Buscar

LP livro lajes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 118 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 118 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 118 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

PROJETO E EXECUÇÃO DE 
LAJES 
PROTENDIDAS 
 
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
•••• 
 
Engº. Alexandre Anozé Emerick, MSc. 
 
 
 
Brasília, Dezembro de 2002 
 
 
PROJETO E EXECUÇÃO DE 
LAJES PROTENDIDAS 
 
 
 
 
 
APRESENTAÇÃO 
 
 
 
O presente texto representa o resultado de quase um ano de trabalho e pesquisa bibliográfica. 
Naturalmente, não é o objetivo aprofundar os tópicos abordados, mas sim apresentar uma 
visão eminentemente prática e direta, sem grandes aprofundamentos teóricos ideal para 
escritórios de projetos estruturais. 
 
Com esse texto eu tentei sintetizar os princípios do dimensionamento de lajes em concreto 
protendido, conciliando com algumas recomendações práticas. Dessa forma, o texto tem o 
caráter de uma revisão da literatura técnica. 
 
Espero que esse texto possa de alguma forma ajudar, sobretudo aqueles que estão iniciando 
no estudo de lajes em concreto protendido, servindo como uma orientação resumida, porém 
objetiva, sobre o assunto. 
 
 
 
 
Alexandre A. Emerick 
 
Brasília, Dezembro de 2002 
 
 
 
 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 1 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
PROJETO E EXECUÇÃO DE 
LAJES PROTENDIDAS 
 
1. INTRODUÇÃO 
 
O uso da solução em concreto protendido para lajes de edifícios tem crescido nos últimos anos 
no Brasil. Fenômeno esse que se deve em grande parte à utilização do sistema de protensão 
não-aderente com a entrada da monocordoalha engraxada plastificada no mercado brasileiro. 
Segundo Franco [11] o concreto protendido vem encontrando uma aplicação cada vez maior em 
estruturas de edifícios devido à necessidade de vencer vãos livres de grandes dimensões com 
elementos de altura reduzida. 
 
A utilização do sistema de protensão com pós-tração em lajes apresenta algumas vantagens 
em relação ao sistema convencional em concreto armado, entre as quais cabe citar: 
 
• Maior liberdade arquitetônica devido à possibilidade de vencer grandes vãos ou vãos 
fortemente carregados mantendo uma grande esbeltez na laje. 
• Maior área útil do pavimento devido a menor quantidade de pilares. 
• Economia em relação às estruturas em concreto armado para vãos superiores a 7,0 m 
conforme ilustra a Figura 1.1 extraída da referência [35]. 
• Redução nas espessuras das lajes acarretando uma significativa diminuição na altura total 
do prédio e conseqüentemente um menor peso total da estrutura minimizando os custos 
nas fundações. 
• Maior velocidade na desforma e retirada de escoramentos. 
• Redução e até eliminação de flechas e fissuração nas lajes. 
• Maior resistência ao puncionamento, em lajes lisas ou cogumelo, obtida pela colocação 
adequada dos cabos de protensão nas regiões próximas aos pilares. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1.1: Comparação de custos entre lajes protendidas e convencionais em concreto 
armado 
Fonte: Ref. [35] 
 
2. PRINCÍPIO DA PROTENSÃO 
 
De acordo com Moraes [19], as normas atuais definem como peças estruturais de concreto 
protendido as peças de concreto nas quais através da introdução de forças torna-se 
comprimido de tal forma a eliminar as tensões de tração quando colocada em serviço, ou 
ainda, eliminar apenas uma parcela dessas tensões. 
7 m 8 m 9 m 10 m 
 VÃO 
CUSTO 
 LAJE PROTENDIDA 
 LAJE EM CONCRETO ARMADO 
60 
50 
70 
80 
90 
100 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 2 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
A Figura 2.1 ilustra a ação da protensão nas tensões atuante no concreto considerando 
protensão completa, ou seja, eliminando totalmente as tensões de tração na peça em serviço. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 2.1: Tensões atuantes no concreto protendido – protensão completa. 
 
Segundo Moraes [19], a eliminação das tensões de tração que podem dar origem à formação de 
fissuras representava o principal objetivo da protensão, obtendo-se uma construção de maior 
qualidade reduzindo-se o perigo da corrosão através da protensão completa. Modernamente, 
com o desenvolvimento da teoria de fissuração, tornou-se possível conviver com o controle da 
abertura de fissuras, obtendo construções satisfatórias com custos menores, admitindo-se o 
Estado Limite de Utilização. 
 
De acordo com a NBR 7197 [23] a protensão pode ser completa, limitada ou parcial de acordo 
com as definições a seguir: 
 
• Protensão completa: Existe protensão completa quando se verificam as duas condições 
seguintes: 
a) para as combinações freqüentes de ações, previstas no projeto, é respeitado o Estado 
Limite de Descompressão; 
b) para as combinações raras de ações, quando previstas no projeto, é respeitado o 
Estado Limite de Formação de Fissuras. 
 
• Protensão limitada: Existe protensão limitada quando se verificam as duas condições 
seguintes: 
a) para as combinações quase permanentes de ações, previstas no projeto, é respeitado o 
Estado Limite de Descompressão; 
b) para as combinações freqüentes de ações, previstas no projeto, é respeitado o Estado 
Limite de Formação de Fissuras. 
 
• Protensão parcial: Existe protensão parcial quando se verificam as duas condições 
seguintes: 
a) para as combinações quase permanentes de ações, previstas no projeto, é respeitado o 
Estado Limite de Descompressão; 
b) para as combinações freqüentes de ações, previstas no projeto, é respeitado o Estado 
Limite de Abertura de Fissuras com abertura característica menor ou igual a 0,2 mm. 
 
O projeto de revisão da NB-1 (NBR 6118) [22] classifica os níveis de protensão permitidos em 
função da classe de agressividade ambiental definidos no item 9.4 dessa norma. A Tabela 2.1 
extraída do PR NB-1 relaciona os níveis de protensão com as classe de agressividade 
ambiental e as exigências quanto aos Estados Limites relacionados com o nível de fissuração 
permitido. 
= 
A
P
−
W
Pe
W
MEXT
−
 
W
Pe
A
P
W
MEXT
I −+=σ
W
Pe
A
P
W
MEXT
S +−−=σ
P 
e 
MEXT 
(+) 
(−) (+)
(−) 
(−) + + (−) 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 3 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
Tabela 2.1: Classes de agressividade ambiental e exigências relativas à fissuração excessiva e 
a proteção da armadura ativa 
Tipos de concreto 
estrutural 
Classe de 
agressividade 
ambiental 
Exigências relativas 
ao E.L. de fissuração 
excessiva 
Combinação de 
ações a considerar 
Concreto simples 
(sem protensão e sem 
armadura) 
I a IV Não há – 
I 
ELS-W 
ωk ≤ 0,4mm 
Freqüente 
Concreto armado 
(sem protensão) 
II a IV 
ELS-W 
ωk ≤ 0,3mm 
Freqüente 
ELS-W 
ωk ≤ 0,2mm 
Freqüente Concreto protendido 
nível 1 
(protensão parcial) 
Pré-tração – I 
Pós-Tração – I e II 
ELS-F Quase permanente 
ELS-F Freqüente Concretoprotendido nível 2 
(protensão limitada) 
Pré-tração – II 
Pós-Tração – III e IV 
ELS-D Quase permanente 
ELS-F Rara Concreto protendido 
nível 3 
(protensão completa) 
Pré-tração 
III e IV ELS-D Freqüente 
Fonte: Projeto de revisão da NB-1 [22] 
 
onde: 
ELS-W – Estado Limite de Serviço – Abertura de fissuras; 
ELS-F – Estado Limite de Serviço – Formação de fissuras; 
ELS-D – Estado Limite de Serviço – Descompressão; 
Classe de agressividade: 
 I – fraca; 
 II – média; 
 III – forte; 
 IV – muito forte. 
 
Dessa forma, de acordo com a Tabela 2.1, o PR NB-1 prescreve com relação a protensão 
parcial que para a combinação quase permanente das ações seja respeitado o Estado Limite 
de Formação de Fissuras (ELS-F), sendo portanto, menos rigorosa que a NBR 7197 [23], pois 
admite um pequeno nível de tração no concreto para a combinação quase permanente das 
ações. 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 4 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
3. MATERIAIS UTILIZADOS EM LAJES PROTENDIDAS 
 
Existem basicamente dois sistemas de protensão com pós-tração empregados em lajes 
protendidas em função da aderência ou não entre o cabo e o concreto: 
 
3.1. PROTENSÃO ADERENTE 
 
Neste caso, os cabos são colocados dentro de bainhas metálicas, sendo essas injetadas com 
nata de cimento após a operação de protensão das cordoalhas. A solução com cordoalhas 
aderentes comporta-se melhor quanto à distribuição das fissuras e à segurança à ruptura para 
efeitos localizados (explosão, incêndios, demolição parcial, etc.). 
 
Entre os aços de protensão existentes atualmente distinguem-se os aços de relaxação normal 
(RN) e os de relaxação baixa (RB). Com relação à sua resistência a tração os mais comuns 
são o CP-175 e CP-190. Entretanto, nas obras com lajes protendidas o aço que vem sendo 
mais largamente empregado é o CP-190 RB, tanto para a protensão com ou sem aderência. A 
Tabela 3.1 apresenta as características técnicas das cordoalhas com aço CP-190 RB. 
 
