Buscar

Livro Texto Unidade I - UNIP - MATEMÁTICA APLICADA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 64 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 64 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 64 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Autor: Prof. Antonio Eduardo Batista
Colaboradores: Prof. Santiago Valverde
Prof. Jean Carlos Cavaleiro
Prof. Mauricio Martins do Fanno
Prof. Luiz Carlos Felix
Matemática Aplicada
Professor conteudista: Antonio Eduardo Batista
Natural de São Paulo (SP), é graduado em Matemática pelo Centro Universitário Fundação Santo André 
(1976) e graduado (1985) e mestre (2005) em Administração pela Universidade Cidade de São Paulo. Desenvolveu 
suas principais atividades na carreira empresarial como analista de processos administrativos, programador de 
sistemas de informação e analista de sistemas. Atuou posteriormente em cargos de supervisor de sistemas de 
informação e gerente de desenvolvimento de sistemas. Atua na carreira docente desde 2005 como professor dos 
cursos de Administração e Marketing. Atuou também como professor de cursos de pós-graduação nas áreas de 
Marketing e Logística na Universidade Anhanguera e Faculdade Unida de Suzano. Atualmente é professor mestre 
da Universidade Paulista – UNIP, da Faculdade Unida de Suzano e da Faculdade Sumaré, além de consultor de 
empresas na área de reestruturação organizacional da Savenet Ltda. Atua principalmente nos temas: Sistemas 
de Informação, Processos Administrativos, Plano de Negócios, Planejamento de Marketing.
© Todos os direitos reservados. Nenhuma parte desta obra pode ser reproduzida ou transmitida por qualquer forma e/ou 
quaisquer meios (eletrônico, incluindo fotocópia e gravação) ou arquivada em qualquer sistema ou banco de dados sem 
permissão escrita da Universidade Paulista.
Dados Internacionais de Catalogação na Publicação (CIP)
B333 Batista, Antonio Eduardo
Matemática Aplicada. / Antonio Eduardo Batista - São Paulo: 
Editora Sol.
116 p. il.
Notas: este volume está publicado nos Cadernos de 
Estudos e Pesquisas da UNIP, Série Didática, ano XVII, n. 2-023/11, 
ISSN 1517-9230.
1.Matemática aplicada 2.Matemática básica 3.Conceitos de 
matemática I.Título
CDU 572
Prof. Dr. João Carlos Di Genio
Reitor
Prof. Fábio Romeu de Carvalho
Vice-Reitor de Planejamento, Administração e Finanças
Profa. Melânia Dalla Torre
Vice-Reitora de Unidades Universitárias
Prof. Dr. Yugo Okida
Vice-Reitor de Pós-Graduação e Pesquisa
Profa. Dra. Marília Ancona-Lopez
Vice-Reitora de Graduação
Unip Interativa – EaD
Profa. Elisabete Brihy 
Prof. Marcelo Souza
Prof. Dr. Luiz Felipe Scabar
Prof. Ivan Daliberto Frugoli
 Material Didático – EaD
 Comissão editorial: 
 Dra. Angélica L. Carlini (UNIP)
 Dra. Divane Alves da Silva (UNIP)
 Dr. Ivan Dias da Motta (CESUMAR)
 Dra. Kátia Mosorov Alonso (UFMT)
 Dra. Valéria de Carvalho (UNIP)
 Apoio:
 Profa. Cláudia Regina Baptista – EaD
 Profa. Betisa Malaman – Comissão de Qualificação e Avaliação de Cursos
 Projeto gráfico:
 Prof. Alexandre Ponzetto
 Revisão:
 Elaine Fares
Sumário
Matemática Aplicada
APRESENTAÇÃO ......................................................................................................................................................7
Unidade I
1 REVISÃO .................................................................................................................................................................9
1.1 Números reais ...........................................................................................................................................9
1.2 Expressões algébricas .......................................................................................................................... 12
1.3 Razão e proporção ............................................................................................................................... 16
1.4 Porcentagem .......................................................................................................................................... 18
1.5 Regra de três .......................................................................................................................................... 23
1.5.1 Regra de três simples ............................................................................................................................ 25
1.5.2 Regra de três composta ....................................................................................................................... 29
2 CONJUNTOS ....................................................................................................................................................... 31
2.1 Introdução: a ideia de conjunto indo além da matemática ............................................... 31
2.2 Conceitos básicos ................................................................................................................................. 33
2.3 Definições matemáticas .................................................................................................................... 34
2.3.1 Representação ordinária ...................................................................................................................... 35
2.3.2 Representação abstrata ........................................................................................................................ 35
2.3.3 Representação por diagramas de Venn ......................................................................................... 36
2.4 Pertinência e inclusão ........................................................................................................................ 36
2.5 Operações entre conjuntos .............................................................................................................. 38
2.5.1 Interseção ................................................................................................................................................... 38
2.5.2 União ............................................................................................................................................................ 39
2.5.3 Diferença ou complemento relativo ............................................................................................... 41
2.5.4 Cardinalidade de um conjunto .......................................................................................................... 42
2.5.5 Representação de conjuntos usando o diagrama de Venn ................................................... 43
3 RELAÇÕES ........................................................................................................................................................... 44
3.1 Plano cartesiano ................................................................................................................................... 44
3.2 Produto cartesiano .............................................................................................................................. 46
3.3 Relação binária: domínio, contradomínio e conjunto imagem ........................................ 47
3.4 Gráfico cartesiano ............................................................................................................................... 48
4 CONJUNTOS NUMÉRICOS ............................................................................................................................ 50
4.1 Números naturais ................................................................................................................................. 51
4.2 Números inteiros .................................................................................................................................. 52
4.3 Números racionais ............................................................................................................................... 53
4.4 Números irracionais ............................................................................................................................ 55
4.5 Números reais ........................................................................................................................................57
4.6 Aplicação.................................................................................................................................................. 60
Unidade II
5 EQUAÇÕES ......................................................................................................................................................... 65
5.1 Equações do 1º grau............................................................................................................................ 66
5.2 Equações do 2º grau............................................................................................................................ 69
6 FUNÇÕES ............................................................................................................................................................ 77
6.1 Conceito ................................................................................................................................................... 77
6.2 Definição ................................................................................................................................................. 79
6.3 Tipos de funções .................................................................................................................................. 81
6.3.1 Função sobrejetora ................................................................................................................................ 81
6.3.2 Função injetora ....................................................................................................................................... 81
6.3.3 Função bijetora ....................................................................................................................................... 81
6.4 Funções usuais ..................................................................................................................................... 84
6.4.1 Função par ................................................................................................................................................. 84
6.4.2 Função ímpa ............................................................................................................................................ 84
6.4.3 Função constante ................................................................................................................................... 85
6.4.4 Função linear ............................................................................................................................................ 86
6.5 Função do 1º grau ................................................................................................................................ 86
6.6 Aplicações ................................................................................................................................................ 88
6.6.1 Demanda e oferta de mercado ......................................................................................................... 89
6.6.2 Preço e quantidade de equilíbrio ..................................................................................................... 91
6.6.3 Receita total .............................................................................................................................................. 91
6.6.4 Custo total ................................................................................................................................................. 91
6.6.5 Ponto crítico (break even point) ou ponto de nivelamento .................................................. 92
6.6.6 Função lucro ............................................................................................................................................. 92
6.6.7 Margem de contribuição ..................................................................................................................... 92
7 AJUSTE DE CURVAS ........................................................................................................................................ 94
7.1 Introdução à regressão linear .......................................................................................................... 95
7.2 Regressão linear .................................................................................................................................... 97
7.3 Regressão quadrática ......................................................................................................................... 99
8 MATEMÁTICA FINANCEIRA ........................................................................................................................103
8.1 Conceitos de juros e taxas ..............................................................................................................103
8.2 Fluxo de caixa ......................................................................................................................................104
8.3 Capitalização ........................................................................................................................................105
8.4 Capitalização simples........................................................................................................................106
8.5 Capitalização composta ...................................................................................................................106
7
APRESENTAÇÃO
Prezado aluno,
Esta disciplina, Matemática Aplicada, voltada para o curso de Gestão, está dividida em duas 
Unidades.
