Buscar

Apostila Fisica Experimental B UFSCar

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 103 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 103 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 103 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Universidade Federal de São Carlos 
Centro de Ciências Exatas e de Tecnologia 
Departamento de Física 
Física Experimental B
2017 
 
 
 
ANOTAÇÕES 
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________ 
 
Prova I:____________ 
Prova II:____________ 
Prova Sub:__________ 
 
i 
 
 
INFORMAÇÕES GERAIS 
 
 
A disciplina FÍSICA EXPERIMENTAL B trata dos conceitos de eletricidade e magnetismo associados a 
circuitos elétricos. Durante o andamento do curso, além do estudo dos fenômenos associados ao 
eletromagnetismo, temos como objetivo a introdução aos instrumentos e métodos de medição de 
grandezas elétricas através do ohmímetro, amperímetro, voltímetro e osciloscópio digitais assim como o 
estudo e caracterização dos principais componentes elétricos e eletrônicos: Resistores, Capacitores, 
Indutores, Transformadores, Diodos Semicondutores. 
Nosso programa inclui a realização de práticas suficientes que permitam utilizar estes novos 
conhecimentos na análise de circuitos em Corrente Contínua (CC ou, em inglês, DC – Direct Current) e em 
Corrente Alternada (CA ou, em inglês, AC – Alternated Current). Desta maneira, dividimos o curso em 2 
módulos: 
 
MÓDULO I 
 
 
COMPONENTES 
RESISTIVOS 
EM CORRENTE 
CONTÍNUA (CC) 
 
EXPERIMENTO 1 ASSOCIAÇÃO DE RESISTORES 
EXPERIMENTO 2 A LEI DE OHM - CURVAS CARACTERÍSTICAS DE COMPONENTES 
ELÉTRICOS 
EXPERIMENTO 3 ANÁLISE DE CIRCUITOS 
EXPERIMENTO 4 TRANSFERÊNCIA DE POTÊNCIA 
CORRENTE ALTERNADA 
(CA) 
EXPERIMENTO 5 INTRODUÇÃO À CORRENTE ALTERNADA 
CAPACITÂNCIA EXPERIMENTO 6 CIRCUITO RC – RESPOSTA TEMPORAL 
 
MÓDULO II 
 
CAPACITÂNCIA EXPERIMENTO 7 CIRCUITO RC – RESPOSTA EM FREQUÊNCIA 
INDUTÂNCIA EXPERIMENTO 8 CIRCUITO RL – RESPOSTAS TEMPORAL E EM FREQUÊNCIA 
CIRCUITOS 
RESSONANTES 
EXPERIMENTO 9 CIRCUITO RLC EM SÉRIE – RESPOSTA EM FREQUÊNCIA 
EXPERIMENTO 10 CIRCUITO RLC EM SÉRIE – RESPOSTA TEMPORAL 
APLICAÇÕES EXPERIMENTO 11 RETIFICADOR DE TENSÃO 
 
DESENVOLVIMENTO DAS PRÁTICAS 
 
As regras básicas de um trabalho em laboratório são: 
 Identificar e estabelecer objetivos; 
 Descrever a metodologia utilizada; 
INFORMAÇÕES GERAIS 
 
ii 
 
 Registrar e analisar os resultados obtidos; 
 Apresentar um relatório, completo, claro, objetivo; 
 Registrar em um caderno de laboratório essas informações. Além de possibilitar 
consultas futuras, um caderno organizado serve de guia de estudos para as provas; 
 As informações devem ser organizadas de forma clara e precisa, de modo que outra 
pessoa possa entendê-las e reproduzir o experimento. 
 
Todo laboratório pode ser perigoso! 
 
O respeito mútuo e a seriedade com os colegas e com o equipamento é um dever de todos. 
Ao encerrar cada prática, organize a bancada e desligue todos os aparelhos. 
 
São apresentadas a seguir algumas sugestões que podem ajudar a obter um melhor rendimento para 
assimilar os objetivos das práticas: 
 As práticas devem ser realizadas sempre na sequência proposta no “Procedimento 
Experimental”. Consultas e discussões com o Professor e/ou com os colegas do grupo podem 
evitar falhas e facilitar a obtenção dos resultados; 
 Certificar-se de que todos do grupo conhecem o procedimento experimental pertinente à 
prática a ser realizada; 
 Procurar dividir o trabalho de forma a que todos os componentes do grupo participem e 
entendam cada atividade do experimento, fazendo um rodízio pelas tarefas; 
 Analisar criticamente os resultados de cada estágio da experiência, questionando se eles estão 
coerentes. Caso eles não estejam coerentes, localizar as possíveis fontes de erro; 
 Ler todo o procedimento experimental proposto antes de iniciar as medidas; 
 Observar rigorosamente a sequência de tarefas sugerida no Procedimento Experimental. 
 
AVALIAÇÃO NA DISCIPLINA 
A média final (MF) da disciplina é obtida pela expressão abaixo: 
 
onde MR é a média aritmética simples dos 11 relatórios e MP é a média aritmética simples das 2 Provas. 
Não será adotado o conceito I (incompleto). 
PROVAS 
Após a prática 6 (no final do Módulo I) será realizada a primeira prova e após a prática 11 (no final 
do Módulo II), a segunda prova. Para os alunos que não obtiverem média para aprovação (6,0), será 
oferecida uma prova substitutiva, com o conteúdo completo da disciplina. 
INFORMAÇÕES GERAIS 
 
iii 
 
O assunto para as provas engloba todo o conteúdo trabalhado durante as aulas: estudos teóricos, 
técnicas de cálculo, confecção e leitura de gráficos, anotações do caderno de laboratório, relatórios 
corrigidos, roteiros experimentais e a execução das práticas. Estude detalhadamente a apostila e reveja 
com cuidado os relatórios. 
 
RELATÓRIOS 
Qualquer dúvida a respeito das práticas ou dos relatórios pode ser esclarecida pelo técnico ou pelo 
professor. Não deixe acumular dúvidas. Para elaboração dos relatórios adotaremos algumas normas 
básicas descritas a seguir. 
Repare que é dado um relatório pré-impresso, que pode ser preenchido e entregue com as 
complementações pedidas. Os itens abaixo, na ordem indicada, devem necessariamente constar em todos 
os relatórios. 
1) Folha de rosto: contendo as seguintes informações: Nome da disciplina, Título da experiência, 
Data, Turma, Nome e número do RA dos autores; 
2) Resumo: É uma descrição compacta da experiência, apresentando o que efetivamente foi 
realizado: os objetivos, os métodos empregados, os resultados experimentais mais relevantes 
obtidos, comparados com os da literatura, quando for o caso e as conclusões. (até 10 linhas). 
3) Objetivos: Descrição dos objetivos específicos da experiência. 
4) Fundamentos teóricos: Descrição completa do problema experimental e dos fundamentos teóricos 
envolvidos na interpretação dos resultados obtidos visando sua solução. Nos relatórios dessa 
disciplina esse item não será pedido, exceto quando o professor solicitar. 
5) Material utilizado: mencionar marca, modelo, sensibilidade ou precisão dos aparelhos utilizados. 
6) Procedimento experimental: Descrição detalhada de como as medidas foram feitas assim como os 
esquemas das montagens de forma que um terceiro possa reproduzir seu experimento. Não é uma 
cópia do procedimento constante no roteiro. 
7) Apresentação dos resultados: Dados obtidos, organizadosem forma de tabelas. Cálculos efetuados 
(devem ser colocados em um anexo, podem ser os rascunhos, se estiverem organizados). 
Resultados finais, com as respectivas incertezas e unidades, quando pedidos. Gráficos e suas 
análises, quando for o caso. 
8) Conclusões: Análise e interpretação física dos resultados e respostas às possíveis questões 
existentes nos roteiros das experiências. Discussão do método usado e das prováveis fontes de 
erros. Comparar o(s) resultado(s) obtido(s) com o(s) valor(es) da literatura. 
9) Bibliografia. 
10) Apêndices. Quando necessário, apresente cálculos ou deduções que detalhem o relatório, mas que 
não são imprescindíveis para a compreensão do mesmo. 
DICAS ESSENCIAIS PARA O BOM RELATÓRIO 
A. Ter sempre em mente que o relatório deve ser claro para o leitor e não apenas para o autor. O 
leitor deve ter condições de reproduzir as experiências a partir do seu relatório. 
B. Ler o que foi escrito e verificar se tem sentido. 
INFORMAÇÕES GERAIS 
 
iv 
 
C. Não copiar os dados (introdução, teoria, etc...) do roteiro ou de livros. Procurar entender o 
fenômeno e descrevê-lo com as próprias palavras, fazendo um resumo. Quando possível. 
D. Anexar os cálculos, um rascunho organizado, para uma futura comparação dos resultados. É 
conveniente que isto seja feito em apêndices, no fim do relatório. 
E. Ao analisar um resultado obtido, ser correto. Não se promover ao obter um resultado coerente, 
nem culpar os equipamentos em caso contrário. 
BIBLIOGRAFIA 
Diversos livros podem ser consultados sobre os temas propostos em nossas práticas. A seguir, 
elencamos alguns de uma vasta bibliografia. 
 CUTLER, P. – Analise de circuitos CC, com problemas ilustrativos, McGraw-Hill do Brasil 
 CUTLER, P. – Analise de circuitos CA, com problemas ilustrativos, McGraw-Hill do Brasil 
 EDMINISTER, Joseph A. – Circuitos Elétricos, Colecao Schaum. 
 HALLIDAY, D.; RESNICK, R.; WALKER, J. – Fundamentos de fisica, volumes 3 e 4, LTC. 
 EISBERG, R. M.; LERNER, L. S. – Fisica, Volumes. 3 e 4, McGraw-Hill do Brasil 
 BROPHY, J.J. – Basic Electronic for Scientists, McGraw-Hill 
 O’MALLEY, J. – Análise de Circuitos, McGraw-Hill do Brasil 
 SCOTT, R. E.; ESSIGMANN, M. W. – Linear circuits, Addison-Wesley 
 PURCELL, E. M. – Curso de física de Berkeley Berkeley, volume 2, Edgard . 
 MALMSTADT, H.V.; ENKE, C.G.. Electronics for scientists: principles and experiments for those who 
use instruments, W.A. Benjamin. 
 ARNOLD, R. – Fundamentos de Eletrotécnica, EPU. 
 SEARS, F. W. – Fisica: eletricidade e magnetismo, Livros Tecnicos e Cientificos. 
 