Tabela 3.1: Propriedades das cordoalhas de 7 fios – Aço CP190 RB 
Tipo de cordoalha ∅∅∅∅12,7mm (1/2”) ∅∅∅∅15,2mm (5/8”) 
Área mínima (mm2)(1) 98,7 140,0 
Área aproximada (mm2) 101,4 143,5 
Massa nominal (kg/m) 0,775 1,102 
Carga de ruptura − fptk (kN) 187,3 265,8 
Tensão de escoamento – fpyk (MPa) 1585 1688 
Módulo de Elasticidade (GPa) Aproximadamente 196 
Relaxação após 1000 horas a 20ºC para 
carga inicial de 70% da ruptura MÁX. 2,5% 
Fonte: Ref. [5] 
_______________________ 
NOTA: 1. A área mínima deve ser considerada no cálculo 
 
A Tabela 3.2 apresenta as propriedades das bainhas achatadas para cordoalhas no sistema de 
protensão com aderência extraída da referência [35]. 
 
Tabela 3.2: Propriedades das bainhas chatas corrugadas 
Tipo de 
cabo 
H 
(mm) 
B 
(mm) 
Peso 
linear 
(kg/m) 
Consumo 
de cimento 
p/ injeção 
(kg/m) 
Consumo 
de calda 
(L/m) 
1 ∅ 12,7 19 35 0,41 0,80 0,58 
2 ∅ 12,7 19 35 0,41 0,67 0,48 
3 ∅ 12,7 19 69 0,60 1,43 1,03 
4 ∅ 12,7 19 69 0,60 1,30 0,93 
1 ∅ 15,2 21 35 0,43 0,90 0,65 
2 ∅ 15,2 21 69 0,62 1,77 1,28 
3 ∅ 15,2 21 69 0,62 1,56 1,13 
4 ∅ 15,2 21 75 0,68 1,55 1,12 
Fonte: Ref. [35] 
 
Os dispositivos de fixação das extremidades dos cabos são chamados de ancoragens. Essas 
ancoragens podem ser ativas, quando permite a operação de protender os cabos, ou passiva 
quando é fixa. Em geral, costuma-se projetar cabos com uma ancoragem ativa e outra passiva. 
Entretanto, especialmente para cabos longos, comprimentos maiores que 40 metros, pode ser 
B 
H 
Figura 3.1: Dimensões 
externas para bainhas 
achatadas 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 5 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
CORTE A-A 
S/ ESC. 
VISTA EM PLANTA 
S/ ESC. 
Figura 3.3: Ancoragem ativa com armadura de 
fretagem para cabos com 4 cordoalhas 
 
Fonte: Ref. [35] 
 
conveniente aplicar a protensão pelas duas extremidades do cabo, utilizando assim ancoragem 
ativa nas duas extremidades, de modo a reduzir as perdas por atrito. 
 
A Tabela 3.3 apresenta as dimensões dos nichos das ancoragens ativas do sistema de 
protensão aderente extraídas da referência [35]. 
 
Tabela 3.3: Dimensões dos nichos das ancoragens ativas – protensão aderente 
Unidade de 
protensão 
A 
(mm) 
B 
(mm) 
a 
(mm) 
b 
(mm) 
1 ∅12,7 120 120 100 100 
2 ∅12,7 120 120 100 100 
3 ∅12,7 180 150 130 130 
4 ∅12,7 240 100 230 85 
1 ∅15,2 140 140 120 120 
2 ∅15,2 180 180 140 140 
3 ∅15,2 220 220 160 160 
4 ∅15,2 240 120 230 90 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a 
A 
b 
B 
Figura 3.2: Nichos para 
ancoragens ativas 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 6 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
As ancoragens passivas podem ser em laço ou em bulbo conforme indicam as Figuras 3.4 e 
3.5. 
Figura 3.4: Ancoragem passiva em laço com armadura de fretagem 
Fonte: Ref. [35] 
 
 
Tabela 3.4: Dimensões para as ancoragens passivas em laço 
Tipo A 
(mm) 
B 
(mm) 
1 ∅12,7 600 − 
2 ∅12,7 600 − 
4 ∅12,7 700 50 
1 ∅15,2 600 − 
2 ∅15,2 600 − 
4 ∅15,2 700 50 
Fonte: Ref. [35] 
 
 
 
Tabela 3.5: Dimensões para as 
ancoragens passivas em bulbo 
Tipo A 
(mm) 
B 
(mm) 
C 
(mm) 
4 ∅12,7 310 70 750 
4 ∅15,2 390 90 950 
Fonte: Ref. [35] 
 
Figura 3.5: Ancoragem passiva em bulbo 
Fonte: Ref. [35] 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 7 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
A finalidade da injeção é garantir uma proteção eficaz das armaduras de protensão contra a 
corrosão, além de permitir perfeita ligação mecânica da armadura e o concreto, preenchendo 
assim os vazios existentes entre a armadura e a parede da bainha. A nata de injeção deve ser 
dosada com vistas a atender as seguintes características: 
 
 
• ausência de agentes agressivos 
• fluidez 
• exsudação 
• expansão 
• retração 
• resistência mecânica 
• pouca absorção capilar 
• tempo de início e fim de pega adequados 
 
Para garantir essas características devem ser utilizados cimentos com: 
 
• teor composto ≤ 10% 
• teor de enxofre de sulfetos ≤ 0,2% 
• teor de cloro de cloretos ≤ 0,1% 
 
A água deve ser potável com uma porcentagem de cloro inferior a 500 mg/L e isenta de 
detergentes. Os aditivos podem ser plastificantes, retardadores de pega e expansores. 
 
Influenciam, ainda, na qualidade de injeção: 
 
• natureza, temperatura e idade do cimento 
• temperatura da água 
• temperatura ambiente 
• condições da mistura 
 
Fonte: Ref. [12] 
 
De modo a facilitar uma boa injeção devem ser adotados os seguintes cuidados: 
 
 
 
• colocação de purgadores (respiro para a injeção) cuidadosamente e corretamente 
• utilização de luvas de união entre trechos de bainhas que garantem estanqueidade 
• perfeita fixação das ancoragens na fôrma 
• no casoparticular de cabos verticais o uso de dispositivos especiais que facilitem a 
injeção 
 
Fonte: Ref. [12] 
 
Para a operação de injeção com tempo quente, temperatura ambiente superior a 30 oC, a 
operação deve ser realizada com cuidados especiais para aumentar a vida útil da nata 
diminuindo o índice de fluidez. Portanto é recomendado o uso de aditivos apropriados e água 
em baixa temperatura (adicionando-se gelo). 
 
A operação de injeção só deve ser iniciada após a aprovação dos resultados da operação de 
protensão. 
 
A Figura 3.6 apresenta um detalhe de uma bainha metálica com purgador usada na protensão 
aderente. 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 8 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
 
 
 
 
 
Figura 3.6: Bainha metálica com purgador 
Fonte: Revista Téchne – Janeiro 1997 
 
3.2. PROTENSÃO NÃO ADERENTE 
 
O sistema de protensão não aderente é feito com cordoalhas engraxadas plastificadas. De 
acordo com o catálogo técnico da Belgo [5], as cordoalhas engraxadas são as mesmas 
cordoalhas tradicionais com a adição de um revestimento de PEAD-polietileno de alta 
densidade, impermeável à água, extremamente resistente e durável, extrudado diretamente 
sobre a cordoalha já engraxada em toda a sua extensão, o que permite a livre movimentação 
da cordoalha em seu interior, Figura 3.7. A graxa e o revestimento de PEAD devem atender as 
especificações do PTI (Post-tensioning Institute) [30]. As bitolas disponíveis são de 12,7 mm e 
15,2 mm com massa aproximada (incluindo PEAD e graxa) de 890 kg/km e 1240 kg/km, 
respectivamente. 
 
 
 
 
 
 
 
 
 
 
Figura 3.7: Seção da monocordoalha engraxada com 7 fios 
 
 
Nesse sistema, deve ser dada especial atenção a conservação das cordoalhas, elas devem 
estar limpas e livres de corrosão. Rasgos ou falhas da cobertura de PEAD devem ser 
reparadas antes do lançamento do concreto com fita plástica para isolar a cordoalhas do 
concreto. 
 
Com relação ao sistema de protensão sem aderência, Moraes [19] faz as seguintes 
observações: 
PEAD 
GRAXA 
FIOS DE AÇO 
D
IÂ
M
ET
RO
 N
O
M
IN
AL
 
1
/2
” 
=
 1
2
,7
 m
m
 
5
/8
” 
=
 1
5
,2
 m
m
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 9 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
a) A protensão sem aderência ocorre quando as armaduras de protensão só estão 
ancoradas no concreto nas extremidades das peças estruturais. A falta de aderência 
pode prejudicar ou mesmo não impedir a fissuração da peça estrutural sendo 
necessário utilizar uma armadura aderente (passiva) para prevenir a fissuração. 
b) O comprimento dos cabos normalmente não deve ultrapassar 40 m. Acima desse 
valor, deve-se adotar ancoragens intermediárias, criando-se juntas de concretagem. 
c) Os cabos constituídos por cordoalhas engraxadas plastificadas oferecem as 
seguintes vantagens: 
• rapidez na montagem; 
• aumento da excentricidade que se obtém com a monocordoalha em relação à 
bainha achatada; 
• diminuição das perdas por atrito; 
• eliminação do serviço de injeção de calda de cimento; 
• pode-se conseguir alguma economia em relação a protensão aderente; 
• o aço devido à graxa fica protegido contra a corrosão; 
• permite a reprotensão tomando-se cuidados especiais. 
 