Na primeira, inicialmente faremos uma breve recapitulação de alguns tópicos de matemática 
elementar – que você já estudou em outra fase de sua vida escolar – para que possa relembrá-los. 
O objetivo dessa revisão é simples. Esses conhecimentos básicos são importantes para fazer outros 
cálculos mais complexos que você precisará realizar ao exercer sua atividade profissional. 
Na sequência abordaremos outros conteúdos matemáticos que você deverá aplicar quando questões 
pertinentes à área administrativa surgirem em seu dia a dia. Na Unidade II aprofundamos a matéria com 
o propósito de que você desenvolva o raciocínio lógico e a habilidade para solucionar problemas com a 
ajuda de ferramentas como formulações e modelos matemáticos. 
As despesas de uma empresa com energia elétrica, telefone, água etc. podem ser avaliadas medindo-
se o consumo durante um determinado período. O tempo de viagem que levam os caminhões de uma 
indústria para entregar as mercadorias nos pontos de venda depende da velocidade média desenvolvida 
pelos veículos durante o percurso. O preço de venda de um produto que está sendo lançado no mercado 
resulta de uma avaliação criteriosa dos custos que envolvem sua produção. Esses são exemplos de 
cálculos que rotineiramente são efetuados nas empresas, e para realizá-los nos servimos da linguagem 
matemática.
Os tópicos desta disciplina são apresentados de forma didática e são ilustrados por diversos 
exemplos para facilitar sua assimilação. Para exercitar-se, você encontrará uma boa gama de questões 
e problemas. 
Bons estudos.
9
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Unidade I
1 REVISÃO
1.1 Números reais
Sistemas de numeração 
A história da humanidade nos conta que os números, a exemplo das palavras, também passaram por diversas 
mudanças em sua representação escrita ao longo dos séculos. A representação gráfica do número “9”, por 
exemplo, passou por diversas formas, entre elas, a repetição de trêssequências de três traços verticais, ficando 
uma embaixo da outra; a repetição de uma sequência de nove traços verticais numa mesma linha, a combinação 
das letras “I” e “X” (maiúsculas) utilizada pelos romanos, que resultou no “IX”. Na atualidade, além de escrevermos 
esse número por meio do símbolo “9”, também podemos representá-lo por extenso, ou seja, assim: “nove”. 
A vida do homem, há milhares de anos, era muito diferente da atual. Ele não tinha necessidade de 
contar, uma vez que não comprava, não vendia, não usava dinheiro.
Com o passar dos anos, os costumes foram mudando, o homem passou a cultivar a terra, a criar 
animais, a construir casas e a comercializar. Foi então que surgiu a necessidade de contar.
Conforme a vida foi se tornando mais complexa, surgiram as primeiras povoações. Estas foram 
crescendo, tornando-se cidades, se desenvolveram e deram origem às grandes civilizações. Com o 
progresso e o alto grau de organização dessas civilizações apareceu a necessidade de aprimorar os 
processos de contagem e de registrá-los. 
Foram criados então símbolos e regras que resultaram nos diferentes sistemas de numeração.
Sistema de numeração decimal
Faremos agora uma breve recapitulação sobre o sistema de numeração decimal, que é o que 
normalmente utilizamos. 
Conhecido como indo-arábico, porque foi criado pelos hindus e divulgado pelos árabes, esse 
sistema utiliza dez símbolos diferentes – 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – para expressar os algarismos com os 
quais contamos unidades, dezenas, centenas, milhares e demais quantidades e, obviamente, com que 
realizamos todo tipo de cálculo.
Diz-se que é um sistema posicional porque um mesmo símbolo representa um valor diferente, 
dependendo da posição que ocupa na escrita do número. Por exemplo, no número 4.545 (lendo da 
10
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
direita para a esquerda), o algarismo 5 representa 5 unidades, o algarismo seguinte, o 4, representa 
40 unidades, o algarismo à frente dele, o 5, representa 500 unidades, e o algarismo 4, que antecede 
todos os outros, representa 4.000 unidades. E é um sistema decimal porque 10 unidades de uma ordem 
formam uma unidade da ordem imediatamente superior. Por exemplo: 10 unidades formam 1 dezena, 
10 dezenas formam 1 centena, 10 centenas formam 1 milhar e assim por diante.
Sistemas de numeração anteriores ao decimal apresentavam dificuldades para escrever números 
muito grandes e também era muito trabalhoso fazer cálculos com eles. Esses obstáculos foram 
solucionados com a criação do sistema de numeração decimal. De que maneira? Ao desenvolvê-
lo, os hindus reuniram três características – já falamos de duas delas – fundamentais que faziam 
parte, separadamente, de outros sistemas de numeração: é um sistema decimal; o sistema decimal é 
posicional; e entre seus símbolos consta o zero, que representa o nada. Foram essas três características 
que fizeram desse sistema o mais prático de todos, motivo pelo qual ele é usado hoje em dia em quase 
todo o mundo. 
Com os algarismos formamos os números e aos números damos nomes. A palavra que designa esses 
nomes chamamos de numeral. 
Numeral é o nome dado a qualquer representação de um número. Os numerais cardinais 
indicam uma quantidade exata. Por exemplo: dois, trinta e quatro, trezentos, mil. Os numerais ordinais 
indicam ordem de sucessão ou posição exata de um elemento em uma determinada série. Por exemplo: 
primeiro, oitavo, vigésimo. Os numerais multiplicativos indicam um aumento exatamente proporcional. 
Por exemplo: dobro, sêxtuplo, cêntuplo. Os numerais fracionários indicam divisão, uma parte de um 
todo que é exatamente proporcional. Por exemplo: metade, um quinto, um centésimo, três décimos.
Para ficar bem claro: número e numeral são coisas diferentes. Exemplos de numerais: sete, terceiro, 
triplo, um quinto. Exemplos de números: 6, 4º, 1/8.
Os números reais
Os números reais fazem parte de um conjunto numérico que veremos mais adiante, entretanto, 
faremos um breve estudo dos números reais para entender sua utilização.
Quando estudamos o comportamento das funções, podemos notar que ele depende dos três 
elementos importantes que as compõem: o domínio, o contradomínio e a lei de definição. 
Daí se conclui que é importante ter clareza sobre as propriedades dos números reais para compreender 
as funções de uma variável real. Essa compreensão dos números reais, no entanto, não é tão simples como 
parece. O problema começa pelo método de introdução dos números reais: se pelo método construtivo 
ou se pelo método axiomático.
O interessante é que na ponta inicial do método construtivo também está o método axiomático. 
Na realidade, o método axiomático fundamenta toda teoria matemática. Por isso, vamos falar um 
pouco dele. 
11
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
A construção dos números reais
Em uma teoria axiomática temos:
1. Termos indefinidos.
2. Relações indefinidas.
3. Axiomas relacionando termos indefinidos e relações indefinidas.
4. Definições.
5. Teoremas baseados em axiomas e definições.
Os termos e as relações indefinidas também são denominados conceitos primitivos. Axiomas são 
propriedades aceitas como verdadeiras, sem questionamento e sem demonstração.
Exemplo: a teoria dos conjuntos é um exemplo simples de teoria axiomática. 
1. Conjunto e elemento de um conjunto são termos indefinidos.
2. Um elemento pertence a um conjunto é uma relação não definida.
A teoria dos conjuntos tem dois axiomas fundamentais (que não são os únicos):
Axioma da extensão: Dois conjuntos, A e B, são iguais se, e somente se, cada elemento de A 
pertence a B e cada elemento de B pertence a A.
Axioma da especificação: Se P(x) é uma proposição qualquer e A é um conjunto qualquer, então 
existe um único conjunto B, tal que:
B = {a: a pertence a A, P(a) é verdadeiro}
Com os elementos disponíveis, podemos definir novos objetos, como, por exemplo, a reunião de dois 
conjuntos:
A reunião dos conjuntos A e B é o conjunto de todos os elementos que pertencem a A ou a B, o que, 
em símbolos matemáticos, pode ser escrito:
AB = { x : x pertence a A ou x pertence a B }
Agora, com base na definição anterior e no axioma da extensão, podemos enunciar a propriedade 
associativa para a reunião:
12
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Teorema: Se A, B e C são conjuntos quaisquer, então:
(A ∪ B) ∪ C = A ∪(B ∪ C)
Observamos que uma das consequências do axioma da especificação é a existência do conjunto 
vazio, geralmente tão mal compreendido. Por exemplo, consideremos no conjunto dos números naturais 
a seguinte proposição:
P(x): x+4 = 1
Se considerarmos o universo de trabalho como o conjunto dos números naturais, o conjunto B 
acima definido será vazio, isto é:
B = { x pertence a N: P(x) é verdadeiro } ={ } = ∅
1.2 Expressões algébricas
Expressões numéricas
As expressões numéricas podem ser definidas através de um conjunto de operações fundamentais. 
