Buscar

GUSTAÇÃO E OLFAÇÃO

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

PROBLEMA 1 UNIDADE 2 NEURO
OG: possibilita integrar o conhecimento das estruturas responsáveis pela recepção, transmissão e processamento das informações relacionadas ao olfato e à gustação.
Caracterizar as estruturas e funções da língua e do nariz.
A língua é um órgão sensorial e, ao mesmo tempo, muscular. Como órgão sensorial é o responsável pela  detecção do gosto, textura, temperatura e, se tem componentes químicos irritantes no alimento.  Como órgão muscular, é responsável por ajudar a movimentar o alimento dentro da boca, iniciar a deglutição e na articulação das palavras durante a fala.
Gustação (ou paladar) é o nome que damos à sensibilidade gustativa, mediada pelos botões gustativos. São em torno 4000 unidades gustativas espalhadas no interior da boca, principalmente sobre a língua (75%).
Cada botão gustativo é formado de 40 a 60 células sensoriais e mais algumas células de sustentação. As células sensoriais possuem uma porção ciliada (com microvilos) mergulhada em um poro gustativo. A base da célula ciliada faz sinapse com neurônios cujas fibras nervosas enviam as informações para o encéfalo. Os botões gustativos da língua situam-se em estruturas chamadas papilas. Há três tipos de papilas gustativas: fungiformes (2/3 anterior da língua), foliáceas e as circunvaladas (1/3 posterior). Além da língua, há botões gustativos espalhados pela faringe, laringe e porção mais alta do esôfago. É interessante notar que as células sensoriais renovam-se continuamente  (10 a 14 dias).
  
