Buscar

Apostila de Eletromagnetismo Versão 2013

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

Elm-Apostila de Teoria e Exerc�cios Proposto - Nova vers_o - 2013/ELM2013-Teoria-02-Sum�rio-v2.pdf
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
SSUUMMÁÁRRIIOO i 
 
SUMÁRIO 
 
INTRODUÇÃO GERAL iii 
 
FORMULÁRIO GERAL v 
 
Capítulo I – ANÁLISE VETORIAL 01 
 
1.1 – CONCEITOS GERAIS 01 
1.2 – O PRODUTO ESCALAR (OU PRODUTO INTERNO) 01 
1.3 – O PRODUTO VETORIAL (OU PRODUTO EXTERNO) 02 
1.4 – SISTEMAS DE COORDENADAS CARTESIANAS, CILÍNDRICAS E ESFÉRICAS 03 
1.4.1 – Representação de um ponto nos 3 sistemas de coordenadas 03 
1.4.2 – Transformações entre os 3 sistemas de coordenadas 04 
1.4.3 – Vetores unitários nos 3 sistemas de coordenadas 04 
1.4.4 – Produtos escalares entre vetores unitários nos 3 sistemas de coordenadas 04 
1.4.5 – Elementos diferenciais de linha, área e volume nos 3 sistemas de coordenadas 05 
1.5 – EXERCÍCIOS PROPOSTOS 06 
 
Capítulo II – LEI DE COULOMB E INTENSIDADE DE CAMPO ELÉTRICO 09 
 
2.1 – LEI DE COULOMB 09 
2.2 – INTENSIDADE DE CAMPO ELÉTRICO 09 
2.3 – CAMPO ELÉTRICO DE UMA DISTRIBUIÇÃO VOLUMÉTRICA CONTÍNUA DE CARGAS 10 
2.4 – CAMPO ELÉTRICO DE UMA DISTRIBUIÇÃO LINEAR CONTÍNUA DE CARGAS 10 
2.5 – CAMPO ELÉTRICO DE UMA DISTRIBUIÇÃO SUPERFICIAL CONTÍNUA DE CARGAS 11 
2.6 – LINHA DE FORÇA E ESBOÇO DE CAMPO 12 
2.7 – EXERCÍCIOS PROPOSTOS 13 
 
Capítulo III – DENSIDADE DE FLUXO ELÉTRICO, LEI DE GAUSS, DIVERGÊNCIA 17 
 
3.1 – DENSIDADE DE FLUXO ELÉTRICO ( D ) 17 
3.2 – A LEI DE GAUSS 17 
3.3 – APLICAÇÃO DA LEI DE GAUSS – GAUSSIANA 17 
3.4 – DIVERGÊNCIA 19 
3.5 – TEOREMA DA DIVERGÊNCIA 20 
3.6 – EXERCÍCIOS PROPOSTOS 21 
 
Capítulo IV – ENERGIA E POTENCIAL 23 
 
4.1 – ENERGIA (TRABALHO) PARA MOVER UMA CARGA PONTUAL EM UM CAMPO ELÉTRICO 23 
4.2 – DEFINIÇÃO DE DIFERENÇA DE POTENCIAL (VAB) E POTENCIAL (V) 23 
4.3 – O POTENCIAL DE UMA CARGA PONTUAL 23 
4.4 – O POTENCIAL DE UM SISTEMA DE CARGAS DISTRIBUÍDAS 24 
4.4.1 – VAB de uma reta ∞ com ρL constante 24 
4.4.2 – VAB de um plano ∞ com ρs constante 24 
3.4.3 – Potencial V de uma carga distribuída 24 
4.5 – GRADIENTE DO POTENCIAL ( V∇ ) 25 
4.6 – O DIPOLO ELÉTRICO 26 
4.7 – ENERGIA NO CAMPO ELETROSTÁTICO 27 
4.7.1 – Energia (trabalho) para uma distribuição discreta de cargas 27 
4.7.2 – Energia (trabalho) para uma distribuição contínua de carga 27 
4.8 – EXERCÍCIOS PROPOSTOS 29 
 
Capítulo V – CONDUTORES, DIELÉTRICOS E CAPACITÂNCIA 33 
 
5.1 – CORRENTE (I) E DENSIDADE DE CORRENTE ( J ) 33 
5.2 – CONTINUIDADE DA CORRENTE 34 
5.3 – CONDUTORES METÁLICOS – RESISTÊNCIA (R) 34 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
SSUUMMÁÁRRIIOO ii 
5.4 – O MÉTODO DAS IMAGENS 35 
5.5 – A NATUREZA DOS MATERIAIS DIELÉTRICOS – POLARIZAÇÃO (P) 36 
5.6 – CONDIÇÕES DE CONTORNO PARA MATERIAIS DIELÉTRICOS PERFEITOS 37 
5.7 – CAPACITÂNCIA 38 
5.8 – EXEMPLOS DE CÁLCULO DE CAPACITÂNCIA 38 
5.9 – EXERCÍCIOS PROPOSTOS 43 
 
Capítulo VI – EQUAÇÕES DE POISSON E DE LAPLACE 49 
 
6.1 – IMPORTÂNCIA DAS EQUAÇÕES DE POISSON E LAPLACE 49 
6.1.1 – Equação de Poisson 49 
6.1.2 – Equação de Laplace 49 
6.2 – TEOREMA DA UNICIDADE 50 
6.3 – EXEMPLOS DE SOLUÇÃO DA EQUAÇÃO DE LAPLACE 50 
6.4 – EXEMPLO DE SOLUÇÃO DA EQUAÇÃO DE POISSON 54 
6.5 – SOLUÇÃO PRODUTO DA EQUAÇÃO DE LAPLACE 55 
6.6 – EXERCÍCIOS PROPOSTOS 58 
 
Capítulo VII – CAMPO MAGNÉTICO ESTACIONÁRIO 63 
 
7.1 – LEI DE BIOT-SAVART 63 
7.2 – LEI CIRCUITAL DE AMPÈRE (CAMPO MAGNÉTICO ESTACIONÁRIO) 63 
7.3 – ROTACIONAL 66 
7.4 – TEOREMA DE STOKES 68 
7.5 – FLUXO MAGNÉTICO (Φ) E DENSIDADE DE FLUXO MAGNÉTICO ( B
�
) 68 
7.6 – POTENCIAIS ESCALAR E VETOR MAGNÉTICOS 69 
7.7 – EXERCÍCIOS PROPOSTOS 71 
 
Capítulo VIII – FORÇAS E CIRCUITOS MAGNÉTICOS, MATERIAIS, INDUTÂNCIA 75 
 
8.1 – FORÇA SOBRE UMA CARGA EM MOVIMENTO 75 
8.2 – FORÇA SOBRE UM ELEMENTO DIFERENCIAL DE CORRENTE 75 
8.3 – FORÇA ENTRE ELEMENTOS DIFERENCIAIS DE CORRENTE 76 
8.4 – TORQUE EM UMA ESPIRA INFINITESIMAL PLANA 76 
8.5 – A NATUREZA DOS MATERIAIS MAGNÉTICOS 77 
8.6 – MAGNETIZAÇÃO E PERMEABILIDADE MAGNÉTICA 77 
8.7 – CONDIÇÕES DE CONTORNO PARA O CAMPO MAGNÉTICO 78 
8.8 – CIRCUITO MAGNÉTICO 79 
8.9 – ENERGIA DE UM CAMPO MAGNETOSTÁTICO 81 
8.10 – AUTO-INDUTÂNCIA E INDUTÂNCIA MÚTUA 81 
8.11 – EXERCÍCIOS PROPOSTOS 84 
 
Capítulo IX – CAMPOS VARIÁVEIS NO TEMPO E AS EQUAÇÕES DE MAXWELL 89 
 
9.1 – A LEI DE FARADAY 89 
9.1.1 – Fem devido a um campo que varia dentro de um caminho fechado estacionário 90 
9.1.2 – Fem devido a um campo estacionário e um caminho móvel 91 
9.1.3 – Fem total devido a um campo variável e um caminho móvel 92 
9.2 – CORRENTE DE DESLOCAMENTO 92 
9.3 – EQUAÇÕES DE MAXWELL EM FORMA PONTUAL OU DIFERENCIAL 94 
9.4 – EQUAÇÕES DE MAXWELL EM FORMA INTEGRAL 94 
9.5 – EXEMPLOS DE CÁLCULO DA INDUÇÃO ELETROMAGNÉTICA 95 
9.6 – EXERCÍCIOS PROPOSTOS 98 
 
REFERÊNCIAS BIBLIOGRÁFICAS 103 
 
Anexo I – SOLUÇÃO DE EQUAÇÃO DIFERENCIAL POR SÉRIE INFINITA DE 
POTÊNCIAS 105 
Anexo II – CURVAS B-H DE VÁRIOS MATERIAIS FERROMAGNÉTICOS 107 
Anexo III – ASPECTOS GERAIS SOBRE ONDAS ELETROMAGNÉTICAS 109 
Elm-Apostila de Teoria e Exerc�cios Proposto - Nova vers_o - 2013/ELM2013-Teoria-07-Cap3-v2.pdf
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIIIII::DDEENNSSIIDDAADDEE DDEE
DENSIDADE DE FLUXO ELÉTRICO, LEI DE GAUSS E DIVERGÊNCIA
 
3.1 – DENSIDADE DE FLUXO E
 
É o fluxo por área produzido por cargas livres e é 
 
Fórmula geral: ∫=ε= o
4
ED
 
ondedQ = ρLdL= ρsds = ρ
 
3.2 – A LEI DE GAUSS 
 
“O fluxo elétrico (líquido) que atravessa qualquer superfície fechada é igual a carga tota
envolvida por esta superfície”. 
 
A expressão matemática é dada por:
Ψ total = D•dS = Qint
S
�∫
onde, 
∫ρ=
.vol
vinterna dvQ (Nota: No SI: 
 
3.3 – APLICAÇÃO DA LEI DE 
 
Gaussiana (def.): É uma superfície especial com as seguintes propriedades:
(i) É uma superfície fechada;
(ii) Em cada um de seus pontos 
se D ⊥ dS ⇒ D • dS = 0 ; 
se dSDSdDSd//D =⇒ •
(iii) Em todos os pontos onde 
 
Cálculo de D , aplicando a lei de Gauss (e gaussiana), para os seguintes casos especiais:
 
a) Carga pontual Q 
 
Para uma gaussiana esférica de raio R
 
∫ =•gaussianaS int
QSdD
 
Como Sd//D e D = cte. em todos pontos da 
D (área da esfera)= Q 
D 4piR2 = Q 
Logo: 
2R4
QD
pi
=
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
EE FFLLUUXXOO EELLÉÉTTRRIICCOO,, LLEEII DDEE GGAAUUSSSS EE DDIIVVEERRGGÊÊNNCC
CapítuloIII 
 
DENSIDADE DE FLUXO ELÉTRICO, LEI DE GAUSS E DIVERGÊNCIA
DENSIDADE DE FLUXO ELÉTRICO ( D ) 
É o fluxo por área produzido por cargas livres e é independente do meio onde estas estão situadas.
pi
R2 aR4
dQ
 (Unidade: C/m2) 
ρvdv, dependendo da configuração de cargas.
“O fluxo elétrico (líquido) que atravessa qualquer superfície fechada é igual a carga tota
 
