Buscar

apol analise matematica

Prévia do material em texto

Questão 1/5 - Análise Matemática
Observe o gráfico de uma função f(x)=(1+1x)xf(x)=(1+1x)x representado na figura a seguir.
 
 
 
 
 
Com base no gráfico da função f(x)=(1+1x)xf(x)=(1+1x)x  e nos conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir.
I. limx→∞f(x)=∞limx→∞f(x)=∞ e limx→−∞f(x)=−∞limx→−∞f(x)=−∞
II. limx→∞f(x)=elimx→∞f(x)=e e limx→−∞f(x)=−∞limx→−∞f(x)=−∞
III. limx→0+f(x)=1limx→0+f(x)=1 e limx→0−f(x)=∞limx→0−f(x)=∞
IV. limx→0+f(x)=−∞limx→0+f(x)=−∞ e limx→0−f(x)=∞limx→0−f(x)=∞
V. limx→0+f(x)=1limx→0+f(x)=1 e limx→∞f(x)=elimx→∞f(x)=e
São corretas apenas as afirmativas:
Nota: 20.0
	
	A
	III e V
Você acertou!
A afirmativa I está incorreta porque limx→∞f(x)=elimx→∞f(x)=e e limx→−∞f(x)=elimx→−∞f(x)=e. A afirmativa II está incorreta porque limx→−∞f(x)=elimx→−∞f(x)=e. A afirmativa III está correta. A afirmativa IV está incorreta porque limx→0+f(x)=1limx→0+f(x)=1. A afirmativa V está correta (livro-base, Capítulo 3).
	
	B
	I e III
	
	C
	I e IV
	
	D
	II e V
	
	E
	II, III e V
Questão 2/5 - Análise Matemática
Leia o fragmento de texto a seguir. 
“(f∘g)′(x)=f′(g(x))⋅g′(x)(f∘g)′(x)=f′(g(x))⋅g′(x). Uma maneira conveniente de lembrar essa fórmula consiste em chamar  a ‘função de fora’ e g a ‘função de dentro’ na composição (fg(x))(fg(x)) e, então, expressar em palavras como:
A derivada de (f(g(x))(f(g(x)) é a derivada da função de fora calculada na função de dentro vezes a derivada da função de dentro”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: ANTON, H., BIVENS, I., DAVIS, S. Cálculo. 8. ed. Porto Alegre: Bookman , v. 1.  2007. p. 210-211.
Considere as funções e f(x)=exf(x)=ex , g(x)=x2+2g(x)=x2+2 e a função composta h(x)=f(g(x))=e(x2+2)h(x)=f(g(x))=e(x2+2).
Com base no fragmento de texto dado e nos conteúdos do livro-base Análise Matemática sobre a Regra da Cadeia, assinale a única alternativa que representa a derivada da função composta dada.
Nota: 20.0
	
	A
	h′(x)=(x2+2)e(x2+2)h′(x)=(x2+2)e(x2+2)
	
	B
	h′(x)=(x2+2)e(x2+2)−1⋅2xh′(x)=(x2+2)e(x2+2)−1⋅2x
	
	C
	h′(x)=2x⋅e(x2+2)h′(x)=2x⋅e(x2+2)
Você acertou!
h′(x)=f′(g(x))g′(x)=e(x2+2)⋅2x=2x⋅e(x2+2)h′(x)=f′(g(x))g′(x)=e(x2+2)⋅2x=2x⋅e(x2+2) (livro-base, capítulo 4).
	
	D
	h′(x)=(x2+2)e(x2+2)−1h′(x)=(x2+2)e(x2+2)−1
	
	E
	h′(x)=2x⋅e(x2+2)−1h′(x)=2x⋅e(x2+2)−1
Questão 3/5 - Análise Matemática
Consideremos a função f:R→Rf:R→R dada por f(x)={x2+1, x≤12x, x>1f(x)={x2+1, x≤12x, x>1.
Com base nos conteúdos do livro-base Análise Matemática a respeito de funções contínuas e deriváveis, é correto afirmar que:
 
Nota: 20.0
	
	A
	Em x=1x=1, ff é contínua, mas não é derivável.
	
	B
	Em x=1x=1, ff é derivável, mas não é contínua.
	
	C
	Em x=1x=1, ff possui limites laterais, mas são diferentes.
	