A parte sensível do botão gustativo é a parte apical, a qual contem microvilos, onde se encontra o poro gustativo, região em que a célula gustativa é exposta ao conteúdo oral. 
A maioria dos estímulos gustativos contitui-se de moléculas não-voláteis e hidrofílicas solúveis na saliva. Ex: NaCl, necessário para equilíbrio hidro-eletrolítico; Aminoácidoscomo glutamato, para síntese de proteínas; Açucarescomo glicose, fonte de energia; Ácidoscomo ác.cítricos, indicam palatabilidade de vários alimentos Moléculas de sabor amargocontendo alcalóides, quininos (geralmente detém a ingestão).
Os limiares de concentração para os estímulos gustativos são altos. Diferentes regiões da língua tem diferentes limiares.
Papilas linguais: são elevações do epitélio oral que assumem diversas funções e formas. Existem quatro tipos:
- Papilas filiformes: formato cônica e espalhada por todo o dorso da língua. Tem a função de fricção com epitélio queratinizado e sem botões gustativos.
- Papilas fungiformes: assemelha-se a cogumelos, com base estreita e superfície dilatada e lisa. Possui poucos botões gustativos e estão distribuídas irregularmente entre as papilas filiformes.
- Papilas foliadas: pouco desenvolvidas em humanos. São duas rugas paralelas separadas por um sulco no dorso lateral da língua, apresentando muitos botões gustativos.
- Papilas circunvaladas: são 7 a 12 estruturas grandes, localizadas na região do V da língua. Na depressão que circunda a papila tem as glândulas de Von Ebner (serosas). Esse arranjo possibilita um fluxo de liquido que possibilita a remoção de partículas dos botões. Além dessas glândulas produzirem lípases que impedem a formação de camada hidrópica sobre os botões gustativos. Essa lípase lingual chega ao estômago sendo ativada a digerir 30% dos triglicerídeos.
Nariz: O epitélio olfativo humano contém cerca de 20 milhões de células sensoriais, cada qual com seis pêlos sensoriais. Os receptores olfativos são neurônios genuínos, com receptores próprios que penetram no sistema nervoso central.
A cavidade nasal, que começa a partir das janelas do nariz, está situada em cima da boca e de baixo da caixa craniana. Contém os órgãos do sentido do olfato, e é forrada por um epitélio secretor de muco. Ao circular pela cavidade nasal, o ar se purifica, umedece e esquenta. O órgão olfativo é a mucosa que forra a parte superior das fossas nasais chamada mucosa olfativa ou amarela, para distingui-la da vermelha que cobre a parte inferior.
A mucosa vermelha é dessa cor por ser muito rica em vasos sanguíneos, e contém glândulas que secretam muco, que mantém úmida a região. Se os capilares se dilatam e o muco é secretado em excesso, o nariz fica obstruído, sintoma característico do resfriado.
A mucosa amarela é muito rica em terminações nervosas do nervo olfativo. Os dendritos das células olfativas possuem prolongamentos sensíveis (pelos olfativos), que ficam mergulhados na camada de muco que recobre as cavidades nasais. Os produtos voláteis ou de gases perfumados ou ainda de substâncias lipossolúveis que se desprendem das diversas substâncias, ao serem inspirados, entram nas fossas nasais e se dissolvem no muco que impregna a mucosa amarela, atingindo os prolongamentos sensoriais.
Zona olfativa: a mucosa nasal, ou pituitária, apresenta um epitélio ciliado, como toda a árvore respiratória. A sua parte inferior, porém, mais vizinha das narinas, é atapetada por um epitélio estratificado pavimentoso, continuação da pele, e com terminações do nervo trigêmeo, sensíveis ao tacto, à temperatura e à dor. Na parte superior da mucosa, tanto no septo como na parede externa, há uma pequena zona (250 milímetros quadrados para cada fossa nasal), a zona olfativa, que apresenta certas células nervosas de feitio especial.
Excitantes odoríferos: os excitantes odoríferos são certas substâncias que, por motivos ainda não elucidados, possuem a propriedade de agir sobre as terminações das células olfativas. O que é essencial é que emitam partículas gasosas. Isso, contudo, não quer dizer que todas as substâncias gasosas são odoríferas, pois o hidrogênio e outros gases não apresentam cheiro algum. As partículas gasosas odoríferas são inspiradas juntamente com o ar, e, assim, entram nas fossas nasais pelas narinas; mas também podem nelas penetrar pelas coanas, ou aberturas posteriores das fossas nasais. Isto se dá logo em seguida à deglutição, quando o indivíduo expira; e é neste momento que a sensação gustativa do alimento se associa à sensação olfativa.
O caminho do Odor no Olfato: as partículas odoríferas só conseguem encontrar os cílios no teto da cavidade nasal pelo fato de que quando o ar entra na cavidade nasal ele fica turbilhonando nas conchas nasais, fazendo com que o ar gire entre as conchas passando pelos cílios várias vezes. A sede receptiva do olfato ocupa uma pequena região situada no alto das fossas nasais, a mucosa olfativa, que contém os receptores olfativos. Os prolongamentos (axônios) das células olfativas atravessam a lâmina crivada (isto é, porosa) do osso etmóide e penetram na caixa craniana, formando a via olfativa.
Esta atinge o cérebro, ou, mais precisamente, uma formação nervosa chamada bulbo olfativo. Daí, partindo dos glomérulos olfativos, o impulso nervoso atinge o córtex cerebral, onde a excitação nervosa é, finalmente, transformada em sensação de odor.
Além dos receptores, a mucosa possui células glandulares (glândulas de Bowman) que secretam um muco onde se encontram imersos os cílios olfativos, constituindo a verdadeira superfície olfativa capaz de receber os estímulos.
Para ser pressentida pelo olfato, a substância deve ser volátil, isto é, precisa encontrar-se em estado gasoso, de modo a poder se misturar ao ar inspirado. Mas, para alcançar os cílios dos receptores olfativos, a substância deve ser também solúvel em água. Isso pelo fato de os cílios estarem imersos na secreção das glândulas de Bowman, composta de água em sua maior parte. Além disso, supõe-se que os cílios sejam constituídos, sobretudo, por substâncias gordurosas e que a substância aromática, portanto, deva ser igualmente solúvel em óleos.
Descrever as vias neurológicas sensitivas relacionadas à gustação e a olfação. 
Transmissão dos sinais gustatórios para o SNC.
Impulsos gustatórios, oriundos dos dois terços anteriores da língua, passam inicialmente pelo nervo lingual e, então, pelo ramo corda do tímpano do nervo facial e, por fim, pelo trato solitário, no tronco cerebral. Sensações gustatórias,que se originam das papilas circunvaladas, na parte posterior da língua, e de outras regiões posteriores da boca e garganta, são transmitidas pelo nervo glossofaríngeo para o trato solitário, mas em nível mais posterior. Por fim, poucos sinais gustatórios são transmitidos da base da língua e de outras partes da região faríngea pelo nervo vago para o trato solitário.
Todas as fibras gustatórias fazem sinapse nos núcleos do trato solitário no tronco cerebral. Esses núcleos contêm os neurônios de segunda ordem que se projetam para pequena área do núcleo ventralposteromedial do tálamo, situada ligeiramente mediai às terminações talâmicas das regiões faciais do sistema da coluna dorsal-lemnisco mediai. Do tálamo, neurônios de terceira ordem se projetam para a extremidade inferior do giro pós-central no córtex cerebral parietal, onde eles penetram na fissura silviana e na área insular opercular. Esta área se situa pouco mais lateral, ventral e rostral à área para os sinais táteis da língua, na área somática cerebral. Fica evidente, por essa descrição das vias gustatórias, que elas cursam paralelamente às vias somatossensoriais da língua.
REFLEXOS GUSTATÓRIOS São Integrados no Tronco Cerebral. Do trato solitário, muitos sinais gustatórios são transmitidos pelo interior do tronco cerebral diretamente para os núcleos salivares superior e inferior e essas áreas transmitem os sinais para as glândulas submandibular, sublingual e parótidas, auxiliando no controle da secreção da saliva, durante a ingestão e digestão dos alimentos.
RÁPIDA ADAPTAÇÃO DA GUSTAÇÃO. Todos estão familiarizados com o fato de que as sensações gustatórias se adaptam rapidamente, em geral de modo quase completo, em cerca de um minuto de estimulação contínua. É claro também, pelos estudos eletrofisiológicos das fibras nervosas gustatórias, que a adaptação dos botões gustatórios é responsável por não mais do que metade dessa resposta. Portanto, o grau final de adaptação, que ocorre na sensação gustatória, quase com certeza é de responsabilidade do sistema nervoso central, embora os mecanismos e os locais dessa adaptação não sejam conhecidos. De qualquer maneira, é mecanismo diferente do da maioria dos outros sistemas sensoriais, que se adaptam quase que exclusivamente em nível dos receptores.