A expressão matemática é dada por: 
terna (Unidade: C) 
(Nota: No SI: inttotal Q=Ψ ) 
APLICAÇÃO DA LEI DE GAUSS – GAUSSIANA 
É uma superfície especial com as seguintes propriedades: 
; 
Em cada um de seus pontos D é tangencial ou D é normal. Assim, 
 (Neste caso D é tangencial à gaussiana)
dS (Neste caso D é normal à gaussiana)
Em todos os pontos onde Sd//D , a magnitude de D é constante. 
de Gauss (e gaussiana), para os seguintes casos especiais:
Para uma gaussiana esférica de raio R 
 (Lei de Gauss) 
em todos pontos da gaussiana 
CCIIAA 17 
DENSIDADE DE FLUXO ELÉTRICO, LEI DE GAUSS E DIVERGÊNCIA 
onde estas estão situadas. 
dv, dependendo da configuração de cargas. 
“O
fluxo elétrico (líquido) que atravessa qualquer superfície fechada é igual a carga total interna 
à gaussiana) 
à gaussiana) 
de Gauss (e gaussiana), para os seguintes casos especiais: 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIIIII::DDEENNSSIIDDAADDEE DDEE
Em forma vetorial: 
R2 aR4
QD
pi
=
 
 
b) Filamento retilíneo ∞∞∞∞ com ρ
 
Para uma gaussiana cilíndrica de raio 
 
∫ =•gaussianaS int
QSdD
 (Lei de Gauss)
D (área lateral do cilindro) = 
D 2piρL = ρLL 
 
Logo: 
piρ
ρ
=
2
D L
 
 
Em forma vetorial: 
ρ
piρ
ρ
= a
2
D L
 
 
c) Cabo coaxial∞∞∞∞ com os condutores 
Aplicando a lei de Gauss para uma gaussiana cilíndrica de raio
∫ =•
gaussianaS int
QSdD 
temos as seguintes situações: 
i) Seρ<a ⇒ D = 0, pois a carga interna é nula
ii) Seρ>b ⇒ D = 0, pois a carga interna líquida é nula (blindagem eletrostática)
iii) Sea<ρ<b (gaussiana tracejada) 
Daí obtemos: 
L2
QD
piρ
=
 
Sendo a carga uniformemente distribuída, com 
condutor central, podemos re
obtendo-se: 
D 2piρ L = ρS 2pia L 
 
piρ
ρ
=
ρ
ρ
=
2
D Ls
a
 onde
 
sendoρL a densidade linear de carga no condutor 
 
 
Em forma vetorial: 
 
ρ
piρ
ρ
=
ρ
ρ
=
2
aD Ls
a
 
Nota: Observar a semelhança com a fórmula de 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
EE FFLLUUXXOO EELLÉÉTTRRIICCOO,, LLEEII DDEE GGAAUUSSSS EE DDIIVVEERRGGÊÊNNCC
( D é inversamente proporcional ao quadrado da distância)
dLdQL =ρ = constante 
Para uma gaussiana cilíndrica de raio ρ 
(Lei de Gauss) 
D (área lateral do cilindro) = ρLL 
( D é inversamente proporcional à distância)
com os condutores central (+Q) e externo (–Q) com ρρρρs constante 
 
Aplicando a lei de Gauss para uma gaussiana cilíndrica de raioρ (ver figura), 
D = 0, pois a carga interna é nula 
D = 0, pois a carga interna líquida é nula (blindagem eletrostática)
(gaussiana tracejada) ⇒ D 2piρ L = +Q 
 
Sendo a carga uniformemente distribuída, com densidade superficial de carga
, podemos re-aplicar a lei de Gauss, 
onde
aa pi
ρ
=
pi
===ρ
2L2
Q
S
Q
dS
dQ L
s 
a densidade linear de carga no condutor central. 
ρ
piρ
aL
 ( D é inversamente proporcional à distância)
Observar a semelhança com a fórmula de D para a linha ∞, obtida acima.
CCIIAA 18 
é inversamente proporcional ao quadrado da distância) 
é inversamente proporcional à distância) 
constante 
 
D = 0, pois a carga interna líquida é nula (blindagem eletrostática) 
densidade superficial de cargaρS no 
é inversamente proporcional à distância) 
, obtida acima. 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIIIII::DDEENNSSIIDDAADDEE DDEE
3.4 – DIVERGÊNCIA 
 
 
Seja A um vetor qualquer expresso por:
zyyxx aAaAaAA ++=
 
aplicado ao vértice A(x,y,z) do pequeno volume 
zyxv ∆∆∆=∆ 
 
Definindo divergência de um vetor 
 
v
SdA
limA S
0v ∆
=∇
•
•
∫
→∆
 
 
onde ∇ representa o operador vetorial “nabla” ou “del”.
 
Para a superfície que envolve o pequeno volume retangular da figura 
SdA 
EFGHABCD SSS
• ∫∫∫ +=
 
Cálculo da 1ae da 2a integral do 2
a)x(ASdA xx
SABCD
= ∫∫ •
ASdA
yy
yy
zz
zzSEFGH
= ∫ ∫∫
∆+
=
∆+
=
•
 
 
Somando estas duas integrais, obtemos o fluxo líquido de 
ASdA
SS EFGHABCD
∂
∂
≅+ •∫∫
 
Similarmente a estas duas integrais, obtemos os fluxos líquidos de 
A
SdA
SS BCGFADHE
∂
∂
≅+ •∫∫
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
EE FFLLUUXXOO EELLÉÉTTRRIICCOO,, LLEEII DDEE GGAAUUSSSS EE DDIIVVEERRGGÊÊNNCC
um vetor qualquer expresso por: 
za 
aplicado ao vértice A(x,y,z) do pequeno volume retangular da figura acima dado por:
Definindo divergência de um vetor A , ou div A , com notação matemática ∇
 (Nota: O resultado desta operação é um escalar
representa o operador vetorial “nabla” ou “del”. 
Para a superfície que envolve o pequeno volume retangular da figura acima temos:
SdA
DCGHABFEBCGFADHEEFGH SSSS
•∫∫∫∫ ++++ 
integral do 2o membro (fluxo de A na direção x): 
dzdy)x(A)a(dS x
yy
yy
zz
zz
xABCDx ≅−=− ∫ ∫
∆+
=
∆+
=
•
Azy)xx(Adzdy)xx(A xxx 


≅∆∆∆+≅∆+
Somando estas duas integrais, obtemos o fluxo líquido de A na direção x como:
zyx
x
Ax ∆∆∆
∂
 
estas duas integrais, obtemos os fluxos líquidos de A nas direções 
zyx
y
A y ∆∆∆
∂
 
CCIIAA 19 
 
retangular da figura acima dado por: 
A•∇ , como: 
escalar.) 
acima temos: 
zy)x(Ax ∆∆−≅ 
zyx
x
A)x( Xx ∆∆

∆
∂
∂
+
como: 
nas direções y e z como: 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIIIII::DDEENNSSIIDDAADDEE DDEE
ASdA
SS DCGHABFE
∂
∂
≅+ •∫∫
Somando as 3 expressões anteriores, obtemos o fluxo
y
A
x
ASdA yx
S




∂
∂
+
∂
∂
≅•∫
 
Substituindo esta última expressão na equação que define a divergência e simplificando, obtemos:
A
y
A
x
AA yx
∂
∂
+
∂
∂
+
∂
∂
=∇ •
 
Se A é substituído pelo vetor densidade de fluxo elétrico 
 
S
0v v
SdD
limD =
∆
=∇
→∆
•
•
∫
 
Assim obtemos uma importante equação da eletrostática:
∇ • D = ρ
v 
 
ondeρv representa a fonte de fluxo (divergência) de 
 
Notas: 
0D >∇ • ⇒ A região é fonte
0D <∇ • ⇒ A região é sorvedoura
0D =∇ • ⇒ A região não é fonte nem sorvedoura
 
 
3.5 – TEOREMA DA DIVERGÊNCIA
 
Da lei de Gauss, temos que: S D∫
Mas, sabemos que: Q v
vol
int ρρρρ∫=
E também: Dv •∇=ρ 
 
Logo, juntando todas as expressões, obtemos:
 
∫ ∫∇= ••
S vol
dv DSdD
 
 
sendoS a área que envolve o volume 
 
Notas: 
1. O teorema da divergência pode ser aplicado a 
2. O operador vetorial ∇ é somente
yx ay
a
x ∂
∂
+
∂
∂
=∇
Logo, não existeuma expressão
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
EE FFLLUUXXOO EELLÉÉTTRRIICCOO,, LLEEII DDEE GGAAUUSSSS EE DDIIVVEERRGGÊÊNNCC
zyx
z
Az ∆∆∆
∂
 
Somando as 3 expressões anteriores, obtemos o fluxo total líquido que sai do pequeno volume:
zyx
z
Az ∆∆∆


∂
∂
+
 
Substituindo esta última expressão na equação que define a divergência e simplificando, obtemos:
z
Az
∂ 
é substituído pelo vetor densidade de fluxo elétrico D e aplicado a definição de divergência:
v
0v dv
dQ
v
Qlim ρ==
∆
∆
=
→∆
 
equação da eletrostática: 
(1a equação de Maxwell da eletrostática) 
representa a fonte de fluxo (divergência) de D . 
fonte de fluxo ou a carga líquida da região é positiva
sorvedoura de fluxo ou a carga líquida da região é 
não é fonte nem sorvedoura de fluxo ou a carga líquida é 
REMA DA DIVERGÊNCIA 
intQSdD =• 
dvv 
Logo, juntando todas as expressões, obtemos: 
 (Teorema da divergência de Gauss)
a área que envolve o volume vol, ou vol o volume envolvido pela área 
O teorema da divergência pode ser aplicado a qualquer campo vetorial.
somente definido em coordenadas cartesianas 
zy a
z∂
∂
+
 
uma expressão para ∇ em coordenadas cilíndricas, nem em 
CCIIAA 20 
total líquido que sai do pequeno volume: 
Substituindo esta última expressão na equação que define a divergência e simplificando, obtemos: 
e aplicado a definição de divergência: 
 
positiva. 
de fluxo ou a carga líquida da região é negativa. 
de fluxo ou a carga líquida é nula. 
(Teorema da divergência de Gauss) 
o volume envolvido pela área S. 
campo vetorial. 
 pela expressão: 
, nem em esféricas. 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIIIII::DDEENNSSIIDDAADDEE DDEE
3.6 – EXERCÍCIOS PROPOSTOS
 
3.1) Seja ρV = α r/ [C/m3] de r = 0 a r = R em coordenadas esféricas. Determinar 
espaço. 
 
Resposta: r5
r2
aD α= [C/m
 
3.2) Uma carga com densidade linear uniforme
eixopositivo de z. Noplano z = 0, uma outra carga com densidade superficial 
[ηC/m2] é distribuída. Determinar o fluxo elétrico total que atravessa o cilindro 
cujas bases estão situadas sobre
 
Resposta: ak2T =Ψ [ηC ].
 
3.3) O plano z=0 contém uma distribuição superficial uniforme de carga com 
Determinar a quantidade de linhas de fluxo que atravessa o triângulo formado pelos pontos 
(0,2,0), B (2,0,2) e C (–2,0,2).
 
Resposta: 20=Ψ [ηC ]. 
 
3.4) Determinar o fluxo elétrico líquido total que sai da porção de um cilindro definido por:
 0 ≤ρ≤ 2, 0 ≤φ≤pi/2, 0 ≤ z ≤ 
a) uma carga distribuída no interior da porção do cilindro com densidade volumétrica de 
carga dada por ρv = 4xyz
b) a mesma quantidade de carga do item anterior, porém sendo toda ela concentrada na 
origem. 
 
