Buscar

TEORIA DAS ESTRUTURAS I - AVA - UNIUBE

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 139 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 139 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 139 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Maria Fernanda Fávero Menna Barreto
Daniel Tregnago Pagnussat
Carina Mariane Stolz
Teoria das 
Estruturas I
Maria Fernanda Fávero Menna Barreto
Daniel Tregnago Pagnussat
Carina Mariane Stolz
Teoria das 
Estruturas I
Reitor: Marcelo Palmério
NEAD - Núcleo de Educação a Distância
Pró-Reitora de Ensino Superior: Inara Barbosa Pena Elias
Pró-Reitor de logística para Educação a Distância: Fernando César Marra e Silva
Capa e Editoração: Andresa G. Zam; Diego R. Pinaffo; Fernando T. Evangelista; Renata Sguissardi
Revisão Textual e Normas: ?????????????????????????
Ficha catalográfica realizada pela bibliotecária.
Este livro é publicado pelo Programa de Publicações Digitais da Universidade de Uberaba.
FiChA CATAlogRáFiCA - SERviço DE BiBlioTECA E 
DoCumENTAção – uNivERSiDADE DE uBERABA
X???x Xxxxxx, Xxxxx
Xxxxxxxxx xx xxxxxx xxxxxx xxxxxxxxxxxxx x xxxxx xxxxxxxxxxxx 
x x xxxxxxx xxxxxxxxxx x xxxxxxxxxxxxxx xxxx xxxxxxxxx xxx x xx 
xxxxxxxxxxxx xxxxxx.
ISBN: ???????????????????????
Xxxxxxxxxx, xxxxxxxxxxxxxxxx, xxxxxxxxxxx, xxxxxxxxxxxxxx, 
xxxxx, xxxxxxx, xxxxxxxxxx, xxxxx.
CDD: ???
A história da hoje Universidade de Uberaba, Instituição sem fins lucrativos, manti-
da pela Sociedade Educacional Uberabense, remonta ao ano de 1940, quando Mário 
Palmério funda o Lyceu do Triângulo Mineiro, com sede, inicialmente, na Rua Manoel 
Borges. Com essa iniciativa, o educador dava os primeiros passos na direção de um 
projeto muito mais ousado: dotar a pacata Uberaba da época, de uma escola voltada 
para a oferta do ensino superior.
Até que a ideia se transformasse em realidade, Mário Palmério pôs em prática ou-
tras duas ações. Transferiu a sede do Lyceu, mais tarde chamado de Colégio Triângulo 
Mineiro, para um conjunto de edifícios onde, hoje, funciona o Campus Centro e criou a 
Escola Técnica de Comércio do Triângulo Mineiro.
Em 1947 o governo federal autorizou a abertura da Faculdade de Odontologia do 
Triângulo Mineiro. Em menos de dez anos, outras duas escolas entraram em funciona-
mento: a Faculdade de Direito do Triângulo Mineiro, em 1951, e a escola de Engenharia 
do Triângulo Mineiro, em 1956. Uberaba, então, passa a se projetar também em razão 
de sua importante estrutura, voltada para o ensino superior, privilégio de poucas cida-
des mineiras, no início dos anos 50. Junto com essas importantes conquistas, veio a 
necessidade de expansão da estrutura física. Por isso, em 1976, começou a funcionar o 
Campus Aeroporto, instalado na Avenida Nenê Sabino.
Teoria das 
Estruturas I
Carina Mariane Stolz; Daniel Tregnago Pagnussat; Maria Fernanda Fávero 
Menna Barreto
Caro(a) aluno(a),
Seja bem-vindo(a) à disciplina de Teoria das Estruturas I, cujo material didático foi ela-
borado pelos professores Eng. Civil Carina Mariane Stolz, Dra; Eng. Civil Daniel Tregnago 
Pagnussat, Dr.; e Eng. Civil Maria Fernanda Fávero Menna Barreto, Me..
Os autores deste material tiveram sua formação de pós-graduação toda no NORIE/
PPGEC/UFRGS. Atualmente, a prof. Carina M. Stolz realiza seu pós-doutorado na mesma 
instituição. A prof. Carina também exerce atividades como consultora técnica, além de ser 
professora convidada do IPOG (Instituto de Pós-Graduação). A prof. Maria Fernanda é ti-
tular do curso de Engenharia Civil da Universidade de Cuiabá (Unic). Por fim, o prof. Daniel 
T. Pagnussat é professor das Universidades de Caxias do Sul (UCS) e do Vale do Rio dos 
Sinos (UNISINOS), professor convidado do IPOG (Instituto de Pós-Graduação) e consultor.
Dentre as diversas atividades vinculadas à profissão dos engenheiros, faz-se necessário 
um profundo conhecimento e interação com importantes conceitos da Física aplicada a 
ApresentAção
corpos rígidos. No estudo de sistemas estruturais, estamos sempre respaldados por dois 
ramos da Física: a física ESTÁTICA e a física DINÂMICA. Estes conceitos de mecânica 
estrutural e de resistência dos materiais constituem-se na base teórica para grande parte 
do cálculo das estruturas projetadas pelos engenheiros. 
Neste material, abordaremos importantes conceitos relacionados a cargas móveis e 
deslocamentos em estruturas isostáticas. Também serão discutidos os primeiros conceitos 
relacionados a estruturas hiperestáticas, e o chamado método das forças.
Esperamos que este material sirva de base para um primeiro contato com o assunto, 
de modo a instigá-lo(a) a desenvolver e pesquisar mais a respeito do tema, bem como lhe 
preparar para o cálculo de estruturas que necessitem de tais conceitos.
Ótimo estudo!
sumário
capíTulo 1: cargas móvEIs E lInhas dE InfluêncIa 
Em EsTruTuras IsosTáTIcas 11
Cargas móveis em estruturas .............................................................. 13
Cargas móveis: trens-tipo .................................................................... 16
Linhas de influência ............................................................................. 19
capíTulo 2: lInhas dE InfluêncIa 25
Exemplos resolvidos de linhas de influência em estruturas isostáticas 27
capíTulo 3: prIncípIo dE müllEr-brEslau 39
O método de müller-breslau ................................................................. 41
capíTulo 4: dIagramas dE valorEs ExTrEmos E EnvolTórIas 51
Diagramas de valores extremos e envoltórias ...................................... 53
capíTulo 5: prIncípIo dos Trabalhos vIrTuaIs 69
Princípio dos trabalhos virtuais ............................................................ 72
Princípio das forças virtuais ................................................................. 76
capíTulo 6: dEslocamEnTos Em EsTruTuras IsosTáTIcas 85
Equação da linha elástica .................................................................... 87
Método da superposição ...................................................................... 94
capíTulo 7: méTodo das forças 99
Método das forças ............................................................................... 102
capíTulo 8: méTodo dos dEslocamEnTos 115
Introdução ........................................................................................... 117
Método dos deslocamentos ................................................................. 118
conclusÃo 135
capítulo
1
cargas móveis e 
linhas de influência 
em estruturas 
isostáticas
Carina Mariane Stolz; Daniel Tregnago Pagnussat; 
Maria Fernanda Fávero Menna Barreto
InTroduçÃo
Em algumas situações específicas, faz-se necessário o estudo de sistemas onde as 
cargas movimentam-se através do corpo da estrutura. A existência de uma chamada 
carga móvel torna mais complexo a resolução de sistemas isostáticos em relação a 
aqueles onde as cargas são todas fixas.
Nesta unidade vamos conhecer um pouco mais sobre a base conceitual para a resolução de 
exercícios desta natureza. Bons estudos!
objETIvos dE aprEndIzagEm 
• Identificar cargas móveis em estruturas.
• Correlacionar o conceito de cargas móveis com sistemas estruturais.
• Estabelecer a base conceitual para o futuro dimensionamento de 
estruturas com a presença de cargas móveis.
EsquEma
• Conceito de cargas móveis em estruturas
• Conceito de trem tipo
• Conceito de linhas de influência
• Exemplos e exercícios
13Teoria das Estruturas I
cargas móvEIs Em EsTruTuras
Para entender o conceito de cargas móveis é preciso retomar o conceito original 
de cargas, bem como sua classificação. 
Uma carga, dentro de um curso de análise estrutural, nada mais é do que o efeito 
de uma força aplicada sobre um corpo. Essas forças são originadas a partir da força 
gravitacional, da ação do vento, de cargas sísmicas etc. Essas forças, atuando sobre 
um corpo rígido, por exemplo, uma edificação, são chamadas, portanto,de CARGAS 
que atuam sobre estas estruturas. 
A forma como estas cargas atuam sobre um determinado sistema estrutural pode 
variar bastante. Uma edificação, por exemplo, possui várias forças (cargas) atuando 
sobre ela: o peso próprio dos pilares, vigas e lajes; o peso próprio das paredes, dos 
revestimentos de piso, dos forros e das coberturas. A esse tipo de carga atuante cha-
mamos de CARGAS PERMANENTES; além destas existem as chamadas CARGAS 
ACIDENTAIS. As cargas acidentais em uma edificação podem ter diversas nature-
zas, mas talvez a mais relevante seja aquela oriunda da utilização da própria edifica-
ção. O peso das pessoas, dos móveis, de eletrodomésticos são cargas acidentais. 
A norma brasileira NBR 6120: Cargas para o cálculo de estruturas de edifica-
ções (ABNT, 1980), utiliza exatamente esse critério de classificação para separar as 
cargas a serem consideradas em uma edificação. Assim, na consideração do peso 
próprio de uma viga de concreto armado de um prédio é necessário calcular seu 
peso próprio a partir do peso específico aparente dado pela referida norma (no caso 
25 KN/m³). Da mesma forma, ao considerar o cálculo da carga acidental de uma sala 
14 Capítulo 1
de leitura de uma biblioteca, deve-se considerar a carga vertical de norma do mesmo 
(que a NBR 6120/80 estabelece como 4 KN/m²). 
Como se pode notar, no caso de uma edificação, a carga acidental a ser considerada é um 
valor de certo modo fixo independente de eventuais variações de posição das pessoas e mobi-
liário. Essa simplificação de cálculo é suficiente e funciona bem nestes casos, mas existem cer-
tos tipos de estruturas onde o conceito e o cálculo das cargas fica um pouco mais complexo.