A Figura 53-2 mostra as vias neuronais para a transmissão dos sinais gustatórios, da língua e região da faringe, até o sistema nervoso central.
Transmissão dos sinais olfatórios para o SNC.
O bulbo olfatório é mostrado na Figura 53-5. As fibras nervosas olfatórias, que se projetam posteriormente do bulbo são chamadas nervo cranial I ou trato olfatório. Entretanto, na realidade, tanto o trato como o bulbo olfatórios são protuberância anterior do tecido cerebral da base do encéfalo; a dilatação bulbosa, na sua terminação, o bulbo olfatório, fica sobre a placa cribriforme que separa a cavidade encefálica da parte superior da cavidade nasal. A placa cribriforme tem várias perfurações pequenas por meio das quais quantidade de pequenos nervos passa com trajeto ascendente, da membrana olfatória, na cavidade nasal, para entrar no bulbo olfatório, na cavidade craniana. A Figura 53-3 demonstra a estreita relação entre as células olfatórias, na membrana olfatória e o bulbo olfatório, mostrando os curtos axônios das células olfatórias, que terminam em múltiplas estruturas globulares dentro do bulbo olfatório, chamadas glomérulos. Cada bulbo tem muitos milhares desses glomérulos, cada um dos quais recebe aproximadamente 25.000 terminações axônicas, provenientes das células olfatórias. Cada glomérulo também é sítio para terminações dendríticas de cerca de 25 células mitrais grandes e de cerca de 60 células em tufo pequenas, cujos corpos celulares residem no bulbo olfatório superiores ao glomérulo. Esses dendritos fazem sinapses com os neurônios das células olfatórias, e as células mitrais e em tufo enviam axônios pelo trato olfatório, transmitindo os sinais olfatórios para níveis superiores no sistema nervoso central. Algumas pesquisas têm mostrado que glomérulos diferentes respondem a diferentes odores. É possível que glomérulos específicos sejam a verdadeira pista para a análise dos diferentes sinais olfatórios, transmitidos para o sistema nervoso central.
As Vias Olfatórias Muito Antigas, Menos Antigas e Recentes para o Sistema Nervoso Central O trato olfatório chega ao encéfalo na junção anterior entre o mesencéfalo e o prosencéfalo; aí, o trato se divide em duas vias, como mostrado na Figura 53-5, uma passando, em situação mediai, para a área olfatória mediai do tronco cerebral, e a outra passando lateralmente para a área olfatória lateral. A área olfatória mediai representa o sistema olfatório muito antigo, enquanto a área olfatória lateral é a aferência para (1) o sistema olfatório menos antigo e (2) o sistema recente.
O SISTEMA OLFATÓRIO MUITO ANTIGO —A Área Olfatória Mediai. A área olfatória mediai consiste em grupo de núcleos, localizados na porção mediobasal do encéfalo, imediatamente anterior ao hipotálamo. Os mais conspí- cuos são os núcleos septais, localizados na linha média e que se projetam para o hipotálamo e outras partes primitivas do sistema límbico. Essa é a área encefálica mais relacionada ao comportamento básico (Cap. 58). A importância da área olfatória mediai é melhor entendida quando se considera o que acontece com animais que tiveram suas áreas olfatórias laterais removidas, permanecendo somente o sistema mediai. A resposta é que isso dificilmente afeta as respostas mais primitivas da olfação, como lamber os lábios, salivação e outras respostas relacionadas à alimentação, provocadas pelo cheiro de comida ou por impulsos emocionais primitivos associados à olfação. Ao contrário, a remoção das áreas laterais abole os reflexos olfatórios condicionados mais complexos.
O SISTEMA OLFATÓRIO MENOS ANTIGO — A Área Olfatória Lateral. A área olfatória lateral é composta principalmente pelo córtex pré-piriforme, córtex piriforme e pela porção cortical do núcleo amigdaloide. Dessas áreas, as vias neurais atingem quase todas as partes do sistema límbico, especialmente nas porções menos primitivas, como hipocampo, que parece ser o mais importante para o aprendizado relacionado ao gostar ou não de certos alimentos, de acordo com a experiência prévia com esses alimentos. Por exemplo, acredita-se que essa área olfatória lateral e suas muitas conexões com o sistema límbico comportamental fazem com que a pessoa desenvolva aversão absoluta para alimentos que tenham lhe causado náusea e vômito.
Aspecto importante da área olfatória lateral é que muitas vias neurais dela provenientes também se projetam diretamente, para a parte mais antiga do córtex cerebral, chamada paleocórtex, na porção anteromedial do lobo temporal. Essa é a única área de todo o córtex cerebral em que os sinais sensoriais passam diretamente para o córtex, sem passar primeiro pelo tálamo.
A VIA RECENTE. Foi identificada uma via olfatória mais recente que passa pelo tálamo, para o núcleo talâmico dorsomedial e, então, para o quadrante posterolateral do córtex orbitofrontal. Estudos em macacos indicam que esse sistema mais novo provavelmente auxilia na análise consciente do odor. 
RESUMO. Assim, parece ser o sistema olfatório muito antigo o que participa nos reflexos olfatórios básicos, o sistema menos antigo o que fornece o controle automático, mas parcialmente aprendido, da ingestão de alimentos e aversão a alimentos tóxicos e pouco saudáveis, e o sistema recente, que é comparável à maioria dos outros sistemas sensoriais corticais, usado para a percepção e análise conscientes da olfação.
Defina bioeletrogênese (potencial de ação, potencial de repouso e potencial de adaptação).
Bioeletrogênese: Propriedade de certas células (neurônios e células musculares) gerarem e alterar a diferença de potencial elétrico através da membrana.
A membrana plasmática é constituída por uma dupla camada de fosfolipídios, interrompida de espaçoem espaço por moléculas de proteínas. Na face externa, aparecem ramificações de glicídios (polissacarídeos) presos à proteína ou ao lipídio.
A membrana facilita ou dificulta a passagem de certas substâncias (permeabilidade seletiva). Essa passagem se faz de duas maneiras: transporte passivo (sem gasto de energia) e transporte ativo (com gasto de energia). O transporte passivo se refere ao movimento cinético molecular de substâncias com ou sem auxílio de uma proteína carreadora específica. Sem gasto de energia, portanto a favor do gradiente de concentração. São exemplos de transporte passivo: difusão simples e difusão facilitada. Na difusão simples a substância passa através dos poros da membrana, a favor do gradiente de concentração sem gasto de energia. Um exemplo, disto, é a bomba de Na+_ K+. Na difusão facilitada a substância necessita de uma proteína carreadora específica para transportá-la. O transporte ativo é realizado com ajuda de uma proteína carreadora (como a difusão facilitada) só que contra o gradiente de concentração, havendo, portanto, gasto de energia (ATP). Um exemplo, disto, é a Bomba de Na+_ K+ ATPase. 
Transporte ativo e passivo
A Bomba de Na+_ K+ ATPase explica a diferença de concentração desses íons dentro e fora da célula. A concentração de sódio (Na+) fora da célula é maior do que em seu interior, ocorrendo o oposto com o potássio (K+). O esperado é que, por difusão, esses íons se movam até que as concentrações se igualem, dentro e fora da célula. Mas isso não acontece porque as células estão constantemente gastando energia para bombear o Na+ e o K+ em sentido contrário à difusão. Uma das funções dessa bomba é criar uma diferença de cargas elétricas entre os dois lados da membrana, que então fica positiva na face externa e negativa na face interna. Essa diferença de cargas é importante para os fenômenos elétricos que ocorrem nas células nervosas e musculares.
O Potencial de Repouso (PR) devido à predominância de proteínas no interior da célula, o meio intracelular se mantém carregado negativamente em relação ao meio extracelular que se mantém carregado positivamente. Esta diferença de potencial é chamada de PR (-65mV).
Podemos dizer que, a membrana está polarizada e ao ser estimulada, uma pequena região da membrana torna-se permeável ao Na+ (abertura dos canais de sódio). Como a concentração desse íon é maior fora do que dentro da célula, o Na+ atravessa a membrana no sentido do interior da célula. A entrada de Na+ é acompanhada pela pequena saída de K+. Esta inversão vai sendo transmitida ao longo do axônio, e todo esse processo é denominado onda de despolarização. Os impulsos nervosos ou potenciais de ação (PA) são causados pela despolarização da membrana além de um limiar (nível crítico de despolarização que deve ser alcançado para disparar o PA).
 