Respostas:a) 72 [C]; b) 9 [C].
 
3.5) Seja 2v x6=ρ [µC/m3] na região 
a) A densidade de fluxo elétrico 
b) A densidade de fluxo elétrico 
c) A densidade de fluxo elétrico 
d) A densidade de fluxo elétrico 
 
Respostas: a) x3x2 aD =
d) x 2 aD −= [
 
3.6) Determinar o fluxo total que atravessa um cubo de lado 
arestas paralelas aos eixos coordenados para cada uma das seguintes situações: 
a) Uma carga pontual Q = 20 [
b) Uma linha infinita de cargas com densidade 
Repetir a questão e calcular o 
Respostas: a) 20T =Ψ [ηC ]; b) 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
EE FFLLUUXXOO EELLÉÉTTRRIICCOO,, LLEEII DDEE GGAAUUSSSS EE DDIIVVEERRGGÊÊNNCC
EXERCÍCIOS PROPOSTOS 
] de r = 0 a r = R em coordenadas esféricas. Determinar 
[C/m2] para 0 < r < Re r2
2
r5
RR 2
aD α=
 [C/m
Uma carga com densidade linear uniformeρL = k [ηC/m] está distribuída sobre o semi
eixopositivo de z. Noplano z = 0, uma outra carga com densidade superficial 
] é distribuída. Determinar o fluxo elétrico total que atravessa o cilindro 
cujas bases estão situadas sobre os planos z = a e z = – a (a> 0). 
C ]. 
O plano z=0 contém uma distribuição superficial uniforme de carga com 
Determinar a quantidade de linhas de fluxo que atravessa o triângulo formado pelos pontos 
2,0,2). 
 
Determinar o fluxo elétrico líquido total que sai da porção de um cilindro definido por:
 3, devido as seguintes condições: 
uma carga distribuída no interior da porção do cilindro com densidade volumétrica de 
= 4xyz2 [C/m3], sendo que ρv = 0 no exterior da porção de cilindro.
a mesma quantidade de carga do item anterior, porém sendo toda ela concentrada na 
Respostas:a) 72 [C]; b) 9 [C]. 
] na região – 1≤ x ≤ 1 [m] e fora desta região. Determinar:
A densidade de fluxo elétrico D na região 0 ≤ x ≤ 1 [m]; 
A densidade de fluxo elétrico D na região x > 1 [m]; 
A densidade de fluxo elétrico D na região –1 ≤ x ≤ 0 [m]; 
A densidade de fluxo elétrico D na região x < -1 [m]. 
 [µC/m2];b) x 2 aD = [µC/m2]; c) 3x2D =
[µC/m2]. 
que atravessa um cubo de lado a = 1 [m], centrado na origem e 
arestas paralelas aos eixos coordenados para cada uma das seguintes situações: 
Uma carga pontual Q = 20 [ηC] situada na origem; 
Uma linha infinita de cargas com densidade ρL = 20 [ηC/m] situada sobre o eixo x.
r a questão e calcular o fluxo que atravessa a face superior do cubo nas duas situações.
C ]; b) 20T =Ψ [ηC ] e a) 3
10
T =Ψ [ηC ]; b) 
CCIIAA 21 
] de r = 0 a r = R em coordenadas esféricas. Determinar D em todo o 
[C/m2] para Rr ≥ . 
C/m] está distribuída sobre o semi-
eixopositivo de z. Noplano z = 0, uma outra carga com densidade superficial ρS = k/(2piρ) 
] é distribuída. Determinar o fluxo elétrico total que atravessa o cilindro ρ = a[m], 
O plano z=0 contém uma distribuição superficial uniforme de carga com ρS = 10 [ηC/m2]. 
Determinar a quantidade de linhas de fluxo que atravessa o triângulo formado pelos pontos A 
Determinar o fluxo elétrico líquido total que sai da porção de um cilindro definido por: 
uma carga distribuída no interior da porção do cilindro com densidade volumétrica de 
= 0 no exterior da porção de cilindro. 
a mesma quantidade de carga do item anterior, porém sendo toda ela concentrada na 
fora desta região. Determinar: 
x
3a
 [µC/m2]; 
= 1 [m], centrado na origem e 
arestas paralelas aos eixos coordenados para cada uma das seguintes situações: 
C/m] situada sobre o eixo x. 
do cubo nas duas situações. 
C ]; b) 5T =Ψ [ηC ]. 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIIIII::DDEENNSSIIDDAADDEE DDEE
3.7) Seja ( )z1z8v −=ρ [C/m
0v =ρ para o restante do espaço. Determinar 
Respostas: 0=D para z ≤ 
 
( 3z2
3
4D −⋅=
 
3.8) Determinar o quantidade de fluxo elétrico devido a uma carga pontual Q na origem que passa 
através das superfícies esféricas definidas por:
a) raio = r, estendendo de θ
b) raio = 2r, estendendo de 
 
Respostas:a) ( )[ /13 −=ψ
 
3.9) Seja uma distribuição de carga no espaço onde 
2R, sendo K uma constante positiva.
a) Determinar a carga total contida dentro da esfera de raio r = R;
b) Determinar a densidade de fluxo elétrico que sai da superfície esf
 
Respostas:a) 
.int KR2Q pi=
 
3.10) Uma carga pontual Q =24pi
µC/m2 está distribuída na superfície esférica r = 
242s =ρ µC/m2 está distribuída na superfície esférica r = 
Determinar D em todas as regiões.
 
Resposta: r2 ar
6D = µC/m
r2 ar
24D = µC/m
 
3.11) Uma linha infinita de carga uniformemente distribuída com densidade 
colocada sobre o eixo y. Determinar o fluxo elétrico total que atravessa as seguintes 
superfícies: 
(a) a porção do plano z = 1 m, limitada por 
(b) a esfera de raio r = 1 m, centrada na origem.
 
Respostas:a) ψ = 0,5 C; b) 
 
3.12) a) Calcular a carga total em todo o espaço se a densidade volumétrica de carga é expressa em 
coordenadas esféricas como 
b) Qual é o raio da esfera, centrada na origem, com densidade volumétrica de carga constant
, que contém a mesma carga total do item anterior.
 
Respostas:a) 
3T 3
4Q
a
pi
= ; b) 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
EE FFLLUUXXOO EELLÉÉTTRRIICCOO,, LLEEII DDEE GGAAUUSSSS EE DDIIVVEERRGGÊÊNNCC
[C/m3] para 0 < z < 1, ( )z1z8v +=ρ [C/m3] para 
para o restante do espaço. Determinar D em todo o espaço usando a Lei de Gauss.
 –1, ( ) z23 1z3z234 aD −+⋅= [C/m3] para 
) z23 1z3 a−+ [C/m3] para 0 < z < 1, 0=D
Determinar o quantidade de fluxo elétrico devido a uma carga pontual Q na origem que passa 
superfícies esféricas definidas por: 
θ = 30o a θ = 60o, e de φ = 0o a φ = 360o; 
raio = 2r, estendendo de θ = 0o a θ = 90o, e de φ = 0o a φ = 90o. 
] Q183,0Q4 = ; b) ψ = Q/8 
distribuição de carga no espaço onde ρV = K/r C/m3 para r < 2R e 
2R,
sendo K uma constante positiva. 
Determinar a carga total contida dentro da esfera de raio r = R; 
Determinar a densidade de fluxo elétrico que sai da superfície esférica r = R.
2KR ; b) ra2
KD =
 
piµC está localizada na origem, uma carga de densidade 
está distribuída na superfície esférica r = a = 0,5 m, e uma carga de densidade 
está distribuída na superfície esférica r = b = 1 m. 
em todas as regiões. 
C/m2 para r < 0,5 m; 0D = para 0,5 ≤ r < 1 m; 
C/m2 para r ≥ 1 m 
Uma linha infinita de carga uniformemente distribuída com densidade 
. Determinar o fluxo elétrico total que atravessa as seguintes 
= 1 m, limitada por –1 <x< 1 m e –1 <y< 1 m; 
a esfera de raio r = 1 m, centrada na origem. 
= 0,5 C; b) ψ = 2 C. 
Calcular a carga total em todo o espaço se a densidade volumétrica de carga é expressa em 
coordenadas esféricas como 233v )r/(1 a+=ρ , sendo a uma constante.
Qual é o raio da esfera, centrada na origem, com densidade volumétrica de carga constant
, que contém a mesma carga total do item anterior. 
; b) 
a2
1
r = . 
CCIIAA 22 
] para – 1 < z < 0 e 
ando a Lei de Gauss. 
] para –1 < z < 0, 
 para z ≥ 1. 
Determinar o quantidade de fluxo elétrico devido a uma carga pontual Q na origem que passa 
para r < 2R e ρV = 0 para r > 
érica r = R. 
C está localizada na origem, uma carga de densidade 241s −=ρ
= 0,5 m, e uma carga de densidade 
r < 1 m; 
Uma linha infinita de carga uniformemente distribuída com densidade m/C1L =ρ está 
. Determinar o fluxo elétrico total que atravessa as seguintes 
 
Calcular a carga total em todo o espaço se a densidade volumétrica de carga é expressa em 
uma constante. 
Qual é o raio da esfera, centrada na origem, com densidade volumétrica de carga constante, 
Elm-Apostila de Teoria e Exerc�cios Proposto - Nova vers_o - 2013/ELM2013-Teoria-06-Cap2-v2.pdf
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
CCaappííttuulloo IIII:: LLEEII DDEE CCOOUULLOOMMBB EE IINNTTEENNSSIIDDAADDEE DDEE CCAAMMPPOO EELLÉÉTTRRIICCOO 9 
Capítulo II 
 
LEI DE COULOMB E INTENSIDADE DE CAMPO ELÉTRICO 
 
 
2.1 – LEI DE COULOMB 
 
Força de uma carga Q1 sobre uma carga Q2: 
 
122
12o
21
2 a
R4
QQF
piε
=
 [N] 
 
onde: 
R 12 = vetor orientado de Q1 a Q2 
a 12 = versor orientado de Q1 a Q2 
 
Notas: O módulo de 2F depende dos valores das cargas pontuais, da distância entre elas e do meio. 
Adota-se vácuo como o meio neste caso, e em todas as análises posteriores até o capítulo 5. 
A orientação de 2F (ou sentido de 2F ) depende apenas dos sinais das 2 cargas pontuais. 
 
 
2.2 –INTENSIDADE DE CAMPO ELÉTRICO 
 
Força de uma carga pontual Q1 sobre uma carga de prova positiva QP situada num ponto P: 
P12
P1o
P1
P a
R4
QQF
piε
=
 
 
Campo elétrico gerado pela carga pontual Q1 no ponto P (definição): 
 
P12
P1o
1
P
P a
R4
Q
Q
FE
piε
==
 (Unidade: N/C ou V/m) 
 
Nota: A orientação do campo elétrico E depende apenas do sinal da carga que o produz(Q1). 
Assim, as linhas de força do campo elétrico saem (ou divergem) das cargas positivas e 
entram (ou convergem) para as cargas negativas. 
 