A Tabela 3.6 apresenta uma comparação entre as características básicas dos sistemas de 
protensão com e sem aderência preparada pela Belgo Mineira. 
 
Tabela 3.6: Características básicas dos sistemas de protensão aderente e não aderente 
SISTEMA ADERENTE SISTEMA NÃO ADERENTE 
Usa bainha metálica para até quatro cordoalhas 
por bainha, em trechos de 6 m com luvas de 
emenda e vedação. 
Sem bainha metálica. As cordoalhas vêm 
de fabrica com graxa e bainha plástica 
contínua. 
O manuseio (enrolar e desenrolar) é feito com 
quatro cordoalhas ao mesmo tempo 
(aproximadamente 3,2 kg/m). 
O manuseio é feito com uma cordoalha por 
vez (cerca de 0,89 kg/m). 
Concretagem cuidadosa para evitar danos à 
bainha metálica (abertura da costura helicoidal). 
Concretagem sem maiores cuidados, pois 
a bainha plástica de PEAD é resistente aos 
trabalhos de obra. 
Usa macaco de furo central que precisa ser 
enfiado pela ponta da cordoalha 
(aproximadamente 50 cm da face do concreto). 
Usa macaco de dois cilindros que se apóia 
na cordoalha junto à face do concreto. 
A protensão é feita em quatro níveis de pressão 
hidráulica, seguidas das respectivas leituras de 
alongamento, correção da tabela e medida da 
perda por acomodação da ancoragem. 
A protensão é feita em uma só elevação de 
pressão, pois não há retificação da 
cordoalha (bainha justa). 
Exigem lavagem das cordoalhas por dentro para 
a diluição de eventual pasta de cimento que 
poderia ter entrado e prendido as cordoalhas. 
Lavagem desnecessária. 
A água deve ser retirada por ar comprimido 
antes da injeção, para não haver diluição da 
pasta. 
Medida desnecessária. 
Usa cimento em sacos para preparo da pasta 
de injeção, feito com misturador elétrico. A 
injeção é feita por bomba elétrica. 
Medida desnecessária. 
Fonte: Revista Téchne – Junho 1999 
 
A Tabela 3.7 apresenta as características para monocordoalhas engraxadas com aço CP 190 
RB. 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 10 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
Tabela 3.7: Monocordoalhas engraxadas de 7 fios – Aço CP190 RB 
Tipo de cordoalha ∅∅∅∅12,7mm (1/2”) ∅∅∅∅15,2mm (3/8”) 
Área mínima (mm2) 98,7 140,0 
Área aproximada (mm2) 101,4 143,5 
Peso linear com bainha e graxa (kg/m) 0,89 1,24 
Carga de ruptura − fptk (kN) 187,3 265,8 
Módulo de elasticidade (GPa) Aproximadamente 196 
Alongamento após a ruptura 3,5 % 
φ cordoalha + bainha (mm) 15,4 18,1 
_______________________ 
NOTA: 1. A área mínima deve ser considerada no cálculo 
 
A Tabela 3.8 e a Figura 3.8 apresentam as características das ancoragens para 
monocordoalhas engraxadas do sistema Freyssinet. 
 
Tabela 3.8: Dimensões para as ancoragens ativas 
Tipo ∅∅∅∅ bloco 
(mm) 
A × B 
(mm) 
1 ∅12,7 45 100 × 100 
1 ∅15,2 52 100 × 100 
Fonte: Ref. [35] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Figura 3.9 apresenta o detalhe das placas de ancoragem no padrão americano. 
 
 
 
Figura 3.8: Ancoragem ativa para monocordoalhas engraxadas 
Fonte: Ref. [35] 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 11 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
127
CUNHAS
3
8
5
7
A A
 
 
Figura 3.9: Detalhe das placas de ancoragem para ∅12,7 mm – padrão americano PTI 
 
 
A Figura 3.10 apresenta o detalhe da montagem das ancoragens ativas na fôrma. 
 
FRETAGEM
(Ø10mm)
CADEIRA DE
SUPORTE
PLACA DE ANCORAGEM
400
POCKET FORMER
REUTILIZÁVEIS
300 (MÍN)
h
h/
2
h/
2
50
3h/8250
150
3
0
h 
- 
6
0
 
 
Figura 3.10: Detalhe da montagem da ancoragem ativa nafôrma 
 
A Figura 3.11 apresenta um detalhe da ancoragem ativa para monocordoalhas engraxadas. 
 
VISTA EM PLANTA 
S/ESC. 
CORTE A-A 
S/ESC. Dimensões em mm 
S/ESC. 
Dimensões em mm 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 12 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
 
 
Figura 3.11: Detalhe dos elementos da ancoragem ativa 
Fonte: Ref. [29] 
 
A Figura 3.12 apresenta um esquema típico de montagem de uma laje lisa com 
monocordoalhas engraxadas. 
 
 
Figura 3.12: Esquema típico de montagem de uma laje lisa com monocordoalhas 
Fonte: Revista Téchne – Janeiro 1997 
FORMA PLÁSTICA REUTILIZÁVEL 
(POCKET FORMER) 
CUNHA OU CLAVETE 
BLOCO DE ANCORAGEM 
LUVA 
TUBO DE 
TRANSIÇÃO 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 13 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
Para o caso de monocordoalhas engraxadas utiliza-se como ancoragem passiva uma 
ancoragem igual à ativa pré-encunhada (pré-blocada). 
 
O pré-encunhamento das ancoragens passivas deve ser feito com o macaco para a força total 
de protensão prevista no projeto, caso contrário, existirá o risco de escorregamento durante a 
protensão na extremidade ativa. 
 
3.3. EQUIPAMENTOS PARA A PROTENSÃO 
 
A operação de protensão é realizada por macaco hidráulico que, apoiado na borda da laje, 
estica as cordoalhas até atingirem a força prevista em projeto. Antes de retirar o macaco, 
cravam-se as cunhas de fixação das cordoalhas nas ancoragens. 
 
Com relação ao equipamento de protensão, os macacos devem ser calibrados antes do serviço 
de protensão. Deve-se observar que o macaco e o manômetro da bomba são calibrados 
conjuntamente, dessa forma, após a calibração é necessário assegurar que o macaco e o 
equipamento não sejam separados. 
 
O equipamento de protensão deve ser mantido em lugar limpo e seco, a operação do 
equipamento deve ser feita somente por pessoa com treinamento e qualificação. 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 14 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
4. DISPOSIÇÕES CONSTRUTIVAS E RECOMENDAÇÕES 
PARA PROJETO 
 
 
4.1. PRINCIPAIS ESQUEMAS ESTRUTURAIS ADOTADOS EM LAJES PROTENDIDAS 
 
Os principais esquemas estruturais adotados atualmente para lajes protendidas são as lajes 
lisas, com ou sem engrossamento na região dos pilares, Figura 4.1 a 4.3, e as lajes 
nervuradas, Figura 4.4 e 4.5. 
 
As lajes lisas, Figura 4.1, apresentam vantagens em relação às demais sobretudo do ponto de 
vista da execução. Entretanto, sua capacidade resistente é em geral ditada pelo cisalhamento 
na região de ligação laje-pilar (puncionamento). A resistência ao puncionamento pode ser 
melhorada com o uso de engrossamento da laje na região do pilar, Figura 4.2, ou ainda com o 
uso de vigas faixa protendidas, Figura 4.3. 
 
A A
PLANTA
CORTE A-A 
 
Figura 4.1: Laje lisa 
 
 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 15 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
A A
CORTE A-A
PLANTA
 
 
Figura 4.2: Laje com engrossamento na região dos pilares 
 
 
A A
CORTE A-A
PLANTA
 
 
Figura 4.3: Laje com vigas faixa 
 
Outra solução que tem sido bastante adotada é o uso de lajes nervuradas com faixas 
protendidas, Figura 4.4. Nestes casos, as nervuras podem ou não ser protendidas. Outra 
opção é o uso de capitéis e nervuras protendidas, Figura 4.5. 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 16 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
A A
CORTE A-A
PLANTA
 
 
Figura 4.4: Laje nervurada com faixas protendidas 
 
 
A A
CORTE A-A
PLANTA
 
 
Figura 4.5: Laje nervurada com engrossamento na região dos pilares (capitéis) 
 
 
De acordo com Cauduro e Leme [8], com o uso de lajes planas protendidas a distância entre 
pilares pode ser mantida entre 6 e 8 metros sem grandes traumas para a estrutura. 
Obviamente, sem vigas os pilares perdem a necessidade de estarem alinhados e também de 
ficarem totalmente na parte externa do edifício, aumentando a flexibilidade no lançamento, com 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 17 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
grandes vantagens na obtenção de varandas e fachadas mais simples para serem acabadas. 
Vão de 7,6 metros pode ser uma solução bastante interessante em edifícios comerciais, uma 
vez que essa distância pode acomodar três carros na garagem eliminando a necessidade de 
transições fazendo com que a distância entre pilares se mantenha constante da fundação até a 
cobertura. Entretanto, caso seja necessário, pode-se usar transições com vigas chatas ou 
capitéis que são mais fáceis de serem executados que as vigas convencionais. 
 
Um ponto importante diz respeito às dimensões dos pilares, deve-se convencer os projetistas 
de arquiteturas que pilares com larguras acima de 25 cm permite ganho no cálculo estrutural 
além de reduzir o risco de falhas de concretagem nas bases dos pilares, bastante comum nas 
estruturas convencionais. 
 