Os potenciais de ação assemelham-se em tamanho e duração e não diminuem na medida em que são conduzidos ao longo do axônio, ou seja, são de tamanho e duração fixos. A aplicação de uma despolarização crescente a um neurônio não tem qualquer efeito até que se cruze o limiar e, então, surja o potencial de ação. Por esta razão, diz-se que os potenciais de ação obedecem à "lei do tudo ou nada". Imediatamente após a onda de despolarização ter-se propagado ao longo da fibra nervosa, o interior da fibra torna-se carregado positivamente, porque um grande número de íons Na+ se difundiu para o interior. Essa positividade determina a parada do fluxo de íons Na+ para o interior da fibra, fazendo com que a membrana se torne novamente impermeável a esses íons. Por outro lado, a membrana torna-se ainda mais permeável ao K+. Devido à alta concentração desse íon no interior, muitos íons se difundem, então, para o lado de fora. Isso cria novamente eletronegatividade no interior da membrana e positividade no exterior – processo chamado repolarização, pelo qual se restabelece a polaridade normal da membrana. A repolarização normalmente se inicia no mesmo ponto onde se originou a despolarização, propagando-se ao longo da fibra. Após a repolarização, a Na+_ K+ ATPase bombeia novamente os íons Na+ para o exterior da membrana, criando um déficit extra de cargas positivas no interior da membrana, que se torna temporariamente mais negativo do que o normal. A eletronegatividade excessiva no interior atrai íons K+ de volta para o interior (por difusão e por transporte ativo). Assim, o processo traz as diferenças iônicas de volta aos seus níveis originais.
 