REFLITA
Imagine que você é responsável pelo 
projeto de uma ponte rodoviária. Por ela 
irão circular todos os dias diversos veícu-
los, com diferentes pesos, capacidades de 
carga, número de eixos. Em algumas situ-
ações estes veículos irão transpassar ra-
pidamente a ponte; em outros momentos, 
congestionamentos poderão fazer com que 
alguns destes veículos fiquem durante um 
tempo sobre a ponte. Como saber qual a 
pior situação de cálculo? Aliás, como saber 
quais as cargas possíveis nestas situações 
para a elaboração do projeto? A partir des-
tes questionamentos, parece fácil entender 
a importância do assunto que estamos por 
conhecer: as cargas móveis.
Süssekind (1981, p.298) vai além deste conceito inicial e coloca que:
As cargas ditas acidentais, conforme a própria denominação, são aquelas 
que podem ou não ocorrer na estrutura e são provocadas por ventos, em-
puxos de terra ou água, impactos laterais, forças centrífugas, frenagens ou 
acelerações de veículos, sobrecargas (cargas de utilização) em edifícios, 
peso de materiais que vão preencher a estrutura (caso de reservatórios de 
água, silos, etc.), efeitos de terremoto (de importância fundamental para os 
15Teoria das Estruturas I
projetos em regiões sujeitas a abalos sísmicos), peso de neve acumulada 
em regiões frias e, finalmente, pelas assim denominadas cargas móveis.
No caso de estruturas como pontes, viadutos, passarelas suspensas, arquibanca-
das e afins, é preciso considerar, portanto, aquilo que chamamos de cargas móveis. 
As cargas móveis são originadas a partir de uma força que é conhecida (por 
exemplo, o peso próprio de um caminhão), entretanto esta força muda de po-
sição em relação ao elemento estrutural (um tabuleiro de viaduto, por exemplo). 
Diferentemente da situação do peso do mobiliário e de pessoas sobre uma laje de 
um pavimento, não há como, nesta situação, atribuir um valor fixo de carga acidental 
em uma determinada área; se fossemos considerar uma pretensa carga acidental de 
projeto padronizada, precisaríamos verificar cada uma das infinitas posições da car-
ga em relação ao elemento estrutural. O conceito de carga móvel surge justamente 
para garantir um cálculo mais apropriado a estas situações.
Cabe lembrar que as cargas móveis são diferentes de cargas acidentais dinâmi-
cas, onde é preciso levar em conta também, além da variação da posição relativa, a 
questão temporal. Para estes casos, deve-se recorrer a teorias vinculadas especifi-
camente a Dinâmica das Estruturas.
FIQUE POR DENTRO
O correto dimensionamento de uma estru-
tura sujeita a cargas acidentais como veículos 
circulando e ação do vento é fundamental para 
garantir a segurança e estabilidade, durante 
toda a vida útil do sistema estrutural. Hoje, o 
desenvolvimento das teorias das estruturas, o 
16 Capítulo 1
conhecimento técnico e o auxílio de softwares 
computacionais facilitam muito a vida dos pro-
jetistas. Mas nem sempre foi assim. Um dos 
exemplos mais conhecidos de ponte que entrou 
em colapso é a famosa ponte Tacoma. Famosa 
pelo seu “balanço”, ruiu no final de 1940. Tacoma 
foi uma ponte pênsil localizada em Washington, 
Estados Unidos. A ação do vento gerou o seu 
colapso. A Ponte de Tacoma movimentava-se 
levemente atraindo inclusive vários curiosos 
que queriam conhecer a ponte que balançava. 
Em um determinado dia, porém, o vento atingiu 
uma velocidade de aproximadamente 65 km/h; 
com isto começou a gerar movimentos de tor-
ção, aumentando progressivamente seu balan-
ço até o colapso total. Segundo a WIKIPEDIA 
(2016), ao contrário do que se publica em alguns 
livros de física, acredita-se que os grandes mo-
vimentos foram causados devido ao fenôme-
no de flutter aeroelástico e não de ressonân-
cia. Um vídeo da ponte entrando em colapso 
pode ser visto em: <https://www.youtube.com/
watch?v=j-zczJXSxnw>.
cargas móvEIs: TrEns-TIpo
Em uma ponte ou viaduto, o número de pessoas e veículos, bem como seu peso 
e sua posição relativa uns em relação aos outros geram infinitas combinações de 
cargas. Imagine as situações abaixo. Como calcular para cada caso específico?
Foto: Site destaknews.blogspot.com.br
Acesso em: 06 jan. 16 Disponível em: <http://destaknews.blogspot.com.br/2009/12/ponte-rio-
niteroi-tem-transito-lento-em.html>
17Teoria das Estruturas I
Foto: Site g1.globo.com
Acesso em: 06 jan. 16 Disponível em: <http://g1.globo.com/bahia/noticia/2011/10/pessoas
-enfrentam-engarrafamento-em-passarela-de-salvador.html>
Foto: Site esporte.uol.com.br
Acesso em: 06 jan. 16 Disponível em: <http://esporte.uol.com.br/busca/?q=ponte%20
rio-niter%C3%B3i&repository=image>
Foto: Site notícias.uol.com.br
Acesso em: 06 jan. 16 Disponível em: <http://noticias.uol.com.br/cotidiano/ultimas-noti-
cias/2014/01/28/passarela-que-desabou-na-linha-amarela-no-rio-sera-cortada-ao-meio.htm>
18 Capítulo 1
Para conseguirmos efetivamente calcular a estabilidade de uma estrutura submetida 
a cargas móveis, é preciso estabelecer alguns critérios. Estes estão definidos em nor-
mas específicas que definem os chamados TRENS-TIPO. Essa denominação, confor-
me cita Süssekind (1981), se originou por influência da necessidade de cálculo de car-
gas em pontes ferroviárias, onde era preciso estabelecer um padrão de carregamento. 
Trens-tipo seriam, então, veículos “ideais” que variam conforme normas específicas de 
cada país e do tipo de utilização das estruturas (rodoviária, ferroviária, pessoas).
Marchetti (2008) cita que para realizar um cálculo de um carregamento móvel em 
uma estrutura como uma ponte é preciso utilizar o conceito do trem-tipo, sendo que 
esse elemento criaria um conjunto que soma cargas dos diferentes veículos e de 
pessoas. O trem-tipo é colocado no sentido longitudinal da estrutura e a sua ação é 
obtida por meio do carregamento, com correspondente linha de influência (conceito 
importante que veremos na sequência).
Como exemplo, a norma brasileira NBR 7188:2013: Carga móvel rodoviária e depedestres em pontes, viadutos, passarelas e outras estruturas (ABNT, 2013) considera 
como carga móvel rodoviária padrão, chamada TB-450, um veículo tipo de 450 kN, com 
seis rodas, carga estática concentrada aplicada no nível do pavimento igual a 75 kN, 
três eixos de carga afastados entre si em 1,5 metros, com área de ocupação de 18,0 
m², circundada por uma carga uniformemente distribuída constante igual a 5,0 kN/m².
19Teoria das Estruturas I
Fonte: ABNT NBR 7188, 2013
Uma vez definidas as cargas móveis atuantes, a resolução de um sistema estru-
tural nestas condições é dada pela determinação dos esforços máximos e mínimos 
provocados nas estruturas por estas cargas. Conhecendo também os esforços devi-
dos as cargas permanentes e acidentais (não móveis), saberemos entre que valores 
extremos ocorrerá a variação dos esforços em cada parte da estrutura.
O procedimento de resolução leva em conta, ainda a questão das linhas de influ-
ência, que será nosso próximo tópico de discussão.
lInhas dE InfluêncIa
A partir do momento que uma carga em movimento transpassa por uma estrutu-
ra, alterando sua posição relativa no conjunto, as forças internas em cada ponto desta 
20 Capítulo 1
estrutura também sofrem algum tipo de variação. Dessa forma, as linhas de influência 
se constituem em elementos gráficos que representam como as deformações ocorrem 
nas estruturas e como as mesmas se alteram, conforme uma carga se move sobre elas.
As imagens a seguir, exemplificam a alteração nas deformações em relação a 
um momento aplicado à estrutura, supondo-se que uma carga de 100kN se move ao 
longo de uma viga de 10 metros biapoiada. No entanto, não confunda esta linha de 
influência com diagrama solicitante.
Leet, Uang e Gilbert (2010) resumem linha de influência como sendo: 
um diagrama cujas ordenadas, que são plotadas como uma função da dis-
tância ao longo do vão, fornecem o valor de uma força interna, uma reação 
ou um deslocamento em um ponto específico de uma estrutura quando uma 
carga unitária de 1 kip ou 1 kN se move pela estrutura.
21Teoria das Estruturas I
A construção da linha de influência irá nos auxiliar a determinar a seção crítica de 
uma estrutura ao receber uma carga móvel. Para determinarmos a linha de influência, 
deveremos estabelecer a localização de uma dada seção S deste elemento, avaliando 
a influência da carga concentrada que percorre a estrutura nesta seção predefinida.
O procedimento, a seguir, descreve a resolução de uma linha de influência em 
uma viga isostática biapoiada e é similar ao que propõem Leet, Uang e Gilbert (2010):
22 Capítulo 1
imagine uma viga isostática como a do desenho acima. Ao colocarmos uma carga 
concentrada de 1 KN sobre essa viga, e deslocarmos esta carga ao longo da viga da 
esquerda para a direita (a), teremos diferentes valores das reações Ra e Rb à medida 
que a carga muda de posição. Quando a carga está aplicada diretamente sobre o apoio 
A, temos Ra=1 e Rb=0 (b); analogamente quando a carga for deslocada a uma distância 
L/4, temos Ra=0,75 e Rb=0,25 (c); quando a carga atinge o meio da viga (L/2), temos 
que Ra=0,5 e Rb=0,5 (d); finalmente, quando a carga móvel atinge a posição do apoio B, 
temos Ra=0 e Rb=1 (e). Para construir a linha de influência deste exemplo, basta dese-
nharmos o gráfico com os valores da reação Ra diretamente na posição correspondente 
da carga unitária associada ao valor de Ra (f). Se o mesmo procedimento fosse aplicado 
a uma carga pontual de 1kN que se desloca da direita para a esquerda a partir do apoio 
B, teríamos o gráfico da linha de influência devido a Rb (g). Esse procedimento pode ser 
aplicado tanto para a verificação das linhas de influência devidos aos esforços cortantes 
como para os momentos fletores de sistemas isostáticos.