Uma expressão numérica é uma sequência de números associados por operações. As operações que 
podemos encontrar em uma expressão numérica são: potenciação, radiciação, multiplicação, divisão, 
adição e subtração. Como uma expressão numérica é formada por várias operações, você deve saber que 
existe uma ordem obrigatória para sua resolução. Essas operações devem ser efetuadas respeitando-se 
a seguinte ordem:
1. Potenciações e radiciações.
2. Multiplicações e divisões.
3. Adições e subtrações.
Exemplo:
 102 ÷ 52 + 51 . 23 -50 =
=100 ÷ 25 + 5.8 -1 =
= 4 + 40 - 1 =
= 44 - 1 = 43
Outra regra importante é que em expressões numéricas com sinais de associação (parênteses, 
colchetes e chaves), inicialmente devem ser efetuadas as operações dentro dos parênteses, depois as 
que estão dentro dos colchetes e, por último, as que estão dentro das chaves, respeitando-se, ainda, a 
prioridade das operações.
13
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Exemplos:
37 + 2.{25 + [ 18 – (5 – 2).3]} =
= 37 + 2.{ 25 + [18 – 3.3]} =
= 37 + 2.{25 + [18 – 9]} =
= 37 + 2.{25 + 9} =
= 37 +2.34 =
= 37 + 68 = 105
[(5² - 6.2²).3 + (13 – 7)² : 3] : 5 =
= [(25 – 6.4).3 + 6² : 3] : 5 =
=[(25 – 24).3 + 36 : 3 ] : 5 =
= [1.3 + 12] : 5 = 
= [3 + 12 ] : 5 =
= 15 : 5 = 3
Agora que você já está familiarizado com as expressões, experimente calcular algumas:
11 + 32 + 4.9 – 15 : 3 =
11 + 32 + 36 – 5 = 74
109 – 15.4 + 26 : 13 =
109 – 60 + 2 = 51
10 + 3502 : 17 – 100 : 25 =
10 + 206 – 4 = 212
25 + 25 : 25 – 25.1 =
25 + 1 – 25 = 1
Exemplos de aplicação
Faça os exercícios a seguir. Como cada uma das expressões já traz a resposta, cabe a você desenvolver 
o cálculo para chegar aos resultados dados. 
1) Calcule o valor das expressões:
a) 10-1+8-4 = 13
b) 12-8+9-3 = 10
c) 25-1-4-7 = 13
d) 45-18+3+1-2 = 29
e) 75-10-8+5-1 = 61
f) 10+5-6-3-3+1 = 4
14
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
2) Calcule o valor das expressões:
a) 30-(5+3) = 22
b) 15+(8+2) = 25
c) 15-(10-1-3) = 9
d) 23-(2+8)-7 = 6
e) (10+5)-(1+6) = 8
f) 7-(8-3)+1 = 3
3) Calcule o valor das expressões:
a) 25-[10+(7-4)] = 12
b) 32+[10-(9-4)+8] = 45
c) 45-[12-4+(2+1)] = 34
d) 70-{20-[10-(5-1)]} = 56
e) 28+{13-[6-(4+1)+2]-1} = 37
f) 53-{20-[30-(15-1+6)+2]} = 45
g) 62-{16-[7-(6-4)+1]} = 52
h) 20-{8+[3+(8-5)-1]+6} = 1
i) 15+{25-[2-(8-6)]+2} = 42
j) 56-[3+(8-2)+(51-10)-(7-2)] = 11
k){42+[(45-19)-(18-3)+1]-(28-15)-1} = 40
4) Calcule o valor das expressões:
a) 7-(1+3) = 3
b) 9-(5-1+2) = 3
c) 10-(2+5)+4 = 7
d) (13-7)+8-1 = 13
e) 15-(3+2)-6 = 4
f) (10-4)-(9-8)+3 = 8
g) 50-[37-(15-8)] = 20
h) 28+[50-(24-2)-10] = 46
i) 20+[13+(10-6)+4] = 41
j) 52-{12+[15-(8-4)]} = 29
Expressões algébricas
Ao analisarmos a expressão (4+8-2)-4+3, observamos que ela possui uma sequência de números 
separados por operações, sendo assim, podemos chamá-la de expressão numérica. 
15
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
A partir da definição de expressão numérica podemos chegar à definição de expressões 
algébricas: 
Chamamos de expressões algébricas aquelas que envolvem números, letras e operações indicadas 
entre eles.
As letras em uma expressão algébrica representam qualquer número real. Elas são chamadas de 
incógnitas. 
Por exemplo: 
Y + 10
Y é a incógnita, um número qualquer (valor desconhecido). 
A soma de um número qualquer mais 10. 
10 unidades a mais do que um número representado por Y. 
Outro exemplo:
5 . K
K é a incógnita, um número qualquer (valor desconhecido). 
O produto de 5 por um número qualquer. 
Simplificação de expressões algébricas 
y + y = 2y => pois os monômios são semelhantes (as letras são iguais e os seus expoentes 
também). 
m – 7m = -6m => pois os monômios são semelhantes (as letras são iguais e os seus expoentes 
também). 
5 . (x + 2) – 8 . x => utilizando a propriedade distributiva 
5x + 10 – 8x => 5x e 8x são monômios semelhantes 
-3x + 10 => como -3x e 10 não são semelhantes, então você não pode somar. 
Concluímos que: 
5 . (x + 2) – 8 . x = -3x + 10
16
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
1.3 Razão e proporção
Razão 
Chama-se razão qualquer relação numérica entre grandezas feita através de uma divisão. 
Especificando: dá-se o nome de razão, entre os dois números racionais a e b, com b ≠ 0, ao quociente 
entre eles. Indica-se a razão de a para b por a/b ou por a : b. 
Exemplo: 
Na sala de aula de uma faculdade há 20 rapazes e 25 moças. Encontre a razão entre o número de 
rapazes e o número de moças (lembrando que razão é divisão): 
20
25
Agora vamos simplificar dividindo o numerador e o denominador por 5:
 (indica que para cada 4 rapazes existem 5 moças)
Utilizando o mesmo exercício, vamos encontrar a razão entre o número de moças e rapazes. Note 
que invertemos a pergunta.
25
20
Agora vamos simplificar dividindo o numerador e o denominador por 5:
 (indica que para cada 5 moças existem 4 rapazes)
Lendo razões:
 (lê-se 4 está para 10 ou 4 para 10)
 (lê-se 7 está para 8 ou 7 para 8) 
Termos de uma razão:
17
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Proporção
É a igualdade entre razões.
Exemplo: meu carro faz 13 km por litro de combustível, então, para 26 km preciso de 2L, para 39 km 
preciso de 3L e assim por diante.
Portanto 
Propriedades
Grandezas diretamente proporcionais
– O aumento de uma implica o aumento da outra.
– A redução de uma implica a redução da outra.
– Ex.: número de biscoitos e quantidade de trigo.
Grandezas inversamente proporcionais
– O aumento de uma implica a redução da outra.
– A redução de uma implica o aumento da outra.
– Ex.: velocidade média de um automóvel e tempo de viagem.
Grandezas especiais
Escala é a razão entre a medida especificada no desenho e a medida real correspondente. 
Exemplo: 
Em um mapa, a distância entre Piracaia e Rio de Janeiro é representada porum segmento de 4,7 cm. 
A distância real entre essas cidades é de 470 km. Vamos calcular a escala desse mapa. Para poder realizar 
o cálculo, os números devem estar na mesma unidade de medida, logo 470 km = 47 000 000 cm
Velocidade média é a razão entre a distância a ser percorrida e o tempo gasto (note que no exemplo 
a seguir as unidades são diferentes).