Nas estruturas sem vigas, é necessário recorrer a outros artifícios para garantir a estabilidade 
global. Nesses casos, é usual o emprego de paredes estruturais, posicionadas sobretudo nas 
caixas de escada e de elevador. 
 
4.2. ESPESSURA DAS LAJES PROTENDIDAS 
 
Para definir a espessura de lajes lisas protendidas em geral busca-se observações práticas. O 
ACI 423 [2], por exemplo, recomenda adotar os seguintes valores: 
 
• Lajes com sobrecargas entre 2 kN/m2 e 3 kN/m2: 
45
a
40
h !!≥ 
• Lajes de cobertura: 
48
a
45
h !!≥ 
Entretanto, nada impede que sejam adotadas espessuras menores desde que sejam 
verificados as flechas máximas e o risco de vibração excessiva. 
 
A Figura 4.6 apresenta um gráfico obtido por Schmid [34] para a determinação da espessura das 
lajes cogumelo, em concreto armado ou protendido, com ou sem capitel, para pisos com 
sobrecarga total de até 3 kN/m2 (300 kgf/m2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.6: Esbeltez de lajes cogumelo 
 
Na prática, para o projeto de lajes lisas protendidas com cordoalhas engraxadas têm sido 
adotadas as seguintes espessuras, Tabela 4.1: 
5 6 7 8 9 10 11 12 13 14 15 
10 
15 
20 
25 
30 
 60! 
 45! 
 40! 
 30! 
LAJE COGUMELO (COM CAPITEL) EM C.P. 
LAJE LISA (SEM CAPITEL) EM C.P. 
LAJE COGUMELO (COM CAPITEL) EM C.A. 
LAJE LISA (SEM CAPITEL) EM C.A. 
VÃO (m) 
ESPESSURA (cm) 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 18 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
Tabela 4.1: Espessuras de lajes lisas protendidas com cordoalha engraxada 
VÃO LIVRE ENTRE APOIOS 
(metros) 
ESPESSURA MÍNIMA 
(cm) 
até 7,0 16 
de 7,0 até 8,0 18 
de 8,0 até 9,0 20 
de 9,0 até 10,0 22 
de 10,0 até 11,0 24 
Faixa econômica: 7,0 a 9,0 metros (h = 18 a 20cm) 
 
A NBR 7197 nos subitem 9.5.1.1 e 9.5.1.2 estabelece valores mínimos para as espessuras de 
lajes cogumelo protendidas. De acordo com a NBR 7197: 
 
• h > 16 cm 
 
• 
h
! < 
 
 
Permitindo-se exceder o limite de 40/! se comprovada a segurança em relação aos estados 
limites de utilização, de deformações e de vibrações excessivas, sendo que ! é o menor vão 
do painel. 
 
No caso de lajes nervuradas deve-se observar as prescrições normativas com relação às 
dimensões das mesmas. De acordo com o item 13.1.4.2 do PR NB-1: 
 
!" "A espessura da mesa, quando não houver tubulações horizontais embutidas, deve 
ser maior ou igual a 1/15 da distância entre nervuras, e não menor que 3 cm. 
 
!"O valor mínimo absoluto deve ser 4 cm quando existirem tubulações embutidas de 
diâmetro máximo 12,5 mm (que corresponde a um eletroduto de 1/2"). 
 
!"A espessura das nervuras não deve ser inferior a 5 cm. 
 
!"Não é permitido o uso de armadura e compressão em nervuras de espessura inferior a 
8 cm. Para o projeto das lajes nervuradas devem ser obedecidas as seguintes 
condições: 
 
a) para lajes com espaçamento entre eixos de nervura menor ou igual a 60 cm, pode ser 
dispensada a verificação da flexão da mesa, e para a verificação do cisalhamento da 
região das nervuras, permite-se a consideração dos critérios de lajes; 
b) para lajes com espaçamento entre eixos de nervuras entre 60 cm e 110 cm, exige-se 
a verificação da flexão da mesa e as nervuras serão verificadas ao cisalhamento 
como vigas; e 
c) para lajes nervuradas com espaçamento entre eixos de nervuras maior que 110 cm, a 
mesa deve ser projetada como laje maciça, apoiada na grelha de vigas, respeitando-
se os seus limites mínimos de espessura. 
 
Com relação ao item (a) a NB-1/78 é um pouco mais conservadora e adota um valor de 
50 cm para o espaçamento entre nervuras. 
 
A Tabela 4.2 apresenta a relação vão/esbeltez usual para seções típicas de lajes protendidas 
60 – caso geral 
 
40 – lajes de piso com q > 3 kN/m2 (300 kgf/m2) 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 19 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
 
 
TIPO DA SEÇÃO
CARREGAMENTO
TOTAL
(kN/m2)
RELAÇÃO 
VÃO/ESPESSURA
(6m < L < 13m)
A A
VISTA A-A
2,5
5,0
10,0
36
30
40
A
2) LAJE C/ ENGROSSAMENTO
VISTA A-A
A 5,0
10,0
2,5
40
34
44
1) LAJE LISA
> L/3
> L/5
3) LAJE MACIÇA COM VIGA FAIXA
A
10,0
VISTA A-A
A 5,0
2,5
40
35
45
22
18
25
LAJE VIGA
4) LAJE NERVURADA COM 
ENGROSSAMENTO
> L/3
A
VISTA A-A
A 26
23
28
5) LAJE NERVURADA COM VIGAS NA 
ALTURA DA LAJE
A A
VISTA A-A
> L/6
23
26
28
3) LAJE COM VIGA CONVENCIONAL
A
VISTA A-A
A 38
34
42
LAJE
16
13
18
VIGA
> L/15
4
3h>
CARREGAMENTO
TOTAL
(kN/m2)
5,0
10,0
2,5
10,0
5,0
2,5
5,0
10,0
2,5
RELAÇÃO 
VÃO/ESPESSURA
(6m < L < 13m)
TIPO DA SEÇÃO
 
Tabela 4.2: Relação vão/esbeltez usual para seções típicas de lajes protendidas 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 20 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
4.3. MODULAÇÃO DOS VÃOS 
 
Como em qualquer outro tipo de estrutura, deve-se procurar uma modulação econômica entre 
os vãos de uma laje cogumelo protendida, Souza e Cunha [36] apresentam a seguinte 
recomendação: 
 
• vão intermediários iguais entre si; 
• vão extremos com comprimentos da ordem de 80 a 85% dos vão internos; 
• balanços da ordem de 25 a 35% do vão adjacente, dependendo se há ou não 
parede carregando a sua extremidade. 
 
4.4. CONSUMO DE MATERIAIS 
 
A titulo indicativo, para as condições médias de projeto, a referência [18] apresenta o seguinte 
diagrama com os consumos de materiais: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Para lajes lisas com vãos entre 7 e 9 metros, para edifícios residenciais e comerciais, o 
consumo de cordoalhas engraxadas gira em torno de 4 kg/m2. 
 
De acordo com Schmid [34], a viabilidade econômica para lajes cogumelo protendidas prende-se 
fundamentalmente no parâmetro “vão”. Para vãos entre 7 e 10 metros, a solução com laje lisa 
será naturalmente competitiva. Para vão maiores começam a se tornar interessantes outras 
soluções como o uso de capitéis e lajes nervuradas. 
 
Deve-se ressaltar que na avaliação econômicas das alternativas estruturais não se deve 
comparar simplesmente o consumo dos materiais por metro quadrado. Mas sim o custo final, 
onde se considera também o menor tempo de execução, o melhor reaproveitamento das 
fôrmas e a própria aparência final da estrutura, por exemplo. 
6 7 8 9 10 11 12 
1 
2 
3 
4 
5 
6 
7 
8 
10 
20 
30 
 VÃO 
 (m) 
CONSUMO 
(kg/m²) 
ESPESSURA 
DA LAJE 
(cm) 
AÇO CP-190 
(aderente) 
CONCRETO 
 (fck = 25MPa) 
CA-50 
FAIXA ECONÔMICA 
Figura 4.7: Gráfico de consumo de materiais para 
lajes protendidas com cabos aderentes 
Fonte: Ref. [18] 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 21 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
4.5. DISTRIBUIÇÃO DOS CABOS EM PLANTA 
 
Os esforços em um painel de laje cogumelo concentram-se com maior intensidade nas regiões 
das faixas dos apoios. Dessa forma, é naturalmente recomendável que essas regiões 
apresentem uma maior concentração de cabos. O ACI 423 [2] apresenta a seguinte 
recomendação para a distribuição dos cabos em planta: 
 
• Faixa dos pilares: 65 a 75% dos cabos 
• Faixa central: 35 a 25% dos cabos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.8: Distribuição dos cabos concentrando nas faixas dos pilares 
 
De acordo com Souza e Cunha [36], as vantagens de usar cabos concentrados nas faixas dos 
pilares, ao invés de uma distribuição uniforme são: 
 
• uma melhor aproximação com a distribuição de momentos na laje; 
• aumento da resistência à punção; 
• aumento da resistência próximo ao pilar para a transferência de momentos de ligação 
laje-pilar. 
 
Entretanto, pode ser encontrada dificuldade para concentrar os cabos nas faixas dos pilares 
devido às altas taxas de armadura existentes nestes. Contudo, deve ser adotado o mínimo de 
2 cabos passando sobre os pilares. 
 