INDICAÇÃO DE LEITURA
Livro: Curso de análise estrutural I – Estruturas Isostáticas
A ideia de escrever este Curso de Análise Estrutural nasceu 
da necessidade encontrada de um texto que servisse de su-
porte para o ensino da Isostática e da Hiperestática aos futu-
ros engenheiros civis, ideia esta que cresceu com o estímulo 
recebido da parte de diversos colegas de magistério, que se 
23Teoria das Estruturas I
vem deparando com o mesmo problema, e cuja concretização se tomou possível a 
partir do interesse demonstrado pela Editora Globo em editá-lo. 
Autor: José Carlos Süssekind
Disponível em: <ahoradanet.blogspot.com.br>. Acesso em: 04 jan. 16.
CONSIDERAÇÕES FINAIS
Caro(a) aluno(a), nesta unidade tivemos o primeiro contato com as bases con-
ceituais para a verificação do comportamento de cargas móveis em sistemas estru-
turais. Estes conceitos serão agora ampliados para que possamos traçar os diagra-
mas de extremos e as envoltórias destes sistemas. Estes são justamente os nossos 
próximos passos, que complementarão o que vimos aqui. 
Lembramos que este livro é uma primeira referência para o(a) aluno(a) que está to-
mando contato com o assunto, e seu estudo deve ser complementado pelas sugestões 
de leitura e/ou outras fontes de referência para o aprofundamento do seu conhecimento.
Antes disso, atente para as atividades de autoestudo abaixo. Lembre-se que o 
estudo de sistemas estruturais exige, além da nossa capacidade de compreensão 
do problema em si, que gastemos algumas horas praticando os procedimentos de 
cálculo envolvidos no processo. A dedicação leva a excelência! 
AnotAções
capítulo
2
linhas de 
influência
Carina Mariane Stolz; Daniel Tregnago Pagnussat; 
Maria Fernanda Fávero Menna Barreto
InTroduçÃo
No momento em que desejamos dimensionar certos tipos de estrutura, é necessário 
estabelecer quais os esforços máximos e mínimos que ela apresentará ao ser sub-
metida a um determinado carregamento móvel. No caso destas cargas móveis (con-
ceito que já detalhamos na unidade anterior), é necessário identificar e desenhar as 
linhas de influência, para depois determinar um diagrama, chamado diagrama de 
envoltória de esforços, indicando os valores máximos e mínimos das seções trans-
versais da estrutura em análise. Agora chegou o momento de exercitarmos a deter-
minação destas linhas de influência, para nas próximas unidades desenvolvermos a 
questão das envoltórias.
Mantenha a atenção e pratique conosco!
Bons estudos! 
objETIvos dE aprEndIzagEm 
• Correlacionar o conceito de cargas móveis com o dimensionamento de 
linhas de influência.
• Calcular linhas de influência em estruturas isostáticas.
EsquEma
• Resolução de exercícios sobre linhas de influência em estruturas 
isostáticas
27Teoria das Estruturas I
ExEmplos rEsolvIdos dE lInhas dE InfluêncIa Em 
EsTruTuras IsosTáTIcas
Retomando os conceitos que foram discutidos na Unidade I, chegou o momento 
de entendermos o passo a passo do cálculo de linhas de influência em vigas isostá-
ticas, por meio de alguns exercícios resolvidos.
Exercício resolvido 1
Considerando a viga biapoiada abaixo, determine as linhas de influência nos 
apoios A e C.
Passo 1: 
Estabelecer uma posição qualquer, entre os pontos A e C, para a carga unitária (1 
kN), visando gerar uma equação geral para os valores de RA. Consideraremos que 
a carga unitária está a uma distância X1 do apoio A. 
28 Capítulo 2
Passo 2: 
Calcular o momento atuante sobre o apoio C, convencionando-se positivo o mo-
mento no sentido horário.
Passo 3: 
Calcular RA para diferentes valores de X1.
X1 RA
0 1
2,5 0,58
5 0,17
7,5 -0,25
10 -0,67
Passo 4: 
Determinar a equação geral de RA para os casos em que a carga unitária estiver 
localizada entre os apoios C e D mediante o somatório dos momentos no ponto C.
29Teoria das Estruturas I
Passo 5: 
Calcular RA para diferentesvalores de X2.
X2 RA
0 0
1 -0,17
2 -0,33
3 -0,5
Passo 6:
Desenhar a linha de influência de RA.
Passo 7:
Considerando-se que o valor da soma da carga unitária aplicada em cada uma 
das seções da viga deve ser igual a 1, para desenhar a linha de influência em RC 
pode-se simplesmente subtrair os valores obtidos para RA de 1.
S
30 Capítulo 2
Outra forma de se obter os valores de Rc é repetir os cálculos realizados para 
RA, porém em relação a RC.
Assim, podemos definir os valores de Rc:
Exercício resolvido 2
Considere um objeto que está se movimentando ao longo da viga abaixo do pon-
to P1 ao ponto P5. Definida a seção S, desenhe as linhas de influência do cortante e 
do momento nesta seção para cada uma das posições deste objeto.
Considere as seguintes convenções para cortante e momento:
31Teoria das Estruturas I
Passo 1: 
Quando o objeto de carga 1kN está na posição P1, podemos considerar que a 
reação na seção S é igual a zero, já que a reação à sua carga será dada pelo ponto 
A, ou seja, RVA= 1 kN e RVS= 0.
Passo 2: 
Quando o objeto de carga 1kN está na posição P2, imediatamente antes da se-
ção S, teremos a seguinte situação:
32 Capítulo 2
Passo 3: 
Quando o objeto de carga 1kN está na posição P3, imediatamente após a seção 
S, teremos a seguinte situação:
Passo 4: 
Quando o objeto de carga 1kN está na posição P4, teremos a seguinte situação:
33Teoria das Estruturas I
Passo 5: 
Quando o objeto de carga 1kN está na posição P5, podemos considerar que a 
reação na seção S é igual a zero, já que a reação à sua carga será dada pelo ponto 
A, ou seja, RVA= 1 kN e RVS= 0.
Passo 6:
Realizados os cálculos dos valores dos cortantes e dos momentos, podemos 
então desenhar as linhas de influência para a seção S analisada.
Linha de influência do cortante em S:
Linha de influência do momento em S:
Exercício resolvido 3
Considerando a viga engastada isostática abaixo, determine as linhas de influên-
cia devidas ao cortante e ao momento fletor em relação a seção S.
34 Capítulo 2
Passo 1: 
Estabeleça uma posição X1 qualquer, entre os pontos A e B, para uma carga 
unitária (1 kN), visando gerar uma equação geral para os valores de Ra em relação 
a seção S que está a uma distância X. 
Passo 2: 
Calcular as reações no engaste, convencionando-se positivo o momento no sen-
tido horário.
Passo 3: 
Calcular o cortante e o momento para diferentes valores de X1 em relação a X.
X1 Qs Ms
X1 < X 0 0
X1 > X 1 -X1+X
X1 = L 1 -L+X
35Teoria das Estruturas I
Passo 4:
Realizados os cálculos dos valores dos cortantes e dos momentos, podemos 
então desenhar as linhas de influência para a seção S analisada.
Linha de influência do cortante e do momento em S:
REFLITA
Todos os exemplos resolvidos acima são a 
base conceitual para o cálculo de qualquer outro 
exemplo numérico. Se colocarmos valores de car-
gas permanentes e acidentais adicionais a uma 
viga, o procedimento não muda. Procure entender 
a lógica da resolução, pois somente assim você 
será capaz de resolver exercícios mais complexos.
Hoje em dia o acesso a informação está 
cada vez mais facilitado. Diferente de alguns 
anos atrás, onde a informação estava restrita 
às bibliotecas por meio de mídias impressas, 
hoje é praticamente possível acessar bancos 
de dados de todas as partes do mundo. Se 
você se interessa por esta parte de cálculo 
estrutural de pontes, viadutos e outras estru-
turas que utilizem o cálculo de cargas mó-
veis, os links abaixo podem ser interessantes 
para complementar seus estudos:
<http://www.abpe.org.br/> (site da 
Associação Brasileira de Pontes e Estruturas, 
possui um link de publicações).
<ht tp: / /www.br idgeweb.com/News/
Default.aspx> (site dedicado a discussões de 
engenharia de pontes).
<http://www.sciencedirect.com/> (base 
de pesquisa de artigos científicos em geral, 
vale a pena buscar artigos técnicos a partir 
de palavras-chave em inglês).
Capítulo 2
FIQUE POR DENTRO
Abaixo alguns links interessantes para você 
que está estudando esta parte da estática dos 
corpos rígidos tão importante para a concep-
ção de estruturas como pontes. Você conhece 
algumas das pontes mais incríveis do mundo? 
Seguem algumas para você conhecer!!!
<http://www.tecmundo.com.br/curiosi-
dade/14801-as-16-pontes-mais-incriveis-do
-mundo.htm>.
<https://construcaocivilpet.wordpress.
com/2016/01/06/a-segunda-mais-alta-ponte-
do-mundo-e-inaugurada-na-china/>.
CONSIDERAÇÕES FINAIS
E então, com essa unidade conseguimos praticar bastante a questão das linhas 
de influência. Esperamos que você, neste momento, já esteja familiarizado com a 
mesma, pois o cálculo é imprescindível para a resolução de estruturas com cargas 
móveis. Se você ainda está com dificuldades, não desanime. Na próxima unidade 
vamos desenvolver uma metodologia alternativa para a determinação das linhas de 
influência que pode ajudar. Vamos trabalhar?
Teoria das Estruturas I
AnotAções
AnotAções
capítulo
3
princípio de 
müller-breslau
Carina Mariane Stolz; Maria Fernanda Fávero 
Menna Barreto; Daniel Tregnago Pagnussat
InTroduçÃo
O princípio de Müller-Breslau, também conhecido como Método Cinemático para 
traçado de Linhas de Influência (LI), permite que as linhas de influência para as reações, 
cortante e momento de vigas sejam determinadas de forma qualitativa e rapidamente.
Segundo Leet et al. (2010), este método pode ser utilizado principalmente para 
as seguintes aplicações:
verificar se o aspecto de uma linha de influência, produzida pelo movimento de 
uma carga unitária em uma estrutura, está correto;
estabelecer onde se deve posicionar a carga móvel em uma estrutura para maximi-
zar uma função específica, sem avaliar as ordenadas da linha de influência. Uma vez es-
tabelecida a posição crítica da carga, fica mais simples analisar diretamente certos tipos 
de estruturas para a carga móvel especificada do que desenhar a linha de influência;
determinar a localização das ordenadas máximas e mínimas de uma linha de 
influência, para que apenas algumas posições da carga unitária precisem ser consi-
deradas quando as ordenadas da linha de influência forem calculadas.