Campo elétrico gerado por n cargas pontuais: 
 
( ) mn
1m 2mo
m a
rr4
Q
rE ∑
−piε
=
=
 [V/m] 
 
onde: Qm = m-ésima carga pontual 
mr = posição da m-ésima carga pontual 
r
 = posição do ponto onde se quer o campo 
m
m
m
rr
rr
a
−
−
= = versorda m-ésima carga pontual 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
CCaappííttuulloo IIII:: LLEEII DDEE CCOOUULLOOMMBB EE IINNTTEENNSSIIDDAADDEE DDEE CCAAMMPPOO EELLÉÉTTRRIICCOO 10 
2.3 – CAMPO ELÉTRICO DE UMA DISTRIBUIÇÃO VOLUMÉTRICA CONTÍNUA DE 
CARGAS 
 
Definindo 
dv
dQ
v =ρ = densidade volumétrica de carga (em C/m3), temos que dQ = ρvdv. 
Assim a fórmula para calcular o campo elétrico num ponto P, no vácuo, de um volume de cargas é: 
 
∫
piε
= R2
o
a
R4
dQE
 [V/m] (FÓRMULA GERAL) 
 
sendo: 
 Ra = versor orientado de dQ ao ponto P (saindo) 
R = distância de dQ ao ponto P 
εo = permissividade elétrica do vácuo [F/m] 
 
Nota: Genericamente: ρv dv =ρS ds = ρL dL = dQ, para volume → superfície → linha → ponto. 
 
 
2.4 – CAMPO ELÉTRICO DE UMA DISTRIBUIÇÃO LINEAR CONTÍNUA DE CARGAS 
 
Definindo 
dL
dQ
L =ρ = densidade linear de carga (em C/m), temos que dQ = ρLdL. 
 
Demonstrar que a fórmula que fornece o campo elétrico num ponto P, no vácuo, devido a uma 
filamento retilíneo ∞∞∞∞ com carga uniformemente distribuída (ver figura), é expressa por: 
 
ρρpiε
ρ
= a
2
E
o
L
 
 
sendo: 
ρL = densidade linear de carga [C/m] (valor constante) 
ρ = menor distância (direção normal) da linha ao ponto P [m] 
ρa = versor normal à linha orientado para o ponto P 
 
Solução: Posicionando o eixo z sobre o filamento e o plano xy sobre 
o ponto P para facilitar a solução (ver figura), temos: 
dzdQ Lρ= 
ρρ+−= aazR z e 22zR ρ+= ⇒
22
z
R
z
aaz
R
R
a
ρ+
ρ+−
==
ρ
 
Substituindo na fórmula geral acima obtemos: 
( )
( )
( ) ρ
ρρ
+=
ρ+piε
ρ+−ρ∞+
−∞=
=
ρ+
ρ+−
ρ+piε
ρ∞+
−∞=
= ∫∫ EE
z4
aazdz
z
z
aaz
z4
dz
z
E z2/322
o
zL
22
z
22
o
L
 
Por simetria 0Ez = . 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
CCaappííttuulloo IIII:: LLEEII DDEE CCOOUULLOOMMBB EE IINNTTEENNSSIIDDAADDEE DDEE CCAAMMPPOO EELLÉÉTTRRIICCOO 11 
Fazendo a substituição trigonométrica (ver triângulo ao lado): 
αρ= tgz 
ααρ= ddz 2sec 
 
e levando na expressão acima e desenvolvendo, 
 
( ) ρ
ρ
ρ ααρpiε
ρ
=
ρ+αρ
ααρ
piε
ρρ
== ∫∫
pi
pi−=α
pi+
pi−=α
ados
4
ad
4
EE 2/ 2/
2/
2/
o
L
2/322o
L c
tg
sec
2
2
 
[ ] [ ] ρpi pi−=αρpi pi−=αρ +piε
ρ
=α
piε
ρ
== a11
4
a
4
EE 2/ 2/
o
L2/
2/
o
L sen
 
 
Daí chegamos finalmente a: ρρ ρpiε
ρ
== a
2
EE
o
L
 
 
Logo, para uma linha ∞ com carga uniformemente distribuída, a magnitude de E é 
inversamente proporcional à distância (ρ), e a direção de E é radial (normal) à linha. 
 
 
2.5 – CAMPO ELÉTRICO DE UMA DISTRIBUIÇÃO SUPERFICIAL CONTÍNUA DE 
CARGAS 
 
Definindo 
dS
dQ
S=ρ = densidade superficial de carga (em C/m2 ), temos que dQ = ρS dS. 
 
Demonstrar que a fórmula que fornece o campo elétrico num ponto P, no vácuo, devido a uma 
superfície plana ∞∞∞∞ com carga uniformemente distribuída (ver figura), é expressa por: 
 
n
o
s a
2
E
ε
ρ
=
 
 
sendo: 
ρS = densidade superficial de carga 
[C/m2] (constante) 
na = versor normal ao plano 
orientado para o ponto P 
 
Solução: 
Observando a figura temos: 
φρρρ=ρ= dddSdQ ss 
zazaR +ρ−= ρ e 22 zR +ρ= ⇒ 22
z
R
z
aza
R
R
a
+ρ
+ρ−
==
ρ
 
Substituindo na fórmula geral acima obtemos: 
( ) 22 z22os z
aza
z4
dd
0
2
0E
+ρ
+ρ−
+ρpiε
φρρρ∞+
=ρ
pi
=φ=
ρ
∫∫ 
( )
( ) z2/322o
zs
2
s EE
z4
ddaza
0
2
0E +=
+ρpiε
φρρρ+ρρ−∞+
=ρ
pi
=φ= ρ
ρ
∫∫ 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
CCaappííttuulloo IIII:: LLEEII
DDEE CCOOUULLOOMMBB EE IINNTTEENNSSIIDDAADDEE DDEE CCAAMMPPOO EELLÉÉTTRRIICCOO 12 
Por simetria 0E =ρ . 
( ) ( ) 2/322o zs2/322ozsz z
d
02
az
z
d
0d
2
04
az
EE
+ρ
ρρ∞+
=ρε
ρ
=
+ρ
ρρ∞+
=ρφ
pi
=φpiε
ρ
== ∫∫∫ 
Fazendo a substituição trigonométrica (ver triângulo ao lado): 
α=ρ tgz 
αα=ρ dzd 2sec , 
 
e levando na expressão acima e desenvolvendo, 
 
( ) αα
pi
=αε
ρ
=
α
ααpi
=αε
ρ
=
+α
αααpi
=αε
ρ
== ∫∫∫ d
2/
02
ad2/
02
a
zz
dzz2/
02
az
EE
o
zs
o
zs
2/322
2
o
zs
z sen
sec
tg
tg
sectg
2
 
[ ] [ ] z
o
s2/
0
o
zs
z a1022
a
EE +
ε
ρ
=α−
ε
ρ
==
pi
=αcos ⇒ z
o
s
z a2
EE
ε
ρ
==
 
 
De uma forma mais geral, fazendo nz aa = ⇒ n
o
s
n a2
EE
ε
ρ
==
 
Logo, para o plano ∞ com carga uniformemente distribuída, a magnitude de E é 
independente da distância (z) do plano a P, e a direção de E é normal ao plano. 
 
 
2.6 – LINHA DE FORÇA E ESBOÇO DE CAMPO 
 
Obtenção da equação da linha de força de E no plano xy: 
 
Para um ponto na linha de força no plano xy, temos: 
yyxx aEaEE += 
yx ayaxL ∆+∆=∆ 
 
onde L//E ∆ (2 vetores em paralelo) 
 
Fazendo LdL →∆ , obtemos: 
yx adyadxLd += 
 
Como, E ∝ dL , obtemos: 
 
dy
E
dx
E yx
=
 
Logo, basta resolver esta equação diferencial para obter a equação da linha de força no plano xy. 
 
Nota: Para uma linha de força de E no espaço tridimensional, obtém-se a expressão: 
 
dz
E
dy
E
dx
E zyx
==
 (Atenção: Resolve-se duas a duas, segundo as projeções em xy, yz e zx) 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
CCaappííttuulloo IIII:: LLEEII DDEE CCOOUULLOOMMBB EE IINNTTEENNSSIIDDAADDEE DDEE CCAAMMPPOO EELLÉÉTTRRIICCOO 13 
2.7 – EXERCÍCIOS PROPOSTOS 
 
2.1) (a) Demonstrar que o campo elétrico E� , num ponto P no vácuo, 
devido a umacarga uniformemente distribuída sobre um 
filamento retilíneo de comprimento finito (extremidades A e 
B) no eixo z, é dado por: 
( ) ( )L 2 1 2 1 z
0
sen sen cos cos 
4 ρ
ρ
 = α + α + α − α piε ρ
E a a
�
� �
, 
sendo: 
ρL = densidade linear de carga (constante), 
ρ =distância (medida na perpendicular) do eixo zao ponto P, 
α1, α2 = ângulos positivos medidos conforme indicados, 
ρa
�
e za
�
= vetores unitáriosem coordenadas cilíndricasem P. 
(b) Calcular E� nos pontos C(0, 3, 0) e D(0, 3, 3), para a carga com L 012 C / mρ = piε 
distribuída sobre o filamento retilíneo no eixo z com as extremidades A(0, 0, -3) e 
B(0, 0, 3). 
(c) Calcular E� nos mesmos pontos C e D, para a carga com L 012 C / mρ = piε distribuída 
sobre a reta semi-infinita iniciando em A(0,0,0) e estendendo ao longo do eixo z no 
sentido positivo. 
Respostas: a) Demonstração, 
b) C y yE 2 a 1, 4142a= =
�
� �
, D y zE 0,8944a 0,5528a= +
�
� �
,[V/m]; 
c) C y zE a a= −
�
� �
, D y zE 1,7071a 0,7071a= −
�
� � [V/m]. 
 
2.2) Uma linha infinita possui uma distribuição de carga com densidade ρL = -100 [ηC/m] e está 
situada no vácuo sobre a reta y = –5 [m] e z=0. Uma superfície plana infinita possui uma 
distribuição de carga com densidade ρS = α/pi [ηC/m2] e está situada no vácuo sobre o plano 
z = 5 [m]. Determinar o valor da constante α para que o campo elétrico resultante no ponto 
P(5,5,-5) não possua componente no eixo z. 
 
Resposta: α = 4. 
 
2.3) Dado um campo ( ) ( ) ( ) φφρρ φρ+φρ=φρ aaE ��� ,E,E, em coordenadas cilíndricas, as equações 
das linhas de força em um plano z = constante são obtidas resolvendo a equação diferencial: 
 
φρρ=φρ d dEE 
a) Determinar a equação da linha de força que passa pelo ponto P(ρ = 2, φ = 30o, z = 0) para o 
campo φρ φρ−φρ= aaE
��
�
22 cossen . 
b) Determinar um vetor unitário passando pelo ponto P(ρ = 2, φ = 30o, z = 0), que seja 
paralelo ao plano z = 0 e normal a linha de força obtida no item anterior. 
Respostas:a) φ=ρ 2cos82 ; b) 






+±= φρ aaa
���
2
3
2
1
. 
 
2.4) Uma carga pontual de 1 nC localiza-se na origem, no vácuo. Determine a equação da curva no 
plano z = 0, para o qual Ex = 1 V/m. 
 
Resposta: ( )3222 yxx8,80 += ou φ=ρ cos998,2 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
CCaappííttuulloo IIII:: LLEEII DDEE CCOOUULLOOMMBB EE IINNTTEENNSSIIDDAADDEE DDEE CCAAMMPPOO EELLÉÉTTRRIICCOO 14 
2.5) Duas linhas infinitas de carga com mesmas densidades lineares uniformes ρL = k [ηC/m] 
estão colocadas sobre o plano z = 0. As duas linhas se cruzam no ponto (-2, 1, 0), sendo que 
uma é paralela ao eixo x e a outra paralela ao eixo y. Determinar exatamente em que posição 
no plano z = 0 deverá ser colocada uma carga pontual Q = k [ηC] para que o campo elétrico 
resultante na origem se anule. 
 