Dependendo da situação pode-se buscar distribuições alternativas dos cabos como, por 
exemplo, concentrar os cabos em faixas sobre os pilares em uma direção de distribuí-los na 
outra, ou ainda a colocação de cabos apenas sobre as faixas dos pilares e armando com 
ferragem passiva os painéis internos. 
 
Em geral,no detalhamento de lajes cogumelo com protensão não-aderente, é comum o uso de 
agrupamentos de cabos denominados feixes. O PR NB-1 indica que o número de cabos não-
aderentes dispostos em feixe deve ser de no máximo quatro, embora na prática sejam 
encontrados feixes com até cinco cabos. 
 
Segundo o PR NB-1, os cabos dispostos em faixas externas (faixa dos apoios) devem estar 
contidos numa porção de laje, de tal forma que a largura desta não ultrapasse a dimensão em 
planta do pilar de apoio, tomada transversalmente à direção longitudinal da faixa, acrescida de 
3,5 vezes a espessura da laje, para cada um dos lados do pilar, conforme ilustra a Figura 4.9. 
FAIXA CENTRAL 
FAIXA DOS PILARES 
FAIXA CENTRAL 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 22 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vale ressaltar que quando se calcula os esforços na laje pelo processo do pórtico equivalente, 
em geral adota-se a largura da faixa dos pilares como 25% ! , sendo ! dado de acordo com a 
Figura 4.9, conforme indica a NB-1 [21]. Ver mais detalhes no item 5.3.4 desse texto. 
 
 
Quando existe a necessidade de fazer um desvio em planta do traçado dos cabos ou feixe de 
cabos, o projeto de revisão da NB-1 prescreve que o desvio deve produzir uma inclinação 
máxima de 1/10, na corda imaginária que une o início ao fim desse trecho, mantendo o seu 
desenvolvimento de acordo com uma curva parabólica em planta. Ao longo do desvio o 
conjunto de cabos ou feixes deve estar disposto de forma a manter uma distância de 5 cm 
entre cabos na região central da curva. Quando os desvio dos cabos exceder a inclinação de 
1/10 deve-se utilizar armadura capaz de absorver a força de desvio, Figura 4.10. 
 
Segundo o projeto de revisão da NB-1, o cobrimento mínimo do cabo em relação à face de 
aberturas nas lajes deve ser de 7,5 cm, conforme indicado na Figura 4.10. 
 
O PTI [30] também apresenta recomendações semelhantes às do PR NB-1 para desvios de 
cabos. A Figura 4.10 apresenta as recomendações do PTI e do PR NB-1. 
 
 
 
onde: 
 
a – largura do pilar na direção 
transversal à faixa; 
A – largura da faixa para a distribuição 
dos cabos; 
h – espessura da laje; 
! – vão entre apoios na direção 
transversal à faixa. 
 
Figura 4.9: Largura para a distribuição 
de cabos nas faixas dos pilares 
 ! 
A ≤ a + 3,5h 
FA
IX
A 
C
EN
TR
AL
 
FA
IX
A 
D
O
 P
IL
AR
 
a
FA
IX
A 
D
O
 P
IL
AR
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 23 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
7,5cm (PTI)
5cm (PR NB-1)
GANCHOS COLOCADOS
PARA DESVIOS MAIORES
QUE 1/10 (PR NB-1)
>12*D (PTI)
>10*D (PR NB-1)
ABERTURA
>7,5 cm
(PR NB-1)
>60cm
(PTI)
D
BARRAS DE REFORÇO
(Ø 12,5 mm)
 
 
 
 
Outro ponto importante na distribuição dos cabos em planta diz respeito ao espaçamento entre 
os cabos. A NBR 7197 no subitem 10.3.2 exige os seguintes espaçamentos horizontais 
mínimos medidos de face a face da bainha: 
 
 ∅EXT 
a > 
 4 cm 
 
 
 
 
 
 
Entretanto, o PR NB-1, adota um espaçamento mínimo de 5 cm entre cabos, ou feixes de 
cabos, ou entre cabos e armadura passivas, Figura 4.12. 
 
 
 
 
 
 
 
 
 
 
Figura 4.12: Espaçamento mínimo entre cabos ou feixes de cabos segundo o PR NB-1 
 
Apesar do espaçamento mínimo entre feixes de cabos ser de 5 cm, é usual adotar 
espaçamentos maiores entre feixes de monocordoalhas, conforme ilustra a Figura 4.13: 
 
 
a ∅EXT ∅EXT 
Figura 4.11: Espaçamento horizontal entre bainha 
s BAINHA 
Figura 4.10: Desvio da direção dos cabos em planta 
segundo o PR NB-1 e o PTI 
FEIXES DE CABOS 
≥ 5 cm 
MÁXIMO 
4 CABOS 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 24 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
 
 
 
 
 
 
 
 
 
Figura 4.13: Espaçamento mínimo usual entre feixes de monocordoalhas 
 
 
Na região próxima das ancoragens as cordoalhas agrupadas em feixes deverão ser 
suavemente separadas, conforme ilustra a Figura 4.14. 
 
FACE DA
FÔRMA
D
12*D MÍNIMO 90 cm
8
cm
8
cm
3H/8
8
cm
(M
ÍM
)
FRETAGEM
 
Figura 4.14: Separação dos feixes de cabos na região das ancoragens 
Fonte: PTI [30] 
 
O espaçamento máximo dos cabos tem a função de garantir um comportamento adequado da 
laje, com esforços bem distribuídos em toda a sua extensão. Usualmente adota-se como o 
espaçamento máximo entre cabos o valor de 8d. Contudo, Park e Gamble [27] recomendam que 
esse espaçamento não exceda: 
 
• s < 6h – para faixas centrais 
• s < 4h – para as faixas dos pilares 
 
sendo h a altura da laje. 
 
Lin [15] recomenda um espaçamento máximo fixo de: 
 
• s < 135 cm – para lajes de cobertura 
• s < 105 cm – para lajes dos demais pisos 
Segundo o projeto de revisão da NB-1, o espaçamento entre cabos ou feixes de cabos deve 
ser no máximo 6h, não excedendo 120 cm. 
 
15 cm 20 cm 
FEIXES DE 2 CABOS FEIXES DE 3 CABOS 
25 cm 
FEIXES DE 4 CABOS 
S/ESC. 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 25 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
4.6. TRAÇADO VERTICAL DOS CABOS 
 
O traçado vertical dos cabos é em geral parabólico principalmente quando se está equilibrado 
um carregamento externo distribuído. Esse traçado deve respeitar as exigências de 
cobrimentos mínimos da NBR 7197 que estabelece os seguintes valores: 
 
• em função do meio ambiente: 
 
2,5 cm – ambiente não agressivo 
c > 3,5 cm – ambiente pouco agressivo 
 4,5 cm – ambiente muito agressivo 
 
• em função do diâmetro da bainha 
 
∅EXT (se ∅EXT < 4 cm) 
c > 
4 cm (se ∅EXT > 4 cm) 
 
• em função do diâmetro do agregado 
 
dg (se dg < 3,2 cm) 
c > 
dg + 0,5cm (se dg > 3,2 cm) 
 
 
Por condições econômicas e executivas, é comum adotar para as flechas dos cabos os 
maiores valores possíveis, atendendo as condições de cobrimento mínimo. Essa colocação 
implica em carregamentos equilibrados diferentes nos vãos, conforme será abordado com 
maiores detalhes no item 5.3. 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.15: Traçado vertical dos cabos 
 
Com relação à curvatura dos cabos sobre os pilares deve-se respeitar o raio de curvatura 
mínimo permitido pela NBR 7197 no subitem 9.5.3.3 que é de 2,5 metros. O ponto de mudança 
da curvatura (ponto de inflexão - Figura 4.15) é assumido como uma porcentagem do vão ( !α ) 
sendo que o valor de α é em geral adotado variando entre 5% a 15%. As coordenadas do 
ponto de inflexão podem ser calculadas usando as expressões apresentadas com a Figura 
4.16: 
TRECHO RETO 
PONTO DE INFLEXÃO 
DO CABO 
 2!α 
h/2 
h/2 
c 
2!1! 3!
TRECHO RETO 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••••••• •••• •••• •••• •••• •••• •••• •••• •••• 26 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.16: Cálculo das coordenadas dos pontos de inflexão – concordância entre duas 
parábolas do 2º grau 
 
 
Conforme se pode observar na Figura 4.15 os cabos são ancorados nas extremidades 
passando pela semi-espessura da laje. Essa disposição dos cabos tem por objetivo não 
introduzir momentos fletores devido a protensão nas seções de extremidade, onde os 
momentos devidos os carregamentos externos também são nulos. 
 