Para a parte de Tratamento de Dados Experimentais: 
 APOSTILA DE FÍSICA EXPERIMENTAL A – DEPARTAMENTO DE FÍSICA - UFSCAR 
 KALASHNIKOV, S. G. – Eletricidad, Grijalbo 
 VUOLO, J. H. – Fundamentos da Teoria de Erros – Ed. Edgard Blücher Ltda. 
 HENNIES, C.E.; GUIMARÃES, W.O.N.; ROVERSI, J. A. – Problemas Experimentais em Física,Editora da 
Unicamp. 
 PRESTON, D.W. – Experiments in Physics, John Wiley & Sons. 
 SQUIRES, G.L. – Practical Physics , Cambridge University Press. 
 BRITO CRUZ, C.H.; FRAGNITO, H.L.; COSTA, I.F.; MELLO, B.A. – Guia para Física Experimental – 
Caderno de Laboratório, Gráficos e Erros – IFGW, Unicamp. 
 
 
INTRODUÇÃO 
 
 
A compreensão dos fenômenos relacionados à natureza elétrica e magnética faz parte da formação 
de cientistas e engenheiros de todas as áreas do conhecimento. Estes fenômenos são fundamentais na 
operação de aparelhos como rádios, televisões, motores elétricos, computadores, celulares e dispositivos 
eletrônicos utilizados na medicina. Podemos inclusive afirmar que o mundo e a vida atual não seriam os 
mesmos sem o controle destas propriedades. Este curso experimental pretende introduzir, auxiliar e 
aperfeiçoar a habilidade de confeccionar e projetar circuitos elétricos simples, explorar e quantificar os 
fenômenos associados ao uso de corrente contínua e alternada em circuitos resistivos e associados a 
capacitores e indutores. 
Neste sentido, partiremos do conceito fundamental explorado no Ensino Médio: a carga elétrica. A 
carga elétrica é uma propriedade intrínseca da matéria que, em determinadas condições, pode 
movimentar-se. Podemos compreender essa movimentação tal como a movimentação da água em uma 
instalação hidráulica. À quantidade de carga em movimento por unidade de tempo chamamos de 
intensidade de corrente elétrica. Estudaremos principalmente os efeitos da corrente elétrica através de 
instrumentos de medidas diversos. 
Experimentalmente, as principais grandezas que exploramos em circuitos elétricos assim como seus 
símbolos, unidades no Sistema Internacional de Unidades e abreviatura são: 
 Intensidade de corrente elétrica (I) – Ampère (A). 
 Diferença de potencial (d.d.p.) ou Tensão Elétrica (U) – Volt (V). 
 Resistência Elétrica (R) – Ohm ( ). 
É conveniente saber expressar as unidades destas grandezas em múltiplos e submúltiplos cujos 
prefixos mais comuns e fatores de conversão estão indicados na tabela abaixo. 
PREFIXO SÍMBOLO FATOR COM RELAÇÃO 
A UNIDADE PADRÃO 
Giga- G 10
9
 
Mega- M 10
6
 
Quilo- k 10
3
 
Mili- m 10
–3
 
Micro- 10
–6
 
Nano- n 10
–9
 
Pico- p 10
–12
 
 
Conforme exposto, associamos a corrente elétrica ao deslocamento de uma quantidade de carga 
por um meio condutor por unidade de tempo. A medida de corrente elétrica é realizada por um 
instrumento denominado amperímetro colocado no caminho da corrente elétrica, ou seja, em série ao 
INTRODUÇÃO 
 
2 
 
circuito. O amperímetro ideal deve ter uma resistência nula de forma a não interferir no circuito em 
medição. 
Uma analogia comum para a compreensão do conceito de ddp ou tensão elétrica é a consideração 
da queda livre de um corpo a partir de uma altura hA até uma altura hB conforme a figura I.1. Em termos de 
potencial gravitacional, a energia potencial é maior em hA e o corpo desloca-se no sentido do menor 
potencial. Podemos pretensiosamente dizer que a natureza procura o movimento na direção de menor 
potencial. Neste sentido, interpretamos a corrente elétrica (carga em movimento) apenas na presença de 
uma diferença de potencial elétrico (ddp). 
 
 
Figura I.1: No caso da queda livre, o movimento do 
corpo de massa m vai do potencial maior UA para o 
potencial menor UB. O mesmo ocorre para as 
cargas elétricas (positivas) em um circuito. Elas se 
locomovem através de um condutor ( o ar é 
isolante!) do potencial U+ para um potencial menor 
U –. 
 
A medida da ddp ou tensão elétrica é realizada através do voltímetro. Como o objetivo deste 
instrumento é medir a diferença entre o potencial de dois pontos, ele está sempre conectado em paralelo 
ao componente a ser analisado. De forma a não interferir no circuito em medição, sua resistência deve 
tender a infinito em um caso ideal. 
Os condutores elétricos possuem uma propriedade denominada resistência, que está associada a 
dificuldade da passagem de corrente elétrica. Em um fio condutor de forma cilíndrica, existe uma 
dependência com o comprimento L deste fio, a área A de sua secção transversal e o material que o 
constitui. Cada material tem uma resistividade característica, de forma que a resistência R do fio é dada 
por: . A resistência elétrica R de um resistor também pode ser obtida através de sua definição 
 , onde U é a tensão ou ddp nos extremos de um resistor e I é a corrente elétrica que o percorre. 
RESISTORES 
Os resistores comerciais utilizados em eletrônica são identificados por 4 faixas de cores em que cada 
cor representa um algarismo, tal como esquematizado na figura I.2. 
A leitura da resistência obedece às regras: 
 as duas primeiras linhas indicamos dois algarismos significativos, digamos A e B; 
 a terceira indica o coeficiente C do fator multiplicativo 10C ; 
 a quarta indica a precisão dada pelo fabricante como segue: 
 branco: 1 % 
 prata: 10 % 
 ouro 5% 
Logo, a resistência é lida formando o número AB ∙ 10C ± tolerância. 
INTRODUÇÃO 
 
3 
 
 
Figura I.2: Esquema da representação do código de cores de um resistor 
comercial e tabela de conversão em algarismos. 
 
 
 
 
 No resistor da figura acima teríamos:A - marrom -1 
 B - preto -0 
 C - vermelho -2 
 D - prata - 10 % 
 
 cor valor 
 Preto 0 
 Marrom 1 
 Vermelho 2 
 Laranja 3 
 Amarelo 4 
 Verde 5 
 Azul 6 
 Violeta 7 
 Cinza 8 
 Branco 9 
Logo, o valor da resistência R é: 
 
 R = AB ∙ 10C ± tolerância 
 
 R = 10 ∙ 102 ± 10% ∙ 1000 
 
 R = (1000 ± 100) Ω 
 
CIRCUITO ELÉTRICO E CAIXA DE MONTAGENS 
Para a maioria dos experimentos de nosso curso, utilizaremos uma caixa de montagens (ou 
protoboard) confeccionado especialmente para esta disciplina (veja figura I.3). A região do lado direito 
contem 9 quadrados vermelhos com 5 conexões em curto. Esta é a região em que montaremos os circuitos 
esquematizados nos roteiros experimentais. Alguns experimentos utilizarão partes pré-montadas já 
anexadas à caixa do lado direito: indutores (experimentos 8-10), potenciômetro (experimento 4), circuito 
RC para tempo longo (experimento 6) e circuito defasador (experimento 5) e acima da parte vermelha 
temos um transformador (experimentos 5 e 11). 
 
A B C D 
INTRODUÇÃO 
 
4 
 
 
Figura I.3: caixa de montagem (protoboard) utilizada em nosso disciplina. 
Todo elemento a ser adicionado a um circuito deve ficar entre dois destes quadrados como 
esquematizado na figura I.4. As cinco conexões em curto (bornes) podem ser entendidas como nós naquele 
ponto em particular. A fonte de tensão ou gerador de funções é externa à caixa e alimentará o circuito 
através da conexão entre os fios vermelho (polo positivo) e preto (polo negativo ou terra quando for o 
caso). 
 