Bons Estudos!
objETIvos dE aprEndIzagEm 
• Calcular linhas de influência em estruturas isostáticas.
EsquEma
• Princípio de Müller-Breslau
• Resolução de exercícios sobre linhas de influência em estruturas 
isostáticas mediante o uso do método
• Exemplos e exercícios
41Teoria das Estruturas I
o méTodo dE müllEr-brEslau
Resumidamente, deve-se seguir três etapas para traçar as LI pelo Método de 
Müller-Breslau (SÜSSEKIND, 1980):
a. rompe-se o vínculo capaz de transmitir o efeito E cuja linha de influência se 
deseja determinar;
b. na seção onde atua o efeito E, atribui-se à estrutura, no sentido oposto ao de 
E positivo, um deslocamento generalizado unitário, que será tratado como 
sendo muito pequeno;
c. a configuração deformada (elástica) obtida é a linha de influência.
A tabela, a seguir, apresenta exemplos de deslocamentos generalizados em vín-
culos pelo método de Müller-Breslau.
Fonte: Nunes e Martha (2001)
42 Capítulo 3
REFLITA
Você sabia que a ponte suspensa que 
possui o maior vão livre do mundo está no 
Japão? 
“A Ponte Akashi-Kaikyo está localizada 
entre a cidade de Kobe e a ilha Awaji, no 
estreito de Akashi, no Japão. Foi inaugu-
rada em abril de 1998, após 10 anos de 
construção, com 3911m de comprimento 
total e 1991m de vão central, sendo as-
sim a maior ponte suspensa do mundo. A 
Akashi-Kaikyo conquistou três recordes: o 
de vão mais extenso, o de ponte com torremais alta, com 283m e o de ponte mais 
cara (4,3 bilhões de dólares). O compri-
mento total de fios de aço usados na pon-
te é de 300.000 km, quantidade suficiente 
para dar 7,5 voltas ao redor da Terra”.
Percebeu a importância do entendimento 
do comportamento das estruturas para colo-
car em prática um projeto ousado como este? 
Disponível em: <http://gigantesdomundo.
blogspot.com.br/2011/10/as-10-maiores-
pontes-suspensas-do-mundo.html>. Acesso 
em: 16 jan. 16.
Vamos ver alguns exemplos de aplicação para simplificar o entendimento do mé-
todo de Müller-Breslau?
43Teoria das Estruturas I
Exemplo 1:
Linha de Influência de reação vertical em A:
Linha de Influência de cortante em B:
44 Capítulo 3
Exemplo 2:
Linhas de influência das reações em A, C e D.
45Teoria das Estruturas I
Linha de influência do corte em C:
A B 
C 
FIQUE POR DENTRO
46 Capítulo 3
Quer simular o comportamento de es-
truturas? Visualizar suas deformações? 
Entender as consequências das forças que 
são aplicadas? Calcular cargas móveis e li-
nhas de influência? O programa FTOOL pode 
ser uma ótima ferramenta para te ajudar!
Desenvolvido pelo Professor Associado 
da Pontifícia Universidade Católica do Rio 
de Janeiro (PUC-Rio) Luiz Fernando Martha, 
“o FTOOL é um programa que se destina 
ao ensino do comportamento estrutural de 
pórticos planos, ocupando um espaço pouco 
explorado por programas educativos, que se 
preocupam mais com o ensino das técnicas 
numéricas de análise, ou por versões educa-
cionais de programas comerciais, mais preo-
cupados em introduzir os estudantes às suas 
interfaces. Seu objetivo básico é motivar o 
aluno para aprender o comportamento estru-
tural. A experiência de ensino nesta área tem 
mostrado que o processo de aprendizado dos 
métodos de análise estrutural não é eficiente 
sem o conhecimento sobre o comportamento 
estrutural. É muito difícil motivar o aluno pa-
drão a aprender a teoria dos métodos de 
análise sem entender como o modelo sendo 
analisado se comporta na prática. O proces-
so de aprendizado dos métodos de análise 
melhoraria bastante se o estudante pudesse 
aprender sobre o comportamento estrutural 
simultaneamente. Do seu objetivo básico 
decorre a necessidade do FTOOL ser uma 
ferramenta simples, unindo em uma única in-
terface recursos para uma eficiente criação e 
manipulação do modelo (pré-processamen-
to) aliados a uma análise da estrutura rápida 
e transparente e a uma visualização de resul-
tados rápida e efetiva (pós-processamento)”.
O download gratuito do programa, bem 
como explicações de como utilizá-lo podem 
ser encontrados no site: <www.tecgraf.puc-rio.
br/ftool/>. Você ainda pode encontrar na inter-
net diversas apostilas de diferentes instituições 
de ensino que ensinam o uso do programa.
Disponível em: <http://webserver2.tec-
graf.puc-rio.br/ftool/>. Acesso em: 04 jan. 16.
47Teoria das Estruturas I
INDICAÇÃO DE LEITURA
Livro: Sistemas de Estruturas
Nesta obra bilíngue, explícitas ilustrações mostram 
o comportamento complexo dos sistemas estrutu-
rais e a relação entre estrutura e forma arquitetônica. 
Consequentemente, o projetista - arquiteto, engenheiro 
ou estudante - pode adquirir desde uma visão geral ao 
conhecimento específico para elaborar ideias estrutu-
rais. Após mais de 30 anos de existência, este livro con-
tinua sendo hoje, nesta visão atualizada, o manual de referência na matéria.
Autor: Heino Engel
Disponível em: <http://www.saraiva.com.br/sistemas-de-estructuras-sistemas-estru-
turais-157831.html>. Acesso em: 16 jan. 16.
CONSIDERAÇÕES FINAIS
Caro(a) aluno(a), estamos chegando ao final de mais uma unidade e com ela 
o encerramento do estudo teórico referente a linhas de influência. Para facilitar o 
emprego das linhas de influência em vigas isostáticas, Soriano (2010) apresenta em 
seu livro um formulário para uma viga engastada e uma biapoiada, com os perfis 
típicos de LI para cada uma delas, apresentado na tabela a seguir.
Facilitou um pouquinho a vida, não? 
Capítulo 3
Neste momento você deve estar pensado: “por que este formulário foi apresen-
tado somente nas considerações finais da unidade?”. Esta sistemática é proposital, 
caro(a) aluno(a). Primeiramente, é indispensável que se entenda o comportamento 
das estruturas que estamos analisando, para posteriormente utilizarmos as fórmulas 
prontas. O mesmo se aplica a softwares de cálculo estrutural, sendo que de nada 
adianta eu comprar um software caríssimo e de excelente qualidade se eu não sou-
ber analisar os resultados que ele me dá. Não acha?
Teoria das Estruturas I
AnotAções
AnotAções
capítulo
4
diagramas de 
valores extremos 
e envoltórias
Carina Mariane Stolz; Maria Fernanda Fávero 
Menna Barreto; Daniel Tregnago Pagnussat
InTroduçÃo
Estamos chegando no momento final de reunir todos os conceitos abordados até o 
momento e sua aplicação prática no dimensionamento de estruturas. Nos falta, ca-
ro(a) aluno(a), buscar compreender como é fundamental, dentro de uma distribuição 
de esforços devido a uma carga móvel que muda de posição ao longo do elemento 
estrutural, saber identificar os valores extremos e as envoltórias. Em termos práticos, 
o objetivo é de verificar as situações mais desfavoráveis das cargas móveis aplica-
das, pois estas serão a base para nosso futuro dimensionamento.
Fique atento(a) à metodologia de resolução, pois a mesma exige vários passos 
até a resposta final.
Bons estudos!
objETIvos dE aprEndIzagEm 
• Conceituar Diagramas de valores Extremos e Envoltórias.
• Correlacionar o conceito de cargas móveis com o dimensionamento de 
linhas de influência, valores extremos e envoltórias.
EsquEma
• Valores Extremos e Envoltórias
• Exemplos e exercícios
53Teoria das Estruturas I
dIagramas dE valorEs ExTrEmos E EnvolTórIas
O diagrama de valores extremos representa os máximos efeitos (sejam eles esfor-
ços ou deslocamentos), devido a uma carga móvel ao qual a estrutura está submeti-
da. Esses diagramas serão gerados pelas chamadas linhas de máximos e mínimos. 
Segundo Chameki (1956), o traçado da linha de máximos se dá de diferentes formas:
a. Escolhe-se um determinado número de pontos em uma estrutura para em 
seguida, em cada ponto, determinar a posição da carga móvel que provoca o 
máximo efeito procurado (mediante as linhas de influência), ou:
b. Determina-se, por meio de um processo analítico, a posição da carga móvel 
que provoca o máximo efeito procurado, em relação a um determinado ponto 
desta estrutura (Exemplo 1), ou:
c. Outros processos especiais, para estruturas específicas, como o processo de 
Winkler (que não abordaremos aqui).
FIQUE POR DENTRO
54 Capítulo 4
Você tem dificuldade em visualizar o 
comportamento das estruturas ao serem 
submetidas aos diferentes esforços ou pos-
suírem rigidez distintas? Que tal reproduzir 
o comportamento dessas estruturas me-
diante maquetes flexíveis? Esta foi a ideia 
dos idealizadores do Kit Mola.
O kit é composto por um conjunto de 
esferas, molas, fios, triângulos e placas de 
aço, plástico e ímãs e tem como objetivo 
inovar no ensino de estruturas nos cursos de 
engenharia e arquitetura. 
Ficou interessado(a)? Acesse os vídeos 
com demonstrações do kit mola no YouTube. 
Segue o link de um deles: <https://www.you-
tube.com/watch?v=cIXQOWBCA5s>.
Exemplo 1: (adaptado de Chamechi, 1956, p.133)
A partir da carga concentrada P aplicada nas diferentes seções da viga isostática 
abaixo, traçar a linha dos máximos momentos fletores.
