Buscar

Estatística Aplicada Unip Unidade I

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 54 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 54 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 54 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Autor: Prof. Mauricio Martins do Fanno 
Colaboradores: Prof. Flávio Celso Müller Martin 
 Prof. Fábio Gomes da Silva
 Profa. Ana Carolina Bueno Borges
Estatística Aplicada
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Professor conteudista: Mauricio Martins do Fanno
Mauricio Martins do Fanno, nascido na cidade de São Paulo, é formado em Engenharia Mecânica pela Faculdade 
de Engenharia Industrial (FEI), e pós‑graduado em Formação Didática do Ensino Superior. Desempenhou funções de 
gerente e diretor em diversas empresas nacionais, nas áreas de Engenharia, Manutenção e Produção. É professor do 
Ensino Superior desde 1986, atuando em diversas faculdades e universidades, lecionando disciplinas voltadas para a 
formação de administradores, tanto na área da Matemática como na de Administração. Na UNIP, ministra aulas desde 
1993, atuando nas disciplinas de Estatística, Administração da Produção e Materiais e Pesquisa Operacional.
© Todos os direitos reservados. Nenhuma parte desta obra pode ser reproduzida ou transmitida por qualquer forma e/ou 
quaisquer meios (eletrônico, incluindo fotocópia e gravação) ou arquivada em qualquer sistema ou banco de dados sem 
permissão escrita da Universidade Paulista.
Dados Internacionais de Catalogação na Publicação (CIP)
F213e Fanno, Maurício Martins do.
Estatística aplicada. / Maurício Martins do Fanno. – São Paulo: 
Editora Sol, 2014.
100 p., il.
Nota: este volume está publicado nos Cadernos de Estudos e 
Pesquisas da UNIP, Série Didática, ano XX, n. 2‑064/14, ISSN 1517‑9230.
1. Estatística aplicada. 2. Distribuição. 3. Amostragem. I. Título.
CDU 519.2
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Prof. Dr. João Carlos Di Genio
Reitor
Prof. Fábio Romeu de Carvalho
Vice-Reitor de Planejamento, Administração e Finanças
Profa. Melânia Dalla Torre
Vice-Reitora de Unidades Universitárias
Prof. Dr. Yugo Okida
Vice-Reitor de Pós-Graduação e Pesquisa
Profa. Dra. Marília Ancona‑Lopez
Vice-Reitora de Graduação
Unip Interativa – EaD
Profa. Elisabete Brihy 
Prof. Marcelo Souza
Prof. Dr. Luiz Felipe Scabar
Prof. Ivan Daliberto Frugoli
 Material Didático – EaD
 Comissão editorial: 
 Dra. Angélica L. Carlini (UNIP)
 Dra. Divane Alves da Silva (UNIP)
 Dr. Ivan Dias da Motta (CESUMAR)
 Dra. Kátia Mosorov Alonso (UFMT)
 Dra. Valéria de Carvalho (UNIP)
 Apoio:
 Profa. Cláudia Regina Baptista – EaD
 Profa. Betisa Malaman – Comissão de Qualificação e Avaliação de Cursos
 Projeto gráfico:
 Prof. Alexandre Ponzetto
 Revisão:
 Lucas Ricardi
 Juliana Mendes
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Sumário
Estatística Aplicada
APRESENTAçãO ......................................................................................................................................................7
INTRODUçãO ...........................................................................................................................................................8
Unidade I
1 REVISãO DE PROBABILIDADES .................................................................................................................. 11
2 DISTRIBUIçãO BINOMIAL ............................................................................................................................ 17
3 VALOR E VARIÂNCIA ESPERADOS NA DISTRIBUIçãO BINOMIAL ................................................ 28
4 DISTRIBUIçãO NORMAL ............................................................................................................................... 32
4.1 Conceitos básicos ................................................................................................................................. 32
4.2 Cálculo das áreas da curva normal ............................................................................................... 35
Unidade II
5 AMOSTRAGEM .................................................................................................................................................. 55
5.1 Amostragem aleatória simples ....................................................................................................... 58
5.2 Amostragem com reposição e sem reposição .......................................................................... 61
5.3 Amostragem sistemática ................................................................................................................... 62
5.4 Amostragem estratificada ................................................................................................................ 62
5.5 Amostragem por conveniência ....................................................................................................... 62
5.6 Amostragem intencional ................................................................................................................... 62
5.7 Amostragem por julgamento .......................................................................................................... 63
5.8 Amostragem por quotas .................................................................................................................... 63
6 TEORIA ELEMENTAR DA AMOSTRAGEM ................................................................................................ 64
6.1 Distribuição amostral das médias .................................................................................................. 64
6.2 Distribuição amostral das proporções ......................................................................................... 67
6.3 Distribuição amostral das diferenças ........................................................................................... 69
7 TEORIA DA ESTIMAçãO ESTATíSTICA ...................................................................................................... 73
8 CORRELAçãO E REGRESSãO LINEARES ................................................................................................. 79
8.1 Correlação linear................................................................................................................................... 80
8.2 Regressão linear .................................................................................................................................... 82
7
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
APrEsEntAção
Na disciplina Estatística Aplicada, iremos ver assuntos mais próximos da prática profissional do 
que se vê em Estatística, mas necessitaremos de ferramentas matemáticas mais elaboradas. Na medida 
do possível, iremos revê‑las quando forem necessárias, mas é sempre conveniente que você revise os 
conceitos matemáticos aprendidos em disciplinas anteriores.
O estudo da Estatística, como o de todas as ciências exatas, obriga à repetição, pelo maior número 
de vezes possível, de exercícios de fixação. No presente material, os cálculos definidos são mostrados 
uma única vez, como exemplo, mas o aluno deve se lembrar de que terá à disposição, nos materiais 
complementares, uma grande quantidade de exercícios e problemas, e que o aprendizado somente é 
garantido caso eles sejam feitos em sua totalidade.
Em Estatística são vistos e diferenciados população e amostra, e ocorre o estudo da Estatística 
Descritiva, ou, em última análise, o estudo das amostras. Agora, iremos passar ao estudo das populações 
e das relações entre as populações e suas amostras.
A ideia geral é conhecer primeiro qual é o comportamento previsto para populações e amostras e a 
seguir relacioná‑las, obtendo previsões com razoável grau de confiança.
Nestecurso de Estatística Aplicada, inicialmente, trataremos dos assuntos referentes às distribuições 
de probabilidades, como são calculadas e quais seus limites de utilização. Esses conceitos são importantes 
para se ter a ideia exata do que significa algo ser provável e não certo e qual é a medida provável. É 
um assunto no qual o raciocínio lógico é fundamental, e vamos procurar apresentá‑lo de maneira 
progressiva e natural, não nos prendendo a grandes refinamentos matemáticos.
A exemplo das distribuições de frequências, as distribuições de probabilidades apresentam 
os valores trabalhados de maneira mais resumida e direta. Devemos notar que, ao contrário das 
distribuições de frequências, as informações são prováveis, e não reais. Serão apresentadas as duas 
mais importantes distribuições de probabilidades: a distribuição binomial e a distribuição normal. A 
partir do estudo delas, pode‑se estender o conhecimento para as outras distribuições, bem menos 
usadas na prática.
Em seguida, veremos a amostragem, ou seja, o estudo das relações entre as populações e as amostras 
delas retiradas. São basicamente três vertentes de estudo:
•	 a previsão do comportamento de amostras a partir do conhecimento da população da qual foram 
retiradas;
•	 a previsão do comportamento de uma população a partir do estudo de amostras dela retirada; e
•	 a comparação entre amostras e populações, na pesquisa de diferenças casuais ou causais.
8
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estudaremos também as relações e correlações entre duas variáveis e o comportamento matemático 
dessas relações. Procura‑se verificar se, dadas duas variáveis, existe entre elas algum tipo de relacionamento 
e, se existir, qual é.
Terminados esses assuntos, estaremos aptos a entender como se pode prever um acontecimento 
futuro ou desconhecido, a partir de estudos relativamente menos trabalhosos, permitindo que se 
tenham ferramentas preciosas para a tomada de decisões, em última análise, a finalidade básica de 
qualquer ramo profissional.
Esperamos que, com este material, você tenha a oportunidade de completar o aprendizado de 
Estatística e fique apto a utilizá‑la como instrumental básico para seu melhor desempenho profissional.
Bons estudos!
Introdução
Em Estatística, são definidos dois grandes campos de atuação: as populações e as amostras. Entendemos 
por população o conjunto de todos os elementos que têm em comum uma determinada característica 
que nos interesse estudar. De modo geral, as populações são muito numerosas e frequentemente 
envolvem valores prováveis, não reais. Essas características dificultam muito os trabalhos estatísticos; 
para contornar esse problema, conceituamos amostras e estudamos as ferramentas apropriadas para 
sua descrição e conclusões.
Amostras são conjuntos de elementos, normalmente tirados de uma população, em quantidade 
relativamente pequena e cujos valores são reais. Essas duas características das amostras permitem que 
estudemos com relativa facilidade o seu comportamento, por meio de gráficos, tabelas de frequências 
e medidas estatísticas.
O fato de os elementos de uma amostra serem retirados de uma população ou de populações muito 
semelhantes a ela permite que induzamos que o comportamento de uma população e de suas amostras 
sejam provavelmente muito parecidos. Observe o termo provavelmente. Ele nos remete ao estudo das 
probabilidades.
 observação
Induzir significa concluir, deduzir. Em Estatística, o termo é utilizado 
como resultado do processo em que se prevê o comportamento de um 
experimento a partir de observações amostrais. Usamos também o termo 
inferir, de significado análogo.
Podemos exemplificar esses conceitos com a seguinte situação. Suponha que desejemos saber 
o desempenho acadêmico de uma turma de alunos que, no momento, começa a estudar Estatística 
Aplicada. Esse estudo está dentro de uma população porque é situado futuro, e não presente ou passado; 
9
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
além disso, essa turma pode ser muito grande – por exemplo, todos os alunos de EaD da UNIP. Saber 
como será o desempenho dos alunos dessa turma é algo bastante complicado, mas, se pegarmos apenas 
uma amostra desses alunos, teremos muito mais facilidade no estudo.