Resposta: 








− 0
5
52
5
5P
44
;; . 
2.6) Determinar a força que atua sobre uma carga pontual Q1 em P(0,0,a) devido à presença de 
uma outra carga Q2, a qual está uniformemente distribuída sobre um disco circular de raio a 
situado sobre o plano z=0. 
 
Resposta: ( ) z2
o
21
 22
4
QQ
aF −⋅=
apiε
 
 
2.7) Seja um campo elétrico dado por ( ) [ ]mV y2cos y2sene5 yxx2 aaE −= − . Determinar: 
a) A equação da linha de força que passa pelo ponto P(x=0,5; y=pi/10; z=0); 
b) Um vetor unitário tangente a linha de força no ponto P. 
 
Respostas: a) 212,1x2ey2cos −= ou ( )606,0y2cosln5,0x += ; b) yxT 8090,05878,0 aaa −= . 
 
2.8) O segmento reto semi-infinito, z ≥ 0, x = y = 0, está carregado com ρL = 15 nC/m, no vácuo. 
Determine E nos pontos: 
a) PA (0, 0, –1); b) PB (1, 2, 3) 
Respostas:a) zA a8,134E −= [V/m]; b) zyxB a0,36a2,97a6,48E −+= [V/m]. 
 
2.9) Duas bolas dielétricas iguais de diâmetro bem pequeno, pesando 10 g cada uma, podem 
deslizar livremente numa linha plástica vertical. Cada bola é carregada com uma carga 
negativa de 1 µC.Qual é a distância entre elas, se a bola inferior for impedida de se mover? 
 
Resposta: d = 300 [mm] 
 
2.10) Duas cargas pontuais de +2 C cada uma estão situadas em (1, 0, 0) m e (-1, 0, 0) m. Onde 
deveria ser colocada uma carga de –1 C de modo que o campo elétrico se anule no ponto (0, 
1, 0)? 
 
Resposta: Em (x = 0, y = 0,16 m, z = 0) 
 
2.11) a) Uma carga com densidade uniforme ρL = K C/m 
está distribuída sobre um pedaço de condutor 
circular de raio r = 2 m, posicionado sobre o 
plano y = 1 m, conforme mostra a figura abaixo. 
Determinar o campo elétrico E resultante na 
origem. 
b) Repetir o item (a), supondo, porém, que toda a 
carga seja concentrada no ponto (0,2,0). 
Respostas:a) y
o
a
8
3KE
piε
−
=
 [V/m]; b) y
o
a
12
KE
ε
−
= [V/m] 
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
CCaappííttuulloo IIII:: LLEEII DDEE CCOOUULLOOMMBB EE IINNTTEENNSSIIDDAADDEE DDEE CCAAMMPPOO EELLÉÉTTRRIICCOO 15 
2.12) Uma carga é distribuída uniformemente, com densidade ( )pi=ρ − 1810 9s C/m2, sobre uma 
lâmina retangular finita de 1 mm × 1 m, estando centrada na origem, sobre o plano z = 0, e 
com os lados paralelos aos eixos x e y. Usando aproximações de senso comum, estimar o 
valor do campo elétrico E
�
 nos seguintes pontos do eixo z: 
(a) z = 0,001 mm; (b) z = 1 cm; (c) z
= 100 m 
Respostas:a) za1E = [V/m]; b) za
1,0E
pi
=
 [V/m]; c) z
7
a
2
10E
pi
=
−
 [V/m] 
 
2.13) Quatro cargas pontuais, iguais a 3 µC localizam-se, no vácuo, nos quatro vértices de um 
quadrado de 5 cm de lado. Determine o módulo da força que age em cada carga. 
 
Resposta: 61,9 N 
 
2.14) Três cargas pontuais Q, 2Q e 3Q ocupam respectivamente os vértices A, B e C de um 
triângulo equilátero de lado l. Uma das cargas tem a máxima força exercida sobre ela e uma 
outra tem a mínima força. Determinar a razão entre as magnitudes destas 2 forças. 
 
Resposta: Razão = 1,82, sendo as magnitudes das forças máxima e mínima iguais, 
respectivamente, a 7,94k e 4,36k, onde k = Q2/(4piεo l2) 
 
Anotações 
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
CCaappííttuulloo IIII:: LLEEII DDEE CCOOUULLOOMMBB EE IINNTTEENNSSIIDDAADDEE DDEE CCAAMMPPOO EELLÉÉTTRRIICCOO 16 
Anotações 
 
Elm-Apostila de Teoria e Exerc�cios Proposto - Nova vers_o - 2013/ELM2013-Teoria-08-Cap4-v2.pdf
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIVV:: EENNEERRGGIIAA EE 
ENERGIA E POTENCIAL
 
4.1 – ENERGIA (TRABALHO) P
CAMPO ELÉTRICO 
 
Observando a figura, e adotando 
aplicada E E E EdW F dL F dL F a a dL F a dL F dL• • • •= = − = − = − = −
 
Substituindo EQFE = ,chega-se a:
dW QE dL•= −
 
 
Integrando, obtém-se o trabalho (
B) até o final (ponto A) de uma trajetória, sob a ação do campo elétrico 
 
Final (A)
Início (B)
W Q E dL•= − ∫ 
 
onde E dL 0• =∫� , pois o trabalho do 
depende apenas das posições inicial e final da trajetória.
 
Nota: Na eletrostática, o campo elétrico é 
 
4.2 – DEFINIÇÃO DE DIFEREN
 
A diferença de potencial VAB entre 2 pontos A e B é definida como sendo o trabalho necessário 
para movimentar uma carga pontual unitária positiva desde B (tomado como referência) até A.
 
Q
WVAB = ⇒
A
AB BV E dL= −∫
 
Como o campo elétrico E é conservativo (na eletrostática), tem
pontos A, B e C: 
VAB = VAC – VBC 
 
Os potenciais “absolutos” VA 
referência zero de potencial. Se, por exemplo, V
 
4.3 – O POTENCIAL DE UMA C
 
Supondo-se a carga na origem, tem
A
B
A r
AB r rB r
V E dL a dr a• •= − = −∫ ∫
AB A B
0 A B
Q 1 1V V V
4 r r
 
= − = − 
piε  
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
 
 PPOOTTEENNCCIIAALL 
Capítulo IV 
 
ENERGIA E POTENCIAL 
ENERGIA (TRABALHO) PARA MOVER UMA CARGA PONTUAL EM UM 
Observando a figura, e adotando La como um vetor unitário na direção de Ld
( ) ( )L L L Laplicada E E E EdW F dL F dL F a a dL F a dL F dL• • • •= = − = − = − = −⋅ ⋅
se a: 
(energia) necessário para mover uma carga Q desde o 
(ponto A) de uma trajetória, sob a ação do campo elétrico E , dado por:
W Q E dL
 
trabalho do campo eletrostático 
depende apenas das posições inicial e final da trajetória. 
Na eletrostática, o campo elétrico é conservativo. 
DEFINIÇÃO DE DIFERENÇA DE POTENCIAL (VAB) E POTENCIAL (V)
entre 2 pontos A e B é definida como sendo o trabalho necessário 
para movimentar uma carga pontual unitária positiva desde B (tomado como referência) até A.
A
BV E dL•= −∫ (FÓRMULA GERAL) 
é conservativo (na eletrostática), tem-se, para 3 
 e VB são obtidos adotando-se uma mesma 
referência zero de potencial. Se, por exemplo, VC = 0, pode-se escrever VAB = V
O POTENCIAL DE UMA CARGA PONTUAL 
se a carga na origem, tem-se, aplicando a fórmula geral: 
A
B
A r
AB r r2B r
0
QV E dL a dr a
4 r
• •
piε
∫ ∫ 
AB A BV V V= − = − 
23 
PONTUAL EM UM 
L , tem-se: 
aplicada E E E EdW F dL F dL F a a dL F a dL F dL• • • •= = − = − = − = − 
) necessário para mover uma carga Q desde o início (ponto 
, dado por: 
) E POTENCIAL (V) 
entre 2 pontos A e B é definida como sendo o trabalho necessário 
para movimentar uma carga pontual unitária positiva desde B (tomado como referência) até A. 
se uma mesma 
= VA – VB 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIVV:: EENNEERRGGIIAA EE 
Se B →∞⇒ VB→ 0 ⇒ AV 4 r
=
piε
 
Escrevendo de forma genérica, o potencial absoluto devido a uma carga 
pontual Q fora da origem é: 
 
0
QV
4 R
=
piε
 
 
sendo R a distância da carga pontual Q ao ponto desejado.
 
 
4.4 – O POTENCIAL DE UM SI
 
4.4.1 – VABde uma reta ∞∞∞∞ com 
 
Partindo de AAB BV E dL= −∫
A
B
L
AB
0
V a d a
2
ρ
ρ ρρ
•
ρ
= − ρ
piε ρ∫
 
L B
AB
0 A
V ln
2
ρ ρ
=
piε ρ
 
 
 
 
4.4.2 – VABde um plano ∞∞∞∞ com 
Partindo de AAB BV E dL= −∫
A
B
z s
AB z zz 0
V a dz a
2
•
ρ
= −
ε∫
 
( )sAB B A
0
V z z
2
ρ
= −
ε
 
 
 
4.4.3 – Potencial V de uma carga distribuída
 
Para uma carga distribuída, com referência zero no infinito
 
0
dQ
4 RV piε= ∫ 
 
onde: dQ = ρLdL= ρsds = ρvdv, dependendo da 
configuração de cargas, 
rrRR ′−== = distância (escalar) de dQ ao ponto 
fixo P onde se quer obter o potencial V
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
 
 PPOOTTEENNCCIIAALL 
0 A
Q
4 rpiε
 (potencial absoluto) 
Escrevendo de forma genérica, o potencial absoluto devido a uma carga 
sendo R a distância da carga pontual Q ao ponto desejado. 
O POTENCIAL DE UM SISTEMA DE CARGAS DISTRIBUÍDAS 
com ρρρρL constante 
V E dL• ,obtemos: 
V a d aρ ρ= − ρ 
com ρρρρs constante 
 
V E dL• ,obtemos: 
AB z zV a dz a 
Potencial V de uma carga distribuída 
referência zero no infinito: 
dv, dependendo da 
= distância (escalar) de dQ ao ponto 
fixo P onde se quer obter o potencial V 
24 
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIVV:: EENNEERRGGIIAA EE 
4.5 – GRADIENTE DO POTENCI
 
O gradiente de uma função escalar
definido matematicamente por: 
 
 NadN
dVV =∇
 (resultado = vetor)
 
ondedV, dN e Na
�
 são mostrados na figura. 
aGa
cosdL
dV
a
dN
dVV NN =θ
==∇
 
Daí, dVcosGdL =θ ⇒ LdG =•
��
onde: 
zzyyxx aGaGaGG ++=
����
zyx adzadyadxLd ++=
z
Vdy
y
Vdx
x
VdV
∂
∂
+
∂
∂
+
∂
∂
=
sendo: 
Ld
�
 =vetor comprimento diferencial medido numa direção qualquer,
dN = dLcosθ = menor distância entre as 2 superfícies equipotenciais V
 
Assim, obtemos a expressão do gradiente 
yx ay
V
a
x
VVG ��
��
∂
∂
+
∂
∂
=∇=
 
Propriedades do gradiente de uma função escalar V:
 
a) V∇ énormal a V 
b) V∇ aponta no sentido do crescimento
 
Logo V∇ é um vetor que dá a máxima
vetor) e a direção em que este máximo ocorre (sentido do vetor). 
 