18
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Exemplo: 
Um carro percorre 400 km em 5h. Determine a velocidade média desse carro. Velocidade = 400/5 = 80 
Densidade demográfica
Densidade demográfica é a razão entre o número de habitantes e a área onde eles ficam. 
Exemplo: 
O município de São Paulo tem uma área de 1523 km2 e uma população de 11.037.593 habitantes. 
Calcule a densidade demográfica do município. 
Razões inversas 
Vamos observar as seguintes razões: 
Observe que o antecessor (4) da primeira é o consequente (4) da segunda.
Observe que o consequente (8) da primeira é o antecessor (8) da segunda. 
O produto das duas razões é igual a 1, isto é 4/8 x 8/4 =1 
Dizemos, então, que as razões são inversas quando o antecedente de uma é o consequente da outra 
e vice-versa. Uma propriedade das razões inversas é que o produto delas é sempre igual a 1, isso porque 
uma é o inverso multiplicativo da outra. 
Exemplo: 
A razão inversa de 
1.4 Porcentagem
A porcentagem é utilizada em muitas situações do seu dia a dia. Veja, a seguir, algumas notícias 
corriqueiras nos meios de comunicação:
19
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
O sindicato dos operadores de... pediu 8% de reajuste.
Foi estimado o crescimento do PIB em 4,5% para o próximo ano.
A taxa Selic foi alterada para 10,75%.
Os cálculos envolvendo porcentagens são comuns em nosso cotidiano, motivo pelo qual 
devemos entender seu uso e as operações necessárias em cada situação. Por exemplo:
Determinado shopping resolve fazer uma liquidação e estabelece que todas suas lojas deverão 
oferecer um desconto de 10% no preço de seus produtos. Se um produto custa R$ 120,00, quanto será 
seu novo preço?
Note que o desconto será de 10% do valor de R$ 120,00. Portanto:
Feito o cálculo, obtivemos o valor de R$ 12,00, que é a quantia (10%) a ser descontada. Subtraindo 
esse valor do preço atual, que é R$ 120,00, temos: 120 - 12 = 108. Portanto, o novo preço do produto 
será de R$108,00.
Razão centesimal:
Toda razão que tem como denominador o número 100 denomina-se razão centesimal. Por 
exemplo:
Uma razão centesimal também pode ser representada de outras formas. Veja os exemplos a 
seguir:
20
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Definição de taxa porcentual ou porcentagem:
Agora vamos ver uma definição: 
Taxa porcentual ou porcentagem de um número a sobre um número b, b ≠ 0, à
razão tal que 
Indica-se por x%.
Porcentagem é o valor que obtemos quando aplicamos uma razão centesimal a um determinado 
valor. 
Vejamos os seguintes exemplos:
1) 20% de 1200:
A razão centesimal é: 
Portanto, 
2) 20% de 800:
A razão centesimal é: 
Portanto, 
3) 25% de 200: 
Portanto, 
4) Para saber a taxa porcentual de 3 sobre 5, devemos calcular x%.
Portanto:
A taxa é de 60%
21
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
5) E a taxa porcentual de 10 sobre 20?
Portanto:
A taxa é de 50%
 Observação
Como se calcula porcentagem em uma calculadora? Veja o exemplo:
Calcular 25% de 1000:
1. Digite 1000
2. Aperte a tecla de multiplicação: X
3. Digite: 25
4. Aperte a tecla de porcentagem: %
Neste caso, o resultado é 250.
Exemplos de aplicação:
1. Em visita a uma loja, um consumidor efetuou uma compra no valor de R$ 2.000,00. Como o 
consumidor já era cliente, conseguiu um desconto de 20%. Qual foi o valor pago?
2. Um automóvel foi comprado por R$ 18.000,00; após uma reforma e inclusão de vários acessórios 
teve uma valorização (acréscimo no valor) de 10% em seu preço. Quanto ficou o novo valor do 
automóvel?
3. Em uma loja de móveis, um conjunto de estofados custa R$ 2.200,00. Ele foi vendido com um 
lucro de R$ 330,00. De quanto por cento foi o lucro sobre o preço de venda?
4. Em uma pequena loja, um novo comerciante comprou uma mercadoria por R$ 400,00. Acresceu 
a esse valor 50%, que seria seu lucro. Um consumidor pediu um desconto e o comerciante 
ofereceu um desconto de 40% sobre o novo preço, pensando que assim teria um lucro de 10%. O 
comerciante teve lucro ou prejuízo? 
22
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Qual foi esse valor?
Como você resolveria o problema? 
Resolução 
1. Cálculo do desconto: 
Valor final da compra, já subtraído o desconto: 2000 - 400 = R$ 1.600,00.
2. O acréscimo será de: 
Portanto, o novo valor do automóvel será de: 18.000 + 1.800 = R$ 19.800,00.
3.
 
 
 
Portanto, o lucro foi de15%.
4. Vamos calcular: 
O comerciante comprou a mercadoria por R$ 400,00 e acresceu 50% sobre esse valor.
 
Calculado o lucro de R$ 200,00 (50% de R$ 400), o valor da venda ficaria sendo de R$ 400,00 de 
custo mais R$ 200,00 do lucro pretendido, ou seja, a mercadoria teria o preço de venda de R$ 600,00.
No momento da venda, entretanto, o comerciante deu um desconto de 40% sobre o preço de 
venda:
23
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Os 40% de desconto representam R$ 240,00. Descontando esse valor do preço de venda (R$ 600,00) 
temos R$ 360,00, o preço de venda após desconto.
Portanto, como o comerciante comprou a mercadoria por R$ 400,00 e vendeu por R$ 360,00, teve 
um prejuízo de R$ 40,00.
1.5 Regra de três
Vamos entender agora o que significa regra de três. Suponhamos que seu gerente informe que 
precisa cortar 20% dos gastos do departamento. Quanto representa isso? Ovalor é alto ou baixo? Você 
descobrirá ao calcular porcentagens e ao entender como funciona esse tipo de dado numérico. Veja as 
definições e exemplos a seguir.
Porcentagem nada mais é que uma razão, isto é, a relação entre dois números. É uma razão “fixa”, 
uma fração em que o número 100 está sempre no denominador. No caso da redução de 20% dos gastos 
do departamento:
A porcentagem é representada também pelo símbolo %:
Como é uma razão (relação entre números), a porcentagem varia segundo o número a que está 
relacionada. No caso em questão, reduzir 20% das despesas pode ser muito ou pouco dinheiro, 
dependendo do valor total das despesas do departamento. 
Vamos supor que seu gerente informe que as despesas do departamento são de R$ 2.000,00. Para 
determinar quanto é 20% de 2.000, vamos fazer uma regra de três. R$ 2.000,00 é o total, ou seja, é 
100%. Você deseja saber quanto vale 20% (x). Alinhe de um lado as porcentagens (100% e 20%) e do 
outro os valores em “números reais” (R$ 2.000,00 e o valor a ser reduzido, isto é, quanto vale 20%).
 Logo: 
O departamento deverá reduzir suas despesas em R$ 400,00, portanto, as despesas totais passarão 
dos atuais R$ 2.000,00 para R$ 1.600,00.
24
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Utilizamos com frequência as razões em nosso dia a dia. Por exemplo, podemos dirigir nosso carro 
a 60 quilômetros por hora ou podemos ver um mapa que está em uma escala cartográfica de 1 por 
1.000 – a escala estabelece uma relação de proporcionalidade entre as distâncias lineares no mapa e as 
distâncias correspondentes na realidade.
 
No primeiro caso dizemos que em 1 hora percorremos 60 quilômetros. No segundo dizemos que 
cada 1 centímetro no mapa corresponde a 1.000 centímetros da região representada. Também podemos 
usar unidades de medida diferentes, por exemplo, cada 1 centímetro no mapa pode corresponder a 10 
quilômetros na vida real. 
Veja os seguintes exemplos:
1. Em um concurso concorreram 1.000 candidatos para 100 vagas. Qual a razão entre candidatos e 
vagas?
Usando a simplificação, você pode reduzir esse número e entender melhor a relação entre candidatos 
e vagas:
Dizemos que para cada 1 vaga concorreram 10 candidatos. 