Dessa forma, tomamos uma amostra dessa turma. Tal amostra seria composta por alunos semelhantes 
(naquilo que é importante) de anos anteriores. Como esses alunos já cursaram a disciplina e foram 
avaliados, podemos, por exemplo, determinar a nota média deles. Digamos, por hipótese, que a nota 
média tenha sido 5,5. Poderíamos afirmar que provavelmente a nota média dos alunos deste semestre 
será de 5,5. Isso é o que chamamos de uma estimativa por pontos, que dificilmente ocorrerá com toda 
essa exatidão. No entanto, o valor que efetivamente irá ocorrer está próximo a ele, numa faixa em torno 
desse valor nominal. É o que se chama de estimação por intervalos. Essa estimativa será algo do tipo: os 
alunos de Estatística Aplicada deste semestre deverão ter uma nota média de 5,5, com margem de erro 
de 1,2 pontos.
 observação
Definimos amostra como um pedaço coerente da população, ou 
seja, composta de elementos que reproduzem proporcionalmente as 
características importantes da população. Suponha que em determinado 
estudo o gênero seja característica importante e que, na população 
considerada, 56% sejam mulheres. Caso a amostra seja formada por 850 
indivíduos, 476 deverão ser mulheres (56% de 850).
Essa margem de erro é determinada por três fatores, basicamente: O desvio padrão, que aprendemos 
a calcular em Estatística; o tamanho da amostra; e a confiabilidade que queremos ter na nossa estimativa. 
Veremos esses fatores ao longo deste curso, mas é importante notar a importância de saber calcular o 
desvio padrão.
Assim, para prevermos uma situação futura ou para sabermos algo sobre um conjunto com grande 
quantidade de elementos, deveremos partir da definição e do estudo de amostras. Mas, para completarmos 
esse estudo, precisaremos definir uma série de conceitos envolvidos no estudo de probabilidades e suas 
distribuições e nos processos de amostragem, assuntos principais deste material.
Começaremos nosso estudo revendo alguns conceitos principais de probabilidades e observando 
como estas se apresentam em distribuições de probabilidades. A seguir, iremos ver os processos de 
amostragem, para concluir com as relações e correlações.
11
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Unidade I
1 rEvIsão dE ProbAbIlIdAdEs
Em Estatística Indutiva, quando nos referimos a uma previsão de comportamento de uma população 
a partir do conhecimento de uma amostra, ou, ao contrário, à previsão do comportamento esperado de 
uma amostra retirada de uma população conhecida, temos o cuidado de utilizar a palavra provavelmente 
antes de cada informação.
Por exemplo, quando após uma pesquisa eleitoral o veículo de comunicação informa que se a eleição 
ocorresse naquele momento o candidato X teria 35% dos votos, ele quer dizer que provavelmente o 
candidato X teria essa quantidade de votos. É uma afirmação provável de ocorrer, não quer dizer que 
certamente ocorrerá. Uma tolerância nessa informação é esperada.
Vamos rever agora o que significam e como são calculadas as probabilidades, ramos de estudo 
da Matemática, e não exatamente da Estatística. Inicialmente iremos verificar casos absolutamente 
teóricos e posteriormente evoluiremos para situações mais próximas da realidade, chegando ao que 
realmente é nossa preocupação nesta unidade: as distribuições de probabilidades.
Iremos utilizar o raciocínio lógicopara resolver as questões. O importante é você entender o 
mecanismo de determinação das distribuições de probabilidades.
Imagine que você tenha uma moeda seguramente honesta nas mãos. Ao jogá‑la para cima, você 
sabe que a probabilidade de ela cair com a cara voltada para o alto é de 50%, isso porque se define a 
probabilidade de um evento ocorrer como a razão entre o número de resultados que nos interessa e 
o número de resultados totais. No caso de uma moeda, temos uma cara em dois resultados possíveis. 
Portanto:
P A
n A
n S
( )
( )
( )
, %= = = =
1
2
0 5 50
Lembre‑se de que isso só é válido porque a moeda é honesta. Caso ela não seja ou caso tenhamos 
dúvidas sobre esse fato, temos de testá‑la. Testar uma moeda é na verdade uma amostragem, sendo 
amostra a repetição do experimento um certo número de vezes, anotando‑se os resultados. Suponha 
que lançássemos a moeda da qual temos dúvidas 1.000 vezes e obtenhamos 485 caras. Diante desses 
resultados, concluiríamos que a moeda não é honesta e que a probabilidade de sair cara seria de 48,5%, 
como se mostra a seguir:
12
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
P cara
f
f
P caraA
T
( ) ( ) , , %= ⇒ = = =
485
1000
0 485 48 5
A primeira definição é chamada de definição matemática (ou clássica) de probabilidades e só pode 
ser usada para experimentos rigidamente aleatórios; a segunda é a definição de probabilidade como 
frequência relativa e vai ser utilizada na maioria das situações práticas em Estatística.
 observação
Um experimento aleatório é aquele que, mesmo sendo repetido de 
modo exatamente igual, não apresenta resultados obrigatoriamente iguais. 
A rigor, os experimentos aleatórios são os jogos de azar, exclusivamente. Na 
prática profissional, em Administração, especialmente, os experimentos são 
aproximadamente aleatórios, ou seja, são dotados de alguma aleatoriedade, 
mas não na sua totalidade.
 saiba mais
Leia a obra a seguir:
MLODINOW, L. O andar do bêbado: como o acaso determina nossas 
vidas. Rio de Janeiro: Zahar, 2009.
Trata‑se de uma interessante e agradável leitura a respeito da influência 
dos eventos aleatórios sobre nosso dia a dia e a dificuldade de tratarmos 
da aleatoriedade.
Apesar dos cálculos de probabilidade serem no fundo uma razão entre duas contagens – o número 
de possibilidades que nos interessam dividido pelo número total de possibilidades –, esse cálculo pode 
ganhar contornos mais complexos. Imagine, por exemplo, que lancemos duas vezes a moeda viciada a 
que nos referimos anteriormente e desejemos saber a probabilidade de obter exatamente duas caras. 
Como faríamos o cálculo?
A definição não muda, é a razão entre o que queremos e o que pode acontecer. Mas o que pode 
acontecer? Podem acontecer quatro resultados diferentes:
•	 na primeira jogada sair cara e na segunda também sair cara;
•	 na primeira jogada sair cara e na segunda sair coroa;
13
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
•	 na primeira jogada sair coroa e na segunda sair cara;
•	 na primeira jogada sair coroa e na segunda também sair coroa.
Desses quatro resultados, um deles nos interessa: o primeiro. Caso a moeda fosse honesta, a 
probabilidade seria obtida facilmente da seguinte forma:
P(duas caras) = 1
4
1
4
resultado favoravel
resultados possiveis
=
´
´
 = 0,25 = 25%
O problema é que a moeda não é honesta, é viciada. Existe uma probabilidade menor de sair cara do 
que de sair coroa, o que inevitavelmente vai diminuir a probabilidade determinada anteriormente. Uma 
maneira de entender como se chegar ao resultado é usando a árvore de decisões:
1ª jogada
2ª jogadaCoroa
Coroa
Coroa
2ª jogadaCara
Cara
Cara
0,515
0,515
0,515
0,485
0,485
0,485
Figura 1
Perceba que para saírem duas caras é necessário que a primeira saia cara E a segunda também saia 
cara. Lembre‑se que esse E significa multiplicação. Portanto:
P(cara e cara) = 0,485 x 0,485 = 0,235 = 23,5%
Como previmos, um valor menor que 25%.
 observação
Perceba que esse último cálculo poderia ser usado caso a moeda fosse 
honesta. A probabilidade seria a multiplicação de 0,5 por 0,5, ou seja, 0,25 
ou 25%.
Alguém poderia querer saber qual a probabilidade, ao se jogar a tal moeda duas vezes, de que 
saíssem uma cara e uma coroa. O diagrama anterior pode nos ajudar a responder.
Para sair uma cara e uma coroa, tem de acontecer uma dentre duas coisas: sair a primeira cara 
E a segunda coroa OU sair a primeira coroa E a segunda cara. Da mesma forma que o E significa 
multiplicação, o OU significa adição. Por conseguinte:
14
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
P(uma cara e uma coroa) = P(cara E coroa) + P(coroa E cara) =
= 0,485 × 0,515 + 0,515 × 0,485 = 0,25 + 0,25 = 0,50 = 50%
Perceba que existem quatro resultados possíveis, como foi falado anteriormente. No caso dessa 
moeda viciada, as probabilidades seriam as seguintes:
Tabela 1
Resultados pela ordem de ocorrência Cálculo da probabilidade Probabilidade
Cara e cara 0,485 x 0,485 0,235 ou 23,5%
Cara e coroa 0,485 x 0,515 0,250 ou 25,0%
Coroa e cara 0,515 x 0,485 0,250 ou 25,0%
Coroa e coroa 0,515 x 0,515 0,265 ou 26,5%
Total 1 ou 100%
Nessa tabela, assim como na tabela de frequências, temos novamente uma coluna de valor 
(no caso, os resultados possíveis) e uma coluna de probabilidades, esta última análoga à coluna 
de frequência relativa. A essa tabela damos o nome de distribuição (ou tabela) de probabilidades. 
Conceitualmente, ambas as tabelas são muito parecidas, mas a de probabilidades refere‑se a 
algo no futuro, a uma previsão. Usaremos muito esse conceito para estabelecer nossas induções 
estatísticas.
É importante notar que os cálculos das medidas estatísticas que são feitos a partir das tabelas 
de frequências em Estatística Descritiva também podem ser feitos a partir dessas distribuições de 
probabilidades, evidentemente, com enfoque diferente. Por exemplo, quando partimos da tabela 
de frequências, podemos calcular uma média aritmética (além de outras médias conhecidas). 