Se V = função potencial elétrico, então: 
 
VE ∇−=
 
 
Exemplo:Utilizando gradiente, determinar 
 
Solução: O potencial de uma carga pontual na origem 
 Tomando o gradiente de 
e fazendo VE ∇−= ⇒
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
 
 PPOOTTEENNCCIIAALL 
GRADIENTE DO POTENCIAL ( V∇ ) 
gradiente de uma função escalar (ex. V) é 
(resultado = vetor) 
são mostrados na figura. 
Ga N
�
=
 
dV 
Nz aG= 
LadL= 
dz
 
=vetor comprimento diferencial medido numa direção
qualquer, 
= menor distância entre as 2 superfícies equipotenciais V1 e V2. 
Assim, obtemos a expressão do gradiente em coordenadas cartesianas: 
zy a
z
V �
∂
∂
+
 
Propriedades do gradiente de uma função escalar V: 
sentido do crescimento de V 
máxima variação no espaço de uma quantidade escalar (módulo do 
em que este máximo ocorre (sentido do vetor). 
Se V = função potencial elétrico, então: 
( E está apontado no sentido decrescente de V).
determinar a expressão de E para uma carga pontual na origem.
O potencial de uma carga pontual na origem (no vácuo) é: Q
4 r
=
piε
V
Tomando o gradiente de V, em coordenadas esféricas, sabendo-se que 
⇒ r r2
0
V Q 1E a a
r 4 r
∂ − 
= − = −  ∂ piε  
� � �
⇒
0
QE a
4 r
=
piε
�
25 
 
variação no espaço de uma quantidade escalar (módulo do 
o sentido decrescente de V). 
para uma carga pontual na origem. 
0
Q
4 rpiε
 
se que V = f(r): 
r2
0
QE a
4 rpiε
�
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIVV:: EENNEERRGGIIAA EE 
4.6 – O DIPOLO ELÉTRICO 
 
É um sistema com 2 cargas pontuais iguais e simétricas (figura c
sendo d a distância (separação) entre as cargas e r a distância do centro do dipolo a um ponto P 
desejado. 
 
Cálculo do potencial no ponto P devido ao dipolo na origem:
 
P
0 1 0 2
Q QV
4 r 4 r
+ −
= +
piε piε
 
P
0 1 2
Q 1 1V
4 r r
 
= − 
piε  
 
2 1
P
0 1 2
r rQV
4 r r
 
−
=  
piε  
 
 
Sendo d << r, fazemos r2
p 2
0
Qd cosV 
4 r
θ
=
piε
 
 
Campo elétrico no ponto P devido ao dipolo elétrico 
 
( r3
0
QdE 2cos a sen a
4 r
= θ + θ
piε
 
Definindo momento de dipolo elétrico
entre as cargas do dipolo e cuja direção (e sentido) é de 
 
r
p 2
0
p a
V
4 r
•
=
piε
 
 
Notas: 
a) Com o aumento da distância, o potencial e o campo elétrico 
caem mais rápidos para o dipolo elétrico do que para a carga 
pontual. 
b) Para o dipolo elétrico fora da origem
R
p 2
0
p a
V
4 R
•
=
piε
 
 
onde: 
Ra = versor orientado do centro do dipolo ao ponto desejado;
R = distância do centro do dipolo ao ponto desejado.
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
 
 PPOOTTEENNCCIIAALL 
 
É um sistema com 2 cargas pontuais iguais e simétricas (figura c) bem próximas tal que d << r, 
sendo d a distância (separação) entre as cargas e r a distância do centro do dipolo a um ponto P 
Cálculo do potencial no ponto P devido ao dipolo na origem: 
θ≅− cosdr1 e 221 rrr ≅ . Daí, 
Campo elétrico no ponto P devido ao dipolo elétrico na origem: 
)E 2cos a sen aθ= θ + θ (obtido de VE ∇−= ) 
momento de dipolo elétrico como dQp = ,onde d é o vetor cuja magnitude é a distância 
entre as cargas do dipolo e cuja direção (e sentido) é de –Q para +Q: 
Com o aumento da distância, o potencial e o campo elétrico 
caem mais rápidos para o dipolo elétrico do que para a carga 
ora da origem, o potencial é dado por: 
= versor orientado do centro do dipolo ao ponto desejado; 
R = distância do centro do dipolo ao ponto desejado. 
26 
) bem próximas tal que d << r, 
sendo d a distância (separação) entre as cargas e r a distância do centro do dipolo a um ponto P 
 
é o vetor cuja magnitude é a distância 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIVV:: EENNEERRGGIIAA EE 
4.7 – ENERGIA NO CAMPO ELE
 
4.7.1 – Energia (trabalho) para uma distribuição discreta de cargas
 
 
WE = trabalho total para trazer 3 cargas Q
 
WE =W1 + W2 + W3 
WE = 0 + Q2V2,1 + Q3 V3,1 + Q
 
Nota: V2,1 = potencial no ponto 2 devido à carga Q
 
Se as 3 cargas forem fixadas na ordem inversa
WE = W3’ + W2’ + W1’ 
WE = 0 + Q2 V2,3 + Q1 V1,2 + Q
 
(i) + (ii): 2WE = Q1 V1 + Q2 V
( 2211E VQVQ2
1W ++=
 
Para N cargas: ∑
=
=
N
1i
E 2
1W
 
 
4.7.2 – Energia (trabalho) para uma distribuição contínua de carga
 
Para uma região com distribuição contínua de carga, substituímos Q
diferencial dQ = ρvdv e a somatória se transforma numa integral em todo o volume de cargas.
∫ρ=
vol
vE Vdv2
1W
 [J] 
 
Pode-se demonstrar que o trabalho pode ser também expresso em função de 
 
WE =
1
2
D•E
vol
∫ dvou W E dv
 
Nota: A densidade de energia do campo elétrico no vácuo pode ser obtida pelas expressões:
dWE
dv
=
1
2
D• E = 1
2
ε0E
2
=
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
 
 PPOOTTEENNCCIIAALL 
ENERGIA NO CAMPO ELETROSTÁTICO 
Energia (trabalho) para uma distribuição discreta de cargas 
= trabalho total para trazer 3 cargas Q1, Q2, Q3 do ∞ e fixá-las nos pontos 1, 2, 3, 
+ Q3 V3,2 (i) 
= potencial no ponto 2 devido à carga Q1 no ponto 1 (V2,1≠ V21) 
ordem inversa, isto é, fixando Q3, Q2, Q1, nos pontos 3, 2, 1, temos:
+ Q1 V1,3 (ii) 
V2 + Q3 V3 
)33VQ 
∑
1
iiVQ [J] 
Energia (trabalho) para uma distribuição contínua de carga 
Para uma região com distribuição contínua de carga, substituímos Qi da fórmula acima pela carga 
e a somatória se transforma numa integral em todo o volume de cargas.
se demonstrar que o trabalho pode ser também expresso em função de D
2
E 0
vol
1W E dv
2
= ε∫ ou
2
E
0vol
1 DW dv
2
=
ε∫ 
A densidade de energia do campo elétrico no vácuo pode ser obtida pelas expressões:
=
1
2
D2
ε0
 [J/m3] 
27 
 
las nos pontos 1, 2, 3, nesta ordem: 
, nos pontos 3, 2, 1, temos: 
da fórmula acima pela carga 
e a somatória se transforma numa integral em todo o volume de cargas. 
D e/ou E como: 
A densidade de energia do campo elétrico no vácuo pode ser obtida pelas expressões: 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIVV:: EENNEERRGGIIAA EE 
Ex. 1 Calcular a energia WE 
condutores interno e externo de raios 
superficial de carga uniforme no condutor interno é igual a 
 
Supondo uma gaussiana cilíndrica no interior do dielétrico (vácuo) de raio 
aplicando a lei de Gauss (
⇒piρ=piρ as L2L2D
 
Substituindo na equação de energia obtida acima:
2
E
0 0vol z 0 0
1 D 1W dv d d dz
2 2
= = ρ ρ φ
ε ε∫ ∫ ∫ ∫
[ ]
2 2
s
E
0
1W 2 L
2
ρ
= ρ pi
ε
b
a
a ln
 
Daí, obtemos finalmente: 
2 2
s
E
0
LW pi ρ=
ε
a bln
a
 
 
Ex. 2 Calcular a energia WE armazenada num capacitor de placas paralelas no vácuo, sendo 
diferença de potencial entre as placas iguais de área 
Supor o campo elétrico entre as placas uniforme desprezando os efeitos de bordas.
 
Da equação de energia obtida acima, e sabendo que 
 
2
E 0
1 VW E dv dv
2 2 d
ε
= ε =∫ ∫
 
Tomando a expressão da capacitância do capacitor de placas 
paralelas ideal (cap. 5), teremos:
 
2
E CV2
1W = onde C
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
 
 PPOOTTEENNCCIIAALL 
 armazenada num pedaço de cabo coaxial de comprimento 
condutores interno e externo de raios a e b, respectivamente, supondo que a densidade 
superficial de carga uniforme no condutor interno é igual a ρρρρs. 
Supondo uma gaussiana cilíndrica no interior do dielétrico (vácuo) de raio 
a lei de Gauss (
int
S
QSdD =∫ • ), obtemos: 
ρ
ρ
=⇒
asD 
Substituindo na equação de energia obtida acima: 
( )2L 2 s
0 0vol z 0 0
/1 D 1W dv d d dz
2 2
pi
= φ= ρ=
ρ ρ
= = ρ ρ φ
ε ε∫ ∫ ∫ ∫
b
a
a
 
W 2 L= ρ pi
 
 
armazenada num capacitor de placas paralelas no vácuo, sendo 
diferença de potencial entre as placas iguais de área S e separadas por uma distância 
o elétrico entre as placas uniforme desprezando os efeitos de bordas.
Da equação de energia obtida acima, e sabendo que V = E d, obtemos:
2
01 VW E dv dv
2 2 d
ε  
 
 
∫ ∫ ⇒
20
E
S1W V
2 d
ε
=
 
Tomando a expressão da capacitância do capacitor de placas 
paralelas ideal (cap. 5), teremos: 
0SC
d
ε
=
 
28 
armazenada num pedaço de cabo coaxial de comprimento L e 
, respectivamente, supondo que a densidade 
Supondo uma gaussiana cilíndrica no interior do dielétrico (vácuo) de raio a<ρ<b,e 
armazenada num capacitor de placas paralelas no vácuo, sendo V a 
e separadas por uma distância d. 
o elétrico entre as placas uniforme desprezando os efeitos de bordas. 
, obtemos: 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIVV:: EENNEERRGGIIAA EE 
4.8 – EXERCÍCIOS PROPOSTOS
 
4.1) Três cargas pontuais idênticas de carga Q são colocadas, uma a uma, nos vértices de um 
quadrado de lado a. Determinar a energia armazenada no sistema após todas as cargas serem 
posicionadas. 
Resposta: (4
8
QW
o
2
E ⋅
piε
=
a
 
4.2) Seja uma carga distribuída ao longo da porção |z| < 1 m do eixo z, com densidade linear de 
carga ρL = kz [ηC/m]. Determinar:
a) O potencial em um ponto qualquer sobre o plano z = 0;
b) O potencial em um ponto 
 
Respostas: a) VA = 0; b) V
 
4.3) Um quadrado de vértices A(0,0,0), B(0,1,0), C(1,1,0) e D(1,0,0), possui uma distribuição 
linear uniforme de carga com densidade 
pontual Q1 = 1 [pC] no vértice C, uma carga pontual Q
no centro P do quadrado: 
a) O potencial elétrico devido a cada uma das três cargas;
b) O potencial elétrico total devido às três cargas.
 