2. Um usuário de cartão de crédito tem desconto de 50% em teatros, cinemas e outros espetáculos. 
Se a entrada em uma peça custa R$ 42,50, quanto ele vai pagar usando o cartão de crédito?
Logo:
Ele pagará R$ 21,25
Se o desconto fosse de apenas 20%, teríamos:
25
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Como R$ 8,50 é o valor do desconto, fazemos: 
42,50 – 8,50 = 34,00
Portanto, o valor do ingresso seria de R$ 34,00 no caso de o desconto ser de apenas 20%. 
Siga o seguinte método para não errar na hora de calcular: os números que estão “na mesma 
linha do x” (ao lado e acima) ficam na parte de cima da fração (denominador), multiplicando 
(ou seja, 42,50 vezes 50), e o que estiver na diagonal (ou seja, o que sobrar) fica embaixo, no 
denominador, dividindo:
Para calcular acréscimos e diminuições de porcentagens também pode-se utilizar o fator 
multiplicativo.
1.5.1 Regra de três simples
Grandezas diretamente proporcionais
Você pode perceber que algumas equações são simples de calcular, já que relacionam grandezas 
(tempo, comprimento, quantidades etc.) que envolvem proporcionalidades, facilmente resolvidas por 
regra de três. Veja os seguintes exemplos:
No rótulo de um suco concentrado, observam-se as seguintes instruções:
Misture 1 parte do produto a 4 partes de água. Adoce a gosto. Neste caso, temos a proporção de 
suco concentrado para a de água, ou seja: 
 Isso é uma razão
Logo, se forem colocados 2 copos de suco concentrado, deverão ser acrescidos 8 de água. Então: 
26
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Vamos ver agora outro exemplo para você lembrar do conceito. 
Numa receita de macarrão caseiro, lê-se: misturar 110g de farinha de trigo para cada ovo. Relembrando 
o conceito, temos a proporção: 
Portanto, uma igualdade entre razões é uma proporção.
As proporções possuem uma propriedade importante, que você precisa lembrar sempre: multiplicando 
seus termos em cruz, obtém-se o mesmo resultado:
 
É o princípio da regra de três.
Aproveitando os dados apresentados no exemplo da receita de macarrão caseiro, pergunta-se: 
quantos ovos devemos adicionar à massa para 550g de farinha de trigo?
Vimos que a proporção é de 1 ovo para 110g de farinha de trigo. Para facilitar, vamos aprender 
a organizar os dados para a resolução da proporcionalidade através da regra de três. Assim, vamos 
organizar as grandezas em colunas. Neste caso, as grandezas são os ovos e a farinha. Como já dissemos 
anteriormente, colocam-se as grandezas iguais na mesma coluna:
Note que na coluna dos ovos a resposta que procuramos é representada por um “x”, o qual exprime 
a quantidade de ovos necessária para 550g de farinha. 
Agora vamos multiplicar em cruz:
27
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Então fica assim: 
 Lembrete
O ponto na expressão representa a multiplicação e nessa operação 
matemática a ordem dos fatores não altera o produto.
Portanto, resolvendo a expressão:
Resposta: deverão ser usados 5 ovos para 550g de farinha de trigo.
Você deve usar esse raciocínio para grandezas diretamente proporcionais (quanto mais farinha, 
mais ovos; assim como quanto menos água, menos suco). Para a proporção de grandezas inversamente 
proporcionais, o modo de calcular é diferente.
Grandezas proporcionais e inversamente proporcionais – Na aplicação que acabamos de 
aprender, utilizando a regra de três simples, observamos que quando se aumenta uma das 
grandezas, ovos em nosso exemplo, aumenta-se também a de farinha. Quando acontece uma 
situação dessas, dizemos que as grandezas são diretamente proporcionais. 
Observe que algumas proporções (relação entre grandezas) se apresentam de forma diferente, isto 
é, as proporções são grandezas inversamente proporcionais, de forma que para resolver a questão não 
basta aplicar a regra de três simples. 
O que significa inversamente proporcional? Simplesmente que enquanto uma grandeza cresce, a 
outra diminui. Daí seu nome. 
Observe este exemplo: em uma obra de construção, se 6 operários levantam um muro em 10 dias, 
quantos operários serão necessários para levantar o mesmo muro em 4 dias?
28
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Note que as grandezas são inversamente proporcionais, pois quanto mais operários forem 
contratados, menor será o tempo necessário para a conclusão do trabalho. Vejamos como podemos 
calcular essa questão. 
Para começar, vamos utilizar o que aprendemos na regra de três simples. Primeiramente organizamos 
as grandezas em colunas; neste caso elas são os dias e os operários. 
 
Fica assim:
 
Dias Operários
10 → 6
 4 → x
Agora vamos fazer o cálculo. 
Atenção: como as grandezas são inversamente proporcionais, devemos inverter uma das colunas:
Dias Operários
10 → x
 4 → 6
Depois de inverter a coluna da grandeza operários, vamos multiplicar em cruz:
Dias Operários
10 → x
 4 → 6
O novo cálculo fica assim: →
Resposta: será necessário aumentar de 6 para 15 o número de operários a fim de diminuir o tempo 
de 10 para 4 dias. Perceba que uma grandeza diminuiu (dias) e a outra aumentou (operários), portanto 
trata-se de grandezas inversamente proporcionais.
Agora você já sabe que antes de calcular uma regra de três devemos verificar a proporcionalidade 
das grandezas, se são diretas (caso dos ovos e da farinha) ou indiretas (caso dos dias e operários).
29
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
E agora que você relembrou como calcular a proporção entre duas grandezas, sejam diretas ou 
indiretas, vamos a novos desafios. Existem também problemas em que mais de duas grandezas estão 
envolvidas. Para esses casos usa-se a chamada regra de três composta.
1.5.2 Regra de três composta
As regras de três são usadas quando há uma relação de dados que guardam entre si razão de 
proporcionalidade. São regras de três simples, quando há apenas duas grandezas (quantidade de farinha 
e número de ovos para um bolo, número de operários e de dias para terminar uma obra), ou compostas, 
quando há mais de duas grandezas envolvidas no problema. Para entender melhor, vamos ver um 
exemplo passo a passo. 
Problema: 12 tecelões, em 90 dias de trabalho, com jornada de 8 horas diárias, produzem 36m de 
tecido. Quantos dias levarão 15 tecelões para fazer 12m de tecido com o dobro da largura, trabalhando 
6 horas por dia?
Vamos utilizar a mesma técnica de cálculo dos exemplos anteriores. Iniciamos colocando as 
variáveis em colunas. A incógnita, ou seja, o dado que você quer descobrir, é o número de dias, que 
será representado por x. Como temos 4 variáveis, colocamos os dados fornecidos no problema em 4 
colunas. 
Assim:
 
Operários Dias Horas/Dia Metros
12 90 8 36
15 x 6 24
Note que o problema pede 12 metros de tecido e não 24. Para facilitar o cálculo, foi dobrado o 
comprimento. Assim, não se acrescentou uma nova grandeza, a largura. Afinal, dobrar uma das dimensões 
do tapete é o mesmo que dobrar a outra, concorda?
Determinação da proporcionalidade direta e inversa
A primeira providência é o estabelecimento de direção de proporcionalidade entre cada grandeza e 
a grandeza a ser determinada. 