Já quando o ponto de partida é uma distribuição de probabilidades, a medida encontrada pelos 
mesmos cálculos é chamada de média provável ou média populacional, ou, mais comumente, de 
valor esperado.
Os exemplos a seguir ilustram essa diferença.
Exemplo 1: um empresário realiza uma determinada operação comercial que, em função de suas 
especificidades, pode apresentar três resultados possíveis: sucesso absoluto, sucesso parcial e insucesso. 
Quando ele obtém sucesso absoluto, a operação rende para ele R$ 2.500,00 de lucro; quando o sucesso 
é parcial, o lucro cai para R$ 1.200,00; e o fracasso lhe traz um prejuízo de R$ 1.800,00. A tabela de 
frequências a seguir relaciona o número de ocorrências de cada tipo ao longo do último ano. Qual é o 
lucro médio do empresário nesse ano?
15
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Tabela 2
Ocorrências Lucro Número de operações comerciais Valor x
Frequência
Classes
Valor Frequência simples
xi fi fi x xi
Sucesso absoluto R$ 2.500,00 42 R$ 105.000,00
Sucesso parcial R$ 1.200,00 24 R$ 28.800,00
Fracasso ‑ R$ 1.800,00 12 - R$ 21.600,00
Totais 78 R$ 112.200,00
Observe que o empresário obteve um lucro de R$ 112.200,00 em 78 operações (incluindo as que 
deram prejuízo), portanto o lucro médio dele foi de:
x
x f
f
Ri i
i
= = =
∑
∑
. . ,
$ . ,
112 200 00
78
1 438 46
 lembrete
Médiaaritmética é definida como o somatório dos valores de todos 
os elementos de uma amostra dividido pelo número de elementos da 
amostra. Note que o número de elementos é evidenciado pela frequência 
simples.
O exemplo a seguir tem uma pequena, mas importante diferença no tempo em que ocorre. Veja:
Exemplo 2: um empresário realiza uma determinada operação comercial que, em função de suas 
especificidades, pode apresentar três resultados possíveis: sucesso absoluto, sucesso parcial e insucesso. 
Quando ele obtém sucesso absoluto, a operação rende para ele R$ 2.500,00 de lucro; quando o sucesso é 
parcial, o lucro cai para R$ 1.200,00; e o fracasso lhe traz um prejuízo de R$ 1.800,00. Na tabela a seguir 
estão relacionadas as diversas probabilidades de ocorrência de cada um desses resultados. Qual é o lucro 
médio esperado do empresário nesse ano?
Observação: a maneira pela qual essas probabilidades foram calculadas será explicada mais adiante, 
à medida que evoluirmos nesse assunto.
Tabela 3
Ocorrências Lucro Probabilidades de 
ocorrência
Valor x
Probabilidade
Classes
Valor
xi pi fi x xi
Sucesso absoluto R$ 2.500,00 54,0% R$ 1.350,00
16
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
Sucesso parcial R$ 1.200,00 32,0% R$ 384,00
Fracasso ‑ R$ 1.800,00 14,0% - R$ 252,00
Totais 100,0% R$ 1.482,00
Perceba como os cálculos matemáticos são similares aos do Exemplo 1. A diferença é o tempo em 
que estamos. Neste exemplo, estamos falando de algo que provavelmente acontecerá; no Exemplo 
1, de algo que aconteceu. Assim, dizemos aqui: a probabilidade de o empresário ter sucesso absoluto 
numa operação comercial é de 54,0%. No exemplo anterior, dizíamos que o empresário obteve sucesso 
absoluto em 42 operações comerciais que realizou. Dessa forma, o cálculo similar significa o valor médio 
esperado para as operações que irão ocorrer no futuro.
Exemplo de aplicação
Um fabricante produz peças, e 15% delas são defeituosas. Se uma peça defeituosa for produzida, o 
fabricante perderá R$ 10,00, enquanto uma peça não defeituosa lhe dará um lucro de R$ 56,00. Qual é 
o lucro esperado por peça, a longo prazo?
a) R$ 46,10.
b) R$ 46,00.
c) R$ 33,00.
d) R$ 66,00.
e) R$ 23,00.
Resolução:
O cálculo pedido é de uma esperança matemática ou do valor esperado. A tabela a seguir calcula o 
resultado pedido, lembrando que:
E x p x p x p x p x p xn n
i
n
( ) ...= + + + + =
=
∑1 1 2 2 3 3 1 1
1
Tabela 4
Qualidade da peça Lucro aferido Probabilidade (em %)
Probabilidade 
(em decimal) pixi
xi pi
Defeituosa ‑ R$ 10,00 15,00 0,1500 ‑ R$ 1,50
Perfeita R$ 56,00 85,00 0,8500 R$ 47,60
Valor esperado = R$ 46,10
17
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Portanto, o lucro esperado é de R$ 46,10. Alternativa correta: A.
2 dIstrIbuIção bInoMIAl
Desse modo, em consonância com a Estatística Descritiva, notamos que determinar a distribuição de 
probabilidades adequada para cada problema que desejarmos resolver é o primeiro passo do processo 
e que essa determinação pode ter certa complexidade, que a Matemática vai nos ajudar a contornar. 
Perceba que, do mesmo jeito que lançamos uma moeda duas vezes, poderíamos lançar três, cinco ou dez 
vezes, e, obviamente, o trabalho braçal que teríamos para efetuar o cálculo tornaria inviável a resolução.
Suponhamos o seguinte exemplo, muito semelhante ao anterior, mas mais trabalhoso.
Jogamos uma moeda viciada (48,5% de probabilidade de sair cara e 51,5% de sair coroa) três vezes 
em sequência. Qual é a probabilidade de sair uma e apenas uma cara nas três jogadas?
Vamos resolver este exercício de modo similar ao anterior. Acompanhe a seguir a árvore de decisões:
1ª jogada
2ª jogada
3ª jogada
3ª jogada
3ª jogada
3ª jogada
Coroa
Coroa
Coroa
Coroa
Coroa
Coroa
Coroa
2ª jogada
Cara
Cara
Cara
Cara
Cara
Cara
Cara
0,515
0,515
0,515
0,515
0,515
0,515
0,515
0,485
0,485
0,485
0,485
0,485
Situação 1
Situação 3
Situação 5
Situação 7
Situação 2
Situação 4
Situação 6
Situação 8
0,485
0,485
Figura 2
18
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
Acompanhe na árvore as três situações em que ocorre o desejado, ou seja, uma e apenas uma cara. 
Essas situações são as de números 4; 6 e 7. A probabilidade de ocorrência de cada uma delas é:
Situação 4 →→P(situação 4) = 0,485 × 0,515 × 0,515 = 0,485 ×→0,5152
Situação 6 →→P(situação 6) = 0,515 × 0,485 × 0,515 = 0,485 ×→0,5152
Situação 7 →→P(situação 7) = 0,515 × 0,515 × 0,485 = 0,485 ×→0,5152
Portanto, temos três situações diferentes que atendem ao desejado. Caso ocorra a situação 4 OU a 
situação 6 OU a situação 7, atingimos nosso objetivo. Logo, o resultado é a soma das probabilidades das 
três situações:
P(sair uma e apenas uma cara) = 0,4851 ×→0,5152 + 0,485 ×→0,5152 + 0,485 ×→0,5152
Ou seja,
P(sair uma e apenas uma cara) = 3 ×→0,4851 ×→0,5152 = 0,386 ou 38,6%
Quando você se detém nesta última expressão, fica claro que existe uma equação matemática que 
pode resolver problemas desse tipo com muito mais etapas (no caso, moedas):
•	 a potência 0,4851 tem na base a probabilidade de sair cara e no expoente o número de caras que 
queremos;
•	 a potência 0,5152 tem na base a probabilidade de sair coroa e no expoente o número de coroas 
que queremos;
•	 o número 3 é o número de situações em que ocorre o desejado pelo problema e é o resultado 
do cálculo do número de combinações de 3 moedas agrupadas uma a uma em caras, ou seja, 
combinações de 3 um a um (C3,1).
 lembrete
Numa potência são usados os termos base (a), que é o número que será 
multiplicado por ele mesmo tantas vezes quantas forem o expoente (b), da 
seguinte forma: ab = a x a x a x ... ... x a
Com isso, podemos generalizar os problemas desse tipo. Por exemplo:
Jogamos 10 vezes uma moeda viciada (55% de probabilidade de sair cara e 45% de sair coroa). Qual 
a probabilidade de que que saiam exatamente 6 caras?
•	 Probabilidade de sair cara = 0,55; número de caras desejado = 6. Portanto, a potência será 0,556.
19
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
•	 Probabilidade de sair coroa = 0,45; número de coroas desejado = 4. Portanto, a potência será 0,454.
•	 Número de situações em que ocorrem exatamente 6 caras = 210 (iremos rever esse cálculo a seguir).
Portanto:
P(sair exatamente 6 caras) = 210 ×→0,556 ×→0,454 = 0,238 ou 23,8%
Perceba que, dentro de limites, qualquer problema desse tipo pode ser resolvido de modo similar.
Antes de seguirmos em frente, vamos rever rapidamente o que significa e como são calculadas 
combinações.
A análise combinatória mostra que o número de situações é dado pelo número de combinações, que 
é obtido por meio da fórmula:
C
n
x n xn x,
!
! ( )!
=
-
Onde:
n = número total de repetições do experimento; no caso, n = 10 (dez vezes que a moeda é jogada);
x = números de resultados desejados, no caso, x = 6 (número de caras desejadas).
Essa fórmula é lida da seguinte forma: “número de combinações de n elementos tomados x a x 
vezes” e utiliza o conceito de fatorial (!).
Fatorial de um número a, simbolizado por a!, é a multiplicação de todos os números inteiros e 
positivos desde a unidade até o valor a, ou seja:
a! = 1 x 2 x 3 x 4 x ... ... x a
Por exemplo: 6! é igual a 720 porque:
6! = 1 x 2 x 3 x 4 x 5 x 6 = 720
Note que, por definição, 0! é igual a 1.