Respostas: a) VP1 = 0,0127 [V], V
 
4.4) Um campo elétrico é dado em coordenadas cilíndricas por: 
Conhecidos os pontos A(3,0,4), B(5,13,0) e C(15,6,8), expressos em coordenadas
determinar: 
 a) A diferença de potencial V
 b) O potencial VA se a referência zero de potencial está no ponto B;
 c) O potencial VA se a referência zero de potencial está no ponto C;
 d) O potencial VA se a referência zero de potencial e
 
Respostas: a) VAB = 26,15 [V]; b) V
 
4.5) Uma superfície esférica no espaço livre, definida por r = 4 cm, contém uma densidade 
superficial de carga de 20 [
compreendida entre as esferas de raios r = 6 cm e r = r
 
Resposta: rA = 6,54 [cm]. 
 
4.6) O campo potencial no vácuo é expresso por V = k/
a) Determinar a quantidade de carg
b) Determinar a energia armazenada na região cilíndrica 
 
Respostas:a) ⋅= k2Q opiε
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
 
 PPOOTTEENNCCIIAALL 
EXERCÍCIOS PROPOSTOS 
Três cargas pontuais idênticas de carga Q são colocadas, uma a uma, nos vértices de um 
. Determinar a energia armazenada no sistema após todas as cargas serem 
)24 +
 [J]. 
Seja uma carga distribuída ao longo da porção |z| < 1 m do eixo z, com densidade linear de 
C/m]. Determinar: 
O potencial em um ponto qualquer sobre o plano z = 0; 
O potencial em um ponto do eixo z situado a uma altura h = 2 m do plano z = 0.
= 0; b) VB = 1,775 [kV]. 
Um quadrado de vértices A(0,0,0), B(0,1,0), C(1,1,0) e D(1,0,0), possui uma distribuição 
linear uniforme de carga com densidade ρL = 10 [pC/m] ao longo do lado AB, uma carga 
C] no vértice C, uma carga pontual Q2 = -10 [pC] no vértice D. Determinar, 
O potencial elétrico devido a cada uma das três cargas; 
O potencial elétrico total devido às três cargas. 
= 0,0127 [V], VP2 = – 0,127 [V], VL = 0,1584 [V]; b) V
Um campo elétrico é dado em coordenadas cilíndricas por: � �E a= 1002ρ ρ
Conhecidos os pontos A(3,0,4), B(5,13,0) e C(15,6,8), expressos em coordenadas
A diferença de potencial VAB; 
se a referência zero de potencial está no ponto B; 
se a referência zero de potencial está no ponto C; 
se a referência zero de potencial está no infinito. 
= 26,15 [V]; b) VA = 26,15 [V]; c) VA = 27,14 [V]; d) V
Uma superfície esférica no espaço livre, definida por r = 4 cm, contém uma densidade 
superficial de carga de 20 [µC/m2]. Determinar o valor do raio rA,, em centímetros, se a região 
compreendida entre as esferas de raios r = 6 cm e r = rA contém exatamente 1 
 
O campo potencial no vácuo é expresso por V = k/ρ. 
Determinar a quantidade de carga na região cilíndrica a<ρ<b e 0 < z < 1.
Determinar a energia armazenada na região cilíndrica a<ρ<b e 0 < z < 1.






−
ab
11
; b) 





−⋅=
22
2
oE
11k
2
1W
ba
piε
29 
Três cargas pontuais idênticas de carga Q são colocadas, uma a uma, nos vértices de um 
. Determinar a energia armazenada no sistema após todas as cargas serem 
Seja uma carga distribuída ao longo da porção |z| < 1 m do eixo z, com densidade linear de 
do eixo z situado a uma altura h = 2 m do plano z = 0. 
Um quadrado de vértices A(0,0,0), B(0,1,0), C(1,1,0) e D(1,0,0), possui uma distribuição 
ngo do lado AB, uma carga 
C] no vértice D. Determinar, 
= 0,1584 [V]; b) VPT = 0,044 [V]. 
V
m




 
Conhecidos os pontos A(3,0,4), B(5,13,0) e C(15,6,8), expressos em coordenadas cartesianas, 
= 27,14 [V]; d) VA = 33,33 [V]. 
Uma superfície esférica no espaço livre, definida por r = 4 cm, contém uma densidade 
, em centímetros, se a região 
contém exatamente 1 mJ de energia. 
e 0 < z < 1. 
e 0 < z < 1. 
. 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIVV:: EENNEERRGGIIAA EE 
4.7) Uma linha de cargas uniforme de 2 m de comprimento com carga total de 3 nC está situada 
sobre o eixo z com o ponto central da linha localizado a +2 m da origem. Num ponto P sobre 
o eixo x, distante +2 m da origem, pede
a) Determinar o potencial elétric
b) Determinar o potencial elétrico se a carga total for agora concentrada no ponto central da 
linha; 
c) Calcular e comentar sobre a diferença percentual entre os dois valores de potencial obtidos.
 
Respostas: a) VPL = 9,63 V; 
b) VPQ = 9,55 V; 
c) (VPQ – VPL)x100%/
Uma carga concentrada produz um potencial menor do que esta mesma carga 
distribuída, caso sejam iguais as distâncias dos centros destas cargas ao ponto 
desejado. 
 
4.8) Uma carga Q0 = +10 µC está col
C, D. Supondo o meio o vácuo, determinar o trabalho necessário para:
a) Mover a carga QA = +10 
b) Mover também a carga Q
c) Finalmente mover também a carga Q
quadrado. 
 
Respostas: a) WA = 1,271 J; b) W
 
4.9) a) Determinar o potencial V
distribuída uniformemente ao longo do eixo 
b) Supondo que a mesma carga total Q = 2 nC seja agora concentrada num ponto, determinar 
em que posição esta deverá ser colocada ao longo do eixo 
potencial VP no ponto P(2, 0, 0) obtido no item (a).
 
Respostas: a) VP = 7,9324 V; 
b) y = ± 1,072 m.
 
4.10) a) Determinar a fórmula para o cálculo da diferença de potencial entre 2 pontos quai
e B devido a uma carga pontual Q, no vácuo. (Supor a carga na origem.)
 b) Determinar a fórmula para o cálculo da diferença de potencial entre 2 pontos quaisquer A 
e B devido a uma carga distribuída uniformemente numa linha infinita com densidade
no vácuo. 
 c) Uma carga com densidade linear constante 
carga pontual Q está localizada no ponto (1, 0, 0). Sejam os pontos A(4, 0, 0), B(5, 0, 0) 
e C(8, 0, 0). Se VAB = V
meio é o vácuo. 
 
Respostas: a) 
piε
=
o4
Q
ABV
b) 
o
L
2piε
ρ
=ABV
c) 81,86L −=ρ
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
 
 PPOOTTEENNCCIIAALL 
Uma linha de cargas uniforme de 2 m de comprimento com carga total de 3 nC está situada 
com o ponto central da linha localizado a +2 m da origem. Num ponto P sobre 
, distante +2 m da origem, pede-se: 
Determinar o potencial elétrico devido a linha de cargas; 
Determinar o potencial elétrico se a carga total for agora concentrada no ponto central da 
Calcular e comentar sobre a diferença percentual entre os dois valores de potencial obtidos.
= 9,63 V; 
= 9,55 V; 
)x100%/VPQ = -0,83 % 
Uma carga concentrada produz um potencial menor do que esta mesma carga 
distribuída, caso sejam iguais as distâncias dos centros destas cargas ao ponto 
C está colocada no centro de um quadrado de lado 1 m e vértices A, B, 
C, D. Supondo o meio o vácuo, determinar o trabalho necessário para: 
= +10 µC do infinito até fixá-la no vértice A do quadrado;
b) Mover também a carga QB = –20 µC do infinito até fixá-la no vértice B do quadrado;
c) Finalmente mover também a carga QC = +30 µC do infinito até fixá
= 1,271 J; b) WB = –4,340 J; c) WC = 0,327 J. 
Determinar o potencial VP no ponto P(2, 0, 0) devido a uma carga total Q = 2 nC 
distribuída uniformemente ao longo do eixo y, de y = 0 até y = 2 m. 
Supondo que a mesma carga total Q = 2 nC seja agora concentrada num ponto, determinar 
deverá ser colocada ao longo do eixo y para produzir o mesmo 
no ponto P(2, 0, 0) obtido no item (a). 
= 7,9324 V; 
1,072 m. 
Determinar a fórmula para o cálculo da diferença de potencial entre 2 pontos quai
e B devido a uma carga pontual Q, no vácuo. (Supor a carga na origem.)
Determinar a fórmula para o cálculo da diferença de potencial entre 2 pontos quaisquer A 
e B devido a uma carga distribuída uniformemente numa linha infinita com densidade 
Uma carga com densidade linear constante ρL está distribuída sobre todo o eixo 
carga pontual Q está localizada no ponto (1, 0, 0). Sejam os pontos A(4, 0, 0), B(5, 0, 0) 
= VBC = 1 volt, determinar os valores numérico de 






−
BA r
1
r
1
; 
A
Bln
ρ
ρ
; 
81pC/m; Q = 1800,04 pC 
30 
Uma linha de cargas uniforme de 2 m de comprimento com carga total de 3 nC está situada 
com o ponto central da linha localizado a +2 m da origem. Num ponto P sobre 
Determinar o potencial elétrico se a carga total for agora concentrada no ponto central da 
Calcular e comentar sobre a diferença percentual entre os dois valores de potencial obtidos. 
Uma carga concentrada produz um potencial menor do que esta mesma carga 
distribuída, caso sejam iguais as distâncias dos centros destas cargas ao ponto 
ocada no centro de um quadrado de lado 1 m e vértices A, B, 
la no vértice A do quadrado; 
la no vértice B do quadrado; 
C do infinito até fixá-la no vértice C do 
(2, 0, 0) devido a uma carga total Q = 2 nC 
Supondo que a mesma carga total Q = 2 nC seja agora concentrada num ponto, determinar 
para produzir o mesmo 
Determinar a fórmula para o cálculo da diferença de potencial entre 2 pontos quaisquer A 
e B devido a uma carga pontual Q, no vácuo. (Supor a carga na origem.) 
Determinar a fórmula para o cálculo da diferença de potencial entre 2 pontos quaisquer A 
e B devido a uma carga distribuída uniformemente numa linha infinita com densidade ρL, 
está distribuída sobre todo o eixo z e uma 
carga pontual Q está localizada no ponto (1, 0, 0). Sejam os pontos A(4, 0, 0), B(5, 0, 0) 
numérico de ρL e de Q. O 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIVV:: EENNEERRGGIIAA EE 
4.11) Sabendo-se que 2yx2 +=V
grandezas no ponto P(6; -2,5; 3):
a) V; b) E ; 
 
Respostas: a) 135P −=V [V]; b) 
c) xP a541D =
 
4.12) Um dipolo z1 a20p = nC.m, localiza
z2 a50p −= nC.m localiza-
Determine Ve E no ponto médio entr
 
Resposta: 2,25M =V [V]; 
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
 
 PPOOTTEENNCCIIAALL 
( )22 yxln4z20 +−+ V, no vácuo, determine o valor das seguintes 
2,5; 3): 
c) D ; d) ρv. 
[V]; b) zyxP a20a5,72a1,61E −−= [V/m];
zy a177a642 −− [pC/m2]; d) 5,88v =ρ [pC/m
nC.m, localiza-se na origem, no vácuo, e um segundo dipolo 
-se em (0, 0, 10). 
no ponto médio entre os dipolos. 
[V]; zM a32,4E −= [V/m]. 
 