Segundo o PR NB-1, nas lajes protendidas com monocordoalhas não-aderentes, deve-se 
dispor ancoragens ativas preferencialmente no baricentro da seção transversal da laje. Na 
região de ancoragem ativa, deve-se manter o cabo reto e paralelo ao plano médio da laje nos 
seus primeiros 50 cm. 
yMÍN 
d2 d1 
d 
yMÁX 
yC 
PONTO DE INFLEXÃO 
( )MÍNMÁX2MÍNC yyd
dyy −⋅+=
yMÍN
d1 d2 
d 
yMÁX
yC 
PONTO DE INFLEXÃO 
( )MÍNMÁX1MÍNC yyd
dyy −⋅+=
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 27 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
h/2
h
h/2
RECOMENDÁVEL = 5 cm
MÍNIMO = 2,5 cm
FRETAGEM
2Ø12,5mm
Figura 4.18: Cobrimento da ancoragem passiva 
PERFIL
DO CABO
TRAÇADO ESPERADO
PARA O CABO
TRAÇADO ESPERADO
PARA O CABO
CURVATURA INVERSA
CURVATURA
INVERSA
Figura 4.17: Curvatura inversa do perfil dos cabos 
Na execução, o perfil dos cabos deve ser garantido com o uso de suportes plásticos ou 
metálicos (caranguejos). O espaçamento desses suportes varia de acordo com o projeto sendo 
recomendável, no caso de lajes, ser inferior a 1 metro. Contudo, deve-se evitar o aparecimento 
de curvaturas inversas conforme ilustra a Figura 4.17, com o uso de suportes adicionais. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A ponta exposta da ancoragem passiva deve apresentar um cobrimento mínimo de 2,5 cm. 
Contudo, é recomendável um cobrimento de 5 cm, Figura 4.18, com o objetivo de prolongar 
sua durabilidade com relação ao processo de corrosão. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Figura 4.19 apresenta um exemplo de detalhamento de perfil dos cabos em um projeto com 
monocordoalhas engraxadas. 
 
 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 28 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
 
 
Figura 4.19: Detalhamento do perfil dos cabos 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 29 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
4.7. ARMADURAS PASSIVAS 
 
4.7.1. ARMADURA PASSIVA MÍNIMA POSITIVA 
 
A NBR 7197 no subitem 9.5.3.4 exige que em lajes lisa protendidas seja colocada uma 
porcentagem de armadura passiva mínima igual a: 
 
%05,050,015,0 ps ≥ρ−=ρ (4.1) 
 
onde ρs e ρp representam, em porcentagem, respectivamente as taxas de armadura passiva e 
ativa, referidas à altura total da seção de concreto. 
 
O espaçamento máximo entre essas barras deve ser inferior a 33 cm. 
 
4.7.2. ARMADURA PASSIVA MÍNIMA NEGATIVA SOBRE OS PILARES 
 
A NBR 7197 nos subitens 9.5.3.6 e 9.5.3.7 exige uma armação negativa mínima indicada pela 
Figura 4.19. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 !10,0 
 !20,0 !20,0 
 !10,0 
%15,0s =ρ %15,0s =ρ %30,0s =ρ
 !10,0 !10,0 
Figura 4.19: Armadura passiva mínima sobre os pilares 
segundo a NBR 7197 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 30 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
Com relação à distribuição da armadura passiva em lajes lisas e cogumelo, Fusco [13] 
recomenda (Figura 4.20): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.20: Distribuição da armadura passiva em lajes lisas e cogumelo 
Fonte: Fusco [13] 
 
4.7.3. ARMADURA DE REFORÇO DE BORDA DA LAJE 
 
Nas bordas da laje é recomendável o uso de vigas. Essa recomendação torna-se ainda mais 
necessária quando não há balanço, para se evitar problemas com punção dos pilares de canto 
e extremidade. Entretanto, nem sempre é projetada essa viga de borda, nestes casos, deve-se 
colocar uma armação passiva, como indicada na Figura 4.21, ao longo de todo o perímetro da 
laje, conforme exige a NBR 7197 no subitem 9.5.3.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.21: armadura de reforço de borda da laje 
 
 
Lx 
 Ly 
 Ly/4 
 Ly/2 
 Ly/4 (27,5%) 
(27,5%) 
(45%) 
(37,5%) 
(25%) 
(37,5%) 
(37,5%) 
(25%) 
(37,5%) 
0,3Lx 0,3Lx 0,3Lx 0,3Lx 
≥ 2h 
∅10 ou ∅12.5 mm 
corridos 
∅6.3 ou ∅8mm 
ESPAÇAMENTO ≤ h 
h – ESPESSURA DA LAJE 
 
AS BITOLAS INDICADAS SÃO APENAS 
ILUSTRATIVAS, SENDO VÁLIDAS 
SOMENTE PARA AS LAJES CORRENTES. 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 31 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
4.7.4. ARMADURA CONTRA COLAPSO PROGRESSIVO 
 
O projeto de revisão da NB-1 prevê no subitem 19.4.5 para lajes apoiadas diretamente sobre 
pilares a colocação de uma armadura na região do pilar para combater o risco de colapso 
progressivo. Entretanto, o subitem 20.4.2.6 prevê que se pode prescindir dessa armadura 
quando pelo menos um cabo em cada direção ortogonal da laje, passar pelo interior da 
armadura da armadura longitudinal contida na seção transversal do pilar ou elemento de apoio 
em lajes de edifícios residenciais ou comerciais. 
 
 
4.7.5. ARMADURA DE FRETAGEM 
 
A armadura de fretagem tem por objetivo combater as tensões de tração introduzidas no 
concreto devido à força de protensão. Essas tensões de tração surgem em decorrência da área 
deduzida de contato entre a ancoragem e o concreto. Maiores detalhes sobre o cálculo dessas 
tensões podem ser obtidos na Referência [13]. 
 
Na prática, para lajes com monocordoalhas engraxadas, recomenda-se adotar no mínimo as 
seguintes armaduras de fretagem: 
 
A) FRETAGEM PARA CONCENTRAÇÃO DE CABOS (FEIXES) 
FACE DA
FÔRMA
> 8
> 8
> 8
> 25
N1
N2
3
4 N2 Ø10
N1
25
h-
6
3h/8
15
N1 Ø10
h/
2
h/
2
S/ ESC.
DIMENSÕES EM
CENTÍMETROS
 
 
 
Figura 4.22: Fretagem para feixes de cabos – ancoragem ativa – sistema com 
monocordoalhas engraxadas 
 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 32 
________________________________________________________________________________ 
Engº. AlexandreEmerick 
S/ ESC.
DIMENSÕES EM
CENTÍMETROS
h-
6
3h/8
15
3
N1
h/
2
h/
2
4 N2 Ø10
N1
> 25
FACE DA
FÔRMA
N2
> 8
> 8
> 8
25
N1 Ø10
 
 
Figura 4.23: Fretagem para feixes de cabos – ancoragem passiva – sistema com 
monocordoalhas engraxadas 
 
B) FERRAGEM DE REFORÇO PARA CABOS ISOLADOS 
S/ ESC.
DIMENSÕES EM
CENTÍMETROS
h/
2
h/
2
FACE DA
FÔRMA
>
3
0
2 N1
BARRAS DE REFORÇO
2 N1 Ø12.5
SUPORTE
 
 
 
Figura 4.24: Ferragem de reforço para cabos isolados – ancoragem ativa – sistema com 
monocordoalhas engraxadas 
 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 33 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
BARRAS DE REFORÇO
2 N1 Ø12.5
S/ ESC.
DIMENSÕES EM
CENTÍMETROS
h/
2
h/
2
SUPORTE
2 N1
FACE DA
FÔRMA
>
3
0
 
 
Figura 4.25: Ferragem de reforço para cabos isolados – ancoragem passiva – sistema com 
monocordoalhas engraxadas 
 
4.8. RECOMENDAÇÕES PARA EXECUÇÃO DE LAJES PROTENDIDAS 
 
Nos próximos itens serão apresentadas algumas recomendações de procedimentos de campo 
para a execução de lajes protendidas. Essas recomendações são baseadas nas referências 
[14] e [7] direcionadas para o sistema não aderente com monocordoalhas engraxadas. 
 
4.8.1. CONTROLE DE DOCUMENTOS 
 
Certos documentos são fundamentais para o sucesso da execução de estruturas protendidas, 
e devem estar à disposição do pessoal responsável pela execução e fiscalização da obra. 
Estes documentos são: 
 
a) Desenho de execução e detalhamentos (projetos). 
b) Documentos com a especificação dos materiais usados. 
c) Certificados dos materiais recebidos. 
d) Certificado de calibragem do equipamento de protensão. 
e) Tabelas de alongamentos obtidos com aprovação do engenheiro responsável, em geral, 
o engenheiro projetista. 
 
4.8.2. MANUSEIO E ARMAZENAMENTO 
 
a) Durante o manuseio dos cabos deverão ser tomados cuidados para não danificar a 
capa de plástico (PEAD) que envolve as cordoalhas, no caso da protensão não 
aderente, ou amassar as bainhas metálicas para o sistema aderente. 
 
b) A “fabricação” dos cabos, ou seja, o corte nos comprimentos do projeto e cravação das 
ancoragens passivas (pré-blocagem), deverá ser feito em local abrigado e limpo. 
Quando possível, deve-se evitar a “fabricação” no local da obra. A fabricação deve ser 
supervisionada por pessoal habilitado. Para o serviço de pré-blocagem dos cabos deve 
ser seguida a seguinte metodologia: 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 34 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
i) Desencapar cerca de 450 mm de cordoalha, de modo a providenciar comprimento 
suficiente de cordoalha para ser segura pela “garra” do macaco. 
ii) Colocar a ancoragem com a cunha encostada manualmente em uma placa de 
reação (peça de pré-blocar). 
iii) As cunhas deverão ser cravadas com o macaco para a força total de protensão 
prevista no projeto, em geral 15 tf para a cordoalha de ∅12,7 mm e 20 tf para a de 
∅15,2mm, caso contrário existirá o risco de escorregamento durante a protensão 
na extremidade ativa. 
 
c) Todos os materiais deverão ser armazenados em local seco e sobre estrados. O local 
escolhido deverá ser convenientemente ventilado para evitar possível corrosão por 
condensação de umidade. Deverá ser evitada a exposição dos materiais a qualquer tipo 
de elemento corrosivo. Se o armazenamento for prolongado, deverão ser usadas 
embalagens especiais que protejam convenientemente os materiais da umidade e 
exposição ao sol. 
 
d) No recebimento dos equipamentos, os macacos nunca deverão ser separados das 
bombas para as quais foram aferidos. 
 