Assim, aplicando a fórmulapara nossos dados, teremos:
20
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
C
n
x n xn x,
!
! ( )!
!
! ( )!
. .
.
=
-
=
-
= =
10
6 10 6
3 628 800
720 24
210
Afirmamos que esse processo apresentado poderia resolver todos os exercícios desse tipo, mas o que 
significam problemas como esse?
Nesses exemplos das moedas, temos algumas características comuns:
•	 Em cada jogada da moeda, existem dois resultados possíveis apenas: cara e coroa.
•	 Evidentemente, se ocorrer um dos resultados, não poderá ocorrer o outro. São eventos mutuamente 
exclusivos e complementares.
•	 O lançamento de uma moeda não influencia outros lançamentos nem é influenciado por eles, ou 
seja, são eventos independentes.
Experimentos que seguem essas características resultam numa distribuição de probabilidades 
chamada de distribuição binomial, uma das muitas distribuições de probabilidades que irão nos ajudar 
a prever eventos futuros dentro da Estatística Indutiva.
Quando são estudadas as maneiras de se apresentar dados estatísticos, são conceituadas a frequência simples 
e a frequência relativa. Agora, em nossa disciplina Estatística Aplicada, definimos que probabilidades podem ser 
definidas como as frequências simples de eventos ocorridos numa repetição considerável do experimento.
Como decorrência disso, nós podemos estabelecer o conceito de distribuição de probabilidades em 
analogia com as distribuições de frequências, com algumas diferenças:
•	 Na distribuição de frequências, normalmente se utiliza como informação principal a frequência simples. Na 
distribuição de probabilidades, priorizaremos as frequências relativas, agora chamadas de probabilidades.
•	 Distribuições de frequências são informações reais, exatas, decorrentes de observações efetuadas. 
Distribuições de probabilidade são previsões feitas a partir de observações – portanto, não são 
reais, são evidentemente prováveis.
•	 Em Estatística, utilizamos nos nossos cálculos, primordialmente, as informações na forma de 
tabelas. Em Estatística Aplicada será mais frequente o uso das informações na forma de gráficos.
O fato de trabalharmos muitas vezes com variáveis discretas e outras tantas com variáveis contínuas 
nos conduz à divisão das distribuições de probabilidades em dois grandes grupos, cada um deles com 
modelos matemáticos específicos:
•	 Distribuições de probabilidades discretas:
– distribuição binomial;
21
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
– distribuição de Poisson;
– distribuição hipergeométrica.
•	 Distribuições de probabilidades contínuas:
– distribuição normal;
– distribuição exponencial.
A maneira como se utiliza uma e outra difere de acordo com os aspectos específicos do problema 
estatístico que está sendo estudado. De modo geral, as distribuições discretas utilizam equações 
estatísticas para calcular as probabilidades e as contínuas, gráficos e tabelas deles decorrentes para o 
mesmo cálculo.
Como as distribuições binomiais e em especial as distribuições normais são aquelas mais utilizadas 
na prática, vamos concentrar nossos estudos nas duas. As demais distribuições apresentam aspectos 
matemáticos diferenciados, mas seguem padrões de cálculos semelhantes, o que facilitará o estudo 
futuro para aqueles que assim necessitarem e desejarem.
A distribuição de binomial é uma distribuição para variáveis discretas e, como o próprio nome indica, 
é utilizada quando temos a presença de dois eventos complementares. É uma generalização do binômio 
de Newton e se adapta às amostragens que seguem o princípio de Bernoille, que são os seguintes:
•	 Em cada repetição do experimento, nomeado como tentativa, existem dois e apenas dois resultados 
possíveis, complementares, chamados por conveniência de sucesso e insucesso.
•	 A série de tentativas é composta de eventos independentes.
•	 As probabilidades de sucesso e insucesso permanecem constantes ao longo das tentativas. É um 
processo estacionário.
Note que essas características são exatamente as que apareceram nos problemas envolvendo as 
moedas. Para reforçar o entendimento do funcionamento e da utilidade da distribuição binomial, vamos 
recuperar um tipo de problema que equacionamos anteriormente:
Um vendedor sabe que ao sair para fazer um determinado tipo de venda tem 20% de probabilidade 
de concretizá‑la. Num dia qualquer, ele sai para atender três clientes. Qual é a probabilidade de fazer 
exatamente duas vendas?
O problema pode ser resolvido usando os conceitos aprendidos em Estatística e revistos no item 
anterior. Mas isso só é possível porque ele pretende fazer poucas visitas. Caso ele saísse para fazer dez 
visitas, a resolução seria demasiadamente trabalhosa.
22
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
Vamos começar pela situação mais fácil, poucas visitas. A árvore de decisões apresentada a seguir 
mostra três caminhos nos quais o vendedor consegue efetivar exatamente duas vendas. São os caminhos 
2, 3 e 5. Portanto, como vimos anteriormente, a probabilidade de o vendedor realizar exatamente duas 
vendas é a soma das probabilidades dos três caminhos, ou seja:
P(exatamente duas vendas) = P(caminho 2) + P(caminho 3) + P(caminho 5)
P(exatamente duas vendas) = 0,0320 + 0,0320 + 0,0320 = 0,0960 = 9,60%
Assim, a probabilidade de o vendedor conseguir efetivar exatamente três vendas é de 9,60%.
1º 
cliente
Efetua a 
venda
Não 
efetua a 
venda
Não 
efetua a 
venda
Não 
efetua a 
venda Não 
efetua a 
venda
Não 
efetua a 
venda
Não 
efetua a 
venda
Não 
efetua a 
venda
Efetua a 
venda
Efetua a 
venda
Efetua a 
venda
Efetua a 
venda
Efetua a 
venda
Efetua a 
venda
2º 
cliente
3º 
cliente
3º 
cliente
3º 
cliente
3º 
cliente
2º 
cliente
0,2 x 0,2 x 0,2 = 0,23 x 0,80 = 0,00800,2
0,2
0,2
0,2
0,2
0,2
0,2
0,8
0,8
0,8
0,8
0,8
0,8
0,8
0,2 x 0,2 x 0,8 = 0,22 x 0,81 = 0,0320
0,2 x 0,8 x 0,2 = 0,22 x 0,81 = 0,0320
0,2 x 0,8 x 0,8 = 0,21 x 0,82 = 0,1280
0,8 x 0,2 x 0,2 = 0,22 x 0,81 = 0,0320
0,8 x 0,2 x 0,8 = 0,21 x 0,82 = 0,1280
0,8 x 0,8 x 0,2 = 0,21 x 0,82 = 0,1280
0,8 x 0,8 x 0,8 = 0,20 x 0,83 = 0,5120
1
2
3
4
5
6
7
8
Figura 3
Observe algumas coisas interessantes sobre esse cálculo que acabamos de fazer:
•	 Todos os caminhos têm o mesmo cálculo: 0,22 x 0,81 = 0,0320. Note que 0,2 é a probabilidade de 
se concretizar a venda, e o expoente dele (2) é o número de vendas que queremos concretizar; 0,8 
é a probabilidade de não se concretizar a venda, e o expoente dele (1) é o número de vendas que 
não iremos concretizar.
23
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
•	 Observe também que existem três caminhos possíveis. Você deve lembrar que esse valor se refere 
às combinações possíveis de 3 elementos (os clientes visitados) tomados 2 a 2 (o número de 
vendas que queremos efetivar):
C
n
x n x
Cn x, ,
!
! ( )!
!
! ( )!
!
! . !
. .
. .
=
-
⇒ =
-
= = =3 2
3
2 3 2
3
2 1
1 2 3
1 2
3
1
Dessa forma, conseguimos encontrar uma fórmula para calcular qualquer quantidade de eventos, 
com muito menos trabalho. Vamos agora resolver a seguinte questão:
Um vendedor sabe que, ao sair para fazer um determinado tipo de venda, tem 30% de probabilidade 
de concretizá‑la. Num dia qualquer, ele sai para atender 20 clientes. Qual é a probabilidade de fazer 
exatamente 8 vendas?
Nessaquestão, os números envolvidos são muito maiores, causando um trabalho braçal muito grande 
se formos resolvê‑la “na raça”, como no exemplo anterior. Mas agora já conhecemos o funcionamento 
na distribuição, é só usá‑la:
•	 probabilidade de se efetivar uma venda: 30% ou 0,3;
•	 número de vendas que quero efetivar: 8;
•	 probabilidade de não se efetivar uma venda: 70% ou 0,7 (lembre‑se, são eventos complementares);
•	 número de vendas que não irão se efetivar: 12 (lembre‑se: se o vendedor vai fazer 20 visitas e 
concretiza a venda em 8 delas, não concretizará vendas em 12 delas).
Aplicando a fórmula:
•	 número de caminhos: C
n
x n x
Cn x, ,
!
! ( )!
.=
-
⇒ =20 8 125 970;
•	 probabilidade de cada caminho: 0,38 x 0,712 = 0,0000009081;
•	 probabilidade de efetivarem‑se exatamente oito vendas: 125.970 x 0,0000009081 = 0,1144 = 
11,44%.
Perceba que apesar de os números envolvidos serem difíceis de trabalhar, isso ainda é muito mais 
simples que o raciocínio da árvore.
Com rigor formal, o equacionamento para o cálculo da distribuição binomial é o seguinte:
P(X = x) = Cn,x x p
x x (1 – p)n–x
24
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
Onde:
•	 P(X=x) é a probabilidade de que o número de sucessos obtidos seja exatamente igual a x;
•	 N é o número de tentativas realizadas, ou seja, o número de vezes em que o experimento é realizado;
•	 X é o número de sucessos que desejamos obter;
•	 p é a probabilidade de sucesso numa única tentativa.
Vamos praticar esse cálculo com a seguinte questão:
Num ano qualquer, 55% das ações negociadas na Bolsa de Valores de São Paulo sofreram alta, 
enquanto 45% se mantiveram estáveis ou sofreram baixas. Uma corretora de ações separa dez ações de 
sua carteira ao acaso. Qual é a probabilidade de que, dessas dez ações:
a) Exatamente oito ações tenham tido alta?
b) Todas as dez ações tenham tido alta?
c) No máximo duas ações tenham tido alta?
