Buscar

Trabalho - Raios

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 8 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 8 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Um raio é uma descarga elétrica de grande intensidade que ocorre na atmosfera, entre regiões eletricamente carregadas. Tipicamente vem acompanhada pelo relâmpago, uma intensa emissão de radiação eletromagnética, e pelo trovão, além de outros fenômenos associados. Normalmente situam-se no interior ou entre as nuvens, mas é frequente a ocorrência de descargas diretamente sobre o solo, que transferem elétrons da nuvem para a terra, embora o inverso também aconteça. A maior parte ocorre zona tropical do planeta e principalmente sobre as terras emersas, associados a sistemas convectivos, os quais, quando é intensa a atividade elétrica, caracterizam as trovoadas.
Estas descargas elétricas possivelmente tiveram papel fundamental no surgimento da vida, além de auxiliar na sua manutenção. Na história humana, foi possivelmente a primeira fonte de fogo, fundamental no processo da evolução. Pesquisas científicas posteriores revelaram sua natureza elétrica e, desde então, as descargas têm sido alvo constante de monitoramento, por sua associação com sistemas de tempestades.
Entretanto, os raios também oferecem perigo, em virtude da grande magnitude de cargas elétricas envolvidas. Por esta razão, edifícios, redes de transmissão de energia e demais componentes de infraestrutura necessitam de sistemas de proteção, sendo o mais comum o para-raios. Mesmo assim, as descargas deixam milhares de mortos e feridos por todo o mundo, mesmo existindo medidas de proteção relativamente simples que poderiam evitar fatalidades.
Os raios manifestam-se usualmente como um trajeto extremamente luminoso que percorre longas distâncias, possuindo ramificações. Contudo, existem formas exóticas, como o raio globular, cuja natureza se desconhece, existindo somente relatos deste fenômeno. A grande variação do campo elétrico das descargas na troposfera pode dar origem a eventos luminosos transientes na alta atmosfera. Raios também são originados em outros eventos, como erupções vulcânicas, explosões nucleares e tempestades de areia. Utilizam-se ainda métodos artificiais para criar descargas atmosféricas com finalidade científica. Em outros planetas do Sistema Solar também ocorrem raios, especialmente em Júpiter e Saturno.
Características:
Os raios, que na maioria das vezes estão associados a tempestades, são uma gigantesca faísca de eletricidade estática, através da qual um canal condutivo forma-se e cargas elétricas são transferidas. O tipo mais comum de raio ocorre no interior das próprias nuvens, embora ocorram descargas entre duas nuvens, entre a nuvem e o ar e entre a nuvem e o solo. Tudo depende de como as cargas elétricas distribuem-se no interior das nuvens. 
Em geral, distribuições de cargas em nuvens convectivas geram um intenso campo elétrico. No topo da nuvem, que do tipo cúmulo-nimbo são de forma achatada e se estendem horizontalmente, acumulam-se as cargas positivas nos pequenos cristais de gelo provenientes das correntes de convecção. No centro, geralmente em uma faixa onde a temperatura situa-se entre -20 e -10 °C, as cargas negativas encontram-se em excesso. Os dipolos formados possuem, cada um, dezenas de coulombs, separados entre si por poucos quilômetros verticalmente. Na base da nuvem forma-se tipicamente uma pequena região de cargas positivas, cuja carga não excede alguns poucos coulombs. Em tempestades mais desenvolvidas, a distribuição elétrica é muito mais complexa. 
Eletrização da nuvem
Para que ocorra uma descarga elétrica, é necessário que a nuvem possua um grande campo elétrico em seu interior, que provém da mudança de distribuição das cargas, ocorrendo, assim, a eletrificação da nuvem. Não se conhece com exatidão como transcorre este processo, embora alguns conceitos e premissas básicas sejam necessárias para sua ocorrência. Os modelos de eletrização são divididos em convectivos e por colisões.
De acordo com o modelo de eletrização convectiva, as cargas elétricas iniciais são provenientes de um campo elétrico preexistente, antes do desenvolvimento da nuvem de tempestade. Conforme a nuvem de tempestade se desenvolve, íons positivos se acumulam no interior da nuvem, o que induz o aparecimento de cargas negativas em suas bordas. Como no interior da nuvem os ventos são para cima, nas bordas surgem correntes de ar em direção oposta, que levam as cargas negativas induzidas para a base da nuvem, surgindo assim duas regiões eletricamente distintas. Com o desenvolvimento do processo a nuvem se torna capaz de atrair novas cargas por si só, o que proporciona a ocorrência de descargas elétricas. Embora demonstre a importância da convecção no processo de eletrização, este modelo não descreve satisfatoriamente a distribuição de cargas tanto no início da tempestade quanto em longo prazo. 
