ρ, φ, z) = z.
Ou as transformações inversas
tanφ =
x
y
,
ρ2 = x2 + y2.
É necessário, para a construção dos vetores unitários, escrever o vetor po-
sição nas coordenadas cartesianas em termos das equações de transforma-
ções. Note que este vetor não está escrito em coordenadas cilindricas, mas
sim em coordenadas cartesianos em termos das variáveis das coordenadas
cilindricas:
r = s = ρ cosφi+ ρ sinφj+ zk.
Utilizando estas equações e a equação (1.127) pode-se calcular os fatores
60 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
de escala, ha:
hρ =
√(
∂x
∂ξ1
)2
+
(
∂y
∂ξ1
)2
+
(
∂z
∂ξ1
)2
=
√(
∂x
∂ρ
)2
+
(
∂y
∂ρ
)2
+
(
∂z
∂ρ
)2
=
√
(cosφ)2 + (sinφ)2 + (0)2
= 1;
hφ =
√(
∂x
∂ξ2
)2
+
(
∂y
∂ξ2
)2
+
(
∂z
∂ξ2
)2
=
√(
∂x
∂φ
)2
+
(
∂y
∂φ
)2
+
(
∂z
∂φ
)2
=
√
(−ρ sinφ)2 + (ρ cosφ)2 + (0)2
= ρ;
hz = 1.
Colecionando os resultados anteriores
hρ = 1,
hφ = ρ,
hz = 1.
(1.128)
Os vetores unitários nas coordenadas cilindricas são obtidos utilizando os
resultados anteriores e a equação (1.126)
eρ =
1
hρ
∂s
∂ρ
= cosφi+ sinφj,
eφ =
1
hφ
∂s
∂φ
= − sinφi+ cosφj,
ez = k.
(1.129)
A equação (1.111) combinada com a equação (de fato são equivalentes)
(1.113) fornece
λai = cos(ξa, xi) = ea · ei. (1.130)
Esta equação pode ser usada para se construirmr a matriz λ que transforma
o sitema de coordenadas cartesianas para cilindricas. Utilizando os vetores
1.15. COORDENADAS CURVILINEARES 61
unitários das coordenadas cartesianas e cilindrincas encontramos
λ =
 eρ · ei eρ · ej eρ · ekeφ · ei eφ · ej eφ · ek
ez · ei ez · ej ez · ek
 =
 cosφ sinφ 0− sinφ cosφ 0
0 0 1
 ,
e a matriz λ inversa (obtida calculando-se a transposta)
λ−1 =
 cosφ − sinφ 0sinφ cosφ 0
0 0 1
 .
Utilizando λ−1 pode-se inverter as equações que relacionam os vetores uni-
tários em coordenadas cilindricas e cartesianas para expressar os unitários
cartesianos em função dos unitários cilindricos: ij
k
 =
 cosφ − sinφ 0sinφ cosφ 0
0 0 1
 eρeφ
k
 =
 cosφeρ − sinφeφsinφeρ + cosφeφ
k
 ,
ou seja, temos as seguintes expressões para os vetores cartesianos unitários
em função dos cilindricos unitários
i = cosφeρ − sinφeφ,
j = sinφeρ + cosφeφ,
k = k.
(1.131)
O sistema de coordenadas esféricos também é bastante utilizado, ele
será o próximo exemplo.
Example 1.15.2. Coordenadas esféricas: (ξ1, ξ2, ξ3) ≡ (r, θ, φ)
As equações de transformações relacionando as variáveis em coordena-
das cartesianas e esféricas são
x = x(r, θ, φ) = r sin θ cosφ,
y = y(r, θ, φ) = r sin θ sinφ,
z = z(r, θ, φ) = r cos θ.
O vetor posição r = xi + yj + zk em função das variáveir r, θ, φ fornece o
arco
s = r sin θ cosφi+ r sin θ sinφj+ r cos θk.
Os coeficientes de Lamé são
62 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
hr =
√(
∂x
∂ξ1
)2
+
(
∂y
∂ξ1
)2
+
(
∂z
∂ξ1
)2
=
√(
∂x
∂r
)2
+
(
∂y
∂r
)2
+
(
∂z
∂r
)2
=
√
(sin θ cosφ)2 + (sin θ sinφ)2 + (cos θ)2
= 1;
hθ =
√(
∂x
∂ξ2
)2
+
(
∂y
∂ξ2
)2
+
(
∂z
∂ξ2
)2
=
√(
∂x
∂θ
)2
+
(
∂y
∂θ
)2
+
(
∂z
∂θ
)2
= r
√
(cos θ cosφ)2 + (cos θ cosφ)2 + (− sin θ)2
= r;
hφ =
√(
∂x
∂ξ3
)2
+
(
∂y
∂ξ3
)2
+
(
∂z
∂ξ3
)2
=
√(
∂x
∂φ
)2
+
(
∂y
∂φ
)2
+ ξ˙b
(
∂z
∂φ
)2
= r
√
(− sin θ sinφ)2 + (sin θ cosφ)2 + (0)2
= r sin θ.