Para todas as perguntas, serão mantidas constantes as informações:
•	 número de tentativas: n = 10;
•	 probabilidade de sucesso: p = 0,55 (probabilidade de uma ação ter alta).
Irá variar o valor de x para cada uma das perguntas:
•	 Na pergunta a, o valor de x é oito: x = 8. Logo, o cálculo será:
P X x C p p P X C
P X
n x
x n x( ) ( ) ( ) , ( , )
(
, ,= = × × - ⇒ = = × × -
- -1 8 0 55 1 0 5510 8
8 10 8
== =
-
× × - = × × - =-8
10
8 10 8
0 55 1 0 55 45 0 55 1 0 55 458 10 8 8 2)
!
!( )!
, ( , ) , ( , ) ×× ×
= = =
0 0084 0 2025
8 0 0765 7 65
, ,
( ) , , %P X
•	 Na pergunta b, o valor de x é dez: x = 10, e o cálculo será:
25
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
P X x C p p P X Cn x
x n x( ) ( ) ( ) , ( , ), ,= = × × - ⇒ = = × × -
- -1 10 0 55 1 0 551010
10 10 100
10 10 10 1010
10
10 10 10
0 55 1 0 55 1 0 55 1P X( )
!
!( )!
, ( , ) , (= =
-
× × - = × × -- 00 55 1 0 0025 1
10 0 0025 0 25
0, ) ,
( ) , , %
= × ×
= = =P X
•	 Na pergunta c, o valor de x é 0, 1 e 2, porque queremos, no máximo, duas ações com altas, ou seja, 
nenhuma ação com alta ou uma ação com alta ou duas ações com alta. Devemos então fazer três 
cálculos e somar os valores:
P(X = 0) = C10,0 x 0,55
0 x (1 – 0,55)10–0 = 0,0003
P(X = 1) = C10,1 x 0,55
1 x (1 – 0,55)10–1 = 0,0042
P(X = 2) = C10,2 x 0,55
2 x (1 – 0,55)10–2 = 0,0229
P(X = o máximo 2) = 0,0003 + 0,0042 + 0,0229 = 0,0274 = 2,4%
A rigor, a distribuição de probabilidades binomial seria uma tabela, com todos os possíveis resultados 
associados às suas probabilidades correspondentes. A tabela a seguir faz isso para a questão anterior.
Tabela 5
Número de ações 
em alta
Cálculo da probabilidade de ocorrência
N = 10. P = 0,55
Probabilidade de 
ocorrência
0 P(x = 0) = C10,0 x 0,55
0 x (1 – 0,55)10–0 0,03%
1 P(x = 1) = C10,1 x 0,55
1 x (1 – 0,55)10–1 0,42%
2 P(x = 2) = C10,2 x 0,55
2 x (1 – 0,55)10–2 2,29%
3 P(x = 3) = C10,3 x 0,55
3 x (1 – 0,55)10–3 7,46%
4 P(x = 4) = C10,4 x 0,55
4 x (1 – 0,55)10–4 15,96%
5 P(x = 5) = C10,5 x 0,55
5 x (1 – 0,55)10–5 23,40%
6 P(x = 6) = C10,6 x 0,55
6 x (1 – 0,55)10–6 23,84%
7 P(x = 7) = C10,7 x 0,55
7 x (1 – 0,55)10–7 16,65%
8 P(x = 8) = C10,8 x 0,55
8 x (1 – 0,55)10–8 7,63%
9 P(x = 9) = C10,9 x 0,55
9 x (1 – 0,55)10–9 2,07%
10 P(x = 10) = C10,10 x 0,55
10 x (1 – 0,55)10–10 0,25%
Somatório 100,00%
Nessa tabela há semelhança com o que se vê em Estatística, para amostras. Lembre‑se de que, a 
partir de informações desse tipo, definimos as medidas de posição e as medidas de dispersão para as 
26
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
amostras. De maneira semelhante, iremos agora definir as mesmas medidas para as populações, com 
a diferença de que para amostras são valores reais, e para população, valores prováveis, ou esperados.
Exemplos de aplicação
1) Uma pesquisa de opinião pública revelou que 1/5 da população de determinada cidade é fumante 
contumaz. Colocando‑se 250 pesquisadores, cada um podendo entrevistar diariamente 20 pessoas, 
faça uma estimativa de quantos desses pesquisadores informarão que no máximo 30% das pessoas 
entrevistadas são realmente fumantes contumazes.
a) Aproximadamente 228.
b) Aproximadamente 75.
c) Aproximadamente 27.
d) Aproximadamente 54.
e) Aproximadamente 6.
Resolução:
Essa questão se refere a uma distribuição binomial, porque existem apenas duas situações possíveis, 
complementares: ou a pessoa fuma, ou a pessoa não fuma. Dessa forma, o cálculo das probabilidades 
será feito utilizando‑se a fórmula:
P(X = x) = Cn,x x p
x x (1 – p)(n–x)
Onde os valores são:
•	 número de repetições: n=20 (quantidade de entrevistas);
•	 probabilidade de sucesso: p=1/5 ou 0,2 (probabilidade de ser fumante contumaz);
•	 número de sucessos: x = 0, 1, 2, 3, 4, 5, 6 (quantidade de fumantes que desejamos encontrar: 
máximo de 30% dos 20, ou seja, no máximo, 6; ou, ainda, 0, 1, 2, 3, 4, 5, 6).
Devemos calcular cada situação em particular e somar os resultados:
P(X = 0) = C20,0 x 0,2
0 x (1 – 0,2)(20–0) = 0,0115
P(X = 1) = C20,1 x 0,2
1 x (1 – 0,2)(20–1) = 0,0576
P(X = 2) = C20,2 x 0,2
2 x (1 – 0,2)(20–2) = 0,1369
P(X = 3) = C20,3 x 0,2
3 x (1 – 0,2)(20–3) = 0,2054
27
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
P(X = 4) = C20,4 x 0,2
4 x (1 – 0,2)(20–4) = 0,2182
P(X = 5) = C20,5 x 0,2
5 x (1 – 0,2)(20–5) = 0,1746
P(X = 6) = C20,6 x 0,2
6 x (1 – 0,2)(20–6) = 0,1091
A soma das probabilidades calculadas é 0,9133 ou 91,33%, ou seja, existem 91,33% de probabilidade 
de que um entrevistador encontre até 30% de fumantes contumazes dentre os 20 entrevistados. Como 
serão 250 entrevistadores, aproximadamente 228 irão informar que encontraram, no máximo, 30% de 
fumantes. A resposta correta é dada pela alternativa A.
2) Determinado atacadista verificou estatisticamente que metade de seus clientes solicita que 
seus pedidos sejam entregues em domicílio e a outra metade vai retirar diretamente seus pedidos no 
depósito. Para fazer frente aos crescentes pedidos, o comerciante adquire três veículos, recebendo, em 
média, cinco pedidos de entrega diários. Qual a probabilidade de o comerciante não poder atender aos 
pedidos de entregas domiciliares? Observação: cada veículo efetua uma entrega diária.
a) 0%
b) 50%
c) 25,76%
d) 18,75%
e) 31,25%
Resolução:
A resolução desse problema é feita utilizando‑se a distribuição binomial, visto que é uma situação na 
qual existemapenas duas possibilidades complementares: entrega em domicílio e retirada no depósito. 
O atacadista conseguirá atender às entregas domiciliares se elas forem em número máximo de três; caso 
contrário, ficarão entregas pendentes. Portanto, o cálculo que devemos fazer é o da probabilidade de se 
receber mais do que três pedidos de entregas domiciliares por dia. Esse cálculo será feito pela fórmula:
P(X = x) = Cn,x x p
x x (1 – p)(n–x)
Onde os valores são:
•	 número de repetições: n = 5 (vendas diárias);
•	 probabilidade de sucesso: p = 50% ou 0,5 (probabilidade de o pedido ser para entrega domiciliar);
•	 número de sucessos: x = 4,5 (quantidade de pedidos de vendas que, se forem em domicílio, não 
poderão ser atendidos).
28
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
Devemos calcular cada situação em particular e somar os resultados:
P(X = 4) = C5,4 x 0,5
4 x (1 – 0,5)(5–4) = 0,1563
P(X = 5) = C5,5 x 0,5
5 x (1 – 0,5)(5–5) = 0,0313
A soma das probabilidades calculadas é 0,1563 + 0,0313 = 0,1875 ou 18,75%, ou seja, alternativa D.
3 vAlor E vArIÂnCIA EsPErAdos nA dIstrIbuIção bInoMIAl
A média de uma população é um valor provável, ou, se preferir, esperado, e é calculado de maneira 
semelhante ao que foi calculado na amostra, mas utilizando‑se os valores de probabilidades, em vez das 
frequências.
Utiliza‑se como símbolo da média populacional a letra grega µ (mi), ou então o símbolo E(x), 
significando a esperança de x ou o valor esperado para x, sendo obtida pela seguinte fórmula:
E x p x p x p x p x p xn n i
i
n
( ) .....= + + + + =
=
∑1 1 2 2 3 3 1
1
Observe o cálculo a seguir e perceba a semelhança com o cálculo da média amostral em Estatística:
Tabela 6
A B C D = AxC
Número de ações 
em alta
Probabilidade 
de ocorrência 
percentual
Probabilidade 
de ocorrência 
decimal
0 0,03% 0,0003 0,00
1 0,42% 0,0042 0,00
2 2,29% 0,0229 0,05
3 7,46% 0,0746 0,22
4 15,96% 0,1596 0,64
5 23,40% 0,2340 1,17
6 23,84% 0,2384 1,43
7 16,65% 0,1665 1,17
8 7,63% 0,0763 0,61
9 2,07% 0,0207 0,19
10 0,25% 0,0025 0,03
Somatório da coluna D 5,50
29
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Isso significa que o valor esperado de ações em alta nessa bolsa é de 5,5 ações, das dez consideradas. 