O modelo de eletrização por colisões, como o próprio nome indica, supõe que a transferência de cargas a partir do contato entre as partículas da nuvem durante o processo de convecção. Entretanto, ainda não há consenso de como ocorre a polarização e a separação das cargas nas minúsculas partículas de gelo. As teorias são divididas em duas classes, a indutiva (que depende de um campo elétrico preexistente) e a não indutiva. No primeiro, o campo elétrico preexistente que sob condições normais aponta para baixo faz com que, nas partículas de gelo, surjam cargas positivas em sua parte inferior e negativas na região oposta. As partículas possuem tamanhos diferenciados, de forma que as mais pesadas tendem a cair enquanto as mais leves são levadas para cima por ventos convectivos. O contato da partícula menor com o hemisfério inferior da maior ocasiona a transferência de cargas, ficando a mais leve carregada positivamente e a mais pesada negativamente. Conforme a nuvem se desenvolve, as cargas negativas se acumulam na base da nuvem e as positivas em seu topo, intensificado cada vez mais o campo elétrico e o processo de polarização das partículas a ponto de produzirem grades diferenças de potencial e produzirem descargas.
 	A eletrização não indutiva, por outro lado, possui como princípio a geração de cargas a partir da colisão entre as partículas com propriedades intrínsecas diferentes. O graupel (partícula esférica menor que o granizo) e pequenos cristais de gelo, ao colidirem, adquirem cargas opostas. O primeiro, mais pesado, leva consigo cargas negativas, enquanto os cristais chegam ao topo da nuvem, que fica positivamente carregada. Para que isso ocorra, é necessária a ocorrência de condições propícias, principalmente a temperatura (menor que -10 °C) e a quantidade ideal de água da nuvem. Em função das características observadas, este parece ser o processo mais importante de eletrização da nuvem de tempestade, o que não elimina a ocorrência de outros. 
Descarga:
Sob condições normais a atmosfera é um bom isolante elétrico. A rigidez dielétrica do ar no nível do mar chega a três milhões de volts por metro, mas se reduz gradualmente conforme a altitude, sobretudo devido ao ar rarefeito. Contudo, conforme ocorre a separação de cargas da nuvem transcorre, o campo elétrico se torna cada vez mais intenso, até o momento em que o ar não mais consegue conter o fluxo de cargas. Dessa forma, surge um caminho condutivo pelo qual as cargas elétricas podem circular livremente formando, assim, a descarga elétrica denominada raio. 
-Descarga negativa nuvem-solo
A descarga tem início quando ocorre a primeira quebra da rigidez dielétrica do ar, a partir da região ocupada por cargas negativas no interior da nuvem, através da qual surge um caminho pelo qual as cargas fluem livremente. O canal precursor da descarga segue em direção à pequena concentração de cargas positivas na base da nuvem. Com isso, uma grande quantidade de elétrons desloca-se para a parte inferior da mesma, enquanto o canal continua a se estender para baixo, agora rumo ao solo. Este canal precursor da descarga avança em etapas, cada uma com cinquenta meros de comprimento a cada cinquenta microssegundos. Este canal precursor geralmente ramifica-se e possui luminosidade extremamentebaixa, sendo que uma mínima quantidade de luz é emitida somente a cada salto de descarga. Em média uma carga de cinco coulombs de cargas negativas acumula-se no canal ionizado de forma uniforme, sendo que a corrente elétrica é da ordem de cem ampères.
Os elétrons induzem o acúmulo de cargas opostas na região imediatamente abaixo da nuvem. A partir do momento em que estes executam sua trajetória em direção ao solo, as cargas positivas tendem a ser atraídas e se aglomeram na pontas de objetos ligados à terra. Então, a partir dessas pontas o ar é ionizado, surgindo canais precursores ascendentes similares, indo de encontro ao canal precursor descendente.