Para transferir informação de um ponto para outro no sistema nervoso, é necessário que o PA, uma vez gerado, seja conduzido ao longo do axônio. Um PA iniciado em uma extremidade de um axônio apenas se propaga em uma direção, não retornando pelo caminho já percorrido. Uma vez que a membrana axonal é excitável ao longo de toda sua extensão, o PA se propagará sem diminuir. A velocidade com a qual o potencial de ação se propaga ao longo do axônio depende de quão longe a despolarização é projetada à frente do PA, o que, por sua vez, depende de certas características físicas do axônio: a velocidade de condução do potencial de ação aumenta com o diâmetro axonal. Axônios com menor diâmetro necessitam de uma maior despolarização para alcançar o limiar do potencial de ação. Nesses axônios, a presença de bainha de mielina acelera a velocidade da condução do impulso nervoso. Nas regiões dos nódulos de Ranvier, a onda de despolarização "salta" diretamente de um nódulo para outro, não acontecendo em toda a extensão da região mielinizada (a mielina é isolante). Ocorre um movimento saltatório, e via de conseqüência, um aumento da velocidade do impulso nervoso. O percurso do impulso nervoso no neurônio é sempre no sentido dendrito ? corpo celular ? axônio.
Sinapse: 
Os sinais levados de um neurônio a outro em junções especializadas chamamos de sinapse. A transmissão mais frequente é o terminal axonal de um neurônio com os dendritos de outro neurônio.
As estruturas envolvidas na sinapse são:
 
►Terminal pré–sináptico: Apresenta-se na forma de botão, contém numerosas vesículas com substâncias neurotransmissoras. Ex: Acetilcolina e Noradrenalina.
►Fenda sináptica: Situada entre o terminal pré-sináptico e a membrana pós–sináptica.
►Membrana pós-sináptica: Nestas existem receptores específicos de neurotransmisores.
 
Um terminal pré-sináptico está separado por uma fenda sináptica e contém mitocôndrias e vesículas preenchidas com neurotransmissor, um medidor químico que altera a permeabilidade da membrana. A chegada do impulso nervoso ao terminal pré-sináptico faz com que o Cálcio entre na célula fazendo com que as vesículas sinápticas se unam ao terminal pré-sinático (exocitose), levando a descarga do neurotransmissor para dentro da fenda sináptica. As vesículas dos botões pré-sinápticos que contém milhões de neurotransmissores podem exercer ações inibidoras ou excitadoras na membrana pós-sináptica. Além disso, não é raro que a ação de um determinado neurotransmissor seja excitadora em algumas sinapses e inibidora em outras.
 
Quando um determinado neurotransmissor passa por difusão através da sinapse, ele é ligado a uma proteína receptora presente na membrana pós-sináptica e desta combinação resulta a abertura de canais iônicos. Quando se abrem canais de Na+, este penetra na porção pós-sináptica e determina uma despolarizacão. Esta despolarização caracteriza o potencial Pós-Sináptico Excitatório (PPSE), que é um potencial local. A despolarização aproxima o potencial da membrana do seu limiar que poderá acompanhar o Potencial de Ação (PA). Pode ocorre também que o neurotransmissor aumente a permeabilidade do K+. Este sairá do interior da célula e fará com que este se torne mais negativo determinando uma hiperpolarização da membrana.
A hiperpolarização caracteriza um Potencial Pós-Sináptico Inibitório (PPSI) que, como o excitatório, também é potencial local. A hiperpolarização afasta a membrana de seu limiar diminuindo portanto a excitabilidade.
 
Sinapse na junção neuromuscular:
É um tipode junção especializada, em que um neurônio faz contato com a membrana da célula muscular. Apresenta os três elementos estruturais, sendo que:
►O terminal pré-sináptico é o axônio de um neurônio;
►A membrana pós-sináptica pertence à célula muscular;
►A membrana pós-sináptica apresenta dobras que aumentam a área da fenda sináptica. Esse mecanismo faz com que o neurotransmissor (ACh) fique mais tempo na fenda;
Neurotransmissores:
Os neurotransmissores são substâncias químicas que permitem que os sinal passe de um neurônio para o outra célula. Há diversos grupos de moléculas neurotransmissoras. Abaixo a lista de alguns e seus efeitos:
 
► Endorfinas
Bloqueio da dor, ação analgésca.
 