	D
	Em x=1x=1, ff é contínua e é derivável.
Você acertou!
Temos que limx→1+f(x)=limx→1+2x=2⋅1=2=f(1)limx→1+f(x)=limx→1+2x=2⋅1=2=f(1) e limx→1−f(x)=limx→1−(x2+1)=1+1=2=f(1)limx→1−f(x)=limx→1−(x2+1)=1+1=2=f(1). Portanto, ff é contínua em x=1x=1. Além disso, temos que limx→1+f(x)−f(1)x−1=limx→1+f(x)=2x−2x−1=2limx→1+f(x)−f(1)x−1=limx→1+f(x)=2x−2x−1=2 e limx→1−f(x)−f(1)x−1=limx→1−f(x)=(x2+1)−2x−1=limx→1−(x+1)=2limx→1−f(x)−f(1)x−1=limx→1−f(x)=(x2+1)−2x−1=limx→1−(x+1)=2 Logo, ff é derivável em x=1x=1e f′(1)=2f′(1)=2 (livro-base, Capítulo 4).
	
	E
	Em x=1x=1, ff não é contínua nem é derivável.
 
Questão 4/5 - Análise Matemática
Leia o trecho de texto a seguir:
“Quando limxn=alimxn=a, diz-se que a sequência (xn)(xn) converge para aa, ou tende para aa e escreve-se xn→axn→a. Uma sequência que possui limite chama-se convergente. Do contrário, ela se chama divergente. Explicitamente, uma sequência (xn)(xn) diz-se divergente quando, para nenhum número real aa, é verdade que se tenha limxn=alimxn=a”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
Lima, E. L. Curso de Análise. v. 1. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada,  2013. p. 108-109.
Levando em consideração o fragmento de texto dado e os conteúdos do livro-base Análise Matemática sobre a convergência de sequências numéricas, analise as afirmativas que seguem e marque V para as afirmativas verdadeiras e F para as afirmativas falsas.
 
I.  Toda sequência que é crescente e limitada é convergente.
II. Existem sequências que não são limitadas, mas são convergentes.
III. Toda subsequência de uma sequência limitada é convergente. 
IV. Existem sequências limitadas que possuem subsequências convergentes.
 
Agora marque a sequência correta:
Nota: 20.0
	
	A
	F – V – F – V
	
	B
	V – F –V – F
	
	C
	V – F – F – V
Você acertou!
A afirmativa I é verdadeira, pois uma sequência crescente é monótona e toda sequência que é monótona e limitada é convergente. A afirmativa II é falsa pois toda sequência convergente é limitada. A afirmativa III é falsa, pois basta considerar o exemplo: Seja (xn)=(0,1,2,0,1,2,0,1,2,⋯)(xn)=(0,1,2,0,1,2,0,1,2,⋯) uma sequência numérica e (x2n)=(1,0,2,1,0,2,⋯)(x2n)=(1,0,2,1,0,2,⋯) uma subsequência. Temos que (xn)(xn) é limitada, mas (X2n)(X2n) não converge. A afirmativa IV é verdadeira. Basta considerar a sequência (xn)=((−1)n)(xn)=((−1)n) que é limitada e a sua subsequência (1,1,1,1,⋯)(1,1,1,1,⋯) que é convergente. (livro-base, capítulo 2).
	
	D
	F – V – V – F
	
	E
	F – F – V – V
Questão 5/5 - Análise Matemática
“Se alguém me perguntasse o que é que todo estudante de Ensino Médio deveria saber de matemática, sem sombra de dúvida, o tema Indução figuraria na minha lista.
É com o conceito de Indução que se estabelece o primeiro contato com a noção de infinito em Matemática, e por isso ele é muito importante; porém, é, ao mesmo tempo, sutil e delicado”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: HEFEZ, A. Indução Matemática. Programa da Iniciação Científica OBMEP, v. 4. 2009. p. iii. 
Tendo em vista a citação dada e de acordo com os conteúdos do livro-base sobre o Princípio da Indução Finita, analise as seguintes asserções: 
I. A soma dos nn primeiros números ímpares é n2, n≥1n2, n≥1.
 
PORQUE
 
II. Dados os números ímpares: 1,3,5,7,9,11,⋯2n−1 (n natural n>0)1,3,5,7,9,11,⋯2n−1 (n natural n>0), 
se tivermos dois ímpares n=2n=2 a soma será S=1+3=4=22S=1+3=4=22 e se tivermos
55 números ímpares a soma será S=1+3+5+7+9=25=52S=1+3+5+7+9=25=52 
 
A respeito dessas asserções, assinale a alternativa correta:
Nota: 20.0
	
	A
	As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da primeira.
	
	B
	As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa  correta da primeira.
Você acertou!
Apesar das duas afirmações serem verdadeiras, a segunda não é uma justificativa da primeira porque não prova que a proposição seja verdadeira para todo n>2n>2. Ela mostra apenas dois casos particulares. Para justificar a veracidade da primeira afirmação pode-se usar o Princípio da Indução Finita (livro-base, capítulo 1).
	
	C
	A asserção I é uma proposição verdadeira , e a II é uma proposição falsa.
	
	D
	A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
	
	E
	As asserções I e II são proposições falsas.

Outros materiais

Materiais relacionados

Perguntas relacionadas

Perguntas Recentes