 
4.8.3. MONTAGEM DOS CABOS 
 
a) A montagem dos cabos de protensão deverá ser feita antes da colocação de 
condutores de eletricidade e outros dispositivos mecânicos. O perfil vertical e em planta 
dos cabos deverá ser mantido em prejuízo ao posicionamento de outros dispositivos, 
inclusive armadura passiva, exceto quando o engenheiro responsável pelo projeto 
autorizar o reposicionamento dos cabos. 
 
b) A tolerância de colocação no traçado vertical dos cabos deverá ser de ± 5 mm para 
lajes com espessuras de até 25 cm, podendo ser de ± 10 mm para estruturas com 
espessuras de 25 a 60 cm. 
 
c) A marcação na fôrma de borda deve ser feita de acordo com o detalhamento indicado 
no projeto. Se algum conflito ocorrer, e as placas não puderem ser colocadas conforme 
mostrado nos desenhos, deve ser consultado o engenheiro projetista ou o engenheiro 
responsável pelo serviço de protensão. 
 
d) Os furos na fôrma lateral deverão ter diâmetro de 19 mm para a cordoalha de 12,7mm 
ou 25 mm para a cordoalha de 15,2 mm. A colocação dos nichos de ancoragem nos 
furos da fôrma lateral deve ser feita de forma a garantir a perpendicularidade entre o 
nicho e a fôrma, Figura 4.26. Deverá ser rejeitada qualquer forma de nicho que 
apresente risco de entrada de nata de cimento na cavidade da placa de ancoragem. 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 35 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
CORRETO
PREGO PARA
ERRADO ERRADO
FÔRMA
FIXAR NA FÔRMA
POCKET FORMER
 
e) Na montagem a ligação das cordoalhas aos suportes deverá ser suficientemente firme 
de modo a evitar que se desloquem durante a concretagem. Contudo, a ligação das 
cordoalhas com os suportes não deve causar desvios localizados no seu traçado. 
 
f) Seqüência recomendável para montagem dos cabos: 
 
f.1) Lajes planas – projeto com faixas em uma direção e cabos distribuídos na 
direção transversal: 
#"Coloque todos os cabos das faixas. Use um mínimo de dois cabos sobre cada 
pilar. 
#"Coloque os cabos uniformes. 
 
f.2) Lajes com vigas 
#"Coloque todos os cabos das vigas. 
#"Coloque todos os cabos uniformes. 
#"Coloque os cabos restantes na outra direção. 
 
f.3) Lajes com vigas e nervuras 
#"Coloque os cabos das nervuras sobre as linhas de pilares. 
#"Coloque todos os cabos das vigas. 
#"Coloque os cabos restantes das nervuras. 
 
g) A fiscalização da montagem é uma das operações mais importantes na execução. Essa 
inspeção deverá ser feita por engenheiro especializado. Os pontos mais importantes a 
serem verificados são: 
 
#"Firmeza da fixação das ancoragens passivas. 
#"Comprimento do cabo exposto na ancoragem passiva. 
#"Comprimento dos trechos de transição com tubo plástico suficiente e bem 
vedado de forma a não permitir trechos de contato direto dos cabos com o 
concreto, sobretudo na região das ancoragens ativas. 
#"A cordoalha não deve apresentar pontos de corrosão nas regiões em que se 
encontra desencapada. 
#"Posicionamento em perfil dos cabos dentro das tolerâncias. 
#"Aspecto das curvas entre pontos de transferências, essas devem ser suaves. 
Figura 4.26: Detalhe da fixação dos nichos na fôrma, 
sistema não aderente 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 36 
________________________________________________________________________________Engº. Alexandre Emerick 
#"Alinhamento horizontal dos cabos. 
#"Integridade do capeamento plástico. No caso de danos cuidar dos respectivos 
reparos. 
#"Tipo de armadura de suporte de acordo com o projeto. 
#"Rigidez da ligação das ancoragens ativas na fôrma do nicho. 
#"Colocação da armadura de fretagem. 
#"Verificação da quantidade de cabos conforme o projeto. 
#"Perpendicularidade das cordoalhas na sua ligação com as ancoragens. 
#"Verificação do espaço útil para colocação dos macacos para a operação de 
protensão. 
 
4.8.4. LANÇAMENTO DO CONCRETO 
 
a) O lançamento do concreto deve ser acompanhado por um responsável pelo serviço de 
protensão. Não deverá ser iniciado o lançado antes da inspeção das armaduras. 
 
b) Qualquer aditivo contendo cloretos deve ser formalmente proibido. 
 
c) Se houver algum deslocamento de armadura, essa deverá ser corrigida antes de 
prosseguir com o lançamento do concreto. 
 
d) Deverá ser tomado cuidado especial com a colocação e vibração do concreto na região 
das ancoragens de forma a se evitarem vazios que provoquem concentrações de 
tensões. 
 
e) A altura de lançamento deverá ser tal que evite a segregação e alteração na posição 
das armaduras. 
 
f) Os tubos da bomba de concreto não deverão ser apoiados nas armaduras. 
 
g) Deverá ser evitado o contato de vibradores com as cordoalhas. 
 
h) No caso particular do sistema aderente deve se ter um cuidado adicional com os 
purgadores no momento da concretagem, esse devem estar com as mangueiras 
vedadas e bem fixadas. 
 
 
4.8.5. PROTENSÃO DOS CABOS 
 
a) A fôrma da lateral da laje deve ser removida o mais cedo possível, de modo a permitir a 
fácil remoção das fôrmas de plástico (pocket formers) e a limpeza da cavidade da placa 
de ancoragem. Deve-se tomar cuidado para não danificar as fôrmas plásticas no 
momento da retirada permitindo sua reutilização. 
 
b) Devem ser inspecionadas as cavidades das placas de ancoragem para verificar se 
estão limpas antes da colocação das cunhas. As cunhas devem ser inseridas 
uniformemente dentro da placa de ancoragem, efetuando uma cravação inicial manual. 
Quando estiverem sendo utilizadas cunhas bi-partidas com o macaco de protensão no 
padrão americano com dois cilindros, a posição correta para a colocação das cunhas é 
a indicada na Figura 4.27, para que o pistão de retorno do macaco (batedor de cunhas) 
crave igualmente as cunhas. 
 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 37 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) Deve ser verificada a integridade do concreto nos nichos e em toda as superfícies 
aparentes. Se for detectada qualquer anormalidade como vazios ou porosidade anormal 
a operação de protensão deverá ser suspensa e avisado o pessoal responsável. 
 
d) Deve ser feita uma marca com tinta, preferencialmente spray, a uma distância constante 
da face do concreto, que servirá como referência para medir o alongamento do cabo. 
Esta marca deverá ser efetuada em ambas as extremidades se a cordoalha tiver 
ancoragem ativa em ambos os lados. 
 
e) A protensão não deverá ser efetuada enquanto a resistência do concreto não atingir o 
valor mínimo especificado, comprovado com ensaios de corpos de prova. 
 
f) Uma área apropriada deve ser liberada ou um andaime seguro erguido para os 
trabalhadores que irão executar a protensão. A medição dos alongamentos deverá ser 
feita concomitantemente com a protensão. 
 
g) O manuseio inadequado do equipamento de protensão poderá danificá-lo e causar 
acidentes pessoais. Assim somente pessoal treinado poderá usar esses equipamentos. 
Deverá ser tomado o cuidado para que ninguém permaneça na frente da cordoalha a 
ser tracionada ou entre o macaco e a bomba, de modo a evitar acidente no caso de 
mau funcionamento de qualquer equipamento. 
 
h) O macaco deverá ser posicionado sem carga na cordoalha a ser tracionada 
assentando-se devidamente sobre a ancoragem. Se houver alguma falha no seu 
posicionamento o macaco deverá ser retirado e recolocado. Evitar fazer qualquer ajuste 
depois de introduzida alguma carga. 
 
i) Medir o alongamento obtido desde a face do concreto até a marca na cordoalha feita 
anteriormente. Se a cordoalha é tracionada das duas extremidades, os alongamentos 
deverão ser somados. 
 
j) Os registros dos alongamentos e respectivos desvios percentuais com relação aos 
valores teóricos deverão ser submetidos ao responsável pela obra ou ao projetista 
estrutural para aprovação. As causas mais prováveis de valores de alongamentos 
errados são: 
 
#"Marca a cordoalha com tinta fraca tendo-se apagado, ou ainda, fora do gabarito 
padronizado. 
#"Medição errada, seja devido ao instrumento de medida ou pelo posicionamento 
desse (régua formando ângulo junto ao cabo). 
#"Equipamento fora de aferição. 
CUNHAS 
FIOS DE AÇO 
SEÇÃO TRANSVERSAL 
Figura 4.27: Posição correta de colocação das cunhas bi-partidas 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 38 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
#"Apoio errado do macaco. 
#"Assentamento inadequado das cunhas devido à limpeza das ancoragens. 
#"Atrito excessivo ao longo da cordoalha devido a erros na montagem. 
#"Colocação errada das cunhas. 
#"Variação das propriedades do material, particularmente no módulo de elasticidade 
longitudinal do aço. 
#"Escorregamento na ancoragem passiva devido à falha no procedimento da pré-
blocagem. 
#"Concretagem defeituosa na região da ancoragem, provocando esmagamento ou 
deformação excessiva. 
 
k) Quando o projeto estrutural não apresentar indicação da seqüência para a protensão 
dos cabos, pode-se adotar as seguintes recomendações: 
 
k.1) Lajes planas com cabos uniforme distribuídos em ambas as direções: 
#"protenda 50% dos cabos uniformes de uma direção; 
#"protenda 100% dos cabos uniformes da direção oposta; 
#"protenda os 50% restantes dos cabos uniformes. 
 
k.2) Lajes planas com cabos em faixas e uniforme distribuídos: 
#"protenda todos os cabos uniformes; 
#"protenda todos os cabos em faixas. 
 
k.3) Lajes e vigas: 
#"protenda todos os cabos uniformes da laje; 
#"protenda todos os cabos das vigas; 
#"protenda todos os cabos de combate à retração (se houver). 
 
k.4) Vigas e nervuras: 
#"protenda todos os cabos das nervuras; 
#"protenda todos os cabos das vigas; 
#"protenda todos os cabos de combate à retração (se houver). 
 