55Teoria das Estruturas I
RESPOSTA: na figura a), temos a descrição da vigaem estudo. Ao traçarmos a 
linha de influência do momento fletor em uma seção S, temos o gráfico apresentado 
em b); A carga P irá gerar um momento fletor máximo em S quando estiver exatamente 
sobre a seção (como indica abaixo a figura c). A fórmula deste momento é dada por:
Sendo a=x e b=(L-x) a equação anterior pode ser desdobrada em:
Essa equação é uma parábola do segundo grau, representada pela linha da fi-
gura d), e corresponde a linha de máximos momentos nas seções. O valor máximo 
dessa equação vale quando 
Exemplo 2: determine os valores máximos de momento fletor na seção S da viga abaixo 
(Fonte: <http://www.cadtec.dees.ufmg.br/NucleoEAD/Forum/Arquivos/apostila_
LI.pdf>. Acesso em: 15 jan. 16):
56 Capítulo 4
57Teoria das Estruturas I
58 Capítulo 4
Finalmente, sobre envoltórias limite, Holtz (2005, p.56) descreve:
As envoltórias limites de um determinado esforço em uma estrutura descrevem 
para um conjunto de cargas móveis ou acidentais, os valores máximos e mí-
nimos deste esforço em cada uma das seções da estrutura, de forma análoga 
a que descreve o diagrama de esforços para um carregamento fixo. Assim, o 
objetivo da Análise Estrutural para o caso de cargas móveis ou acidentais é 
a determinação de envoltórias de máximos e mínimos de momentos fletores, 
esforços cortantes, etc., o que possibilitará o dimensionamento da estrutura 
submetida a este tipo de solicitação. As envoltórias são, em geral, obtidas por 
interpolação de valores máximos e mínimos, respectivamente, de esforços cal-
culados em determinado número de seções transversais ao longo da estrutura.
Vamos desenvolver ainda mais este conceito?
As chamadas ENVOLTÓRIAS determinam uma faixa de trabalho de uma estru-
tura. Para entendermos melhor: quando temos uma estrutura submetida a cargas 
móveis, também temos que considerar os próprios carregamentos permanentes 
nela existentes. Para realizar a inclusão dos efeitos das cargas permanentes aos 
valores extremos calculados de cada uma das reações de apoio em função das car-
gas móveis, estes valores devem ser somados às reações correspondentes a estes 
tipos de carregamento. O resultado da soma destes valores aos valores extremos 
(máximos e mínimos, que aprendemos a calcular anteriormente) gera uma tabela 
que nos fornece pontos para plotarmos um gráfico, que definem a ENVOLTÓRIA 
DE MÁXIMO ESFORÇO e a ENVOLTÓRIA DE MÍNIMO ESFORÇO. Estas envoltó-
rias definem uma faixa de trabalho na qual o Engenheiro pode dimensionar, com a 
59Teoria das Estruturas I
devida segurança, cada seção de uma ponte, viaduto ou passarela submetida a car-
regamentos permanentes e cargas móveis. Vamos, então, ver um exemplo resolvido 
para aprendermos a calcular envoltórias.
Exemplo 3:
Determine a envoltória de esforços internos da viga biapoiada com balanços, 
carga permanente e carga móvel apresentada a seguir (fonte: <http://www.maxwell.
vrac.puc-rio.br/7603/7603_3.PDF>. Acesso em: 16 jan. 16).
Inicialmente, determinaram-se os diagramas de esforço cortante e de momento 
fletor devidos à carga permanente.
60 Capítulo 4
Em um segundo momento, calculou-se os esforços cortantes máximos e míni-
mos devido à carga móvel para cada seção transversal adotada da estrutura.
O diagrama, a seguir, apresenta o cálculo do cortante máximo e mínimo para a seção Besq:
O diagrama, a seguir, apresenta o cálculo do cortante máximo e mínimo para a seção Bdir:
61Teoria das Estruturas I
Esforço cortante máximo e mínimo na seção C:
Esforço cortante máximo e mínimo na seção D:
62 Capítulo 4
A tabela e a figura apresentadas a seguir apresentam os resultados do esforço 
cortante máximo e mínimo nas seções da estrutura devido a cada carregamento 
atuante e o valor final das envoltórias de esforço cortante. 
Seção
Carga
Permanente
Carga Móvel Envoltórias
Mínimo Máximo Mínimo Máximo
A 0 -20 0 -10 0
B
ESQ
-60 -60 0 -120 -60
B
DIR
+120 -8,75 +91,25 +111,25 +211,25
C +60 -12,50 +57,50 +47,50 +117,50
D 0 -31,25 +31,25 -31,25 +31,25
E -60 -57,50 +12,50 -117,50 -47,50
F
ESQ
+120 -91,25 +8,75 -211,25 -111,25
F
DIR
+60 0 +60 +60 +120
G 0 0 +20 0 +20
As figuras, a seguir, mostram como foi feita a determinação dos momentos fletores 
máximos e mínimos devidos à carga móvel para cada seção transversal da estrutura.
63Teoria das Estruturas I
Momento fletor máximo e mínimo na seção B:
Momento fletor máximo e mínimo na seção C:
64 Capítulo 4
Momento fletor máximo e mínimo na seção D:
Os resultados do momento fletor máximo e mínimo nas seções da estrutura de-
vido a cada carregamento atuante e o valor final das envoltórias de momento fletor 
estão apresentados na tabela abaixo:
Seção
Carga
Permanente
Carga Móvel Envoltórias
Mínimo Máximo Mínimo Máximo
A 0 0 0 0 0
B -90 -105 0 -195 -90
C +180 -90 +195 +90 +375
D +270 -75 +255 +195 +525
E +180 -90 +195 +90 +375
F -90 -105 0 -195 -90
G 0 0 0 0 0
65Teoria das Estruturas I
Envoltórias de momento fletor:
INDICAÇÃO DE LEITURA
Livro: Arquiteturas da Engenharia - Engenharias da 
Arquitetura
Neste livro, três professores universitários explicam o fun-
cionamento estrutural de edifícios, pontes e torres de for-
ma simples, quase intuitiva. A ideia central é mostrar que 
as melhores obras nascem do encontro feliz de compe-
tências na arquitetura e na engenharia. A publicação re-
sulta da experiência didática dos autores, que desenvolveram um método de ensino 
inovador, ajustado a futuros arquitetos, mas também indispensável aos profissionais 
de engenharia. Mais do que pretender rever o tema com uma abordagem fechada 
que resultaria em um texto com princípio, meio e fim, os autores optaram por manter a 
Capítulo 4
possibilidade de fragmentos que, com ajuda de dezenas de exemplos reais entrelaça-
dos, acabam por configurar outros sentidos úteis ao esclarecimento e ao aprendizado.
Autores: Yopanan C. P. Rebello, João Marcos Lopes, Marta Bogéa.
Disponível em: <http://www.saraiva.com.br/arquiteturas-da-engenharia-engenha-
rias-da-arquitetura-1463288.html>. Acesso em: 16 jan. 16.
REFLITA
A disponibilidade de informações na 
internet constitui-se em uma importante 
ferramenta de pesquisa para estudantes 
em qualquer lugar do mundo. Hoje em dia, 
é possível pesquisar sobre qualquer as-
sunto. Não raro, existem diversas videoau-
las para estudantes de engenharia sobre 
Estática das estruturas. Elas podem ser 
úteis para complementar seus estudos. 
Contudo, tenha bastante atenção quanto 
a fonte de pesquisa que está sendo utili-
zada. Muitas vezes, os vídeos disponibi-
lizados na internet são produzidos pelos 
próprios estudantes como parte de uma 
disciplina, ou por pessoas sem o devido 
preparo, que geram material com erros 
conceituais. Fique bem atento(a) ao tipo 
de material que está pesquisando!
CONSIDERAÇÕES FINAIS
Encerrando esta etapa deste livro, agora estamos com todos os conceitos com-
pletos para a compreensão das bases de cálculo de estruturas submetidas a cargas 
móveis. Lembramos, novamente, que este material é uma base inicial para seus 
estudos no tema, que devem ser complementados com mais horas de trabalho por 
meio de leituras, exercícios etc. Mas ainda temos bastante matéria para aprender! 
Sigamos em frente!
Teoria das Estruturas I
AnotAções
AnotAções
capítulo
5
princípio dos 
trabalhos 
virtuais
Carina Mariane Stolz; Maria Fernanda Fávero 
Menna Barreto; Daniel Tregnago Pagnussat
objETIvos dE aprEndIzagEm 
• Compreender o conceito e aplicar o Princípio dos Trabalhos Virtuais, a 
partir do qual resolveremos o problema do cálculo de deformações nas 
estruturas.
EsquEma
• Princípiodos Deslocamentos Virtuais
• Corpos rígidos
• Corpos elásticos
• Princípio das Forças Virtuais
71Teoria das Estruturas I
InTroduçÃo 
O Princípio dos Trabalhos Virtuais estabelece a relação entre as forças () atuan-
tes em um ponto e seus possíveis deslocamentos (), sendo esta ou aquela virtual1. 
Desta forma, o trabalho () pode ser descrito como:
(5.1)
Conforme dito anteriormente, o Trabalho Virtual pode ser gerado a partir de duas 
situações:
• Trabalho realizado por forças reais durante um deslocamento virtual;
• Trabalho realizado por forças virtuais durante um deslocamento real.
O termo virtual, empregado acima, remete a algo fictício. Ou seja, o deslocamen-
to virtual e a força virtual são arbitrariamente impostos sobre o sistema estrutural, 
eles não ocorrem realmente.
Segundo Beer, Johnston, Mazurek e Eisenberg (2012, p.123), “o Princípio do 
Trabalho Virtual para uma partícula estabelece que, se uma partícula está em equi-
líbrio, o trabalho virtual total das forças atuantes sobre ela é zero para qualquer 
deslocamento virtual desta partícula”. Ou seja, se a partícula está em equilíbrio, a 
resultante das forças () é zero. Substituindo este valor na equação 5.1, se tem que o 
trabalho virtual também é igual zero.
1 Todas as grandezas virtuais serão denotadas por um traço superior na equação, por exemplo, 
 significa trabalho virtual.
72 Capítulo 5
prIncípIo dos Trabalhos vIrTuaIs
princípio dos deslocamentos virtuais
O Princípio dos Deslocamentos Virtuais pode ser utilizado para determinar qual-
quer um dos esforços seccionais das estruturas (SORIANO; LIMA, 2006). Ele é apli-
cável aos corpos rígidos e elásticos, descritos a seguir.