Anotações 
31 
V, no vácuo, determine o valor das seguintes 
[V/m]; 
[pC/m3]. 
se na origem, no vácuo, e um segundo dipolo 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo IIVV:: EENNEERRGGIIAA EE 
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
 
 PPOOTTEENNCCIIAALL 
Anotações 
32 
Elm-Apostila de Teoria e Exerc�cios Proposto - Nova vers_o - 2013/ELM2013-Teoria-05-Cap1-v2.pdf
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo II:: ÁÁNNÁÁLLIISSEE VVEETT
 
1.1 – CONCEITOS GERAIS 
 
• Grandeza Escalar – Representada por um 
não de unidade de medida. 
Ex.: Tensão ou potencial, corrente, carga, tempo, massa, volume, temperatura, pressão,
de refração, etc. 
 
• Grandeza Vetorial – Representada por uma 
Ex.: Densidade de corrente, velocidade, aceleração, força, torque, etc.
 
Atenção: No curso de Eletromagnetismo não será feita distinção entre a magnitude, módulo, 
intensidade e valor absoluto de um vetor. A magnitude de um vetor é um valor sempre 
positivo. 
 
• Campo Escalar– Cada ponto 
Ex.: Campo de potenciais, campo de temperaturas, campo de pressões, etc.
Notação: Seja yx 22 ++=φ
Se φ = potencial ⇒
Se φ = temperatura 
Se φ = pressão ⇒
 
• Campo Vetorial– Cada ponto
Ex.: Campo elétrico, campo magnético, campo gravitacional, etc.
Notação: Seja x a4a3E
��
�
+=
Se E
�
 = campo elétrico 
possuindo módulo igual a 
(também chamados de versores): 
 
Atenção: No curso de Eletromagnetismo adota
que seu módulo pode ser representado por 
 
 
1.2 – O PRODUTO ESCALAR (O
 
O produto escalar entre 2 vetores 
 
θ=• cosBABA
����
 (
 
Propriedades do produto escalar
 
(a) ABBA
����
•=• (propriedade comutativa)
(b) 0BA =•
��
⇔ A ⊥ B (o produto escalar entre 2 vetores perpendiculares é nulo)
(c) 22 AAAA ==•
���
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
TTOORRIIAALL 
Capítulo I 
 
ANÁLISE VETORIAL 
Representada por um número real, positivo ou negativo
potencial, corrente, carga, tempo, massa, volume, temperatura, pressão,
Representada por uma magnitude, direção e sentido.
: Densidade de corrente, velocidade, aceleração, força, torque, etc. 
urso de Eletromagnetismo não será feita distinção entre a magnitude, módulo, 
intensidade e valor absoluto de um vetor. A magnitude de um vetor é um valor sempre 
 da região é representado por um escalar. 
potenciais, campo de temperaturas, campo de pressões, etc.
100z 2 =+ definindo um campo escalar. 
⇒ temos uma superfície equipotencial esférica.
= temperatura ⇒ temos uma superfície isotérmica esférica.
⇒ temos uma superfície isobárica esférica. 
Cada ponto da região equivale a um vetor. 
: Campo elétrico, campo magnético, campo gravitacional, etc.
zy a5
�
+ definindo um campo vetorial. 
= campo elétrico ⇒temos uma região onde o campo elétrico é uniforme, 
possuindo módulo igual a 25E =
�
 e direção fixa definida pelos vetores unitários 
(também chamados de versores): xa
�
, ya
�
 e za
�
. 
No curso de Eletromagnetismo adota-se a seguinte notação para vetores: 
que seu módulo pode ser representado por A
�
 ou A , ou, simplesmente,A.
O PRODUTO ESCALAR (OU PRODUTO INTERNO) 
O produto escalar entre 2 vetores A e B é definido como: 
(θ = menor ângulo entre A e B ) 
Propriedades do produto escalar: 
(propriedade comutativa) 
(o produto escalar entre 2 vetores perpendiculares é nulo)
1 
, positivo ou negativo, acompanhado ou 
potencial, corrente, carga, tempo, massa, volume, temperatura, pressão, índice 
. 
urso de Eletromagnetismo não será feita distinção entre a magnitude, módulo, 
intensidade e valor absoluto de um vetor. A magnitude de um vetor é um valor sempre 
potenciais, campo de temperaturas, campo de pressões, etc. 
temos uma superfície equipotencial esférica. 
temos uma superfície isotérmica esférica. 
temos uma região onde o campo elétrico é uniforme, 
e direção fixa definida pelos vetores unitários 
se a seguinte notação para vetores: A
�
 ou A , sendo 
, ou, simplesmente,A. 
(o produto escalar entre 2 vetores perpendiculares é nulo) 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo II:: ÁÁNNÁÁLLIISSEE VVEETT
(i) Aplicação do produto escalar:
 
A projeção (ou componente) escalar
Ba = B• a = B•
A
A








 
 ( a
 
A projeção (ou componente) vetorial
Ba = B• a( ) a ⇒Ba = B•




 
A projeção escalar (Bx) do vetor 
 
B
x
= B• a
x
 
 ( xa = vetor unitário
 
A projeção vetorial ( B x) do vetor 
 
B
x
= B
x
a
x
= B• a
x( ) ax 
 
(ii) Aplicação do produto escalar
 
O ânguloθ compreendido entre 2 vetores 
 
 
1.3 – O PRODUTO VETORIAL (
 
O produto vetorial entre 2 vetores 
 
naBABA
�
����
θ=× sen
 
 
onde na
�
 = vetor unitário (versor) normal ao plano formado pelos vetores 
(e sentido) é obtida pela regra do saca
 
Propriedades do produto vetorial
 
(a) ABBA
����
×−=× (propriedade não
(b) 0BA =×
��
⇔ A // B 
(c) 0AA =×
��
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
TTOORRIIAALL 
: obtenção da componente ou projeção de um vetor (ex.: 
numa dada direção (ex.: o vetor A ou o eixo 
escalar do vetor B sobre o vetor A é: 
a = vetor unitário na direção de A ) 
vetorial do vetor B sobre A é: 
•
A
A




A
A
 
B sobre o eixo x é: 
= vetor unitário na direção do eixo x) 
) do vetor B sobre o eixo x é: 
 
Aplicação do produto escalar: obtenção do ângulo compreendido entre 2 vetores quaisquer.
compreendido entre 2 vetores A e B é obtido por: cosθ = A•B
A B
O PRODUTO VETORIAL (OU PRODUTO EXTERNO) 
O produto vetorial entre 2 vetores A e B é definido como: 
 (θ = menor ângulo entre A e B ) 
vetor unitário (versor) normal ao plano formado pelos vetores 
(e sentido) é obtida pela regra do saca-rolhas (mão direita) indo de A para 
Propriedades do produto vetorial: 
(propriedade não-comutativa) 
 (o produto vetorial entre 2 vetores paralelos é nulo)
2 
de um vetor (ex.: B ) 
ou o eixo x→ ver figuras). 
compreendido entre 2 vetores quaisquer. 
B
B
 
 
 
vetor unitário (versor) normal ao plano formado pelos vetores A e B , cuja direção 
para B . 
(o produto vetorial entre 2 vetores paralelos é nulo) 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo II:: ÁÁNNÁÁLLIISSEE VVEETT
(i) Aplicação do produto vetorial
Obtenção do vetor ouversor normal
por 2 vetores A e B . 
 
BAN
���
×= 
BA
BA
N
N
a n ��
��
�
�
�
×
×
==
 
 
 
 
(ii) Aplicação do produto vetorial
Obtenção da área de um 
vetores A e B . 
 
Sparalelogramo = Base ×
Striângulo =
1
2
Sparalelog
 
 
Exercício: Demonstrar que o volume de um paralelepípedo pode ser obtido através do produto 
misto, expresso por: 
 
 
( ) CBAvol ��� •×= 
 
com A
�
, B
�
 e C
�
representando, 
do paralelepípedo. 
 
Solução: ( ) [ senBACBA =•× ( ����� θ
 
 
1.4 – SISTEMAS DE COORDENA
 
 
1.4.1 – Representação de um ponto nos 3 sistemas de coordenadas
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
TTOORRIIAALL 
Aplicação do produto vetorial: 
versor normal a um plano formado 
(vetor normal) 
 (versor normal) 
produto vetorial: 
de um paralelogramo (ou triângulo) cujos lados são as magnitudes dos 
× Altura =
�
B
�
A senθ =
�
A ×
�
B
 
gramo =
1
2
�
A ×
�
B 
Demonstrar que o volume de um paralelepípedo pode ser obtido através do produto 
 
 
representando, respectivamente, o comprimento, a largura e a altura 
] [ ] base)(altu da áreaCasenBACa nn =•=• ()() ������ θθ
SISTEMAS DE COORDENADAS CARTESIANAS, CILÍNDRICAS E ESFÉRICAS
Representação de um ponto nos 3 sistemas de coordenadas 
3 
) cujos lados são as magnitudes dos 
Demonstrar que o volume de um paralelepípedo pode ser obtido através do produto 
respectivamente, o comprimento, a largura e a altura 
volumera)base)(altu = 
ÍNDRICAS E ESFÉRICAS 
 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
CCaappííttuulloo II:: ÁÁNNÁÁLLIISSEE VVEETT
1.4.2 – Transformações entre os 3 sistemas de coordenadas
 
Quadro das transformações entre os três sistemas de coordenadas
SISTEMA Cartesiano
Cartesiano 
zz
yy
xx
=
=
=
 
Cilíndrico 
zz
0 )x/y(tan
 yx
1-
22
=
=φ
ρ+=ρ
Esférico 
(
( )=φ
+=θ
++=
 x/ytan
yxtan
 zyxr
1-
221-
222
 
1.4.3 – Vetores unitários nos 3 sistemas de coordenadas
 
 
 
1.4.4 – Produtos escalares entre vetores unitários nos 3 sistemas de coordenadas
 
Coordenadas cartesianas e cilíndricas
 
Nota: O produto escalar entre o vetor unitário 
de coordenadas esféricas,é dado pelo co
esférico ra
�
 (ou θa
� ) e sua projeção no plano 
formado por esta projeção e o vetor u
 
�
aρ 
�
aφ 
�
a
�
ax •••• cosφφφφ - senφφφφ 
�
ay •••• senφφφφ cosφφφφ 
�
az •••• 0 0 
CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO
 
 
TTOORRIIAALL 
Transformações entre os 3 sistemas de coordenadas 
Quadro das transformações entre os três sistemas de coordenadas
Cartesiano Cilíndrico 
zz
seny
cosx
=
φρ=
φρ=
 
2
0
pi≤φ≤
≥
 
zz =
φ=φ
ρ=ρ
 
)
pi≤φ≤
pi≤θ≤
≥
20 
0 z
0r 
 
( )
pi≤φ≤φ=φ
pi≤θ≤ρ=θ
≥+ρ=
20 
0 ztan
0r zr
1-
22
nos 3 sistemas de coordenadas 
Produtos escalares entre vetores unitários nos 3 sistemas de coordenadas
Coordenadas cartesianas e cilíndricas Coordenadas cartesianas e esféricas
O produto escalar entre o vetor unitário xa
�
 (ou ya
� ) e o vetor unitário 
de coordenadas esféricas,é dado pelo cosseno do ângulo formado entre o vetor unitário 
) e

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Outros materiais