Quando o contato é feito, os elétrons movem-se violentamente em direção ao solo, produzindo intensa luminosidade a partir do ponto de conexão. Conforme os elétrons do canal principal e das ramificações passam a ganhar velocidade e seguir rumo ao solo, todo o caminho ionizado se ilumina. Toda a carga negativa, inclusive proveniente da nuvem, dissipa-se no solo num fluxo que dura alguns microssegundos. Neste intervalo, contudo, a temperatura no interior do canal chega a mais de trinta mil graus Celsius.
Usualmente ocorrem em média três ou quatro eventos de descarga em um mesmo raio, denominadas descarga de retorno subsequentes, separadas entre si por um intervalo de aproximadamente cinquenta milissegundos. No caso em que mais cargas negativas estão disponíveis na nuvem, surge uma nova descarga subsequente, denominada "líder contínuo", que desloca-se mais rapidamente que o canal precursor inicial, pois segue o caminho ionizado já aberto, chegando ao solo em poucos milissegundos. Entretanto, geralmente a quantidade de elétrons depositada nas descargas de retorno posteriores é menor que na primeira. Enquanto a corrente da descarga inicial é de tipicamente 30 quiloampères (kA), as descargas subsequentes possuem corrente entre 10 e 15kA. Como segue o trajeto do canal principal, as descargas de retorno dificilmente apresentam-se ramificadas. Em média trinta coulombs são transferidos da nuvem para o solo. É possível observar que um raio pisca durante a ocorrência, o que atribui-se às várias descargas de retorno. Tipicamente a duração média de todo este processo é de 0,2 segundo. 
-Descarga positiva nuvem-solo
Nem sempre os raios se originam a partir das zonas negativamente carregadas de uma nuvem. Em certos casos, descargas elétricas surgem do topo de grandes cúmulo-nimbos, cuja forma superior se estende horizontalmente. Apesar de sua ocorrência ser relativamente rara, raios positivos possuem características peculiares. Inicialmente, o canal precursor mostra-se uniforme, diferentemente do que ocorre em uma descarga negativa. Ao se estabelecer o contato, somente uma única descarga de retorno ocorre, cujo pico de corrente chega a mais de 200 quiloampères, muito maior do que a média dos raios negativos, enquanto esta corrente mantém-se constante durante alguns milissegundos. Este tipo de descarga oferece potencial de destruição muito mais acentuado que as descargas negativas usuais, especialmente para prédios industriais, em função da grande carga conduzida. 
-Descarga intra-nuvem
A maior parte das descargas elétricas ocorre tipicamente no interior das nuvens. Um canal precursor da descarga surge no núcleo negativo da parte inferior da nuvem e segue para cima, onde comumente concentram-se as cargas positivas. Com duração típica de 0,2 segundo, estas descargas apresentam um brilho quase contínuo, marcado por pulsos possivelmente atribuídos às descargas de retorno que ocorrem entre os bolsões de carga. A carga total transferida numa descarga intra-nuvem é da mesma ordem que a dos raios nuvem-solo.
A descarga começa com o movimento de cargas negativas que formam um canal precursor em direção vertical, que se desenvolve durante 10 a 20 milissegundos e atinge alguns quilômetros de comprimento. Ao chegar à parte superior da nuvem, este canal divide-se em ramos horizontais, ocorrendo, a partir de então, a transferência de elétrons da base da nuvem. Ao redor do início do canal da descarga, cargas negativas movem-se em sua direção, estendendo as ramificações na base da nuvem e aumentando o tempo de duração da descarga. Entretanto, o raio chega ao fim quando a ligação principal entre as partes inferior e superior da nuvem é quebrada. 
-Descarga solo-nuvem
Observa-se que, a partir de estruturas altas e topos de montanhas, surgem canais precursores da descarga que seguem em direção vertical até a nuvem. A partir de então, ocorre o fluxo de cargas negativas em direção ao solo ou, menos frequentemente, o fluxo de elétrons em direção à nuvem. Tipicamente, o canal precursor surge de um único ponto, a partir do qual ramifica-se em direção vertical rumo à nuvem. Sua ocorrência está ligada principalmente à existência de estruturas metálicas, como edifícios e torres de comunicação, cuja altura chega a mais de cem metros e cujas pontas são capazes de potencializar o campo elétrico induzido e assim dar início a uma descarga precursora. Ao ser estabelecida a conexão, ocorrem descargas de retorno de forma semelhante às descargas negativas nuvem-solo. 