Começando com a dos operários: 
Operários Dias Horas/Dia Metros
12 90 8 36
15 x 6 24
30
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Com o aumento do número de operários, a quantidade de dias deve diminuir: logo, trata-se de uma relação 
inversamente proporcional. Portanto, você deve inverter a coluna dos operários. Temos, assim, provisoriamente: 
Operários Dias Horas/Dia Metros
15 90 8 36
12 x 6 24
 ⇑
Agora, a coluna das Horas/Dia: 
Operários Dias Horas/Dia Metros
15 90 8 36
12 x 6 24
 ⇑
Quanto mais horas trabalhadas por dia, menos dias serão necessários. Logo, você deve inverter a 
coluna das horas/dia. Temos, assim, provisoriamente: 
Operários Dias Horas/Dia Metros
15 90 6 36
12 x 8 24
 ⇑
Agora a última coluna: 
Operários Dias Horas/Dia Metros
15 90 6 36
12 x 8 24
 ⇑
Quanto mais dias trabalhados, mais metros serão produzidos. Ou seja, as duas grandezas são 
diretamente proporcionais. Portanto, você não deve mexer na última coluna: 
Operários Dias Horas/Dia Metros
15 90 6 36
12 x 8 24
Agora, ao analisar coluna por coluna, teremos:
Operários Dias Horas/Dia Metros Multiplicando em cruz:
15 90 6 36
12 x 8 24
 ⇑ ⇑
31
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Operários Dias Horas/Dia Metros Multiplicando em cruz:
15 90 6 36
12 x 8 24
 ⇑ ⇑
Operários Dias Horas/Dia Metros Multiplicando em cruz:
15 90 6 36
12 x 8 24
 ⇑ ⇑
Você deve agora verificar quais os números que pertencem ao numerador. Nas equações que 
acabamos de ver podemos identificar que são 12, 90, 8 e 24. Também verificamos os números que fazem 
parte do denominador, que são 15, 6 e 36. Dessa forma montamos a expressão:
Resposta: os trabalhadores precisarão de 64 dias de trabalho para fazer a quantidade de tecido 
solicitada.
2 CONJUNTOS
2.1 Introdução: a ideia de conjunto indo além da matemática
Todos sabem que a precisão é premissa da matemática. Não é suficiente saber o que é 
um objeto ou conjunto de objetos, mais que isso, faz-se necessária a aplicação concreta de 
conceitos que nos permitam estudar com maior profundidade o que são objetos, conjuntos 
e suas relações. A teoria dos conjuntos foi estabelecida por Georg Ferdinand Ludwig Philipp 
Cantor (1845-1918).
 Lembrete
Conjunto 
Para Cantor, o conceito rudimentar (primitivo) de conjunto não tem 
necessidade de definição. Essa ideia pode ser deduzida intuitivamente e 
através de exemplos. O homem, quando deixa de ser nômade e começa 
a se fixar, em grupos (coletividade), em determinados locais, percebe a 
necessidade de conhecer seu espaço e suas posses, fazendo surgir esses 
conceitos sociais primários.
O que é um conjunto? Vamos entender através de uma definição simples: é qualquer coleção, 
dentro de um todo, de objetos definidos e distinguíveis de nossa intuição ou pensamento, chamados de 
32
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
elementos. Essa definição intuitiva de um conjunto foi dada primeiramente por Cantor. Para entender 
esse conceito na prática, vejamos estes exemplos:• O conjunto de todas as cadeiras de uma sala de aula.
• O conjunto de todos os estudantes da universidade.
• O conjunto das letras a, b, c e d.
Objeto: é correto afirmar que um conjunto é composto de objetos. Esse conceito de objeto também 
é primitivo, logo, aceito intuitivamente, não é preciso provar.
Neste ponto você já tem uma ideia sobre o que é um conjunto, mas vamos examinar mais alguns exemplos. 
Podemos, através da intuição, considerar alguns conjuntos dentro do contexto moderno de civilização:
• o conjunto dos funcionários de uma empresa;
• o conjunto dos números naturais;
• o conjunto dos números reais;
• o conjunto dos países da América Latina que participam da Organização das Nações Unidas (ONU);
• o conjunto dos números racionais;
• o conjunto dos números pares;
• o conjunto dos alunos da Universidade Paulista (UNIP);
• o conjunto dos números ímpares;
• o conjunto dos números naturais que são múltiplos de 4;
• o conjunto dos números reais que são solução da equação: x4 + x = 0.
Até o momento possuímos dois conceitos primitivos: conjunto e objeto. Mesmo diante de um 
objeto e de um conjunto, necessitamos ainda determinar a representação do objeto pertencendo a um 
conjunto. Aqui surge um terceiro conceito: pertencer.
Assim como os anteriores, este também é um conceito primitivo, portanto, básico, da natureza e 
do desenvolvimento cognitivo humano. Pertencer significa fazer parte de, logo, quando dizemos que 
determinado objeto pertence a um conjunto, estamos dizendo que o objeto faz parte do conjunto.
Exemplos:
• Piracaia pertence ao conjunto das cidades do Brasil.
• Katmandu não pertence ao conjunto das cidades do Brasil.
• 57 pertence ao conjunto dos números naturais. 
• 57 não pertence ao conjunto dos números primos.
33
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
• √2 pertence ao conjunto dos números reais.
• √2 não pertence ao conjunto dos números racionais.
• Vermelho pertence ao conjunto das cores primárias.
• A letra e pertence ao conjunto das vogais.
• A letra j pertence ao conjunto das consoantes.
Depois de entender as colocações acima, estamos prontos para esclarecer a teoria fundamentada 
nos três conceitos primitivos – conjunto, objeto e pertencer: estamos falando da teoria intuitiva dos 
conjuntos.
Podemos notar que essa teoria tem início no desenvolvimento lógico do ser humano, em 
suas necessidades de descrever áreas, animais, valores, propriedades, relações interpessoais e até 
empresariais.
A teoria dos conjuntos e suas ferramentas são amplamente vistas em nossa formação escolar básica, 
cabendo aqui apenas uma breve revisão para recordá-las.
2.2 Conceitos básicos
Vamos agora aprender mais dois conceitos que fazem parte dessa teoria.
Dizemos que um conjunto é finito quando ele contém um número finito de elementos, isto é, 
quando podemos identificar a quantidade de elementos do conjunto.
Dizemos que um conjunto é infinito quando não podemos identificar a quantidade de 
elementos contidos no conjunto. Por exemplo, o conjunto das vogais é finito, pois podemos 
identificar cinco elementos. Já o conjunto dos números naturais é infinito, pois a quantidade de 
elementos é infinita. 
Vejamos exemplos dos dois tipos de conjuntos:
Conjuntos finitos:
• O conjunto de todas as cadeiras na sala de aula de Teoria dos Conjuntos.
• O conjunto de todos os estudantes desta universidade.
• O conjunto das letras a, b, c, d e f.
• O conjunto das regras de uso do laboratório de informática.
Conjuntos infinitos:
• O conjunto de todos os números naturais.
34
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
• O conjunto de todos os números reais entre 0 e 1.
Na matemática, e particularmente na teoria dos conjuntos, temos uma maneira de representar 
conjuntos para facilitar suas operações. Frequentemente usamos chaves “{“ “}” e símbolos que 
representam os elementos, quando possível, para demonstrar um conjunto. 
Por exemplo, o conjunto das letras a, b, c, d, e, f pode ser denotado como: 
{ a, b, c, d, e, f }
O conjunto dos números 1, 2, 3, 4, 5 pode ser denotado como: { 1, 2, 3, 4, 5 }
O conjunto de todos os números naturais pode ser denotado como: { 1, 2, 3, ... }
Com relação ao conjunto de todos os números racionais cujo quadrado é 2, ocorre o seguinte: esse 
conjunto não tem elementos, pois a √2 é um número irracional. Nesse caso chamamos o conjunto de 
vazio. Denotamos o conjunto vazio pelo símbolo ∅.
Usaremos letras maiúsculas para denotar conjuntos e letras minúsculas para denotar elementos. Por 
exemplo, podemos denotar o conjunto das letras a, b, c assim:
A = { a, b, c }
Dessa forma, quando precisamos nos referir ao conjunto das letras a, b e c simplesmente colocamos 
conjunto A.
A ordem em que aparecem os elementos num conjunto não tem importância. Assim, o conjunto {a; 
b; c } é o mesmo que {b; c; a} etc. Outra coisa, como os elementos de um conjunto são distintos, se, por 
exemplo, escrevemos {a; a; b}, essa não é uma notação apropriada de um conjunto, deveria ser substituída 
por {a; b}. Se a é um elemento de um conjunto, a e { a } são considerados diferentes, isto é, a ≠ { a }.
Pois { a } denota o conjunto constituído somente do elemento a, enquanto a é apenas o elemento 
do conjunto { a }.
2.3 Definições matemáticas
Na representação dos conjuntos utilizamos vários símbolos. Veja a lista a seguir, com suas 
designações, e acompanhe nos tópicos seguintes suas utilizações.