Resumidamente, os resultados anteriores são
hr = 1
hθ = r,
hφ = r sin θ.
(1.132)
Utilizando a equação (1.126) calcula-se os vetores unitários em coordena-
das esféricas:
1.15. COORDENADAS CURVILINEARES 63
er =
1
hr
∂s
∂r
= sin θ cosφi+ sin θ sinφj+ cos θk,
eθ =
1
hθ
∂s
∂θ
= cos θ cosφi+ cos θ sinφj− sin θk,
eφ =
1
hφ
∂s
∂φ
= − sinφi+ cosφj.
(1.133)
Novamente, utilizando a equação (1.130) constroi-se a matriz λ que tran-
forma coordenadas cartesianas para esféricas:
λ =
 er · ei er · ej er · ekeθ · ei eθ · ej eθ · ek
eφ · ei eφ · ej eφ · ek
 =
 sin θ cosφ sin θ sinφ cos θcos θ cosφ cos θ sinφ − sin θ
−ξ˙b sin θ cosφ 0
 .
A matriz inversa é
λ−1 =
 sin θ cosφ cos θ cosφ − sin θsin θ sinφ cos θ sinφ cosφ
cos θ − sin θ 0
 ,
que pode ser utilizada para se calcular as transformações inversas para os
vetores unitários:
 ij
k
 =
 sin θ cosφ cos θ cosφ − sin θsin θ sinφ cos θ sinφ cosφ
cos θ − sin θ 0
 ereθ
eφ

=
 er sin θ cosφ+ eθ cos θ cosφ− eφ sin θer sin θ sinφ+ eθ cos θ sinφ+ eφ cosφ
er cos θ − eθ sin θ
 ,
que fornecem as expressões para os vetores cartesianos unitários em fun-
çãoes dos esféricos unitários
i = er sin θ cosφ+ eθ cos θ cosφ− eφ sin θ,
j = er sin θ sinφ+ eθ cos θ sinφ+ eφ cosφ,
k = er cos θ − eθ sin θ.
(1.134)
64 CAPÍTULO 1. MATRIZES, VETORES E CÁLCULO VETORIAL
1.15.3 O Elemento de Volume e Operadores Diferenciais
em Coordenadas Curvilineares.
Apresentamos sem demonstração algumas expressões muito úteis para se
trabalhar em coordendas curvilineares.
Utilizando os fatores de escala, escreve-se os elementos infinitesimais
de arco, área e volume em coordenadas curvilineares como
ds = (he)adξa; (1.135)
dAa = 1
2!
εabcSbc, Sbc ≡ dξadξ′b − dξbdξ′a (1.136)
dV = hξ1hξ2hξ3dξ1dξ2dξ3 =
√
gdξ1dξ2dξ3. (1.137)
A expressão (1.136) deve ser utilizada com cuidado. Note que a grandeza
Sab é antisimétrica, Sab = −Sba por isto, por exempo em coordenadas car-
tesianas tem-se que:
dA1 = 1
2!
ε1bcSbc = S23 = dx2dx3 = dydz,
dA2 = 1
2!
ε2bcSbc = S31 = dx3dx1 = dzdx,
dA3 = 1
2!
ε3bcSbc = S12 = dx1dx2 = dxdy.
Na expressão anterior,
g ≡ det(gab) (1.138)
As expressões genéricas dos operadores diferenciais são
∇Ψ =
(e
h
)
a
∂aΨ, (1.139)
∇ ·A = 1
hξ1hξ2hξ3
∂a
[
hξ1hξ2hξ3
(
A
h
)
a
]
, (1.140)
∇×A = 1
hξ1hξ2hξ3
εabc(eh)a∂b(Ah)c, (1.141)
∇2Ψ = 1
hξ1hξ2hξ3
∑
a
∂a
[
hξ1hξ2hξ3
h2ξa
∂aΨ
]
(1.142)
∇2Ψ = − 1√
g
∂µ [
√
ggµν∂νΨ] . (1.143)
Vale observar que o operador de Laplace (Laplaciano), eq. (1.142), opera
tanto em campos escalares quanto vetoriais.
1.15. COORDENADAS CURVILINEARES 65
Exemplos
Example 1.15.3. Seja o campo vetorial A = 5rer + 2 sinφeθ + 2 cos θeφ,
expresso em coordenadas esféricas. Obtenha a expressão deste campo em
coordenadas cartesianas.
As equações que relacionam os dois sitemas, exemplo (1.15.2),
x = r sin θ cosφ,
y = r sin θ sinφ,
z = r cos θ,
podem ser invertidas fornecendo
tanφ =
y
x
,
tan θ =
√
x2 + y2
z
,
r =
√
x2 + y2 + z2.
Destas equações obten-se que
cos θ =
z
r
=
z√
x2 + y2 + z2
,
sin θ =
√
1− cos2 θ =
√
1− z
2
x2 + y2 + z2
=
√
x2 + y2√
x2 + y2 + z2
,
cosφ =
x
r sin θ
=
xr
r
√
x2 + y2
=
x√
x2 + y2
,
sinφ =
y√
x2 + y2
.
(1.144)
Os

Outros materiais