► Serotonina
Regula o humor, sono, atividade sexual, apetite, ritmo circadiano, as funções neuroendócrinas, temperatura corporal, sensibilidade à dor, atividade motora e funções cognitivas. Atualmente vem sendo relacionada aos Transtornos de Humor. A maioria dos medicamentos antidepressivos agem produzindo um aumento desse substância na fenda sináptica.
 
► GABA
Conhecido como ácido gama-aminobutirico, é o principal neurotransmissor inibitório do SNC. Está envolvido com os processos de ansiedade. Seu efeito ansiolítico seria fruto de alterações provocadas em diversas estruturas do Sistema Límbico. A inibição ou o bloqueio resulta em estimulação intensa, gerando convulsões.
 
► Dopamina
Neurotransmissor inibitório derivado da tirosina. Produz sensações de satisfação e prazer. Os neurônios dopaminérgicos podem ser divididos em três subgruposcom diferentes funções. O primeiro grupo regula os movimentos: uma deficiência provoca a doença de Parkinson. O segundo grupo, o mesolímbico, funciona na regulação do comportamento emocional. O terceiro grupo, o mesocortical, projeta-se apenas para o córtex pré-frontal. Esta área do córtex está envolvida em várias funções cognitivas, memória, planejamento de comportamento e pensamento abstrato, assim como em aspectos emocionais, especialmente relacionados com o stress. Distúrbios nos dois últimos sistemas estão associados com a esquizofrenia.
 
► Glutamato
Principal neurotransmissor estimulador do SNC. A sua ativação aumenta a sensibilidade aos estímulos dos outros neurotransmissores.
 
► Acetilcolina
Neurotransmissor “estrela” da memória e do pensamento. Está particularmente concentrado no hipocampo. Também ajuda a executar muitas funções fora do cérebro. Ex. Ajuda as células nervosas nos músculos a ativar a ação motora.
 