 
Figura I.4: esquema de um circuito com fonte de tensão e três resistores em série e circuito real montado na 
protoboard. 
INSTRUMENTOS DE MEDIDA E MULTÍMETRO DIGITAL 
Nas medidas elétricas, especialmente nos primeiros experimentos, utilizaremos um aparelho 
denominado multímetro. De maneira geral, o multímetro engloba diversos instrumentos de medidas 
acoplados, que são escolhidos através do seletor de funções na posição central (veja figura I.5). Em 
particular, focaremos nos instrumentos amperímetro, voltímetro e ohmímetro. Este último utiliza um 
método de medida que permite a obtenção direta do valor da resistência de um resistor ôhmico. 
Para operá-lo corretamente como amperímetro ou voltímetro devemos selecionar a sua função 
conforme a unidade (A- amperímetro e V – voltímetro), o tipo de tensão (alternada ou contínua) e o fundo 
de escala. Uma vez selecionado, acoplamos: 
 o voltímetro em paralelo ao componente a ser medido; 
 o amperímetro em série ao circuito. 
R1 
R2 
R3 
Potenciômetro 
2 Indutores em série 
Circuito RC 
(tempo longo) 
Circuito defasador 
Transformador 
Região das montagens 
INTRODUÇÃO 
 
5 
 
Caso o amperímetro seja colocado em paralelo, o fato de sua resistência ser pequena fará que a 
corrente no circuito seja desviada para o instrumento de medida. Isto acarretará a queima do 
amperímetro. 
Alguns multímetros possuem outras funções, dentre as quais destacamos as capazes de medir a 
capacitância, a indutância, a frequência e a continuidade. 
 
Figura I.5: esquema geral de um 
multímetro digital e a 
localização do visor e seletor de 
funções e fundo de escala. Os 
cabos para conexão ao circuito 
são do tipo banana e um deles 
deve estar sempre conectado ao 
comum. O outro é conectado à 
entrada dependendo da função 
selecionada. 
 
 
As incertezas instrumentais associadas aos valores medidos com um multímetro digital dependem 
da escala utilizada, e vêm especificados no manual de cada instrumento. Por exemplo, nos multímetros 
digitais da marca Minipa modelos ET-2095/ET-2510, a incerteza na escala de tensão contínua está dado 
por: 
 ± (0.5 % + 2D), 
e isso significa: ± (0.5 % do valor da leitura + duas vezes o dígito menos significativo da escala). 
 Por exemplo, se tivermos uma medida de 2.336 V (na escala até 6.000 V), a incerteza associada 
será: 
 
 0,5 % de 2,336 V = 0,01168 V, 
 duas vezes o dígito menos significativo da escala = 2 x 0,001 V = 0,002 V. 
 
Então, temos, 0,01168 V + 0,002 V = 0,01368 V. 
 Arredondando temos que a medida com sua incerteza é: 
(2,34 ± 0,01) V 
 O mesmo procedimento é aplicado em qualquer outra escala. As tabelas dos multímetros utilizados 
em nosso curso encontram-se no apêndice desta apostila e afixadas no laboratório. 
Comum 
V – Voltímetro 
 – Ohmímetro 
mA – amperímetro 
escala até 200 mA 
A – amperímetro 
escala até 10A 
Visor digital 
Seletor de funções 
e fundos de escala 
INTRODUÇÃO 
 
6 
 
INCERTEZAS NAS MEDIDAS E SUA PROPAGAÇÃO 
Estudamos em Física Experimental A que em toda a medida existe uma incerteza em relação ao seu 
valor verdadeiro devido ao instrumento ou método de medida, ao sujeito que a realiza ou mesmo a fatores 
incontroláveis. Dividimos a avaliação das incertezas em: tipo A (associada à natureza estatística de uma 
série de medidas) e tipo B (avaliada por métodos não estatísticos). 
Nas medidas utilizando-se o multímetro a incerteza do tipo B prevalece. Para a representação 
correta do valor da medida X é necessário determinar antes o valor da incerteza absoluta u(X) com um 
único algarismo significativo. Por exemplo: os números 1; 0,1; 0,001 e 1x103 possuem somente um 
algarismo significativo. 
 De posse desta incerteza, expressaremos o resultado de um medida até a casa “imprecisa” na 
forma X± u(X), conforme exemplo abaixo. 
EXEMPLOS: 
Valores obtidos para uma grandeza Indicação correta dos resultados 
(5530 ± 20)m (553 ± 2) 10 m 
( 2531 ± 182) s (25 ± 2) 10 2 s 
( 23,79 ∙10
9
 ± 2 10
7
) Hz (2379±2)∙10 
7 Hz ou (23,79±0,02)∙10 9 Hz 
 
 Por fim, muitas vezes obtemos grandezas indiretamente através dos resultados de outras medidas. 
Este tipo de medição indireta implica operações matemáticas ou fórmulas nas quais a incerteza padrão 
combinada uC desta grandeza indireta dependerá das incertezas das outras medidas. Se a grandeza indireta 
Z é uma função de N grandezas X1, X2, X3,...., XN : 
Então a incerteza padrão combinada é: 
 
 
Para algumas funções envolvendo operações mais simples, podemos deduzir algumas expressões 
conforme a tabela abaixo. Por simplicidade, adotemos que Z=f(X,Y) 
Função 
Z=f(X,Y) 
Incerteza Padrão Combinada uC(Z) 
 
 
 
 
 
 
 
 
 
 
 
 
7 
 
EXPERIMENTO I 
ASSOCIAÇÃO DE RESISTORES 
 
OBJETIVOS: Estudar o comportamento de resistores de filme de carbono em corrente contínua, suas 
associações em série e em paralelo e as potências dissipadas. 
MATERIAL UTILIZADO: caixa de montagem (protoboard), fonte de alimentação contínua (DC), multímetros, 
resistores e acessórios. 
FUNDAMENTOS TEÓRICOS 
A associação de resistores ou quaisquer outros componentes resistivos em um circuito pode ser 
analisada pelas leis de Kirchhoff, também conhecidas como lei das malhas e lei dos nós. 
Em um circuito com resistores associados em série a tensão total é igual à soma das tensões em 
cada um dos componentes, enquanto que a correnteé a mesma em todos os componentes. Isto nos leva a 
dizer que, em um circuito em série, a resistência equivalente Req é a soma das N resistências: 
 
. 
Do mesmo modo, em uma associação de resistores em paralelo, a corrente total é igual à soma das 
correntes em cada ramo, enquanto que a tensão é a mesma em todos os componentes. Desta maneira, a 
soma dos inversos das resistências é igual ao inverso da resistência equivalente do circuito: 
 
Em circuitos elétricos, é interessante notar que um dos efeitos da corrente elétrica é o 
aquecimento dos resistores. Este fenômeno é denominado de efeito Joule. Costuma-se associar a este 
efeito o termo potência dissipada, pois uma vez que a energia elétrica torna-se calor, não há como revertê-
la ao circuito na forma elétrica novamente. Isto não significa que esta é uma perda de energia, pois muitas 
vezes o intuito é a utilização do calor para outros fins, como por exemplo, nos chuveiros e aquecedores 
elétricos. 
A potência dissipada P por um resistor é dada por: P = U∙ I , onde U é a tensão elétrica nos 
extremos do resistor e I é a corrente que o percorre. No caso de um resistor ôhmico, a razão R = U/ I é 
constante, logo você pode facilmente verificar que podemos expressar a potência dissipada pelas 
expressões: 
P = R ∙I2 ou P = U2 / R 
Neste experimento, estudaremos ambas as associações de resistores e confrontaremos as 
estimativas teóricas e os dados experimentais. Fique atento às incertezas e à forma de realização das 
medidas. Anote os dados e procedimentos em seu caderno. 
 
EXPERIMENTO 1– ASSOCIAÇÃO DE RESISTORES 
 
8 
 
 PROCEDIMENTO EXPERIMENTAL 
A) RESISTORES 
Todas as medidas DEVEM estar associadas com as suas respectivas incertezas. 
A1) Escolha pelo código de cores dois resistores de valores diferentes R1 e R2. Anote seus valores nominais 
considerando o código de cores assim como suas incertezas. 
A2) Configure o multímetro para a função ohmímetro (indicado pela unidade ). Meça os valores das 
respectivas resistências e calcule as incertezas pelas tabelas dos instrumentos dadas no apêndice ou nas 
paredes do próprio laboratório. Repare nas diferenças dependendo do fundo de escala utilizado. 
A3) Como visto nos fundamentos teóricos, o aquecimento do resistor é proporcional ao quadrado da 
corrente elétrica. A partir de um determinado valor de corrente, este resistor pode aquecer até que o 
mesmo se queime. Por este motivo, é importante conhecer a potência máxima que pode ser empregada 
em qualquer componente elétrico. Em nosso caso, os resistores utilizados suportam até 1/8 W. Estime a 
máxima corrente/tensão que pode ser aplicada ao circuito considerando o quanto cada resistor pode 
suportar. Não ultrapasse este valor. 
 