Podemos afirmar que, em cada dez ações acompanhadas, 5,5 devem estar em alta. Perceba que não é 
uma certeza, é um valor, sujeito a variabilidade. Essa variabilidade é medida pela variância, que tem as 
mesmas definição e características daquela definida para a amostra e é calculada pela fórmula a seguir:
Var(x) = E(x2) – [E(x)]2
A tabela a seguir mostra o cálculo da variância, semelhante ao conhecido para a amostra:
Tabela 7
A B C D = AxC E = AxA F = ExC
Número 
de ações 
em alta
Probabilidade 
de ocorrência 
percentual
Probabilidade 
de ocorrência 
decimal
Valor ao 
quadrado
0 0,03% 0,0003 0,00 0 0,00
1 0,42% 0,0042 0,00 1 0,00
2 2,29% 0,0229 0,05 4 0,09
3 7,46% 0,0746 0,22 9 0,67
4 15,96% 0,1596 0,64 16 2,55
5 23,40% 0,2340 1,17 25 5,85
6 23,84% 0,2384 1,43 36 8,58
7 16,65% 0,1665 1,17 49 8,16
8 7,63% 0,0763 0,61 64 4,88
9 2,07% 0,0207 0,19 81 1,68
10 0,25% 0,0025 0,03 100 0,25
Somatório da coluna D 5,50 32,73
Var(x) = E(x2) – [E(x)]2 ⇒ Var(x) = 32,73 – [5,5]2 = 32,73 – 30,25 = 2,48
Você se lembra de que o desvio padrão é a raiz quadrada da variância. O símbolo do desvio padrão 
populacional é a letra grega→σ (sigma). Portanto:
σ = Var x( )
Nesta questão, o desvio padrão é dado por: σ σ σ= ⇒ = ⇒ =Var x( ) , ,2 48 157 .
Quando estamos trabalhando com a distribuição binomial, os cálculos do valor médio provável, da 
variância e do desvio padrão podem ser feitos de modo mais simplificado usando as fórmulas a seguir:
E(x) = N x p
σ = -N x p x p( )1
30
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
Observe a utilização dessas fórmulas no exemplo que acabamos de estudar:
E(x) = 10 x 0,55 = 5,5
σ = - =10 0 55 1 0 55 157x x, ( , ) ,
Importante observar que essas fórmulas são específicas para a distribuição normal. Para outras 
distribuições, as fórmulas são diferentes.
 Exemplo de aplicação
Uma máquina impressora tem uma probabilidade constante de 0,05 de entrar em pane em um 
dia qualquer da semana e permanecer parada durante todo esse dia. Usando a distribuição binomial, 
determinou‑se a tabela a seguir:
Tabela 8
Número de quebras semanais X 0 1 2 3 4 5
Probabilidades em % P(X) 77,38% 20,36% 2,14% 0,11% 0,00% 0,00%
Sabendo que, se não ocorrerem quebras durante a semana, o lucro da fábrica será de R$ 560.000,00; 
que, se ocorrerem três ou mais panes, o prejuízo será de R$ 980.000,00; e que, se ocorrerem uma ou duas 
panes, o lucro será de apenas R$ 135.000,00, pergunta‑se: qual o lucro esperado nessas circunstâncias?
a) R$ 135.000,00
b) R$ 125.785,00
c) R$ 345.786,00
d) R$ 462.625,00
e) R$ 463.703,00
Resolução:
O cálculo pedido é o de uma esperança matemática ou do valor esperado. A tabela a seguir calcula 
o resultado pedido, lembrando que:
E x p x p x p x p x p xn n i
i
n
( ) .....= + + + + =
=
∑1 1 2 2 3 3 1
1
31
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Tabela 9
Nº de quebras 
semanais Lucro auferido
Probabilidade 
(em %)
Probabilidade 
(em decimal) pixi
xi pi
0 R$ 560.000,00 77,38 0,7738 R$ 433.328,00
1 R$ 135.000,00 20,36 0,2036 R$ 27.486,00
2 R$ 135.000,00 2,14 0,0214 R$ 2.889,00
3 ‑ R$ 980.000,00 0,11 0,0011 ‑ R$ 1.078,00
4 ‑ R$ 980.000,00 0,00 0,000 R$ 0,00
5 ‑ R$ 980.000,00 0,00 0,000 R$ 0,00
Valor esperado = R$ 462.625,00
O lucro esperado é de R$ 462.625,00, ou seja, a alternativa correta é a D.
Todas essas informações estatísticas que acabamos de ver e calcular para o caso do lote de ações da 
Bolsa de Valores podem ser apresentadas na forma gráfica, de modo semelhante ao que fizemos para 
as amostras.
Enquanto no eixo horizontal continuamos a colocar os valores envolvidos, no eixo vertical colocamos 
agora as probabilidades, e não mais as frequências. De resto, são gráficos bastante semelhantes, com a 
já sabida e repisada diferença de que um apresenta valores reais (quando trabalhamos com amostras), e 
o outro, valores prováveis (para a população).
Distribuição de probabilidades – ações em alta
Pr
ob
ab
ili
da
de
s
Número de ações em alta
25%
20%
15%
10%
5%
0%
0 1 2 3 4 5 6 7 8 9 10
µ-σ µ+σµ
Figura 4
32
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
No gráfico, podemos definir:
•	 as probabilidades de cada ocorrência (determinado número de ações em alta), representadas pelas 
colunas verticais;
•	 a média (µ) ou o valor esperado para essa distribuição, representado pela linha tracejada central;
•	 a variação de um desvio padrão (σ) para mais, representada pela linha traço‑ponto da direita;
•	 a variação de um desvio padrão (σ) para menos, representada pela linha traço‑ponto da esquerda;
•	 uma curva que passa pelo topo de todas as colunas, centrada na média e com inflexões nos 
desvios padrões para mais e para menos.
Essa curva, chamada de normal, é extremamente importante para a Estatística e será profundamente 
estudada ainda neste livro‑texto. Verifique, por ora, que é evidente o fato de que, quanto maior for o 
número de colunas, mais definida será a referida curva.
4 dIstrIbuIção norMAl4.1 Conceitos básicos
Vimos anteriormente a mais importante distribuição de probabilidades discretas, a distribuição 
binomial. Para variáveis contínuas, a mais importante distribuição é a distribuição normal ou de Gauss. 
Essa é a mais importante distribuição de probabilidades e a mais usada. Uma enorme quantidade de 
situações estatísticas recai na distribuição normal.
O gráfico apresentado na figura anterior mostra o surgimento da curva a partir de um histograma 
de probabilidade, com suas características principais:
•	 centrada na média;
•	 com sua forma definida pelo valor do desvio padrão.
Para entendermos melhor a relação entre as distribuições binomial e normal, vamos calcular, de 
acordo com os conceitos da distribuição binomial, o comportamento estatístico de ações negociadas 
em três diferentes Bolsas de Valores. Em cada uma delas foram calculados a média esperada e o 
desvio padrão.
Na tabela a seguir, temos relacionados dados referentes às ações em alta nas três diferentes bolsas 
de valores. Como dissemos, foram acompanhadas 30 diferentes ações em cada uma das bolsas, e o 
comportamento estatístico foi calculado – cada uma delas com um comportamento diferente expresso 
pela média e pelo desvio padrão.
33
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Tabela 10
Bolsa de Valores Número de observações
Probabilidade de 
ações em alta
Média de ações 
em alta
Desvio padrão de ações 
em alta
N p E(x) – N x p σ = -N x p x p( )1
A 30 30% 9 2,51
B 30 50% 15 2,74
C 30 80% 24 2,19
Essas mesmas informações estão mostradas no gráfico a seguir. Perceba que retiramos as colunas 
do histograma e mantivemos apenas a curva. Essas curvas são as chamadas distribuições normais. 
Quando o número de observações (tentativas) numa distribuição binomial aumenta, ela se aproxima 
cada vez mais da distribuição normal, até que ficam indistinguíveis. Chama‑se isso de aproximação da 
binomial pela normal.
20%
18%
16%
14%
12%
10%
8%
6%
4%
2%
0%
0
Pr
ob
ab
ili
da
de
s
Bolsa A (9;2,51)
Bolsa B (15;2,74)
Bolsa C (24;2,19)
5 10 15 20 25 30
Número de ações em alta
Figura 5
Observando atentamente o gráfico, percebemos que na Bolsa C é praticamente impossível (ou seja, 
a probabilidade é muito próxima de zero) que existam menos de 15 ações em alta. Para a Bolsa A ocorre 
o oposto, é praticamente impossível que tenha mais do que 16 ou 17 ações em alta. Já para a Bolsa B, 
o mais provável é que tenha 15 ações em alta.
Percebe‑se também que a curva que apresenta o maior desvio padrão é a mais baixa e achatada 
(Bolsa B), e a que apresenta menor desvio padrão, a mais alta e afilada (Bolsa C).
A Bolsa que tem maior probabilidade de ter ações em alta (Bolsa C) tem o gráfico deslocado para a 
direita, enquanto a com menor probabilidade (Bolsa A) está deslocada para a esquerda. A Bolsa B, que 
34
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
tem 50% de suas ações em alta, está localizada exatamente em torno do valor central e, percebe‑se, é 
mais regular, menos “deformada” que as outras.
Resumindo, a curva normal é determinada, em todos os seus aspectos, pela média e pelo desvio padrão. 
Conhecendo esses dois parâmetros, conhecemos o comportamento probabilístico do experimento.
Observe agora a curva referente à Bolsa B. Perceba que ela é absolutamente simétrica em relação 
ao eixo vertical. O lado esquerdo dela em relação à média é idêntico ao lado direito. Em outras palavras, 
metade da área sob essa curva está do lado esquerdo da média e metade está do lado direito da média, 
e a probabilidade de se ter 15 ações ou mais em alta nessa bolsa é de 50%, assim como a probabilidade 
de se ter 15 ações ou menos. Essa é uma importante decorrência das distribuições contínuas, dentre elas 
a normal: as probabilidades são proporcionais às áreas definidas pelos valores envolvidos.