• Corpos rígidos
Para um corpo rígido em equilíbrio, o trabalho virtual total das forças externas 
atuantes sobre o corpo rígido é zero para qualquer deslocamento virtual desse corpo 
(SÜSSEKIND, 1980; BEER; JOHNSTON; MAZUREK; EISENBERG, 2012).
(5.2)
Nas estruturas isostáticas o deslocamento do apoio não provoca deformações 
nem esforços internos. Desta forma, considera-se que as estruturas isostáticas fun-
cionam como corpos rígidos (SORIANO; LIMA, 2006). Sendo assim, as reações 
de apoio de estruturas isostáticas podem ser calculadas utilizando o Princípio dos 
Trabalhos Virtuais.
Exemplo 1 (SORIANO; LIMA, 2006) – Calcule a reação no apoio A da estrutura 
abaixo.
73Teoria das Estruturas I
Para uma força real (reação de apoio A), aplica-se um deslocamento virtual.
O Princípio dos Trabalhos Virtuais para corpos rígidos fornece:
(a)
Da geometria da configuração virtual mostrada anteriormente, tem-se:
(b)
Substituindo a equação (b) em (a), obtém-se:
(c)
• Corpos elásticos
Corpos elásticos são corpos deformáveis, onde um ponto em seu interior se move 
em relação aos outros. Neste caso, as forças internas e externas realizam trabalho. 
Quando a estrutura é hiperestática, a configuração virtual é uma configuração defor-
mada, de trabalho interno diferente de zero (SORIANO; LIMA, 2006).
Sendo assim, para um corpo elástico que atingiu o equilíbrio, o trabalho virtual 
total das forças externas é igual ao trabalho virtual das forças internas, para to-
dos os deslocamentos virtuais impostos sobre ele (SÜSSEKIND, 1980; SORIANO; 
LIMA, 2006; MARTHA, 2010).
74 Capítulo 5
(5.3)
(5.4)
A deformação interna virtual pode ser desmembrada em parcelas que conside-
ram os efeitos relativos de suas seções: deformação axial devido ao esforço normal, 
deformação de flexão devida ao momento fletor, deformação de cisalhamento de-
vido à cortante e deformação de torção devido ao momento torsor. Sendo assim, o 
trabalho interno é a energia de deformação total.
(5.5)
Da equação 5.5 tem-se: 
- Esforços normal, momento fletor, cortante e torsor no sistema vir-
tual provocado por P;
N, M, V, T – Esforço normal, momento fletor, cortante e torsor no sistema real 
provocado pelo carregamento real;
 – Comprimento do elemento estrutural;
E – Módulo de elasticidade longitudinal do material;
A – Área da seção transversal do elemento;
I – Momento de inércia da seção transversal em relação ao seu eixo neutro;
G – Módulo de elasticidade transversal;
75Teoria das Estruturas I
 – Área de cisalhamento referente à seção transversal, , valores na tabela 
abaixo;
J – Momento de inércia à torção da seção, valores na tabela a seguir. 
Fonte: Soriano e Lima (2006)
76 Capítulo 5
Substituindo-se a equação 5.4 e 5.5 na equação 5.3, se alcança a equação final.
(5.6)
prIncípIo das forças vIrTuaIs
Em estruturas de material elástico linear, o Princípio das Forças Virtuais é ape-
nas uma forma alternativa de se escrever o Princípio dos Deslocamentos Virtuais 
(SORIANO; LIMA, 2006).
(5.7)
A equação 5.7 expressa o Teorema das Forças Virtuais que se enuncia: conside-
rando em uma estrutura um sistema de forças equilibradas quaisquer, denominadas 
forças virtuais, o trabalho virtual das forças externas é igual ao trabalho virtual das 
forças internas (SORIANO; LIMA, 2006).
É uma das principais ferramentas para a determinação de deslocamentos em 
estruturas, por meio da qual se utiliza um sistema virtual diferente do sistema real 
que se deseja calcular um deslocamento ou rotação. O sistema virtual trabalha com 
a mesma estrutura, porém com carregamento unitário compostos de uma força (ou 
momento) escolhidos arbitrariamente na direção do deslocamento (ou rotação) que 
se deseja calcular e de suas correspondentes reações de apoio (MARTHA, 2010).
77Teoria das Estruturas I
considerações gerais
Para as estruturas que lidamos usualmente na prática, podemos acrescentar as 
seguintes informações, segundo Süssekind (1980):
• A parcela pode ser desprezada em presença das demais, com erro 
mínimo (somente em caso de vãos muito curtos e cargas muito elevadas em 
que a influência do esforço cortante é considerável);
• A parcela também pode ser desprezada em peças de estruturas que 
não trabalhem fundamentalmente ao esforço normal;
• A parcela pode ser obtida pelo uso de tabelas:
 
 
 
78 Capítulo 5
Fonte: <http://webgiz.univertix.net/files/000287/TABELAS.pdf>. Acesso em: 24 jan. 2016 
79Teoria das Estruturas I
Exemplo 2 (SÜSSEKIND, 1980) – Calcular o deslocamento horizontal de D, para 
o quadro abaixo, que tem para todas as barras.
Para um deslocamento real, aplica-se uma força virtual (unitária) no local em que 
se deseja obter tal deslocamento (Figura a), desta forma se tem o estado de defor-
mação virtual (Figura b):
a. Aplicação da força virtual para ob-
ter o deslocamento real.
b. Estado de carregamento (momento) 
da força virtual.
80 Capítulo 5
Em seguida, calcula-se o estado real, ou seja, o estado de deformação da es-
trutura com o carregamento real aplicado (Figura c), obtendo-se assim o estado de 
deformação real (Figura d):
c. Estrutura com o carregamento 
real aplicado.
d. Estado de deformação (momento) 
da força real.
Com o estado de deformação real (Figura e) e virtual (Figura f), calcula-se o des-
locamento real pela equação 5.7.
e. Estado de deformação real. f. Estado de deformação virtual.
Por se tratar de uma estrutura que trabalha fundamentalmente a flexão, conside-
raremos só o momento no cálculo da deformação em cada barra:
81Teoria das Estruturas I
(a)
(b)
(c)
Com a forma dos estados de deformações e equação c, entra-se na tabela en-
contrando o valor do deslocamento:
Sendo o sinal do deslocamento negativo, indica que o sentido da força unitária 
se opõe ao deslocamento, logo o deslocamento real no ponto D é para sua direita.
82 Capítulo 5
FIQUE POR DENTRO
Aprender o Princípio dos Trabalhos 
Virtuais é essencialpara resolução de 
estruturas hiperestática pelo Método das 
Forças, logo não o ignore ou subestime-o. 
REFLITA
É extremamente importante o domínio 
da isostática para traçar os diagramas de 
esforços seccionais (normal, momento, cor-
tante e torsor) das estruturas, pois qualquer 
deslize nos diagramas causará um erro na 
obtenção da deformação, visto que esta de-
pende daquele.
Por isso, caso encontre dificuldades em 
traçar os diagramas, não deixe de rever os 
conteúdos passados de isostática. 
INDICAÇÃO DE LEITURA
Livro: Curso de análise estrutural 2
A ideia de escrever este Curso de Análise Estrutural nas-
ceu da necessidade encontrada de um texto que nos 
servisse de suporte para o ensino da Isostática e da 
Hiperestática aos futuros engenheiros civis, ideia esta 
que cresceu com o estímulo recebido da parte de diver-
sos colegas de magistério, que se vem deparando com o 
mesmo problema e cuja concretização se tornou possível 
a partir do interesse demonstrado pela Editora Globo em editá-lo.
Autor: José Carlos Süssekind
83Teoria das Estruturas I
CONSIDERAÇÕES FINAIS
Conforme visto, o Princípio dos Trabalhos Virtuais está diretamente relacionado 
com as forças e os deslocamentos da estrutura, sendo um dos dois virtuais.
Ou seja, o trabalho virtual pode ser realizado por uma força real gerando um des-
locamento virtual ou por uma força virtual gerando um deslocamento real. A partir dis-
so, surgem o Princípio dos Deslocamentos Virtuais e o Princípio das Forças Virtuais.
Aprender o Princípio dos Trabalhos Virtuais é muito importante, pois ele é lar-
gamente utilizado no Método das Forças para resolução de estruturas hiperestá-
tica. Sendo assim, a aprendizagem do tema em questão é o passo inicial e será 
explorado mais adiante.
AnotAções
capítulo
6
deslocamentos 
em estruturas 
isostáticas
Carina Mariane Stolz; Maria Fernanda Fávero 
Menna Barreto; Daniel Tregnago Pagnussat
InTroduçÃo
A deformação máxima de uma viga sob um carregamento tem importância espe-
cial, pois as especificações de projeto geralmente incluem um valor máximo admis-
sível para sua deformação (BEER; JOHNSTON; DEWOLF, 2010).
Uma viga prismática submetida à flexão pura é flexionada em um arco de circun-
ferência que, dentro do regime elástico, a curvatura da superfície neutra pode ser 
expressa como:
(6.1)
Da equação 6.1, tem-se:
M – Momento fletor;
x – Distância da seção a partir da extremidade esquerda da viga;
E – Módulo de elasticidade;
I – Momento de inércia da seção transversal.
A informação da curvatura em vários pontos da viga permite conclusões gerais 
referentes à deformação da viga sob determinado carregamento.
objETIvos dE aprEndIzagEm 
• Obter, sem a aplicação do Princípio dos Trabalhos Virtuais, as 
deformações elásticas de uma viga:
• Deslocamento transversal (flecha).
• Inclinação.
EsquEma
• Equação da linha elástica
• Método da superposição
87Teoria das Estruturas I
EquaçÃo da lInha ElásTIca
Para encontrar a inclinação e o deslocamento transversal da viga em qualquer 
ponto, determina-se a equação diferencial linear de segunda ordem dada a seguir, 
que governa a linha elástica caracterizando a forma da viga deformada (BEER; 
JOHNSTON; DEWOLF, 2010).
(6.2)
A inclinação é dada pela equação 6.3, que nada mais é do que a integração da 
equação anterior.
(6.3)
A deformação vertical (flecha) é dada pela equação 6.4, que nada mais é do que 
duas integrações sucessivas da equação 6.2 ou uma única integração da equação 6.3.