 
Figura 1.1: a) esquema da montagem do circuito em série e b) em paralelo. 
B) CIRCUITO EM SÉRIE 
Monte o circuito da figura 1.1a. Ajuste a tensão da fonte VF entre 4,00V e 6,00V e use o voltímetro para 
calibrar e medir seu valor. 
B.1) Meça, com o amperímetro, o valor da corrente I no circuito. 
B.2) Com o amperímetro conectado ao circuito, meça os valores das tensões na fonte (VF), nos resistores R1 
e R2 (VR1 e VR2) e nos terminais do amperímetro (VAMP). 
 
C) CIRCUITO EM PARALELO 
Usando os mesmos resistores, monte o circuito da figura 1.1b. Calibre a fonte VF com o voltímetro entre 
4,00V e 6,00V. 
C.1) Meça com o amperímetro, os valores das correntes IT, I1 e I2. CONECTE O AMPERÍMETRO SEMPRE EM 
SÉRIE. 
C.2) Desconecte o amperímetro do circuito. Meça os valores das tensões VR1 e VR2. 
a) b) 
EXPERIMENTO 1– ASSOCIAÇÃO DE RESISTORES 
 
9 
 
 
D) ANÁLISE DOS RESULTADOS 
Realizaremos uma análise teórica de cada circuito para comparar com os valores obtidos no experimento. 
Utilize os valores medidos de VF±u(VF), R1±u(R1) e R2±u(R2) medidos pelo multímetro. Leve em conta as 
incertezas e propague-as quando for o caso. 
D.1) Para o circuito em série, calcule VR1, VR2 e I e suas respectivas incertezas. 
D.2) Compare estes valores com os valores medidos e discuta as eventuais discrepâncias. 
D.3) Para o circuito em paralelo, calcule I1, I2 e IT. Não é necessário calcular as incertezas neste caso. 
D.4) Compare estes valores com os valores medidos e discuta as eventuais discrepâncias. 
D.5) Verifique a validade da 1ª e da 2ª leis de Kirchhoff no circuito (a). 
D.6) Verifique a validade da 1ª e da 2ª leis de Kirchhoff no circuito (b). 
D.7) Com base nos resultados, calcule o valor da resistência interna do amperímetro na escala utilizada. 
D.8) Utilizando a corrente e tensão medidas no circuito em série, calcule as resistências Ri±u(Ri). 
D.9) Compare os valores das resistências obtidos com o ohmímetro com os obtidos no item anterior. Qual é 
o método mais preciso para obter as resistências? Explique. 
D.10) Vamos analisar a obtenção da resistência equivalente do ponto de vista experimental. Utilize os 
valores das resistências medidos com o ohmímetro para calcular o valor da resistência equivalente do 
circuito (a). Obtenha também a resistência equivalente usando a expressão: REQ=VF/I. Compare os valores. 
A diferença é comparável ao valor da resistência interna do amperímetro? 
D.11) Calcule as potências dissipadas em cada resistor, assim como a potência total no circuito (a). 
D.12) Compare com os valores obtidos para o circuito (b). Em qual caso há maior consumo de energia? Por 
quê? 
 
 
 
 
 
 
 
 
EXPERIMENTO 1– ASSOCIAÇÃO DE RESISTORES 
 
10 
 
 
 
 
 
 
 
 
 
 
 
 
 
I - 1 
 
 
 EXPERIMENTO 1 
ASSOCIAÇÃO DE RESISTORES 
TURMA: ___ DATA: __/__/____ 
NOMES RA 
 
 
 
 
RESUMO:_______________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ 
MATERIAL UTILIZADO (MARCA/MODELO quando for o caso): 
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ 
A) RESISTORES 
 
 A1) Valores Nominais R1 ± u(R1): ________________ R2 ± u(R2): ________________ 
 A2) Ohmímetro R1 ± u(R1): ________________ R2 ± u(R2): ________________ 
 A3) Corrente máxima suportável I1(max) : _______________ I2 (max): ________________ 
 
B) CIRCUITO EM SÉRIE – Medidas de corrente e tensão 
B1) I ± u(I): __________________ 
B2) VF ± u(VF): ________________ VR1 ± u(VR1): ________________ 
 VR2 ± u(VR2): ________________ VAMP ± u(VAMP): ________________ 
 
C) CIRCUITO EM PARALELO – Medidas de corrente e tensão 
C1) VF ± u(VF): ________________ IT ± u(IT): __________________ 
 I1 ± u(I1): __________________ I2 ± u(I2): __________________ 
C2) VR1 ± u(VR1): ________________ VR2 ± u(VR2): ________________ 
 
Experimento 1 – Física Experimental B 
 
I - 2 
 
D) ANÁLISE DOS RESULTADOS 
 
D1) Estimativa teórica VR1 ± u(VR1): ________________ VR2 ± u(VR2): ________________ 
 I ± u(I): ____________________ 
D2) Comparação ______________________________________________________________________ 
D3) Estimativa teórica I1 : ______________ I2: ________________IT : ________________ 
D4) Comparação ______________________________________________________________________ 
D5) Validade das leis de Kirchhoff para o circuito (a) 
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________ 
D6) Validade das leis de Kirchhoff para o circuito (b) 
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________ 
D7) Resistência interna do amperímetro RAMP ± u(RAMP): ________________ 
D8) Cálculo das resistências através das medidas de corrente e tensão 
 R1 ± u(R1): ____________________ R2 ± u(R2): ________________ 
D9) Comparação entre D8) e A2): ________________________________________________________ 
____________________________________________________________________________________ 
D10) Resistência equivalente 
Ohmímetro REQ ± u(REQ): _____________ Razão entre medidas (VF/I): REQ ± u(REQ): ____________ 
Comparação:_________________________________________________________________________ 
D11) P1 ± u(P1): ___________ P2 ± u(P2): ______________ PT ± u(PT): ________________ 
D12) P1 ± u(P1): ___________ P2 ± u(P2): ______________ PT ± u(PT): ________________ 
COMPARAÇÃO:_______________________________________________________________________
____________________________________________________________________________________ 
CONCLUSÕES 
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________ 
 
EXPERIMENTO 2 
A LEI DE OHM - CURVAS CARACTERÍSTICAS DE 
COMPONENTES ELÉTRICOS 
 
OBJETIVOS: Nesta prática estudaremos o comportamento resistivo de alguns componentes elétricos. 
Para isso serão realizadas medidas de corrente –tensão (I versus V) e confeccionado um gráfico para cada 
componente. 
MATERIAL UTILIZADO: caixa de montagem (protoboard), fonte de alimentação contínua (DC), dois 
multímetros, resistores, lâmpada, diodo e acessórios. 
FUNDAMENTOS TEÓRICOS 
 
O resistor é um componente básico da eletricidade que limita a passagem de corrente em função 
do potencial aplicado. Este tipo de comportamento é descrito pela relação , na qual V é a 
diferença de potencial entre os extremos do componente, I é a corrente que o percorre e R é a sua 
resistência. 
Quando o valor da resistência R é independente do valor da diferença de potencial aplicada, assim 
como de sua polaridade, diz-se que o componente obedece à lei de Ohm e o componente é definido como 
ôhmico. Os componentes que não obedecem à lei de Ohm são denominados não-ôhmicos. A verificação 
deste tipo de comportamento é realizada através da caracterização da corrente que percorre um 
componente em função da tensão aplicada, também denominada curva I-V. 
Neste experimento, caracterizaremos 2 resistores de carbono comerciais, uma lâmpada e um 
diodo. Nos casos em que o componente for identificado como ôhmico, obteremos a resistência através da 
análise de mínimos quadrados dos dados coletados. 
PROCEDIMENTO EXPERIMENTAL 
A) Obtenção das curvas características 
Observe os circuitos da figura 2.1. O resistor RP tem a função de proteger o circuito contra 
sobrecargas de corrente e utilizaremos RP = 150 . Entre os pontos X e Y, será colocado o componente a 
ser caracterizado em cada um dos itens. Utilize o multímetro que possui a escala de 200 A como 
amperímetro. ATENÇÃO À POSIÇÃO DO AMPERÍMETRO NO CIRCUITO!! 
 
 
 (a) (b) (c) 
Figura 2.1: esquema da montagem dos circuitos para medidas I-V – a)resistores comerciais; b) lâmpada; c) diodo. 
 
RL RD 
EXPERIMENTO 2 – A LEI DE OHM - CURVAS CARACTERÍSTICAS DE COMPONENTES ELÉTRICOS 
12 
 
A.1) Curva característica de resistores comerciais de filme de carbono. 
 