A questão proposta a seguir demonstra a utilidade desses conceitos.
Uma empresa de pneumáticos acompanhou a vida útil de uma quantidade considerável de pneus de 
um determinado tipo e chegou à conclusão de que essa vida útil é normalmente distribuída e tem uma 
média de 42.000 km, com desvio padrão de 5.800 km. Um cliente adquire um desses pneus e o instala 
no seu automóvel. Qual é a probabilidade de que ele dure mais do que 50.000 km?
Antes de qualquer coisa, vamos entender os procedimentos operacionais envolvidos. O fabricante não 
acompanha todos os pneus que fabrica; evidentemente, acompanha uma pequena fração deles, anotando a 
quilometragem durante a qual eles foram utilizados. Com esses dados, que devem ser em quantidade considerável, 
ele calcula a média e o desvio padrão e assume que, se ele tivesse acompanhado, todos os pneus fabricados os 
valores seriam muito próximos. Ele consegue observar também se o experimento segue ou não a curva normal.
Feita essa observação, veja o gráfico a seguir:
0
Pr
ob
ab
ili
da
de
s
5 20 35 50 65
42
Vida útil
em milhares de km
Área na qual estão 
localizados os pneus 
que têm vida útil maior 
ou igual a 50.000 km
Figura 6
35
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Na área sob a curva estão representados todos os possíveis pneus desse tipo, desde o que menos 
rodou ou rodará até o que mais rodou ou rodará, ou seja, a população dos pneus desse tipo. Perceba que 
o pneu que menos roda faz isso por aproximadamente 25.000 km (ponto em que a curva toca o eixo 
horizontal) e que o mais resistente roda cerca de 65.000 km.
Se todos os pneus estão representados pela área total (AT) e os pneus que duram 50.000 ou mais 
quilômetros estão na área cinza (Ap = área pedida), então é lógico deduzir a partir do que já sabemos:
P
A
A
p
t
(pneu rodar 50.000 km ou mais) =
Nessas circunstâncias, calcular a probabilidade significa calcular duas áreas. Não é uma tarefa fácil, 
matematicamente, mas foram desenvolvidos procedimentos que facilitam esses cálculos.
Logo a seguir, mostraremos como são esses procedimentos. Por ora, você acreditará quando dissermos 
que a área dada desse exercício corresponde a 8,38% da área total. Portanto:
P(pneu rodar 50.000 km ou mais) = 0,0838 = 8,38%
4.2 Cálculo das áreas da curva normal
Como notamos na resolução da questão anterior, o cálculo de uma probabilidade que segue a distribuição 
normal é relativamente fácil e pouco trabalhoso. O grande problema é calcular as áreas envolvidas.
Esse tipo de cálculo é matematicamente muito trabalhoso e deveria ser refeito a cada problema a se resolver, 
visto que, como cada curva normal é caracterizada pela média e pelo desvio padrão, qualquer alteração nesses 
parâmetros provocaria uma mudança na curva e, consequentemente, recálculo das áreas envolvidas.
Para facilitar esses cálculos, que são repetidos centenas de milhares de vezes, foi estabelecida uma 
curva padrão, chamada de curva normal reduzida, a partir da qual, por analogia, determinam‑se as 
áreas de situações práticas.
Essa curva tem várias características interessantes que irão facilitar nossos cálculos:
•	 utiliza‑se a variável reduzida (padrão) z para diferenciar da variável real, aquela de envolve os 
problemas práticos que continuaremos a chamar de x (como a vida útil do pneu do nosso exemplo);
•	 é construída para uma média igual a zero e um desvio padrão igual a 1 (µ = 0; σ→= 1);
•	 a área total sob a curva normal reduzida é igual a 1;
•	 a curva varia, no eixo z, desde ‑4 até +4, ou seja, de menos quatro desvios padrões da média até 
mais quatro desvios padrões da média;
36
Re
vi
sã
o:L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
•	 todas as áreas são tabeladas (vide tabela do Anexo 1);
•	 a relação entre a curva normal reduzida e a curva normal real é feita pela fórmula:
z
x
=
- µ
σ
Onde:
– z é a variável reduzida;
– x é a variável real;
– µ é a média real;
– é o desvio padrão real.
A curva reduzida pode ser vista a seguir. Perceba que, entre um desvio padrão para menos, em 
relação à média, e um desvio padrão para mais, a área é de 68,2% do total. Entre dois desvios padrões 
para menos e dois desvios padrões para mais, a área é de 95,4% do total, e assim por diante. Perceba 
que não existe área antes de quatro vezes o desvio padrão para menos e depois de quatro vezes o desvio 
padrão para mais, ou seja, é estatisticamente impossível ocorrer algo que diste mais do que quatro vezes 
o desvio padrão da média.
P(z)
z
-4 -3 -2 -1 0 1 2 3 4
68,2%
95,4%
99,7%
100,0%
Figura 7
37
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Os cálculos das probabilidades envolvendo distribuições normais envolvem basicamente a 
determinação das áreas envolvidas por meio do uso da tabela da curva normal reduzida, determinada 
por analogia com a situação real que estamos trabalhando.
Precisamos então entender o funcionamento da tabela da curva normal reduzida, que você encontra 
no Anexo 1.
O critério básico da tabela é que as áreas começam sempre da extrema esquerda da curva e terminam 
no valor de z que se está trabalhando, como mostrado a seguir:
P(z)
z
-4 -3 -2 -1 0 1 2 3 4
At
Z1 = -1,65
Figura 8
A área marcada começa na extrema esquerda e termina em z1= ‑1,65. Portanto, é uma área tabelada, 
e o valor dela é obtido na figura, da seguinte forma:
Z 0 1 2 3 4 5 6 7 8 9
-3,9 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
-3,8 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001
-3,7 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001
-1,7 0,0446 0,0436 0,0427 0,0418 0,0409 0,0404 0,0392 0,0384 0,0375 0,0367
-1,6 0,0548 0,0537 0,0526 0,0516 0,0505 0,0495 0,0485 0,0475 0,0465 0,0455
-1,5 0,0668 0,0655 0,0643 0,0630 0,0618 0,0600 0,0594 0,0582 0,0571 0,0559
-1,4 0,0808 0,0793 0,0778 0,0764 0,0749 0,0735 0,0721 0,0708 0,0694 0,0681
-1,3 0,0968 0,0951 0,0934 0,0918 0,0901 0,0885 0,0869 0,0853 0,0838 0,0823
Figura 9
38
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
Perceba que a tabela tem duas páginas, uma para valores de z positivos e outra para valores de z 
negativos. No exemplo, usamos a tabela para valores de z negativos. Na coluna da esquerda, localizamos 
os dois primeiros algarismos do z dado, ou seja, 1,6. Na primeira linha, localizamos o valor do último 
algarismo de z, o algarismo 5. A área tabelada é obtida pelo cruzamento das duas informações. A área 
tabelada, mostrada no gráfico, é, portanto, 0,0495.
Como já vimos, os valores de z serão obtidos por analogia com o problema que efetivamente 
estivermos trabalhando. A questão a seguir irá mostrar todos os cálculos possíveis e imagináveis que 
podem ser feitos nessa situação:
A fabricação mensal de um produto químico é normalmente distribuída com uma média de 12.500 
toneladas e desvio padrão de 1.200 toneladas. Calcular a probabilidade de que, num mês qualquer, a 
produção seja:
a) Inferior a 11.000 toneladas.
b) Superior a 13.800 toneladas.
c) Entre 12.000 e 13.500 toneladas.
d) Entre 13.000 e 15.000 toneladas.
e) Inferior a 14.200 toneladas.
f) Superior a 10.000 toneladas
Nessa questão, usaremos inicialmente a imagem das duas curvas. Uma supõe a situação real (a 
fabricação do produto químico) e a outra é a normal reduzida. Com isso, conseguiremos mostrar a 
analogia a ser feita:
39
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Item a
P(z)
z
-4 -3 -2 -1 0 1 2 3 4
Ad = At
Z = -1,25
Ad
11.000 12.500 Produção mensal
Figura 10
Como mostram os gráficos, a área que desejamos calcular está localizada à esquerda do valor 11.000 
toneladas, ou seja, meses em que a produção está abaixo de 11.000 toneladas. O valor 11.000 ton na 
situação real, corresponde ao valor ‑1,25 na situação reduzida, conforme a seguir:
z
x
=
-
=
-
= -
µ
σ
11000 12500
1200
125,
40
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
Portanto, se a média 12.500 corresponde à média zero na curva reduzida; o desvio padrão 1.200, 
ao desvio padrão reduzido 1; e o valor 11.000, ao valor reduzido 1,25, então podemos dizer que as duas 
áreas sombreadas nos gráficos ao lado também são correspondentes. Sabendo o valor de uma, podemos 
calcular o valor da outra.
Observe que as áreas tabeladas são sempre as que estão entre a extrema esquerda e o valor de z, 
exatamente o que ocorre nesse caso. Basta, portanto, obter o valor da área na tabela da curva normal 
reduzida:
Z 0 1 2 3 4 5 6 7 8 9
1,3 0,0968 0,0951 0,0934 0,0918 0,0901 0,0885 0,0869 0,0853 0,0838 0,0823
-1,2 0,1151 0,1131 0,1112 0,1093 0,1075 0,1056 0,1038 0,1020 0,1003 0,0985
-1,1 0,1357 0,1335 0,1314 0,1292 0,1271 0,1251 0,1230 0,1210 0,1190 0,1170
Figura 11
Z = ‑ 1,25 → At = 0,1056
Como desejamos a área à esquerda de ‑1,25, o valor da área obtida na tabela é exatamente o valor 
desejado:
Ap = At Ap = 0,1056 ou 10,56%
Portanto, a probabilidade de que num mês qualquer se produza menos de 11.000 toneladas é 
de 10,56%.