Símbolos matemáticos utilizados na teoria dos conjuntos:
∈: pertence ∃: existe
∉: não pertence ∄ : não existe 
⊂: está contido ∀ : para todo (ou qualquer que seja) 
35
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
⊄: não está contido ∅ : conjunto vazio
⊃: contém N: conjunto dos números naturais 
⊄: não contém Z : conjunto dos números inteiros 
/ : tal que Q: conjunto dos números racionais 
⇒ : implica que 
→
I: conjunto dos números irracionais
⇔ : se, e somente se 
↔
R: conjunto dos números reais
≡ : equivalente a
C significa: {a + bi : a,b ∈ R} 
i = √(−1) ∈ C
Quadro 1: símbolos matemáticos
Fique atento e represente com esses símbolos quando solicitado. 
Vamos estudar agora como podemos representar os conjuntos através de notações matemáticas. 
Designa-se conjunto uma coleção de objetos. Sua representação pode ser feita de três modos:
2.3.1 Representação ordinária
Na representação ordinária, os elementos do conjunto são explicitamente listados. Exemplos:
Conjunto das faces de um dado A = {1, 2, 3, 4, 5, 6}
Conjunto de regiões do Brasil A = {SU, SE, CO, NE, NO}
Conjunto das notas musicais A = {dó, ré, mi, fá, sol, lá, si}
Conjunto de cores primárias A = {vermelho, amarelo, azul}
2.3.2 Representação abstrata
Neste modo, os elementos do conjunto são representados através de umacaracterização que é 
previamente definida. Em termos gerais, se os elementos de um conjunto A são caracterizados por uma 
propriedade P, que é uma característica comum aos objetos do conjunto, então o conjunto A pode ser 
enunciado assim: 
A = {x tal que x satisfaz a propriedade P};
ou, ainda, utilizando símbolos: 
A = {x/x satisfaz P} (como você viu no quadro, o símbolo / representa “tal que”; às vezes, a barra 
é substituída por ponto e vírgula). A representação abstrata é amplamente utilizada em matemática 
porque permite que se expressem quaisquer tipos de conjuntos, bastando definir a propriedade que 
caracteriza os elementos do conjunto. 
36
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Por exemplo, se definirmos a propriedade P como “P: regiões do Brasil”, então o conjunto das regiões 
do Brasil pode ser reescrito como:
A = {x/x satisfaz P}. 
Outro exemplo: se definirmos a propriedade J como “J: letras do alfabeto latino”, 
B = {y/y satisfaz J}. 
Veremos, a seguir, várias representações de conjuntos. Tente representar aqui dois conjuntos 
que você conhece usando a notação acima (definindo uma propriedade e reescrevendo o 
conjunto).
2.3.3 Representação por diagramas de Venn
A forma gráfica de representar um conjunto, utilizando círculos que tornam seu entendimento 
intuitivo e prático, chamamos de diagrama de Venn. A vantagem na utilização dos diagramas de Venn 
como representação de conjuntos é seu apelo visual, muito útil para mostrar operações entre conjuntos; 
entretanto, é importante salientar que o poder analítico desse tipo de dispositivo é extremamente 
limitado. O conjunto de números ímpares menores ou iguais a 13 pode ser representado como:
A
7 9 13 1
3 5 11
2.4 Pertinência e inclusão
Quando um elemento a está num conjunto A, dizemos que ele pertence ao conjunto A e representamos 
esse fato simbolicamente como:
a ∈ A
Se, ao contrário, o elemento não está no conjunto A, então dizemos que ele não pertence ao conjunto 
A e representamos o fato como:
a ∉ A
Essas são as chamadas relações de pertinência que conectam os conjuntos aos seus elementos. 
Quando o conjunto A não possui elemento algum, dizemos que ele é um conjunto vazio, e, nesse caso, 
representamos tal conjunto pelo símbolo ∅.
Se tomarmos como exemplo o conjunto utilizado em nosso exemplo anterior:
37
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
A = { a, b, c }, podemos afirmar que:
a ∈ A (estamos afirmando “a pertence a A”)
e também que:
f ∉ A (estamos afirmando “f não pertence a A”)
Dados dois conjuntos A e B, quando todo elemento de A é também elemento de B, dizemos que 
o conjunto A está incluso em B ou que o conjunto A é um subconjunto do conjunto B; tal fato é 
simbolicamente representado como:
A ⊂ B (estamos afirmando “A está contido em B”)
Portanto, podemos definir:
Definição: sejam A e B conjuntos; se todo elemento de A é elemento de B, então A é chamado um 
subconjunto de B. Podemos agora escrever em símbolos:
A ⊂ B (estamos afirmando “A está contido em B”) ou
B ⊃ A (estamos afirmando “B contém A”)
Se A é subconjunto de B, então B é chamado um superconjunto de A.
Assim, escrevendo logicamente,
A ⊂ B ≡ (∀) [(x ∈ A) ⇒ (x ∈ B)]
Estamos afirmando que A está contido em B, que é equivalente a (cada x que pertence a A implica 
que x pertence a B). 
Quando, por outro lado, existe ao menos um elemento que pertence ao conjunto A e não pertence 
ao conjunto B, então A não está incluso em B ou o conjunto A não é subconjunto do conjunto B. Esse 
fato é simbolicamente representado como:
A ⊄ B (estamos afirmando “A não está contido em B”)
Essas são as chamadas relações de inclusão e conectam conjuntos a outros conjuntos. É importante 
ter em mente a distinção entre pertinência e inclusão. No primeiro caso, a relação é entre elemento e 
conjunto, e no segundo, entre dois conjuntos quaisquer. Por exemplo, as sentenças a seguir possuem 
significados totalmente diferentes, embora pareçam dizer a mesma coisa:
a ∈ A e {a} ∈ A
38
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
A primeira sentença diz que o elemento a pertence ao conjunto A.
A segunda sentença diz que o conjunto unitário {a} está incluso ou é subconjunto do conjunto A.
A relação de inclusão é frequentemente utilizada para determinar a igualdade entre conjuntos. Dois 
conjuntos A e B são iguais se possuem exatamente os mesmos elementos, fato que pode ser estabelecido 
mostrando-se que:
A ⊂ B e B ⊂ A
Definição: dois conjuntos A e B são iguais ou idênticos quando contêm os mesmos elementos. 
Isto é: 
A = B significa (∀x) [(x ∈ A) ↔ (x ∈ B)] 
Estamos afirmando que A igual a B significa qualquer que seja x (x pertence a A se e somente se x 
pertence a B).
2.5 Operações entre conjuntos
Com base nessas definições e conceitos, foi formulada a teoria algébrica dos conjuntos – estudo da 
criação de novos conjuntos partindo-se de conjuntos já definidos, através das operações de interseção, 
união, diferença e complemento.
Símbolos das operações:
A ∩ B A interseção B
A ∪ B A união B
a - b diferença de a com b 
a < b a menor que b 
a ≤ b a menor ou igual a b
a > b a maior que b
a ≥ b a maior ou igual a b
a ∧ b a e b
a ∨ b a ou b
Quadro 2: símbolos das operações
2.5.1 Interseção
Os elementos que compõem o conjunto interseção são aqueles comuns aos conjuntos relacionados, 
ou seja, os elementos que aparecem nos dois conjuntos. 
Interseção de conjuntos: dados os conjuntos A e B, define-se como interseção dos conjuntos 
A e B o conjunto representado por A ∩ B, formado por todos os elementos pertencentes a A e B, 
simultaneamente, ou seja: A ∩ B = {x / x ∈ A e x ∈ B}
39
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
A ∩ B
Propriedades: 
a) A ∩ A = A
b) A ∩ ∅ = ∅ 
c) A ∩ B = B ∩ A (a interseção é uma operação comutativa)
d) A ∩ U = A onde U é o conjunto universo
Exemplo 1: dados dois conjuntos A = {5, 6, 9, 8} e B = {0, 1, 2, 3, 4, 5}, se pedirmos a interseção 
deles, teremos:
A ∩ B = {5}, dizemos que A “interseção” B é igual a 5.
O elemento 5 aparece nos dois conjuntos.