Utilize a tabela de código de cores existente no laboratório e identifique os resistores R1 (menor que 
5k ) e R2 (maior que 100k ). 
A.1.1) Confira os valores com um ohmímetro e anote as respectivas incertezas. 
Com o circuito da figura 2.1(a), conecte o resistor R1 nos pontos X e Y do circuito. Para minimizar as 
incertezas associadas às medidas, trabalhe sempre no melhor fundo de escala para o valor medido. 
A.1.2) Varie a tensão da fonte em passos iguais, medindo simultaneamente a tensão VR em XY e a 
corrente I no circuito, para construir uma tabela com os valores de VR e I, medindo no mínimo 10 pontos 
entre -5V e 5V. Coloque a fonte em 0V após as medidas. 
A.1.3) Substitua o resistor R1por R2. Use a escala 200µA e repita (A.1.2). 
A.1.4) Para verificar a influência dos instrumentos de medida, mantenha a tensão aplicada V=5V, e 
anote a corrente lida no amperímetro. A seguir, desconecte o voltímetro do circuito e meça novamente a 
corrente. 
A.1.5) Explique a discrepância entre as duas medidas. Este fato influenciará no cálculo de R2? Efetue os 
cálculos para responder. Coloque a fonte em 0V após as medidas. 
 
B) Curva característica de uma lâmpada. 
Antes de iniciar este item, verifique se a fonte está em 0V. Ligue a lâmpada aos pontos XY do circuito 
e retire o resistor de proteção RP como na figura 2.1(b). 
Obs: Não aplicar mais que 6,0V nas lâmpadas. 
 
B.1) Varie a tensão da fonte em passos iguais, medindo simultaneamente a tensão VL em XY e a 
corrente I no circuito. Construa uma tabela com os pares de valores de (VL, I) com pelo menos 10 pontos 
entre as tensões aplicadas –5V e 5V. Para os pontos: -1V, -3V, -5V, 1V, 3V e 5V, anote as incertezas de VL e 
I. Coloque a fonte em 0V após as medidas. 
 
C) Curva característica de um diodo. 
Insira no circuito o resistor de proteção RP como na figura 2.1(c), substituindo a lâmpada pelo diodo. 
Ajuste inicialmente a tensão na fonte para que a leitura da tensão no diodo seja de 0,5V. 
A corrente que percorre o diodo depende da polarização aplicada, ou seja, você perceberá que para 
um dado valor de tensão positivo haverá corrente, mas se você aplicar o mesmo valor negativo, não haverá 
corrente. Assim, verifique se existe corrente no circuito quando aplica-se 0,5V. Inverta a posição do diodo 
e verifique novamente se existe corrente no circuito (ao fazer isto, você apenas mudou o sinal da tensão 
aplicada). A posição em que o diodo conduz é chamada de polarização direta (positiva) e aquela em que 
ele não conduz é chamada de polarização reversa (negativa). 
C.1) Com o diodo na posição de polarização direta e construa uma tabela com 8 pontos de tensão 
aplicadas ao diodo no intervalo de: 0,1V- 0,8V. Meça a corrente para cada valor de tensão. Não ultrapasse 
0,8V, pois o resistor de proteção ou o diodo poderão se queimar. 
Inverter a polarização da fonte ou o diodo e complete uma tabela no intervalo de 0,1V- 0,8V 
medindo-se 4 pares de tensão e corrente. Acrescente na tabela cinco medidas entre –1V e –5V. Selecione 
a escala de 200µA para estas medidas. 
 
 
EXPERIMENTO 2 – A LEI DE OHM - CURVAS CARACTERÍSTICAS DE COMPONENTES ELÉTRICOS 
13 
 
D) ANÁLISE DOS RESULTADOS 
D.1) Construa, em papel milimetrado, o gráfico de I versus VR (I no eixo vertical e VR no eixo horizontal) 
para os resistores R1 e R2.D.2) Utilizando o Método dos Mínimos Quadrados (MMQ), obtenha os valores de R1 ± u(R1) e R2 ± u(R2). 
Lembre-se que, neste caso, o coeficiente angular a ±u(a) da equação da reta y=a∙x é dado por: 
 
 
e 
 
 
D.3) Compare com os valores obtidos nas leituras diretas com o ohmímetro. Os valores coincidem ou 
existem discrepâncias? Justifique suas respostas. 
D.4) Estes resistores podem ser considerados ôhmicos? Justifique sua resposta. 
D.5) Construa, em papel milimetrado, o gráfico de I versus VL para a lâmpada. 
D.6) Utilizando o gráfico, obtenha os valores da resistência da lâmpada nas tensões de -1V, -3V, -5V, 1V, 
3V e 5V. 
D.7) A lâmpada pode ser considerada um componente ôhmico? Justifique sua resposta. 
D.8) Construir, em papel milimetrado, o gráfico de I versus VD para o diodo. Lembre que na polarização 
reversa, I e VD são negativos e na polarização direta eles são positivos. O eixo horizontal deve ser de -5V a 
1V. 
D.9) O diodo pode ser considerado um componente ôhmico? Justifique sua resposta. 
 
Observação: Todas as tabelas, resultados e gráficos devem ser apresentados no relatório. 
 
EXPERIMENTO 2 – A LEI DE OHM - CURVAS CARACTERÍSTICAS DE COMPONENTES ELÉTRICOS 
14 
 
 
 
 
 
II - 1 
 
 
EXPERIMENTO 2 
A LEI DE OHM - CURVAS CARACTERÍSTICAS DE COMPONENTES ELÉTRICOS 
 TURMA: ___ DATA: __/__/____ 
NOME RA 
 
 
 
 
RESUMO:_______________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ 
MATERIAL UTILIZADO (MARCA/MODELO quando for o caso): 
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ 
A) RESULTADOS: 
A.1.1) Valores das resistências dos resistores medidos com o ohmímetro: 
RP ± u(RP): ________________ 
R1 ± u(R1): ________________ R2 ± u(R2): ________________ 
 
Em folhas à parte, anexadas ao Relatório: 
A.1.2) Tabela de VR x I para o resistor R1. 
A.1.3) Tabela de VR x I para o resistor R2. 
A.1.4) Corrente: 
Com o Voltímetro: I ± u(I): __________________ Sem o Voltímetro: I ± u(I): __________________ 
A.1.5) Explique a discrepância e influência no cálculo de R (inclua os cálculos): 
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ 
Experimento 2 – Física Experimental B 
 
II - 2 
 
Em folhas à parte, anexadas ao Relatório: 
B.1) Tabela de VL x I para a lâmpada. 
C.1) Tabela de VD x I para o diodo. 
D) ANÁLISE DOS RESULTADOS 
D.1) Gráficos de I versus VR para o resistores R1 e R2. 
D.2) Resistências calculadas pelo MMQ: 
 R1 ± u(R1): ________________ R2 ± u(R2): ________________ 
D.3) Comparação entre as medidas com ohmímetro e os valores obtidos pelo MMQ:___________________ 
_______________________________________________________________________________________
_______________________________________________________________________________________ 
D.4) Os resistores são ôhmicos? Justifique._____________________________________________________ 
_______________________________________________________________________________________ 
D.5) Gráfico de I versus VL para a lâmpada. 
D.6) Resistência da lâmpada nas tensões de -1V, -3V, -5V, 1V, 3V e 5V: 
V= –1V RL ± u(RL): ________________ V= 1V RL ± u(RL): ________________ 
V= –3V RL ± u(RL): ________________ V= 3V RL ± u(RL): ________________ 
V= –5V RL ± u(RL): ________________ V= 5V RL ± u(RL): ________________ 
 
D.7) A lâmpada é um componente ôhmico? __________ Justificativa: 
_______________________________________________________________________________________
_______________________________________________________________________________________ 
 
D.8) Gráfico de I versus VD para o diodo. 
 
D.9) O diodo é um componente ôhmico? __________ Justificativa:_________________________________ 
_______________________________________________________________________________________ 
 
CONCLUSÕES 
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ 
 
15 
 
EXPERIMENTO 3 
 ANÁLISE DE CIRCUITOS 
 
OBJETIVOS: Descobrir, através de medidas de corrente e tensão e das leis de Kirchhoff, o esquema do 
circuito elétrico contido dentro de uma caixa preta contendo 07 lâmpadas. 
MATERIAL UTILIZADO: Protoboard com 07 lâmpadas contendo um circuito desconhecido, multímetros, 
fonte de alimentação contínua (DC). 
FUNDAMENTOS TEÓRICOS 
Este experimento consiste em uma atividade de aplicação das leis de Kirchhoff. Antes de começar o 
PROCEDIMENTO EXPERIMENTAL, vamos efetuar os cálculos e a análise do circuito da Figura 3.1. Este tipo 
de exercício contribuirá para a posterior descoberta do esquema do circuito proposto. 
Para simplificar, vamos supor que R1=R2=R3=100 e Vf=15V. 
 
 
Figura 3.1: circuito de exercício para análise. 
 
a) Calcule os valores das tensões e correntes em cada 
um dos resistores (R1, R2 e R3) no circuito da figura 
3.1 
b) Calcule novamente estes valores quando: 
i) R1 é retirado e os demais conduzem; 
ii) R2 é retirado e os demais conduzem; 
iii) Apenas R3 é retirado. O que ocorre? 
 
c) Compare os casos a) e b). 
 