 
4.8.6. ACABAMENTO DOS CABOS 
 
a) Após a liberação dos engenheiros, as pontas de cordoalhas do lado das ancoragens 
ativas deverão ser cortadas. O corte deve ser feito com maçarico de oxiacetileno 
tomando o cuidado que a chama não entre em contato com as cunhas, devendo a 
operação de corte ser executada em tempo inferior a 30 segundos. A cordoalha deve 
ser cortada deixando-se uma pequena ponta de 20 mm para fora da cunha, permitindo 
um recobrimento de 25 mm em relação à face do concreto. 
 
b) Após o corte das pontas de cordoalha, a ponta exposta da placa de ancoragem deve 
ser coberta com material preventivo contra a corrosão em geral pintura com epóxi. 
Entretanto, para regiões litorâneas e outros ambientes agressivos deve-se usar um cap 
plástico para proteger a ponta exposta da cordoalha. Os nichos de protensão devem 
então ser preenchidos com a aplicação de graute de baixa retração. A mistura do grautenão deve conter cloretos, sulfatos ou nitratos, para evitar que ocorra corrosão na região 
da ancoragem. 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 39 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
4.8.7. ESCORAMENTOS 
 
A Figura 4.28 mostra uma seqüência para a montagem e retirada do escoramento em lajes 
protendidas. Em geral, recomenda-se que a concretagem dos pavimentos seja feita com pelo 
menos dois ou três níveis de escoramento dependendo das dimensões das lajes. 
 
As datas de aplicação da protensão são definidas pelos projetistas e estão vinculadas à 
resistência do concreto na idade de protensão que deve ser comprovada previamente com 
ensaios de corpos de prova. 
 
Para as lajes usuais têm sido adotada protensão aos 4 dias podendo ser de todos os cabos ou 
apenas uma parcela dependendo do projeto. Cabe ressaltar que o projeto deve apresentar, de 
forma bastante clara, quais serão as idades de protensão, a resistência mínima do concreto e 
os cabos que serão protendidos, caso a protensão seja feita em duas ou mais etapas. Deve ser 
discutido com o projetista também o sistema de escoramento adotado, as datas para a retirada 
das escoras, de preferência especificar o módulo de elasticidade mínimo do concreto e o 
número de pavimentos que devem ser mantidos reescorados, além da forma como deve ser 
feito o reescoramento. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.28: Montagem e desmontagem do escoramento de lajes protendidas 
Fonte: Ref. [18] 
 
ESCORAMENTO EM 
DESMONTAGEM 
LAJE COM 100% DE 
PROTENSÃO
LAJE COM 100% DE 
PROTENSÃO (REESCORAMENTO) 
 
LAJE COM 0 A 50% DE 
PROTENSÃO 
ESCORAMENTO EM 
MONTAGEM 
LAJE A CONCRETAR 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 40 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
5. DIMENSIONAMENTO & VERIFICAÇÕES 
 
Um dos métodos mais adequados para o cálculo de lajes protendidas é o método conhecido 
como: “Método das Cargas Equilibrantes” (Load Balancing, Lin [15]). Esse método consiste em 
calcular qual a força de protensão necessária e o traçado dos cabos em elevação para 
equilibrar uma determinada parcela do carregamento externo atuante. No item 5.3.3 será 
apresenta uma análise um pouco mais detalhada sobre o Load Balancing. 
 
No projeto de lajes protendidas a seqüência básica de cálculo é a seguinte: 
 
#"Determinação da carga a ser equilibrada. 
#"Fixação das excentricidades máximas dos cabos, função do cobrimento adotado. 
#"Determinação da força de protensão necessária. 
#"Cálculo da quantidade de cabos. 
#"Verificação das tensões em serviço (Estados limites de serviço). 
#"Verificação à ruptura. 
 
5.1. DETERMINAÇÃO DA CARGA A SER EQUILIBRADA 
 
Em geral adota-se o critério de que sobre a ação do carregamento quase permanente, a laje 
não apresente flechas. Dessa forma, o carregamento de protensão deve equilibrar as cargas 
permanentes e mais uma parcela das cargas de utilização. 
 
O ACI Committee 423 [2] apresenta o seguinte critério para lajes: 
 
caso em que sejam previstas paredes divisórias leves e sobrecargas, num total de cerca de 2,0 
a 3,0 kN/m2 (200 a 300 kgf/m2): equilibrar o peso próprio + 0,5 kN/m2 (50 kgf/m2); 
caso em que sejam previstas paredes de alvenaria: equilibrar o peso próprio + 2/3 do peso das 
paredes. 
 
Outro critério bastante comum entre os projetistas é equilibrar o peso próprio mais 10% do 
carregamento total. 
 
5.2. FIXAÇÃO DAS EXCENTRICIDADES MÁXIMAS DO CABO 
 
As excentricidades dos cabos devem respeitar as condições de cobrimento mínimo exigidos 
pela NBR 7197, subitem 10.3.5, conforme discutido no item 4.6 desse trabalho. Maiores 
detalhes sobre as implicações da escolha das excentricidades dos cabos são apresentados no 
item 5.3. 
 
5.3. DETERMINAÇÃO DA FORÇA DE PROTENSÃO NECESSÁRIA 
 
Por hipótese, adota-se a força de protensão constante ao longo dos cabos, dessa forma, a 
protensão necessária deve ser calculada para o vão mais desfavorável. Para as estruturas 
usuais pode ser usada a formulação simplificada apresentada a seguir para o cálculo da força 
de protensão: 
 
 
 
 
 
 
 
 
 
 1! 2! 3! 
 f1 f2 f3 
q Q 
Figura 5.1: Cálculo da 
protensão necessária 
 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 41 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
#"Balanço: 
1
1
1
2
1
f
Q
f2
qP !! += (5.1) 
#"Vão interno: 
2
2
2
f8
qP != (5.2) 
#"Vão externo: 
3
2
3
f8
qP != (5.3) 
 
Para efeito de cálculo, em geral costuma-se desprezar o efeito da inversão da curvatura dos 
cabos sobre os pilares adotando-se um perfil simplificado como indicado pela Figura 5.1. 
 
Em lajes com vãos muito fora de proporção, pode ser conveniente não aplicar a mesma força 
de protensão em todos os vãos. Nestes casos, pode-se ter em alguns vãos uma quantidade 
maior de cabos. A Figura 5.2 ilustra essa situação. A presença da ancoragem no vão introduz 
uma carga vertical, de baixo para cima, de intensidade F = Psenα. Para os casos em o ângulo 
α é pequeno, a força F pode ser desprezada no cálculo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 5.2: Efeito de cabos adicionais 
(b) cabos adicionais 
α 
(a) cabos corridos 
(c) carregamento equivalente com os cabos corridos 
F = P senα 
(d) carregamento equivalente com os cabos adicionais 
F 
(e) carregamento equivalente total devido a protensão 
PROJETO E EXECUÇÃO DE LAJES PROTENDIDAS •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• 42 
________________________________________________________________________________ 
Engº. Alexandre Emerick 
Com relação à flecha dada aos cabos nos vãos podem ser adotados basicamente dois 
procedimentos: 
 
#"Adotar para o vão mais crítico um traçado que utiliza as excentricidades máximas (em 
função do cobrimento mínimo), calcular a força de protensão necessária, e para os 
demais vãos, calcular as excentricidades necessárias para obter o mesmo valor de 
protensão. 
 
#"Adotar para todos os vãos a excentricidade máxima e calcular a protensão para o vão 
mais crítico. 
 
A primeira possibilidade implica em um carregamento equilibrado constante em todos os vãos. 
Contudo, alguns vãos podem ter um braço de alavanca reduzido, o que conduz a uma perda 
de resistência da seção na ruptura. 
 
A segunda possibilidade, que é a mais usual por aproveitar mais os cabos, implica em um 
carregamento equilibrado diferente em cada vão. Esse fato não gera maiores problemas desde 
que, calculados os esforços devido a esses carregamentos, as tensões em serviço obedeçam 
aos limites apresentados no item 5.5. 
 
Cabe, no entanto, ressaltar que principalmente em lajes com altura reduzida não faz sentido 
variar muito a excentricidade dos cabos em cada vão, pois além de dificultar a execução, o que 
se tem observado nas obras correntes, sobretudo residenciais e comerciais, que não existe um 
controle rigoroso do posicionamento

Outros materiais