Exemplo 2: dados os conjuntos B = {-3, -4, -5, -6} e C = {-7, -8, -9}, se pedirmos a interseção 
deles, teremos:
B ∩ C = {∩} ou B ∩ C = ∅; então, A e C são conjuntos distintos1.
Não existem elementos comuns aos dois conjuntos, portanto o resultado da operação é o conjunto 
vazio.
Exemplo 3: dados os conjuntosD = {11, 12, 13, 14, 15} e E = {13, 14, 15}. 
A interseção dos conjuntos ficaria assim:
E ∩ D = {13, 14,15} ou E ∩ D = E; pode ser concluído também que E ⊂ D.
2.5.2 União
Gerados dois conjuntos A e B, a união entre A e B é o conjunto delimitado:
A ∪ B = {x/x ∈ A ou x ∈ B} 
(estamos afirmando que A união B é igual a x tal que x pertence a A ou x pertence a B).
1 Exemplos 1 e 2. Fonte: MIRANDA, Daniela de. Disponível em: <http://www.brasilescola.com.br>. Acesso em: 14 abr. 2011.
40
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Dessa forma, o conjunto união é composto por todos os elementos dos conjuntos referidos.
União de conjuntos: dados os conjuntos A e B, define-se como união dos conjuntos A e B o 
conjunto representado por A ∪ B, formado por todos os elementos pertencentes a A ou B, ou seja: 
 A ∪ B = {x/x ∈ A ou x ∈ B}
A ∪ B
Propriedades:
a) A ∪ A = A
b) A ∪ ∅ = A
c) A ∪ B = B ∪ A (a união de conjuntos é uma operação comutativa)
d) A ∪ U = U, onde U é o conjunto universo
São importantes também as seguintes propriedades: 
P1. A ∩ ( B ∪ C ) = (A ∩ B) U ( A ∩ C) (propriedade distributiva)
P2. A ∪ ( B ∪ C ) = (A ∪ B ) U ( A ∪ C) (propriedade distributiva)
P3. A ∩ (A ∪ B) = A (lei da absorção)
P4. A ∪ (A ∩ B) = A (lei da absorção)
Obs.: Se A ∩ B = ∅, então dizemos que os conjuntos A e B são disjuntos.
Exemplo 1: gerados os conjuntos A = {x / x é inteiro e -1< x < 2} e B = {1, 2, 3, 4}, a união 
desses dois conjuntos é:
A ∪ B = {0, 1, 2, 3, 4}
Exemplo 2: gerados os conjuntos A = {1, 2, 13} e B = {1, 2, 3, 4, 5, 13}, a união desses conjuntos é: 
A ∪ B = {1, 2, 3, 4, 5, 13}; nesse caso, podemos dizer que A ∪ B = B.2
2 Fonte: MIRANDA, Daniela de. Disponível em: <http://www.brasilescola.com.br>. Acesso em: 14 abr. 2011.
41
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Observe que o número de elementos da união é calculado por:
n(A ∪ B) = n(A) + n(B) - n(A ∩ B)
2.5.3 Diferença ou complemento relativo
Gerados dois conjuntos, A e B, a diferença ou complemento relativo de A e B é o conjunto definido como:
A | B = {x/x ∈ A e x ∉ B}
Gerados dois conjuntos, A e B, é denominado conjunto diferença ou de diferença entre A e B o conjunto 
formado pelos elementos de A que não pertencem a B. O conjunto diferença é representado por A – B.
Exemplo 1: A = {1, 2, 3, 4, 5} e B = {3, 4, 5, 6, 7}; o conjunto diferença ou a diferença é:
A – B = {1, 2}
Exemplo 2: A = {1, 2, 3, 4, 5} e B = {8, 9, 10}; o conjunto diferença ou a diferença é:
A – B = {1, 2, 3, 4, 5}
Exemplo 3: A = {1, 2, 3} e B = {1, 2, 3, 4, 5}; o conjunto diferença ou a diferença é:
A – B = ∅
Exemplo 4: gerados os conjuntos A = {1, 2, 3, 4, 5, 6} e B = {5, 6}; o conjunto diferença ou a 
diferença é:
A – B = {1, 2, 3, 4}. Como B ⊂ A, podemos escrever em forma de complementar:
A – B = C BA = {1, 2, 3, 4}.
Outros exemplos
Diferença entre conjuntos
Gerados os conjuntos A = {0, 1, 2, 3, 4, 5} e B = {5, 6, 7}, a diferença desses conjuntos é demonstrada 
em outro conjunto, designado de conjunto diferença.
Logo, A – B serão os elementos do conjunto A, subtraídos os elementos que pertencerem ao conjunto 
B. Portanto, 
A – B = {0, 1, 2, 3, 4}.
42
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Conjunto complementar
Definição: Se A e B são conjuntos, o complemento relativo de B em A é o conjunto.
A - B, definido por:
A - B = {x ∈ A | x ∉ B}
Nesta definição, não é assumido que B ⊂ A.
Conjunto complementar está relacionado à diferença de conjunto. Encontramos um conjunto 
complementar quando é gerado um conjunto A e B e o conjunto B ⊂ A, então o conjunto A - B é 
chamado complementar de B em relação ao A. 
Por exemplo:
A = {2, 3, 5, 6, 8}
B = {6, 8}
Como B ⊂ A, então o conjunto complementar será C BA = A – B = {2, 3, 5} 
3
C BA Complemento de B em relação a A.
2.5.4 Cardinalidade de um conjunto
Definição de cardinalidade – Define-se a cardinalidade de um conjunto A como o número de 
elementos que pertencem ao conjunto A.
Denotamos a cardinalidade de um conjunto A por card(A) ou n(A), e se lê “cardinalidade de A” ou 
“número de elementos de A”.
Exemplos:
Seja o conjunto A = {1; 0; 3}, então n(A) = 3
Seja B = {-1; 0; 1; 3; 8} então n(B) = 5
Seja A = { }, então n(A) = 0
Seja A = {1; 2; 3; 4; 5; 6;...}, então n(A) = n
Seja A = { 1 }, então n(A) = 1
3 Fonte: MIRANDA, Daniela de. Disponível em: <http://www.brasilescola.com.br>. Acesso em: 14 abr. 2011.
43
MATEMÁTICA APLICADA
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Dois conjuntos A e B são ditos equipotentes (ou equivalentes, ou possuindo a mesma cardinalidade), 
e denotados por A ~ B, se e somente se existir uma correspondência de um para um entre os elementos 
de A e os elementos de B.
Podemos, por exemplo, mostrar que os números naturais N e os números naturais pares P têm a 
mesma cardinalidade:
Para cada elemento n de N corresponderá o elemento 2x dos números pares. Assim, podemos 
estabelecer a correspondência de um para um entre os dois conjuntos e, portanto, N ~ P. 
Um conjunto A é dito finito se ele tem n elementos distintos onde n ∈ N. O número n chama-se 
número cardinal de A e escreve-se:
n(A) = n ou |A| = n
Exemplo: seja o conjunto dos inteiros positivos ímpares menores do que 10.
|A|=5 ou n(A) = 5
Diz-se que um conjunto é infinito se ele for equivalente a um subconjunto próprio.
Qualquer conjunto equivalente ao conjunto dos números naturais é chamado de enumerável.
Propriedades:
n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩ C)
2.5.5 Representação de conjuntos usando o diagrama de Venn
Representação de conjunto único
Números Naturais (1, 2, 3, 4, 5, 6) 
N
1
 3 2
 4
 5 6
Relação entre dois conjuntos: A e B. 
A = {1, 2, 3, 4, 5, 6} 
B = {5, 6, 7, 8, 9, 10} 
44
Unidade I
Re
vi
sã
o:
 E
la
in
e 
- 
Di
ag
ra
m
aç
ão
: F
ab
io
 -
 0
9/
05
/1
1 
-|
|-
 2
ª R
ev
isã
o:
 E
la
in
e 
- 
Co
rr
eç
ão
: F
ab
io
 -
11
/0
5/
20
11
 /
/ 
3ª
 R
ev
isã
o 
- 
El
ai
ne
 -
 C
or
re
çã
o:
 M
ár
ci
o 
- 
23
/0
5/
20
11
Símbolos 
∪ = união
∩ = interseção 
A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
A ∩ B = {5, 6} 
A
 1 7

Outros materiais