 PROCEDIMENTO EXPERIMENTAL 
 
A) MEDIDAS 
ANOTE A REFERÊNCIA DA CAIXA UTILIZADA POR SEU GRUPO. Será utilizada uma caixa contendo 07 
lâmpadas, esquematizada na figura 3.2. Antes de tudo, cheque se as lâmpadas não estão queimadas 
através do teste de continuidade do multímetro, ou seja, medindo-se a resistência entre os terminais de 
soquete com a função ohmímetro. Chame o professor ou técnico caso não seja possível medir. 
Examinando a caixa, observa-se que ela tem uma entrada para tensão que deverá ser conectada na 
fonte de tensão contínua regulada em 6,0V (Atenção, não aplicar mais de 6,0V). A chave seletora modifica 
o circuito a ser usado. Use primeiro na posição B, que é mais simples e depois na posição A. 
Alinhado com cada lâmpada existe um curto-circuito do tipo ponte, por onde passa a corrente da 
respectiva lâmpada. Os curtos devem permanecer encaixados. Para medir a corrente que passa por uma 
determinada lâmpada, deve-se retirar o curto correspondentea ela e inserir o amperímetro no local. Após 
a medição recolocar o curto. 
EXPERIMENTO 3 – ANÁLISE DE CIRCUITOS 
 
16 
 
A tensão em cada lâmpada é medida diretamente nos terminais do soquete que a sustenta, 
utilizando o voltímetro. Não é preciso anotar os sinais + e nas medidas. Existe uma lâmpada neste 
circuito em que a corrente medida corresponde à corrente total no circuito. 
 
 
Figura 3.2: esquema da caixa de montagem contendo 7 lâmpadas com circuito desconhecido. 
 
Circuito B: 
A.1) Preencha a tabela 1 do formulário. Ela deverá conter a tensão e a corrente em cada uma das 07 
lâmpadas , a corrente total e a tensão de alimentação do circuito. 
A.2) Preencha a tabela 2 do formulário. Esta segunda tabela está organizada como se fosse uma matriz 
7x7. Na 1ª linha estão indicadas as lâmpadas L1, L2, L3, L4,L5, L6 e L 7. À esquerda na 1ª coluna, observamos a 
mesma indicação. Cada uma das linhas desta 1ª coluna indica a lâmpada que será retirada do circuito 
(excluindo-se o curto). 
Não retire as lâmpadas de seus soquetes, mas apenas retire o respectivo conector (curto) e, após as 
observações, recoloque-o no lugar ao desligar a próxima lâmpada. Verifique se todas as lâmpadas estão 
bem apertadas e se acendem. 
Atenção: Uma lâmpada aparentemente apagada não significa que está sem corrente. Quando a lâmpada 
apagar, mesmo assim deve-se medir a corrente! 
Ao retirar-se uma lâmpada (através do curto), anotaremos os resultados das correntes nas outras 
lâmpadas. Por exemplo, para preencher a 4ª coluna (correntes em L3), retire o curto de L3, e insira o 
amperímetro nesta conexão. Retire o curto da lâmpada 1 e meça e anote a corrente. Retire o curto da 
lâmpada 2, coloque-o na posição da lâmpada 1 e meça e anote a corrente em L3 novamente. Repita para as 
outras lâmpadas. O traço indica quando o curto correspondente foi retirado. 
Pela análise das correntes e tensões, combinando-as, pode-se verificar a necessidade de desligar 
duas ou mais lâmpadas simultaneamente, para completar a análise. Não deixe de fazer isso. 
 
Circuito A: 
A.3) Repita o mesmo procedimento anterior depois de mudar a chave seletora da caixa de montagens. 
 
B) RESULTADOS: 
B.1) A partir dos dados obtidos, monte o esquema para a chave na posição B. Os esquemas encontrados 
devem ser apresentados como indicado no modelo de relatório. 
B.2) Verifique para cada malha e cada nó do circuito as leis de Kirchhoff: das tensões e das correntes. Se o 
esquema estiver correto, as duas leis serão válidas. 
B.3) e B.4) Repita os passos B.1 e B.2 para a chave na posição A. 
B.5) No circuito B, qual pólo da fonte (+ ou ) deve ser desligado e religado em outro ponto do circuito 
(assinalar um nó como ponto P) para formar o circuito A? 
Entrada da 
alimentação 
Curtos ou jumpers 
Chave seletora 
de circuito 
Lâmpadas 
 
 
 EXPERIMENTO 3 
ANÁLISE DE CIRCUITOS 
 TURMA: ___ DATA: __/__/____ 
NOME RA 
 
 
 
 
RESUMO:_______________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ 
MATERIAL UTILIZADO (MARCA/MODELO quando for o caso): 
_______________________________________________________________________________________
_______________________________________________________________________________________ 
A) MEDIDAS 
 REFERÊNCIA DA CAIXA: ________ 
Tabela 1 - POSIÇÃO B 
Lâmpada L1 L2 L3 L4 L5 L6 L7 Total 
Tensão (V) 
Corrente 
(mA) 
 
 
 
Tabela 2 - POSIÇÃO B 
Retira  L1 L2 L3 L4 L5 L6 L7 
L1 -------- 
L2 --------- 
L3 -------- 
L4 -------- 
L5 -------- 
L6 -------- 
L7 ------- 
 
Experimento 3 – Física Experimental B 
 
III - 2 
 
 
B.1) Esquema encontrado para o circuito B: 
 
B.2) Verificação das leis de Kirchhoff para o circuito B: 
Tensões___________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
Corrente__________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
_________________________________________________________________________________________________________ 
___________________________________________________________________________________________________________ 
Tabela 3 - POSIÇÃO A 
 
Lâmpada L1 L2 L3 L4 L5 L6 L7 Total 
Tensão (V) 
Corrente 
(mA) 
 
 
Experimento 3 – Física Experimental B 
 
III - 3 
 
 
Tabela 4 - POSIÇÃO A 
Retira  L1 L2 L3 L4 L5 L6 L7 
L1 -------- 
L2 --------- 
L3 -------- 
L4 -------- 
L5 -------- 
L6 -------- 
L7 ------- 
 
B.3) Esquema encontrado para o circuito A: 
 
 
B.4) Verificação das leis de Kirchhoff para o circuito A: 
Tensões___________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
Experimento 3 – Física Experimental B 
 
III - 4 
 
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
Corrente__________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
______________________________________________________________________________________________________________________________________________________________________________________________________________________
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
_________________________________________________________________________________________________________ 
 
B.5) Mudança do ponto de aplicação de um dos pólos da fonte de alimentação, que transforma um circuito 
no outro. Qual é esta modificação? 
___________________________________________________________________________________________________________
___________________________________________________________________________________________________________
_______________________________________________________________________________________________________ 
 
CONCLUSÕES 
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ 
 
 
 
17 
 
 EXPERIMENTO 4 
 TRANSFERÊNCIA DE POTÊNCIA 
 
OBJETIVOS: Estudar as condições de máxima transferência de potência entre uma fonte e um resistor. 
MATERIAL UTILIZADO: fonte de alimentação contínua, multímetros, resistores e potenciômetro. 
FUNDAMENTOS TEÓRICOS 
Na análise de um circuito elétrico, costumamos desprezar as resistências parasitas, tais como a 
resistência dos fios, a resistência dos pontos de contato ou solda e a resistência interna da fonte. 
Entretanto, todas estas resistências podem causar efeitos sérios sobre a transferência de potência de uma 
fonte para um receptor. Trabalharemos, neste experimento, de forma a identificar a condição na qual se dá 
a máxima transferência de potência a um resistor de carga R. 
Em eletricidade, a energia é transferida de uma fonte para um receptor ou resistor de carga, que 
em nosso caso, trataremos como um resistor R. É conveniente trabalhar com a energia transferida por 
unidade de tempo, ou seja, a potência transferida ao resistor R. Chamaremos esta potência de potência útil 
(Pu). As resistências parasitas podem ser tratadas como uma única resistência interna da fonte r, em série 
com o receptor conforme o circuito ilustrado na figura 4.1a. 
a) 
 
b) 
 
Figura 4.1: a) circuito real considerando a resistência elétrica da fonte; b) circuito a ser analisado. 
Se VF é a tensão da fonte, a corrente I neste circuito é dada por: 
(equação 4.1) 
A potência dissipada em R, que denominamos de potência útil (Pu), é dada por: 
 
 (equação 4.2) 
Caso a resistência interna fosse nula, a potência útil para valores muito pequenos de R tenderia a 
infinito. No entanto, devido à resistência interna r≠0, a potência útil é nula tanto para R=0 como para R 
tendendo a infinito. A potência útil tem um valor máximo para um determinado valor de R que pode ser 
obtido através dos testes da derivada primeira e segunda com a equação 4.2. Este valor é R=r e quando 
esta condição é atingida, dizemos que há o casamento entre as impedâncias do circuito. (Verifique!) 
 