41
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Item b
Ad
12.500 Produção mensal13.800
P(z)
z
-4 -3 -2 -1 0 1 2 3 4
Ad =1– At
Z1 = 1,08
Figura 12
A área que desejamos calcular está localizada à direita do valor 13.800 toneladas, ou seja, meses em 
que a produção é superior a 13.800 toneladas. O valor 13.800 ton, na situação real, corresponde ao valor 
1,08 na situação reduzida, conforme a seguir:
z
x
=
-
=
-
=
µ
σ
13800 12500
1200
1 08,
42
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
Portanto, se a média 12.500 corresponde à média zero na curva reduzida; o desvio padrão 1.200, ao 
desvio padrão reduzido 1; e o valor 13.800, ao valor reduzido 1,08, então podemos dizer que as duas 
áreas sombreadas nos gráficos ao lado também são correspondentes. Sabendo o valor de uma, podemos 
calcular o valor da outra.
Observe, no entanto, que as áreas tabeladas são sempre as que estão entre a extrema esquerda e o 
valor de z, o que não ocorre com esta. Temos então de estabelecer uma relação entre as áreas envolvidas.
Note que a área total sob a curva normal reduzida é igual a 1. A área que permanece em branco no 
gráfico é tabelada; portanto, a área que desejamos é igual a um menos a área tabelada:
Z 0 1 2 3 4 5 6 7 8 9
0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8389
1,0 0,8413 0,8438 0,8461 0,8486 0,8608 0,8531 0,8554 0,8577 0,8599 0,8621
1,1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8830
Figura 13
Z = 1,08 At = 0,8599
Ap = 1 – 0,8599 → Ap = 0,1401 ou 14,01%
Portanto, a probabilidade de que num mês qualquer se produza acima de 13.800 toneladas é 
de 14,01%.
 observação
É muito importante observar que a tabela da curva normal reduzida 
tabela apenas as áreas à esquerda do gráfico,portanto qualquer área que não 
seja à esquerda do gráfico deverá ser obtida por um cálculo complementar, 
como mostrado no Item b e conforme também será mostrado no Item c.
43
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Item c
P(z)
Ad =At1– At2
Ad
12.500 Produção mensal13.50012.000
z
-4 -3 -2 -1 0 1 2 3 4
Z1 = -0,42 Z2 = -0,83
Figura 14
A área que desejamos calcular está localizada entre os valores 12.000 e 13.500, ou seja, correspondente 
aos meses em que se produz mais de 12.000 toneladas e menos de 13.500 toneladas. O valor 12.000 
toneladas da situação real corresponde ao valor ‑0,42 na situação reduzida, e o valor 13.500, a 0,83. 
Veja os cálculos a seguir:
z
x
z
x
=
-
=
-
= -
=
-
=
-
=
µ
σ
µ
σ
12000 12500
1200
0 42
13 500 12500
1200
0 83
,
.
,
44
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I z x
z
x
=
-
=
-
= -
=
-
=
-
=
µ
σ
µ
σ
12000 12500
1200
0 42
13 500 12500
1200
0 83
,
.
,
Como anteriormente, podemos fazer a analogia: se a média 12.500 corresponde à média zero na 
curva reduzida; o desvio padrão 1.200, ao desvio padrão reduzido 1; o valor 12.000, ao valor reduzido – 
0,42; e o valor 13.500, ao valor 0,83, então podemos dizer que as duas áreas sombreadas nos gráficos ao 
lado também são correspondentes. Sabendo o valor de uma, podemos calcular o da outra.
Observe que as áreas tabeladas são sempre as que estão entre a extrema esquerda e o valor de z, o 
que não ocorre neste caso. Assim, temos de efetuar um raciocínio que permita o cálculo.
Note que, se entrarmos na tabela com o valor de z igual a ‑ 0,42, iremos obter a área 0,3372. Essa 
área é a localizada à esquerda de z1 = ‑ 0,42.
Para o valor z2 igual a 0,83, a área obtida é de 0,7967. Essa área está à esquerda de z2 = 0,83.
Perceba que a área de 0,7967 nada mais é do que a área 0,3372 mais a área que estamos procurando 
saber o valor. Logo, o valor da área procurada é a diferença das áreas que lemos na tabela, ou seja:
Ap =0,7967 – 0,3372 = 0,4595 ou 45,95%
Portanto a probabilidade de que num mês qualquer se produza entre 12.000 e 13.500 é de 45,95%.
Esses são os três cálculos possíveis sobre a distribuição normal. Os três itens restantes da questão são 
semelhantes, e iremos resolver sem a ajuda dos gráficos.
Item d
Como desejamos calcular uma probabilidade e, consequentemente, uma área entre dois valores, 
devemos calcular a área à esquerda de cada um deles e depois subtrair a menor da maior:
z
x
tabela A
z
x
t1 1
1
13000 12500
1200
0 42 0 6628
1500
=
-
=
-
= → → =
=
-
=
µ
σ
µ
σ
, ,
00 12500
1200
2 08 0 9812
0 9812 0 6628 0 3184
1
-
= → → =
= - =
, ,
, , ,
tabela A
A
t
p == 3184, %
Portanto, a probabilidade de num determinado mês serem produzidos entre 13.000 e 15.000 
toneladas de produto químico é de 31,84%.
45
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Item e
Como desejamos calcular a probabilidade de a produção ser inferior a 14.200 toneladas, basta 
calcular a área à esquerda do valor de z correspondente:
z
x
tabela A
A A
p
p t
1
14200 12500
1200
142 0 9222
0 9222
=
-
=
-
= → → =
= = =
µ
σ
, ,
, 992 22, %
Portanto, a probabilidade de num determinado mês serem produzidas menos de 14.200 toneladas 
de produto químico é de 92,22%.
Item f
Como desejamos calcular a probabilidade de a produção ser superior a 10.000 toneladas, devemos 
calcular a área à esquerda do valor de z correspondente e tirá‑la de 1:
z
x
tabela At
A Ap t
1
10000 12500
1200
2 08 0 0188
1 1 0
=
-
=
-
= - → → =
= - = -
µ
σ
, ,
,00188 98 12= , %
Portanto, a probabilidade de num determinado mês serem produzidas mais de 10.000 toneladas de 
produto químico é de 98,12%.
Exemplo de aplicação
As vendas de determinado produto têm apresentado distribuição normal com média de 600 
unidades/mês e desvio padrão de 40 unidades/mês. Se a empresa decidir fabricar 700 unidades naquele 
mês, qual será a probabilidade de ela não poder atender a todos os pedidos naquele mês, por estar com 
a produção completa?
a) 6,20%
b) 95,78%
c) 0,62%
d) 18,50%
e) 99,38%
46
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Unidade I
Resolução:
Observe o gráfico a seguir:
média = 600 700
desvio padrão = 40
Figura 15
O gráfico mostra visualmente a situação descrita no exercício. As vendas do produto comportam‑se 
de acordo com a curva normal com média (µ) de 600 unidades e desvio padrão (σ) de 40 unidades. Isso 
significa que em determinado mês se pode vender mais ou menos, seguindo a curva normal. O valor 
(X) de 700 unidades representa a produção estabelecida e divide a curva em duas áreas: a área clara 
corresponde aos meses nos quais se vendem menos do que 700 unidades que, e a área escurecida, 
aos meses em que se vendem mais do que 700 unidades. Ora, se a empresa vender mais do que 700 
unidades, não conseguirá atender a todos os pedidos, visto que a produção está limitada a esse valor. 
Portanto, essa área corresponde à probabilidade de não se poder atender a todos os pedidos, questão 
colocada pelo exercício. Resolveremos a questão, assim, calculando a área escurecida, o que é feito a 
partir do uso da tabela normal reduzida.
A variável reduzida correspondente a 700 unidades é obtida pela fórmula:
z
x
z z=
-
→ =
-
→ =
µ
σ
700 600
40
2 50,
Com o valor de 2,50, usando a tabela da distribuição normal reduzida, podemos determinar a área à 
esquerda do valor de 700 unidades:
z = 2,50 → Atab = 0,9938
Como na verdade queremos a área à direita de 700 unidades, nós deveremos fazer a subtração:
Ap = 1 – Atab → Ap = 1 – 0,9938 = 0,0062
47
Re
vi
sã
o:
 L
uc
as
 -
 D
ia
gr
am
aç
ão
: J
ef
fe
rs
on
 -
 1
8/
07
/1
4
Estatística aplicada
Dessa forma, a probabilidade de não se conseguir atender a todos os pedidos é de 0,62%, ou seja, a 
alternativa correta é a C.
Com o exemplo do produto químico, verificamos como se calcula a probabilidade de ocorrência 
de um evento que segue a distribuição normal (os mais comuns dos eventos). Ocorre que muitas 
vezes precisamos fazer o cálculo ao contrário, ou seja, sabemos qual é o valor de uma determinada 
probabilidade e desejamos saber quais os valores que a definem.
A questão a seguir demonstra esse raciocínio e os cálculos decorrentes.
Uma oficina automotiva efetua seus consertos no tempo médio de 45 minutos, com desvio padrão 
de 8 minutos, normalmente distribuído. Nessas circunstâncias, pergunta‑se:
a) Qual é a previsão de tempo de trabalho que a oficina deve passar ao cliente para que tenha 90% 
de probabilidade de efetuar o trabalho dentro do prazo?
b) Qual é a previsão de tempo de trabalho que a oficina deve passar ao cliente para que tenha, no 
máximo, 30% probabilidade de efetuar o trabalho dentro do prazo?
Resolução do Item a:
Observe a figura a seguir. A área sombreada corresponde a 90% da área total, sendo limitada pelo 
valor z, que desejamos encontrar. O problema se resolve obtendo‑se na tabela o valor de z correspondente 
a uma área de 90% ou aproximada. Note, portanto, que utilizamos a tabela no sentido oposto ao que 
fizemos nos exercícios anteriores. Veja a figura representando a tabela:
P(z)
z
-4 -3 -2 -1 0 1 2 3 4

Outros materiais

Materiais relacionados

Perguntas relacionadas

Materiais recentes

Perguntas Recentes