► Noradrenalina
Torna o cérebro mais alerta. É vital para transferir informações da memória temporária do hipocampo para áreas permanentes no córtex. Quantidade excessiva pode impedir o armazenamento de novas memórias e interferir no raciocínio e nas tomadas de decisões. Ajuda a controlar o sono, porém o excesso gera a insônia. Ajuda a equilibrar os impulsos sexuais (se diminuir o neurotransmissor, diminui o libido). Está envolvida também no SNA.
http://bio-neuro-psicologia.usuarios.rdc.puc-rio.br/bioeletrog%C3%AAnese-e-sinapse.html
Potencial de adaptação: 
Logo após a aplicação de um estímulo elétrico constante para a despolarização da célula nervosa, existe uma rápida queda (~0,1s) na frequência de despolarização, denominada de adaptação inicial. Após esse evento, a frequência começa a decair lentamente de forma exponencial, caracterizando a adaptação tardia. A adaptação inicial do motoneurônio pode ocorrer graças ao aumento da condutância do K⁺, enquanto a adaptação tardia parece estar ligada à inativação dos canais iônicos de Na⁺. O bloqueio bioquímico da bomba de Na⁺-K⁺ATPase não influencia na adaptação do motoneurônio em qualquer fase .
Os corpúsculos de Paccini são exemplos de receptores de rápida adaptação, as terminações de Ruffini são de adaptação lenta, assim como os nociceptores , de temperatura e adaptação em receptores olfatórios, que são ativados por meio de substâncias químicas. A recuperação da adaptação (desadaptação) corresponde ao intervalo de tempo após a adaptação no qual a célula não sofre qualquer estímulo e retorna ao seu limiar de despolarização original. 
ARTIGOPotencial de ação: do estímulo à adaptação neural, Eddy Krueger-Beck.
Definir olfação e gustação.
Gustação (ou paladar) é o nome que damos à sensibilidade gustativa, mediada pelos botões gustativos. Sentido que detecta e analisa substancias químicas cuja fonte (alimento) está em contato direto com os receptores sensoriais; gerando respostas fisiológicas individuais de acordo com a interpretação de cada pessoa.
Olfação é habilidade de reconhecer e discriminar um amplo número de moléculas do ar com grande precisão e sensibilidade, permitindo um monitoramento contínuo de moléculas voláteis dos arredores, incluindo sinais químicos que identificam territórios, alimento, predadores, crias e parceiros. 
https://edisciplinas.usp.br/pluginfile.php/3377275/mod_resource/content/1/Gusta%C3%A7%C3%A3o%20e%20Olfa%C3%A7%C3%A3o_EC2017.pdf 
Identificar as causas para alterações dos sentidos da olfação e da gustação.
Diversas entidades nosológicas cursam com alterações olfatórias e gustativas, podendo ser congênitas ou adquiridas, sendo as mais citadas na literatura: doença nasal e sinusal obstrutiva, infecções de vias aéreas superiores, traumatismo cranioencefálico, envelhecimento, causa congênita, exposição a tóxicos, algumas medicações, neoplasias nasais ou intracranianas, alterações psiquiátricas, doenças neurológicas, iatrogenia e idiopática. As anormalidades do paladar e do olfato comprovaram ser um tema bem mais complexo do que se reconhecia anteriormente e também estão presentes em situações como deficiência de vitaminas (B6, B12, A) e de zinco ou de cobre, tabagismo, gravidez, anestesia geral, traumas dentários, arrinencefalia e desvios do septo nasal (12-18). 
A obstrução é a causa mais comum de distúrbio olfatório. Se a obstrução é total, o indivíduo apresenta anosmia (moléculas odoríferas não atingem o epitélio olfatório), liberando a obstrução a habilidade olfatória retorna. A porção ântero-medial da parte inferior do corneto médio funciona como reguladora do fluxo aéreo para a região olfatória. Obstrução nesta área crítica por edema da mucosa, pólipos, tumores, deformidades ósseas, cirurgias entre corneto médio e septo nasal ou trauma podem diminuir ou eliminar a habilidade olfatória. Isto pode acontecer mesmo quando a cavidade inferior parece normal. Podem ocorrer em qualquer faixa etária, com predominância em mulheres. Os pacientes geralmente referem perda progressiva e gradual da olfação, flutuante, podendo ocorrer perdas agudas com infecções agudas e exposição a alérgenos (12,13). 
As infecções de vias aéreas superiores também constituem uma das principais causas de perda olfatória. A maioria em indivíduos entre 40 e 60 anos de idade, dos quais 70-80% são mulheres, geralmente por obstrução do fluxo aéreo e se resolve em um período de um a três dias. Em alguns poucos casos a olfação não retorna ao normal. À biópsia, pode haver metaplasia, com diminuição ou ausência de receptores olfatórios e com substituição por epitélio respiratório em alguns casos. A perda olfatória é proporcional à perda neuronal e o prognóstico é pobre. Um terço recupera-se espontaneamente com ou sem tratamento, ocorrendo mais frequentemente hiposmia que anosmia. Raramente ocorre fantosmia (percepção de um odor que não é real) (16, 17, 19). 
Traumatismos cranioencefálicos podem ocasionar danos aos nervos olfativos na lâmina cribiforme devido as forças de golpe ou contragolpe. Em adultos a perda da olfação é de 5-10%, já em crianças é de 1,3-3,2%. É mais prevalente no sexo masculino, com cerca de 60% dos casos. Em geral o grau de perda está associado à severidade do trauma, o que não significa dizer que um trauma mínimo não possa estar associado à anosmia. O início da perda geralmente é imediato, mas alguns pacientes só percebem após alguns meses. Parosmias são comuns. Amnésia nas primeiras 24 horas está associada à anosmia permanente em mais de 90% dos casos. Quando hápreservação parcial da olfação tem-se observado diminuição da discriminação dos odores (17). 
A causa exata ainda não foi estabelecida. A teoria mais popular presume uma lesão dos nervos quando estes deixam o topo da lâmina cribiforme. A lesão pode ser no córtex frontal, pois alguns pacientes além de anosmia pós TCE também apresentam alterações psicossociais. A tomografia computadorizada é geralmente normal, podendo em alguns casos revelar fratura da lâmina cribiforme. A hiposmia ocorre mais em lesão frontal; a anosmia em lesão occipital, cinco vezes mais frequente. Cerca de 8 a 39% dos pacientes recuperam a função, dos quais 75% nos três primeiros meses (17). 
O limiar olfatório diminui com a idade (1% ao ano), sendo esse efeito menor nas mulheres que nos homens. Os idosos têm uma taxa maior de declínio da olfação para uns odores do que para outros, com diminuição da habilidade para discriminar o sabor na comida do cotidiano. Esta diminuição olfatória se deve ao processo fisiológico de envelhecimento (presbiosmia), ocorrendo na sexta ou sétima década, ou às doenças de Alzheimer e Parkinson (18). 
A disfunção olfatória é um dos sinais mais prevalentes na Doença de Parkinson. Observam-se alterações de discriminação, identificação e limiar olfatório. A hiposmia é um dos sinais que pode anteceder os sintomas motores da patologia. Em uma pesquisa recente foi encontrado que 80% dos pacientes com esta patologia apresentaram anormalidade da identificação olfatória, comparados aos controles (20- 23). 
Na anosmia congênita, a possível fisiopatologia seria a degeneração ou atrofia do epitélio e/ou bulbo olfatório no processo de desenvolvimento. Geralmente é um achado isolado, mas há anosmia familiar associada a calvície prematura e cefaleia vascular, sendo hereditária, dominante, com penetrância variável. A Síndrome de Kallmann é a causa mais comum de disfunção olfatória congênita, 1/10000- 50000), com anosmia (agenesia do bulbo olfatório) e hipogonadismo hipogonadotrófico, além de anormalidades renais, criptorquidismo, surdez, deformidades médiofaciais e diabetes. É causada por um defeito na migração dos neurônios que produzem o hormônio de liberação de gonadotrofinas (GnRH) e dos neurônios que formam os nervos olfatórios. A anosmia está relacionada à deficiência de GnRH porque a migração e diferenciação dos neurônios secretores de GnRH dependem da formação do bulbo olfatório. Os indivíduos acometidos não entendem o conceito de odor, portanto não sentem a sua falta. Pelo fato de geralmente ainda persistirem alguns quimiorreceptores intactos, odores acres, irritantes e gustação podem ser detectados normalmente (24,25).
 Quando há exposição do sistema olfatório a substâncias tóxicas, a perda olfatória pode ocorrer em dias ou anos, podendo ser reversível ou permanente. O grau de lesão parece estar relacionado ao tempo de exposição e à concentração e toxicidade do agente, comumente associado ao tabaco. São exemplos de drogas que afetam a olfação: anfetaminas, antibióticos (aminoglicosídeos, tetraciclina), cocaína, derivados de petróleo, dióxido sulfú- rico, etanol, formaldeido, metais pesados, metanol, monóxido de carbono, nicotina, solventes orgânicos, sulfato de zinco (tópico) e tetracloreto de carbono (12, 13). 
Os medicamentos costumam afetar mais a gustação que a olfação. Na maior parte das vezes a olfação retorna com a suspensão da medicação, mas existem relatos de lesão permanente. Drogas que afetam a composição do muco podem alterar a olfação, como os beta-adrenérgicos, colinérgicos e agentes peptidérgicos (12, 13).
 Os processos neoplásicos também merecem atenção, destacando-se os de localização intranasal, como pólipos nasais, papiloma, carcinoma epidermoide, adenoma, estesioneuroblastoma (tumor neuroolfativo raro), pois bloqueiam o fluxo aéreo para fenda olfatória ou por destruição local do aparelho olfatório (26). 
As neoplasias intracranianas que envolvem a superfície orbital do cérebro podem causar anosmia unilateral. Meningiomas da crista esfenoidal ou do sulco olfatório e gliomas do lobo frontal podem lesar os bulbos ou os tratos olfatórios. Anosmia pode também ocorrer em associação a outros tumores do lobo frontal e a lesões parasselares e hipofisárias. Em meningiomas do sulco olfatório ou da área da lâmina cribiforme, anosmia unilateral ocorre precocemente, evoluindo para anosmia bilateral, acompanhada com frequência de neuropatia óptica. A síndrome de Foster Kennedy consiste em anosmia acompanhada de atrofia óptica ipsilateral unilateral e papiledema contralateral, oriunda classicamente de um grande tumor envolvendo a região orbitofrontal (26). 
Certas patologias psiquiátricas cursam com distúrbios da olfação. A esquizofrenia pode cursar com alucinações olfatórias em 15% a 30% das vezes. Pacientes com depressão maior podem apresentar mesmo sintoma, mas geralmente possui habilidade olfatória preservada. A fantosmia pode se apresentar como aura em pacientes com epilepsia do lobo temporal (15,18). 
A iatrogenia não pode deixar de ser mencionada como fator etiológico relevante. Em procedimentos cirúrgicos pode ocorrer dano neural e estreitamento do fluxo nasal por alterações anatômicas ou tecido cicatricial. Alterações no olfato e no paladar ocorrem após laringectomia total, pois o paciente passa a respirar diretamente pela traqueia e o ar não passa através do nariz para os órgãos olfativos terminais. Como o olfato e o paladar estão intimamente ligados, as sensações de paladar são alteradas. Mas, com o passar do tempo, o paciente comumente se acomoda a este problema, o que pode justificar o fato de nem todos os pacientes referirem alteração olfatória (27- 29). 