 
EXPERIMENTO 4 – TRANSFERÊNCIA DE POTÊNCIA 
 
18 
 
Uma grandeza importante na análise do circuito é o rendimento ou eficiência dado por: 
 
 (equação 4.3) 
onde PT é a potência total dissipada, ou seja, . 
 PROCEDIMENTO EXPERIMENTAL 
A) MEDIDAS 
Como o valor real da resistência interna da fonte é muito pequeno para a realização do 
experimento, montaremos o circuito da figura 4.1b, onde r será formado pela associação em paralelo de 
dois resistores de potência na bancada. Desta maneira, r representará a resistência interna da fonte. O 
voltímetro medirá apenas a tensão no resistor R. O resistor R será um resistor variável (potenciômetro) já 
inserido na placa de montagens. É conveniente testar o potenciômetro com o multímetro e verificar o 
intervalo de resistências girando o seletor antes de inseri-lo no circuito. 
A fonte deve ser ajustada para VF=5V e será mantida fixa durante o experimento. Observe que, com 
o circuito montado, a tensão VR e a corrente I variam conforme se varia o potenciômetro. Mediremos no 
mínimo 30 pontos iniciando-se de VR=0 a VR=5V. 
Com os valores de VR e I, auxiliados por uma tabela ou planilha de cálculos, poderemos obter a 
resistência R, a potência útil Pu, a potência total PT e o rendimento ou eficiência conforme o modelo 
abaixo. 
VR 
(V) 
u(VR) 
(V) 
I 
(mA) 
u(I) 
(mA) 
R 
( ) 
u(R) 
( ) 
Pu 
(mW) 
u(Pu) 
(mW) 
PT 
(mW) 
u(PT) 
(mW) 
u( ) 
 R = 
U/I 
 Pu = 
U∙I 
 PT = 
VF∙I 
 = 
Pu/PT
 
 
RESULTADOS 
B1) Construa em duas folhas de papel milimetrado, de forma a superpor os resultados com a mesma escala 
horizontal para R, os seguintes gráficos: 
Gráfico 1: Gráfico 2: 
PuXR e XR PTXR e PuXR 
 
 
B2) Encontre no gráfico o valor no qual é Pu é máxima. Compare com o valor de r medido anteriormente. 
B3) Prove que a expressão de Pu(R ) possui um máximo em R=r. 
B4) A partir do gráfico, encontre o valor de quando Pu é máximo. 
Discuta os itens B5-B8 constantes no formulário do experimento. 
 
medidas 
PU 
R 
PT, PU 
R 
 
 
IV - 1 
 
 EXPERIMENTO 4 
 TRANSFERÊNCIA DE POTÊNCIA 
 TURMA: ___ DATA: __/__/____ 
NOME RA 
 
 
 
 
RESUMO:_______________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________ _______________________________________ 
 
A) MEDIDAS 
 
Tabela com os valores de VR, I, R, Pu, PT e e suas incertezas. 
 
B) RESULTADOS 
B1) Gráficos superpostos de Pu, PT e em função de R. 
B2) A partir do gráfico, determine o valor de R para o qual Pu é máxima: 
R=______ 
B3) Prove que a expressão de Pu(R ) possui um máximo em R=r. 
 
 
 
 
 
 
 
 
 
 
 
Experimento 4 – Física Experimental B 
 
IV - 2 
 
B4) Compare os valores de B2) e B3): _____________________________________________________ 
____________________________________________________________________________________
____________________________________________________________________________________ 
B5) A partir do gráfico, determine o valor do rendimento quando Pu é máxima. 
=______ 
B6) Demonstre o valor de quando a potência Pu é máxima. 
 
 
 
 
 
B7) Qual a região de valores nos quais o rendimento é máximo? Compare e explique os com os 
resultados obtidos. 
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________ 
B8) Explique os conceitos de potências dissipadas útil e total? 
____________________________________________________________________________________
____________________________________________________________________________________
________________________________________________________________________________________________________________________________________________________________________ 
 
Conclusões 
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________ 
 
 
 
 EXPERIMENTO 5 
 INTRODUÇÃO À CORRENTE ALTERNADA 
 
OBJETIVOS: estudar as formas de tensão CC e CA em circuitos resistivos e analisá-las com o auxílio de um 
osciloscópio 
MATERIAL UTILIZADO: fonte CC, 02 multímetros, 01 gerador de funções, resistores sciloscópio, 
transformador e circuito defasador incluídos na caixa de montagens. 
FUNDAMENTOS TEÓRICOS 
Até este momento, exploramos circuitos elétricos submetidos à tensão contínua (CC), ou seja, a 
ddp aplicada mantinha-se constante ao longo do tempo. Neste experimento, o circuito elétrico será 
submetido a uma tensão que varia ao longo do tempo (CA). A forma desta onda pode ser visualizada 
através de um instrumento denominado osciloscópio. Este instrumento permite visualizar o sinal de tensão 
em um elemento do circuito em função do tempo. Através da visualização desta forma de onda, podemos 
extrair a amplitude ou valor de pico da ddp, seu período (e frequência) e a diferença de fase com relação a 
outro sinal. 
A forma mais comum desta ddp é a função senoidal expressa por: v(t) = V0∙sen( t+ ), onde V0 é 
denominada amplitude ou tensão de pico (também VP), é a frequência angular, relacionada com a 
frequência f ( f) e o período T (f = 1/T) e é a diferença de fase com relação a uma referência. 
V
PP
 
 
V
 (m
V
)
Tempo (s)
V
0
 ou V
P
T
 
 
Figura 5.1: Forma de onda periódica senoidal 
e obtenção gráfica da amplitude V0 ou tensão 
de pico VP, período T e tensão de pico-a-pico 
VPP. O esquema ao lado é semelhante ao 
visualizado na tela do osciloscópio. 
 
1) Potência dissipada em um resistor 
 
Quando uma corrente alternada atravessa um resistor, a potência entregue a este resistor varia 
com o tempo devido à variação da corrente, que pode ser denotada por uma função i(t). Isto 
significa que os valores instantâneos da potência podem ir desde zero até o máximo valor RIp
2. 
Geralmente, estamos interessados na potência média em um ou mais ciclos completos, ou seja, 
P(t) = R∙i2med. Se conhecermos a forma da função i(t), podemos relacionar a potência média com 
a corrente/tensão de pico obtida através da média de i em um período: 
EXPERIMENTO 5 – INTRODUÇÃO À CORRENTE ALTERNADA (AC) 
20 
 
 
Consideremos o caso mais comum em que . A potência média será dada então 
por: 
 
Resolvendo esta integral, chegamos ao resultado da potência dissipada em um resistor submetido a 
uma corrente senoidal: 
 
Definimos o valor quadrático médio ou valor eficaz de Irms (rms – root mean square) de maneira a 
manter a forma para uma corrente senoidal em termos da corrente de pico I0 como 
 
Verifique que a tensão Vrms obedece à mesma relação. 
 
2) Diferença de fase entre dois sinais 
Se introduzirmos um sinal no canal 1 do osciloscópio, digamos , e outro no 
canal 2, , a diferença de fase entre os dois sinais será . Abaixo, descrevemos 
dois métodos de medida desta diferença de fase. 
a) Método das duas ondas 
Neste método, a defasagem de tempo entre os dois sinais é medida diretamente em número de 
divisões da tela do osciloscópio. 
 A seguir, mede-se o período também em divisões. Lembrando-se que um período de uma senóide 
vale 360 graus ou 2 radianos, calcula-se através de uma regra de três simples a defasagem angular entre 
os sinais. 
B2) Método das figuras de Lissajous 
Nas medidas de ângulos de fase entre dois sinais senoidais, os sinais dos dois canais (CH1 e CH2) 
podem ser visualizados de outra maneira. No chamado modo XY do osciloscópio, o eixo horizontal (X) 
acompanha o sinal proveniente do canal 1 e o eixo vertical (Y) o canal 2. A figura resultante da composição 
dos dois sinais é denominada figura de Lissajous. A forma dessa figura depende da diferença de fase entre 
os dois sinais e da relação de frequências entre eles. No caso de frequências iguais, podem aparecer na tela 
uma reta, uma elipse, ou um círculo. A figura 5.2 mostra as figuras de Lissajous para os ângulos de fase de 
0o, 45o e 90o. 
EXPERIMENTO 5 – INTRODUÇÃO À CORRENTE ALTERNADA (AC) 
21 
 
 Figura 5.2 – Visualização da figura de Lissajous 
(esquerda) formada pela composição dos sinais 
alternados no eixo X e Y. Estes sinais estão 
representados abaixo à esquerda (eixo X) e à direita 
(eixo Y), no qual está explicito a diferença e fase 
entre os dois sinais. As figuras são formadas pelos 
pontos da intersecção dos sinais. É a mesma figura 
descrita pela equação da elipse deduzida abaixo. 
 
Eliminando-se o tempo nas equações de cada onda, podemos prever matematicamente a figura 
observada e determinar a diferença de fase através da figura. Adotaremos como notação as letras 
minúsculas para indicar as funções temporais e, as letras maiúsculas para indicar as amplitudes destas 
funções. Consideremos as ondas: 
 . 
Utilizando as relações trigonométricas: 
 e , 
podemos reescrever y como: 
 
 
 
 
 
 
Desenvolvendo, chegamos à equação geral de uma elipse em coordenadas polares: 
 
 
EXPERIMENTO 5 – INTRODUÇÃO À CORRENTE ALTERNADA (AC) 
22 
 
É interessante notar que substituindo os valores de como 0o, 45o e 90o, devemos obter a equação 
das figuras exibidas na figura 5.2. Notemos que é possível obter um ângulo de fase qualquer tomando X=0 
(ou Y=0), através da relação (verifique): 
 
 
caso a figura observada for semelhante à 5.3a. Caso seja semelhante à 5.3b, temos: 
 
 
 
Figura 5.3: obtenção da diferença de fase através da figura de Lissajous – (a) ângulos menores que 90
o
 e (b) maiores 
que 90
o
 (direita). 
 