(6.4)
As constantes de integração e são determinadas pelas condições de contorno 
ou, mais precisamente, pelas condições impostas à viga pelos seus apoios (BEER; 
JOHNSTON; DEWOLF, 2010):
88 Capítulo 6
Fonte: Beer, Johnston e Dewolf (2010)
Exemplo 1 (BEER; JOHNSTON; DEWOLF, 2010) – A viga em balanço AB abaixo, 
tem seção transversal uniforme e suporta uma força P na sua extremidade livre A. 
Determine a equação da linha elástica, a flecha e a inclinação em A.
a) Carregada.
b) Deformada.
Primeiramente, se define a equação de momento, que será integrada até chegar 
na equação da linha elástica.
Substituindo-se M(x) na equação 6.3:
(a)
89Teoria das Estruturas I
Pelas condições de contorno, sabe-se que no ponto B e . e . 
Inserindo essas informações na equação a, tem-se que:
Inserindo o valor de na equação da inclinação (equação a) e integrando tudo 
novamente, obtém-se a equação da linha elástica:
(b)
Pelas condições de contorno, sabe-se que no ponto B e e 
Inserindo essas informações na equação b, obtém-se:
Inserindo o valor de na equação b, tem-se a equação da linha elástica:
Para obter a flecha no ponto A, basta inserir na equação da linha elástica a dis-
tância x do ponto A, . :
90 Capítulo 6
Para obter a inclinação no ponto A, basta inserir na equação da inclinação (equa-
ção a) a distância x do ponto A, , .
Exemplo 2 (BEER; JOHNSTON; DEWOLF, 2010) – A viga biapoiada AB está 
submetida a uma força w uniformemente distribuída por unidade de comprimento. 
Determine a equação da linha elástica e a flecha máxima da viga.
1. Carregada.
2. Deformada.
Primeiramente, se calculam as reações de apoio.
Em seguida, define-se a equação de momento que representa a viga.
Substituindo-se M(x) na equação 6.3:
(a)
Integrando-se novamente, obtém-se a equação da linha elástica:
91Teoria das Estruturas I
(b)
Pelas condições de contorno, sabe-se que no ponto A e e no 
Ponto B e e . Inserindo essas informações na equação b, obtém-se 
um sistema que fornece o valor de e :
 ; 
Inserindo os valores de e na equação b, tem-se a equação da linha elástica:
Sabe-se que a maior flecha ocorre no centro da viga. Desta forma, substituindo x 
por na equação da linha elástica, tem-se a flecha máxima da viga.
Exemplo 3 (BEER; JOHNSTON; DEWOLF, 2010) – Para a viga prismática e o 
carregamento mostrado, determine a inclinação e a flecha no ponto D.
92 Capítulo 6
3. Carregada.
4. Deformada.
Primeiramente, se calculam as reações de apoio.
Em seguida, define-se a equação de momento. São necessárias duas equações 
de momento, uma para parte AD outra para parte DB.
Substituindo-se M na equação 6.3:
(a)
93Teoria das Estruturas I
Integrando-se novamente, obtém-se a equação da linha elástica:
(b)
Pelas condições de contorno, para o trecho AD, enquanto e para 
o trecho DB, enquanto . Inserindo isto na equação a, tem-se que:
(c)
Novamente pelas condições de contorno, quando e 
 e , logo:
(d)
(e)
A partir das equações c, d, e, forma-se um sistema que fornecerá as incógnitas 
, , : 
Substituindo esses valores na equação a e equação b, tem-se:
94 Capítulo 6
(f)
(g)
Fazendo em qualquer uma das equações f, tem-se a inclinação no 
ponto D e fazendo a mesma coisa em qualquer uma das equações g, tem-se a flecha 
no mesmo ponto.
méTodo da supErposIçÃo
A deformação e a declividade de vigas submetidas a vários carregamentos po-
dem ser obtidas pela superposição do efeito de cada carregamento individualmente 
que, após somados, dão o resultado do carregamento como um todo.
Fonte: Beer, Johnston e Dewolf (2010)
Para facilitar, abaixo há uma tabela que fornece a flecha máxima, a inclinação e 
a equação da linha elástica para várias estruturas. Desta forma, a estrutura da figura 
anterior pode ser facilmente obtida pela tabela abaixo.
95Teoria das Estruturas I
Fonte: Beer, Johnston e Dewolf (2010)
FIQUE POR DENTRO
Por meio do método apresentado nes-
ta unidade, também se pode calcular 
inclinações e deformações em estruturas 
hiperestáticas.
96 Capítulo 6
REFLITA
Quais os fatoresque influenciam direta-
mente na flecha e na inclinação da estrutura? 
Em uma estrutura, deseja-se aumentar o seu 
carregamento mantendo a deformação verti-
cal máxima (flecha) constante. Isso é possí-
vel? Como? 
INDICAÇÃO DE LEITURA
Livro: Resistência dos Materiais
O objetivo principal de um curso básico de mecâ-
nica é desenvolver no estudante de engenharia a 
habilidade para analisar um dado problema de ma-
neira simples e lógica e aplicar alguns princípios 
fundamentais e bem compreendidos na sua solu-
ção. Esse texto é destinado ao primeiro curso em 
mecânica dos materiais – ou mecânica dos sólidos 
ou resistência dos materiais – oferecido aos estu-
dantes de engenharia nos dois primeiros anos do curso de graduação. Os autores 
esperam que o livro auxilie os professores a atingir este objetivo neste curso em 
particular, da mesma maneira que seus outros livros-textos “Mecânica Vetorial para 
Engenheiros” ajudam na estática e na dinâmica.
Autor: Mario Moro Fecchio
97Teoria das Estruturas I
CONSIDERAÇÕES FINAIS
Nesta unidade foi abordada a determinação de inclinações e flechas de vigas 
isostáticas sob carregamentos transversais. Os deslocamentos transversais e incli-
nações podem ser obtidos por integrações ou por meio de tabelas. Quando carrega-
das com diferentes cargas, o método da superposição vem auxiliar a sua resolução.
AnotAções
capítulo
7
método das 
forças
Carina Mariane Stolz; Maria Fernanda Fávero 
Menna Barreto; Daniel Tregnago Pagnussat
objETIvos dE aprEndIzagEm 
• Determinar um conjunto de reações e/ou esforços secionais 
superabundantes ao equilíbrio estático de estruturas hiperestáticas, 
permitindo que as demais reações e/ou esforços seccionais sejam 
calculados com as equações da estática (SORIANO; LIMA, 2006).
EsquEma
• Método das Forças
• Sistemática
101Teoria das Estruturas I
InTroduçÃo
O Método das Forças é utilizado para auxiliar a resolução de estruturas hipe-
restáticas, por meio da determinação dos esforços superabundantes ao equilíbrio 
estático das estruturas.
Sendo assim, o primeiro passo para sua aplicação é a identificação da estrutura 
hiperestática, seguido de seu grau de indeterminação estática. 
A estrutura está em equilíbrio quando a resultante-força e a resultante-momen-
to (em relação a um eixo qualquer) das ações e das reações de apoio são nulas. 
Isso é matematicamente representado pelas equações de equilíbrio da estática 
(SORIANO; LIMA, 2006).
(7.1)
Quando essas equações são suficientes para determinar as reações de apoio 
(vínculos externos) e os esforços seccionais (vínculos internos), tem-se uma es-
trutura isostática. Quando elas não são suficientes, pois os vínculos externos e/ou 
internos são superabundantes, tem-se uma estrutura hiperestática. O número de 
reações de apoio e esforços seccionais superabundantes para o equilíbrio é denomi-
nado grau de indeterminação estática (SÜSSEKIND, 1980; SORIANO; LIMA, 2006).
A Figura a é hipostática, porque não tem vínculo que impeça seu deslocamento 
horizontal. A Figura b é isostática, pois as reações de apoio são suficientes para 
102 Capítulo 7
impedir seus deslocamentos e as equações de equilíbrio também são suficientes 
para o cálculo de suas reações. A Figura c é hiperestática externamente, porque as 
equações de equilíbrio são capazes de fornecer apenas 3 das 4 reações, logo essa 
diferença é o grau de indeterminação estática da estrutura. A Figura d é isostática 
externamente e hiperestática internamente, pois as equações de equilíbrio fornecem 
as 3 reações de apoio, mas não conseguem fornecer o momento, cortante e normal 
da barra interna da estrutura, logo ela é hiperestática de grau 3. A Figura e é hipe-
restática interna e externamente, pois as equações de equilíbrio são capazes de 
fornecer 3 das 4 reações de apoio, e não conseguem fornecer o momento, cortante 
e normal da barra interna da estrutura, logo ela é hiperestática de grau 4.
a)Estrutura 
hipostática
b)Estrutura 
isostática
c)Estrutura 
hiperestática 
externamente
d)Estrutura 
isostática ex-
ternamente e 
h iperes tá t i ca 
internamente
e)Estrutura 
h iperestát ica 
externa e 
internamente
méTodo das forças
Segundo Martha (2010), a metodologia utilizada no Método das Forças para 
analisar uma estrutura hiperestática é: “Somar uma série de soluções básicas que 
103Teoria das Estruturas I
satisfazem as condições de equilíbrio, mas não satisfazem as condições de compa-
tibilidade da estrutura original, para na superposição restabelecer as condições de 
compatibilidade” (p.38).
Ou seja, a sistemática do Método das Forças consiste no seguinte:
10 Identificar o grau de indeterminação estática da estrutura.
A estrutura abaixo possui 5 reações de apoios dos quais apenas 3 podem ser for-
necidas pelas equações de equilíbrio no plano. Logo, ela é hiperestática de grau 2. 
Fonte: Soriano e Lima (2006)
20 Escolher um sistema principal isostático.
O sistema principal (SP) pode ser obtido por meio da retirada das redundantes 
estática ( da estrutura hiperestática. Exemplos de sistema principal da figura anterior 
estão expostos a seguir:
104 Capítulo 7
Fonte: Soriano e Lima (2006)
30 Traçar os diagramas do sistema real e sistemas virtuais.
O sistema real ( ) consiste no sistema principal isostático com o carrega-
mento real da estrutura. Os sistemas virtuais ( ) consistem no sistema principal 
105Teoria das Estruturas I
carregado com um valor unitário no local da redundante estática ( ) retirada da 
estrutura hiperestática, conforme os estados abaixo.
 
a) Real ();
 
b) Virtual 1 ();
 
c) Virtual 2 ().
40 Calcular os deslocamentos ( ).
O cálculo do deslocamento será dado pela equação 7.2, por meio da combinação 
dos diagramas dos estados (real e virtuais) e com o auxílio da tabela fornecida no 
capítulo 5.