Em cirurgias da fossa anterior e pós neurocirurgia transesfenoidal pode ocorrer lesão de lâmina cribiforme. A radioterapia também está inclusa no conjunto de condições que levam a disfunções do olfato e paladar, assim como as de causas idiopáticas, geralmente em adultos jovens, na meia idade e saudáveis (12, 26). 
Na Hanseníase, as alterações de olfato podem ser encontradas em qualquer forma clínica da doença. Além disso, é uma queixa muito comum nessa patologia e pode ser encontrada mais frequentemente na forma lepromatosa, sendo referido que este acometimento estivesse relacionado com a severidade das alterações clínicas na mucosa nasal. Em estudo realizado em 2005, os achados de alterações de olfato foram encontrados em quatro formas diferentes de hanseníase, porém em pacientes em estágio avançado ou em reação. Encontrou-se hiposmia em 7,5% dos pacientes, cacosmia em 2,3% e anosmia em 0,6% (16, 30, 31). Poucos casos de distúrbio do olfato têm origem neurológica. Esclerose múltipla pode causar alterações do olfato devido a envolvimento das vias olfatórias. Condições neurológicas diversas que causam anosmia incluem hidrocefalia, acometimento da artéria cerebral anterior próximo à sua origem, meningite basilar, abscessos do lobo frontal e doença de Refsum. Lobectomias temporais que incluam o córtex piriforme podem causar déficits na identificação de odores (26). 
A hiperosmia geralmente é funcional, mas pode ocorrer em certos tipos de abuso de drogas e enxaqueca. Alucinações olfativas se devem mais frequentemente a psicose, mas podem decorrer de uma lesão do sistema olfativo central, geralmente neoplásica ou vascular, ou como manifestação de crise convulsiva. As assim chamadas crises uncinadas são crises parciais complexas ou do lobo temporal precedidas de uma aura olfativa ou gustativa, geralmente desagradável, e frequentemente acompanhadas, enquanto o paciente perde a consciência, de movimentos de estalar os lábios e ou de mastigação. Esses ataques são tipicamente oriundos de um foco convulsivo envolvendo estruturas do lobo temporal medial (26). 
O paladar pode ser afetado em casos de lesões do nervo facial proximais à saída da corda timpânica. Já no caso de distúrbios gustativos permanentes, estes podem sobrevir após paralisia facial de Bell. Disfunções do paladar e do olfato frequentemente ocorrem juntas, pois as anormalidadesdo paladar se devem geralmente a disfunção olfativa. Disgeusia pode ser um efeito direto ou indireto de condições malignas. Hipergeusia e parageusias podem ocorrer em psicoses e no transtorno de conversão (32). 
Alucinações gustativas podem ocorrer em crises parciais complexas e nos tumores envolvendo o uncus ou o opérculo parietal e frequentemente ocorrem em conjunto com as alucinações olfatórias. Pacientes idosos desenvolvem por vezes disgeusia de origem obscura que pode ocasionar anorexia e perda de peso. A sensibilidade gustativa aumentada ocorre em pacientes com doença de Addison, deficiência da hipófise e fibrose cística. Lesões do nervo lingual podem causar perda do paladar juntamente com perda da sensação exteroceptiva do lado da língua afetado (32).
ARTIGO DE REVISÃO - anormalidades sensoriais: olfato e paladar
Caracterizar a parte sensorial da olfação e da gustação. 
PARTE SENSORIAL DA GUSTAÇÃO
MECANISMO DE ESTIMULAÇÃO DOS BOTÕES GUSTATÓRIOS POTENCIAL RECEPTOR. 
A membrana da célula gustatória, como a maioria das outras células sensoriais receptoras, tem carga negativa no seu interior em relação ao exterior. A aplicação de substância nos pelos gustatórios causa perda parcial desse potencial negativo — isto é, as células gustatórias são despolarizadas. Na maioria das vezes, a redução do potencial, dentro de faixa extensa, é aproximadamente proporcional ao logaritmo da concentração da substância estimulatória. Essa alteração no potencial elétrico da célula gustatória é chamada potencial receptor para a gustação. 
O mecanismo pelo qual a maioria das substâncias estimulatórias interage com as vilosidades gustatórias, para iniciar o potencial receptor se dá por meio da ligação da substância à molécula receptora proteica, localizada na superfície da célula receptora gustatória, próxima da membrana das vilosidades ou sobre elas. Essa interação resulta na abertura de canais iônicos que permitem a entrada de íons sódio e hidrogênio, ambos com carga positiva, despolarizando a célula, que normalmente tem carga negativa. Então, a substância estimulatória é deslocada da vilosidade gustatória pela saliva, removendo assim o estímulo. 
O tipo do receptor proteico em cada vilosidade gustatória determina o tipo de gosto que é percebido. Para os íons sódio e hidrogênio, que provocam as sensações gustatórias salgada e azeda, respectivamente, as proteínas receptoras abrem canais iônicos específicos, nas membranas apicais das células gustatórias, ativando, assim, os receptores. Entretanto, para as sensações gustatórias doce e amarga, as porções das moléculas proteicas receptoras, que se projetam através da membrana apical, ativam substâncias transmissoras que são segundos mensageiros nas células gustatórias e esses segundos mensageiros produzem alterações químicas intracelulares, que provocam os sinais do gosto. 
GERAÇÃO DOS IMPULSOS NERVOSOS PELOS BOTÕES GUSTATÓRIOS. 
Na primeira aplicação do estímulo gustatório, a frequência de descarga das fibras nervosas, que se originam nos botões gustatórios, aumenta até atingir o pico em fração de segundos, mas, então, se adapta nos próximos poucos segundos, retornando a nível mais baixo, constante e assim permanecendo durante a vigência do estímulo. Por isso, o nervo gustatório transmite sinal forte e imediato e sinal contínuo, mais fraco, que permanece durante todo o tempo em que o botão gustatório está exposto ao estímulo.
PARTE SENSORIAL DA OLFAÇÃO.
MECANISMO DE EXCITAÇÃO DAS CÉLULAS OLFATÓRIAS. 
A porção das células olfatórias que responde ao estímulo químico olfatório é o cílio olfatório. As substâncias odorantes, ao entrarem em contato com a superfície da membrana olfatória, inicialmente se difundem no muco que recobre o cílio. Em seguida, se ligam às proteínas receptoras, na membrana de cada cílio (Fig. 53-4). Cada proteína receptora é na realidade uma longa molécula que atravessa a membrana por cerca de sete vezes, dobrando-se em direção ao seu interior e ao seu exterior. A molécula odorante liga-se à porção extracelular da proteína receptora. A porção intracelular da proteína receptora, no entanto, está acoplada a uma proteína G, que é formada por combinação de três subunidades. Quando o receptor é estimulado, a subunidade alfa se separa da proteína G e ativa imediatamente a adenilil ciclase, a que está ligada na face intracelular da membrana ciliar, próxima ao receptor. A adenilil ciclase ativada, por sua vez, converte muitas moléculas de trifosfato de adenosina em monofosfato de adenosina cíclico (AMPc). Por fim, o AMPc ativa outra proteína de membrana próxima, o canal iônico de sódio, o qual se “abre” permitindo que grande quantidade de íon sódio atravesse a membrana em direção ao citoplasma da célula receptora. Os íons sódio aumentam o potencial elétrico intracelular, tornando-o mais positivo, e excitando, assim, o neurônio olfatório e transmitindo os potenciais de ação pelo nervo olfatório para o sistema nervoso central. 
A importância desse mecanismo de ativação dos nervos olfatórios reside no fato de que ele amplifica muito o efeito excitatório, mesmo de substância odorante fraca. Resumindo: (1) a ativação da proteína receptora pela substância odorante ativa o complexo da proteína G. (2) Esta, por sua vez, ativa muitas moléculas de adenilil ciclase, que se encontram do lado intracelular da membrana da célula olfatória. (3) Em consequência, muitas moléculas de AMPc são formadas. (4) Finalmente, o AMPc induz a abertura de número muitas vezes maior de canais de sódio. Portanto, mesmo pequena concentração de substância odorante específica inicia o efeito cascata que abre quantidade extremamente grande de canais de sódio. Isso explica a sensibilidade extraordinária dos neurônios olfa- tórios às quantidades extremamente pequenas de substâncias odorantes. 
Além do mecanismo químico básico, pelo qual as células olfatórias são estimuladas, muitos fatores físicos afetam o grau de estimulação. Primeiro, apenas as substâncias voláteis que podem ser aspiradas para dentro das narinas podem ser percebidas pelo olfato. Segundo, a substância estimulante deve ser pelo menos pouco hidrossolúvel, de modo que possa atravessar o muco e atingir os cílios olfatórios. Terceiro, é útil que a substância seja pelo menos ligeiramente lipossolúvel, provavelmente porque constituintes lipídicos do cílio constituem fraca barreira para odorantes não lipossolúveis.
POTENCIAIS DE MEMBRANA E POTENCIAIS DE AÇÃO NAS CÉLULAS OLFATÓRIAS. 
O potencial de membrana intracelular das células olfatórias não estimuladas, medido por microeletródios, é, em media, de -55 milivolts. Nesse potencial, a maioria das células gera potenciais de ação contínuos com frequência muito baixa, variando de um a cada 20 segundos, até dois ou três por segundo. 
A maioria das substâncias odorantes induz a despolarização da membrana da célula olfatória, reduzindo o potencial negativo da célula do nível normal de -55 milivolts para -30 milivolts ou menos — isto é, a voltagem passa a ser mais positiva. Paralelamente, o número de potenciais de ação aumenta para 20 a 30 por segundo, que é frequência alta para as fibras do nervo olfatório. 
Em ampla faixa, a frequência dos impulsos do nervo olfatório é aproximadamente proporcional ao logaritmo da força do estímulo, o que demonstra que os receptores olfatórios obedecem aos princípios da transdução de modo semelhante aos outros receptores sensoriais. 
RÁPIDA ADAPTAÇÃO DOS SENTIDOS OLFATÓRIOS. 
Aproximadamente, 50% dos receptores olfatórios se adaptam em cerca do primeiro segundo de estimulação. Em seguida, eles se adaptam muito pouco e lentamente. Além disso, todos nós sabemos, por experiência própria, que as sensações de olfação se adaptam quase até a extinção em aproximadamente 1 minuto após entrar em ambiente fortemente odorífico. Por causa disso, a adaptação psicológica é muito maior do que o grau de adaptação dos próprios receptores e é quase certo que a maior parte da adaptação adicional ocorre no sistema nervoso central. Isso parece ser verdadeirotambém para a adaptação das sensações gustatórias. 
O mecanismo neuronal, postulado para o fenômeno da adaptação, é o seguinte: grande número de fibras nervosas centrífugas trafega das regiões olfatórias do encé- falo, em direção posterior, ao longo do trato olfatório e terminam próximas às células inibitórias especiais, no bulbo olfatório, as células granulares. Tem sido postulado que, após o início do estímulo olfatório, o sistema nervoso central desenvolve rapidamente forte feedback inibitório, de modo a suprimir a transmissão dos sinais olfatórios através do bulbo olfatório.

Outros materiais