 
PROCEDIMENTO EXPERIMENTAL 
 
Utilizaremos a partir deste experimento um OSCILOSCÓPIO DIGITAL. A operação de um 
osciloscópio é geralmente similar independentemente do modelo. Cada um dos canais de medida pode 
possuir seu fundo de escala de tensão, mas a escala temporal é a mesma no modo YT em ambos os 
canais. Ao longo do curso, você aprenderá gradualmente a utilizar este aparelho de medida. Fique atento 
às orientações dadas em aula pelo professor responsável. 
 
ATENÇÃO: JAMAIS TENTE MEDIR A TENSÃO DA REDE ELÉTRICA (TOMADA) COM O OSCILOSCÓPIO! 
 
(a) (b) 
EXPERIMENTO 5 – INTRODUÇÃO À CORRENTE ALTERNADA (AC) 
23 
 
MEDIDAS DE TENSÃO 
Montar o circuito da figura 5.4. Mediremos as diferenças de potencial entre os terminais da fonte e os 
resistores R1 e R2 utilizando tanto o multímetro como o osciloscópio. 
 
A.1) Tensão Contínua: 
 
A alimentação do circuito será dada pela fonte de tensão contínua, que deve ser regulada entre 8-12V. 
Afira sua regulagem com o voltímetro. 
A.1.i) Medir a diferença de potencial nos terminais da fonte e resistores: VF, VR1 e VR2 com o multímetro e 
com o osciloscópio. 
A.1.ii) Compare estes valores com relação às medidas com o multímetro e com o osciloscópio. Qual o mais 
preciso? Explique. 
 
 
 
Figura 5.4: circuito utilizado para as medidas 
com tensão contínua e alternada utilizando 
tanto o multímetro quanto o osciloscópio. 
 
A2) Tensão Alternada: 
 
Desligue e retire a fonte CC do circuito e substitua-a pelo transformador. O transformadorencontra-se na caixa de montagem conforme indicado na figura I.2 e deve ser alimentado na rede elétrica 
(primário). Utilize a saída central e uma das externas para alimentar o circuito da figura 5.4. 
 
A.2.i) Medir com o multímetro a d.d.p. entre os dois terminais escolhidos do transformador VF. VR1 e VR2. 
Repita as mesmas medidas utilizando o osciloscópio. Para isto, meça a tensão de pico (zero a pico) de VF, 
VR1 e VR2. 
 
A.2.ii) Meça o período T e calcule a frequência f da tensão do transformador. 
 
A.2.iii) Compare os valores das tensões obtidas nas medidas com o multímetro e com o osciloscópio e 
explique o motivo das discrepâncias. 
 
EXPERIMENTO 5 – INTRODUÇÃO À CORRENTE ALTERNADA (AC) 
24 
 
B) MEDIDAS DE DEFASAGEM: 
 
Desconecte e guarde os componentes utilizados no circuito da figura 5.4. Agora, utilizaremos o 
circuito defasador incluído na caixa de montagens. Ele será alimentado pelo gerador de sinais (ou funções). 
Regule a saída do gerador de sinais através do osciloscópio, no intervalo 3-5V pico-a-pico e frequência 
1,5kHz. Conecte-a na entrada do circuito defasador. 
Utilize os dois canais do osciloscópio (CH1 e CH2) para visualizar na tela as duas senóides no modo normal 
de exibição (YT). A conexão central deve ser usada como terra ou comum. 
 
B.1) Meça a diferença de fase entre as duas senóides para as três posições da chave do circuito defasador, 
pelo método das duas ondas. Esboce um período das figuras observadas no osciloscópio para cada posição. 
 
B.2) Mude a base de tempo do osciloscópio para o modo XY e meça a defasagem para as três posições da 
chave através das Figuras de Lissajous. Esboce um período da figura observada no osciloscópio para cada 
posição. 
 
B.3) Compare os resultados obtidos pelos dois métodos. 
 
 
C) DISCUSSÃO DOS RESULTADOS 
 
C.1) Calcular a potência dissipada em cada resistor usando a expressão: para cada um dos 
valores obtidos com o multímetro e osciloscópio no item A). 
 
C.2)Compare as medidas com os dois instrumentos nas condições de corrente contínua e alternada. Qual o 
motivo da discrepância entre os valores? 
 
C.3) Qual a maneira correta para o cálculo das potências dissipadas através dos valores de tensão medidos 
com o osciloscópio? Use as equações de definição. 
 
 
 
V - 1 
 
 EXPERIMENTO 5 
 INTRODUÇÃO À CORRENTE ALTERNADA 
 TURMA: ___ DATA: __/__/____ 
NOME RA 
 
 
 
 
RESUMO:_______________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ 
 
RESULTADOS 
A) MEDIDAS DE TENSÃO 
A.1) TENSÃO CONTÍNUA 
i) Multímetro: 
VF ± u(VF): ________________ VR1 ± u(VR1): ________________ VR2 ± u(VR2): ________________ 
i) Osciloscópio: 
VF ± u(VF): ________________ VR1 ± u(VR1): ________________ VR2 ± u(VR2): ________________ 
 
ii) Comparação:__________________________________________________________________________ 
_______________________________________________________________________________________ 
_______________________________________________________________________________________ 
A.2) TENSÃO ALTERNADA 
i) Multímetro: 
VF ± u(VF): ________________ VR1 ± u(VR1): ________________ VR2 ± u(VR2): ________________ 
i) Osciloscópio: 
VF ± u(VF): ________________ VR1 ± u(VR1): ________________ VR2 ± u(VR2): ________________ 
 
ii) Período: T ± u(T): ________________ Frequência: f± u(f): ________________ 
 
iii) Comparação:__________________________________________________________________________ 
_______________________________________________________________________________________
_______________________________________________________________________________________ 
 
Experimento 5 – Física Experimental B 
 
V - 2 
 
B) DIFERENÇA DE FASE 
B.1) Método das duas ondas 
Posição 1: 1 ± u(1): _________ Posição 2: 2 ± u(2): ____________ Posição 3: 3 ± u(3): ____________ 
B.2) Método da figura de Lissajous 
Posição 1: 1 ± u(1): _________ Posição 2: 2 ± u(2): ____________ Posição 3: 3 ± u(3): ____________ 
ESBOÇOS DE B.1 e B.2 
 
 
 
 
 
B.3) Comparação:_________________________________________________________________________ 
_______________________________________________________________________________________ 
 
C) POTENCIA DISSIPADA 
C1) Tensão Contínua 
Multímetro P1 ± u(P1): ___________ P2 ± u(P2): ______________ 
Osciloscópio P1 ± u(P1): ___________ P2 ± u(P2): ______________ 
Tensão Alternada 
Multímetro P1 ± u(P1): ___________ P2 ± u(P2): ______________ 
Osciloscópio P1 ± u(P1): ___________ P2 ± u(P2): ______________ 
C.2) Comparação:_________________________________________________________________________ 
_______________________________________________________________________________________
_______________________________________________________________________________________ 
C.3) Correção:____________________________________________________________________________ 
_______________________________________________________________________________________
_______________________________________________________________________________________ 
Conclusões 
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ 
 
 EXPERIMENTO 6 
 CIRCUITO RC – RESPOSTA TEMPORAL 
 
OBJETIVOS: Analisar o comportamento transiente de um circuito RC em série submetido a uma excitação 
contínua. Medir a constante de tempo deste circuito.
MATERIAL UTILIZADO: 01 Fonte CC (Fonte de fem de tensão contínua), 02 multímetros, um gerador de 
funções, resistores, capacitores, osciloscópio, cronômetro. 
FUNDAMENTOS TEÓRICOS 
O capacitor é um componente que armazena energia sob a forma de um campo elétrico. O 
exemplo mais simples consiste de duas placas condutoras paralelas, separadas por um isolante. Sua 
principal característica é a capacidade de armazenar cargas elétricas, positivas em uma placa e negativas na 
outra. Isto acarretará a criação de um campo elétrico entre as placas. A diferença de potencial V entre os 
terminais de um capacitor é diretamente proporcional à carga Q depositada em suas placas, ou seja: 
VCQ 
, (Equação 6.1) 
onde C é a capacitância do capacitor, dependente de fatores tais como a geometria do capacitor e o tipo 
de isolante entra as placas. No Sistema Internacional de unidades (SI), C é medida em FARAD (F). 
O FARAD, entretanto, é uma unidade muito grande. Os capacitores comerciais são medidos em seus 
submúltiplos e os mais comuns são: 
1F = 10-6 F (micro-farad) 
1nF = 10-9 F (nano-farad) 
1pF = 10-12 F (pico-farad) 
Estudaremos neste experimento o circuito formado pela associação em série de um capacitor e um 
resistor, denominado circuito RC em série. 
Visualizamos o circuito RC em série na figura 6.1. Quando a chave S está conectada ao ponto 1, 
temos o processo de carga do capacitor enquanto que, mudando a chave S para a posição

Outros materiais