(7.2)
50 Montagem e resolução do sistema de equações de compatibilidade de 
deslocamento.
106 Capítulo 7
Com os valores dos deslocamentos das combinações possíveis, inseri-los na 
equação de compatibilidade 7.3 para obtenção da redundante estática ( retirados 
inicialmente da estrutura hiperestática.
(7.3)
60 Calcular as reações de apoio e traçar os diagramas finais
Com as redundantes estáticas da estrutura hiperestática calculadas, restam-se 
apenas os vínculos externos e internos da estrutura isostática que podem ser facil-
mente obtidos por meio das equações de equilíbrio 7.1.
Exemplo 1 – Obter os diagramas solicitantes e as reações de apoio para a estru-
tura abaixo.
10 Identificar o grau de indeterminação estática da estrutura
As equações de equilíbrio são capazes de fornecer 3 das 5 reações de apoio. 
Logo, trata-se de uma estrutura hiperestática de grau 2.
20 Escolher um sistema principal isostático.
107Teoria das Estruturas I
30 Traçar os diagramas do sistema real e sistemas virtuais.
40 Calcular os deslocamentos ( ).
Conforme dito no item 1.3 do capítulo 5, a contribuição da cortante e da normal 
pode ser desprezada. Desta forma, neste exemplo será considerada apenas a par-
cela do momento para o cálculo das deformações.
108 Capítulo 7
50 Montagem e resolução do sistema de equações de compatibilidade de 
deslocamento.
60 Calcular as reações de apoio e traçar os diagramas finais
DM
DV
109Teoria das Estruturas I
Exemplo 2 – Obter os diagramas solicitantes e as reações de apoio para a estru-
tura abaixo.
10 Identificar o grau de indeterminação estática da estrutura
As equações de equilíbrio são capazes de fornecer 3 das 4 reações de apoio. 
Logo, trata-se de uma estrutura hiperestática de grau 1.
20 Escolher um sistema principalisostático.
110 Capítulo 7
30 Traçar os diagramas do sistema real e sistemas virtuais.
111Teoria das Estruturas I
40 Calcular os deslocamentos ( ).
Conforme dito no item 1.3 do capítulo 5, a contribuição da cortante e da normal 
pode ser desprezada. Desta forma, neste exemplo será considerada apenas a par-
cela do momento para o cálculo das deformações.
112 Capítulo 7
50 Montagem e resolução do sistema de equações de compatibilidade de 
deslocamento.
(a)
60 Calcular as reações de apoio e traçar os diagramas finais
DM DV
FIQUE POR DENTRO
O Método das Forças não é o único mé-
todo para resolução de estruturas hiperes-
tática, existem outros, como por exemplo, 
o Método dos Deslocamentos. Entretanto o 
Método das Forças é essencial para o desen-
volvimento do Método dos Deslocamentos.
REFLITA
Qual a principal diferença entre os méto-
dos de resolução de estruturas hiperestática? 
Quais desses métodos são mais utilizados 
em programas computacionais?
113Teoria das Estruturas I
INDICAÇÃO DE LEITURA
Livro: Análise de Estruturas – Método das Forças e 
Método dos Deslocamentos.
A motivação para a publicação desta Análise de 
Estruturas, em que é o primeiro volume, foi disponi-
bilizar material didático atualizado para as disciplinas 
tradicionalmente denominadas Hiperestáticas e/ou 
Análise de Estruturas dos cursos de Engenharia Civil. 
Na linha de conhecimento, essas disciplinas vêem 
após as disciplinas Mecânica (Técnica), Isostática e Resistência dos Materiais.
Autor: Humberto Lima Soriano e Sílvio de Souza Lima.
CONSIDERAÇÕES FINAIS
Conforme visto, o Método das Forças é um método que auxilia a resolução de 
estruturas hiperestáticas. Ele não é o único, entretanto, ele é essencial para o desen-
volvimento de outros métodos, como o Método dos Deslocamentos.
Não existe um cálculo único para o desenvolvimento deste método. Ele varia de 
acordo com o sistema principal adotado. Sendo assim, é importante saber a siste-
mática, o passo a passo, para não se perder ou se esquecer de qualquer detalhe 
durante sua resolução.
AnotAções
capítulo
8 método dos deslocamentos
Carina Mariane Stolz; Maria Fernanda Fávero 
Menna Barreto; Daniel Tregnago Pagnussat
objETIvos dE aprEndIzagEm 
• Resolver estruturas hiperestáticas pelo Método dos Deslocamentos.
EsquEma
• Método dos Deslocamentos
• Sistemática
117Teoria das Estruturas I
InTroduçÃo 
O Método dos Deslocamentos é utilizado na resolução de estruturas hiperestáti-
cas. Para sua resolução, são adotados como incógnitas, deslocamentos em pontos 
estratégicos na estrutura, os quais são obtidos por meio da resolução de um sistema 
de equações (SORIANO; LIMA, 2006).
Tais deslocamentos são denominados graus de liberdade e sua quantidade, grau de 
indeterminação cinemática. Eles são usualmente escolhidos nas extremidades das bar-
ras. Os deslocamentos dos pontos nodais não restringidos estão representados na Figura 
b. Para facilitar a resolução, despreza-se a deformação do esforço normal (Figura c).
a) Identificação dos nós e das barras.
b) Deslocamentos considerando deformação axial.
118 Capítulo 8
c) Deslocamentos desconsiderando deformação axial.
Fonte: Soriano e Lima (2006)
Sendo assim, na estrutura da Figura c, tem-se apenas dois deslocamentos para 
determinar, o deslocamento horizontal da barra 2 ( ) e a rotação do ponto 1 ( ).
méTodo dos dEslocamEnTos
O Método dos Deslocamentos consiste na identificação dos deslocamentos da 
estrutura analisada e na restrição dos mesmos. Tais deslocamentos serão calcula-
dos no desenvolver do método.
Desta forma, o Método dos Deslocamentos consiste em:
10 Escolha de um sistema principal no qual se restringe os deslocamentos 
(Figura d). 
119Teoria das Estruturas I
5. Sistema Principal.
6. Estrutura para cálculo dos esfor-
ços de engastamento perfeito.
Fonte: Soriano e Lima (2006)
Os deslocamentos restringidos são as incógnitas primárias a determinar (com 
sentidos positivos arbitrados). O símbolo □, no ponto nodal 1, expressa restrição da 
rotação e o apoio do primeiro gênero restringe o deslocamento horizontal .
20 Cálculo dos esforços de engastamento perfeito para obtenção das forças no-
dais combinadas (Figura e).
Para isso, serão utilizadas as tabelas 2.1, 2.2 e 2.3 expostas a seguir:
120 Capítulo 8
121Teoria das Estruturas I
Fonte: Soriano e Lima (2006)
122 Capítulo 8
123Teoria das Estruturas I
Fonte: Soriano e Lima (2006)
124 Capítulo 8
30 Cálculo dos coeficientes de rigidez das barras.
7. Estado virtual 1. 8. Estado virtual 2.
Para isso, será utilizada a tabela 2.4, anteriormente exposta, para obter os esta-
dos virtuais.
40 Montagem e resolução do sistema de equações de equilíbrio para determina-
ção dos referidos deslocamentos.
Este passo será realizado por meio da seguinte equação:
(8.1)
 – é o vetor das forças nodais combinadas, calculadas no estado real ( );
125Teoria das Estruturas I
k – coeficientes de rigidez, calculados nos estados virtuais ( ;
d – deslocamentos restringidos;
𝓯– forças externas diretamente aplicadas segundo os deslocamentos.
50 Obtenção dos esforços finais.
Poderá ser executado pela isostática ou pela equação:
(8.2)
Exemplo 1 - Obter os diagramas solicitantes e as reações de apoio para a estru-
tura abaixo.
10 Escolha de um sistema principal no qual se restringe os deslocamentos.
126 Capítulo 8
20 Cálculo dos esforços de engastamento perfeito para obtenção das forças no-
dais combinadas.
30 Cálculo dos coeficientes de rigidez das barras.
127Teoria das Estruturas I
40 Montagem e resolução do sistema de equações de equilíbrio para determina-
ção dos referidos deslocamentos.
50 Obtenção dos esforços finais.
Serão calculados os momentos na esquerda e abaixo da □.
128 Capítulo 8
Com esta informação, as reações de apoio podem ser encontradas com as equa-
ções de equilíbrio da isostática.
Exemplo 2 - Obter os diagramas solicitantes e as reações de apoio para a estru-
tura abaixo.
10 Escolha de um sistema principal no qual se restringe os deslocamentos.
129Teoria das Estruturas I
20 Cálculo dos esforços de engastamento perfeito para obtenção das forças no-
dais combinadas.
30 Cálculo dos coeficientes de rigidez das barras.
130 Capítulo 8
40 Montagem e resolução do sistema de equações de equilíbrio para determina-
ção dos referidos deslocamentos.
131Teoria das Estruturas I
50 Obtenção dos esforços finais.
Serão calculados os momentos na esquerda e à direita do primeiro □ e do se-
gundo □.
Primeiro □
Segundo □
Com esta informação, as reações de apoio podem ser encontradas com as equa-
ções de equilíbrio da isostática. Em seguida, é só traçar os diagramas.
132 Capítulo 8
FIQUE POR DENTRO
O Método dos Deslocamentos, por ser 
vastamente utilizado em programações 
automáticas, é o método mais importante de 
análise de estruturas.
REFLITA
O que torna o Método dos Deslocamentos 
o mais utilizado em programação? Qual sua 
principal característica que o destaca dos ou-
tros métodos?
133Teoria das Estruturas I
INDICAÇÃO DE LEITURA
Livro: Análise de Estruturas – Método das Forças e 
Método dos Deslocamentos
A motivação para a publicação desta Análise de Estruturas, 
em que é o primeiro volume, foi disponibilizar material di-
dático atualizado para as disciplinas tradicionalmente 
denominadas Hiperestáticas e/ou Análise de Estruturas 
dos cursos de Engenharia Civil. Na linha de conhecimen-
to, essas disciplinas veem após as disciplinas Mecânica 
(Técnica), Isostática e Resistência dos Materiais.
Autor: Humberto Lima Soriano e Sílvio

Outros materiais

Materiais relacionados

Perguntas relacionadas

Perguntas Recentes