Peculiaridades:
Os raios manifestam-se sob uma diversidade de formas, de acordo com sua trajetória. Os mais comuns são os que ocorrem dentro da própria nuvem e os que conectam-se entre a nuvem e o solo, além dos raios entre duas nuvens. Usualmente surgem de forma intensa e brilhante, por vezes produzindo o efeito estroboscópico. Ao ser observado a distância, sua luminosidade propaga-se por toda a nuvem e através do céu, embora não possam ser ouvidos trovões. A luminosidade de um raio pode ser percebida a várias dezenas de quilômetro de distância. Este tipo é denominado relâmpago de calor, já que associa-se tipicamente às tempestades de verão situadas ao longe, próximas ao horizonte. Quando ocorre dentro das nuvens, um relâmpago é capaz de iluminá-las por completo, criando uma aparente luminosidade que se espalha por todo o céu. 
Eventualmente descargas intra-nuvem manifestam-se sob a forma de canais extremamente ramificados que se espalham horizontalmente nas regiões mais altas da nuvem cúmulo-nimbos, estendendo-se por grande parte da mesma. Raios que se distribuem horizontalmente geralmente aparentam se mover mais lentamente que a média. Em descargas entre a nuvem e o solo, é possível a ocorrência de descargas cuja forma lembra a de uma fita. Isto é provocado por fortes ventos que são capazes de mover o canal ionizado e então, a cada descarga, parece mover-se lateralmente, formando segmentos paralelos entre si. 
Raios positivos, pelo fato de iniciarem na parte mais alta de um cúmulo-nimbo, podem estender-se para além da região da tempestade, em uma região com o tempo estável a quilômetros de distância. A descarga guia deste tipo de raio pode viajar horizontalmente por alguns quilômetros até subitamente seguir em direção ao solo. 
Descargas de todos os tipos deixam um canal de ar ionizado extremamente quente por onde passam. Ao encerrar o fluxo de cargas elétricas, o canal remanescente resfria-se rapidamente e quebra-se em várias partes menores, criando uma sequência de pontos luminosos que logo desaparece. A razão para a formação de segmentos provém do fato de que o canal possui espessura diferente ao longo de si, sendo que partes mais espessa levam mais tempo para resfriar-se. Este fenômeno é extremamente difícil de ser visto, já que todo este processo leva somente uma pequena fração de segundo. 
Um dos fenômenos menos conhecidos são os raios globulares. Possui um diâmetro médio entre vinte e cinquenta centímetros, surge associada às tempestades, tem um brilho não tão intenso e movimenta-se tipicamente na horizontal em sentido aleatório e possui duração de alguns segundos. Ainda há muitas duvidas de sua existência, que ainda não foi comprovada, embora existam muitos relatos históricos de testemunhas do fenômeno que teria acontecido inclusive dentro de prédios. 
Fenômenos relacionados:
A descarga produz radiação eletromagnéticacom várias frequências, inclusive luz visível, ondas de rádio e radiação de alta energia, que caracterizam os relâmpagos. Quando a descarga cai diretamente sobre um solo arenoso, a imensa temperatura provoca o derretimento de suas partículas que, cessada a corrente, fundem-se e formam o fulgurito, cujo formato adquirido corresponde ao trajeto da descarga no solo. 
-Trovão
As ondas sonoras provocadas por uma descarga atmosférica caracterizam o trovão. Surgem a partir da rápida expansão de ar devido ao aquecimento no canal de descarga. A frequência estende-se na faixa de poucos hertz a alguns quilohertz. O intervalo de tempo entre a observação do relâmpago e a percepção do trovão são diferenciadas pelo fato de que a luz viaja muito mais rápido que o som, que possui velocidade de 340 metros por segundo. 
Quando o raio ocorre a menos de cem metros de um ouvinte, o trovão apresenta-se como uma súbita onda sonora de grande intensidade que dura menos de dois segundos, seguida por um forte estrondo que dura por vários segundos até se dissipar. A duração do trovão depende do formato do raio, sendo que as ondas sonoras propagam-se em todas as direções a partir de todo o canal, resultando na grande diferença entre a parte mais próxima e a mais distante do ouvinte. Pelo fato de que a atmosfera atenua as ondas sonoras, os trovões associados a descargas que ocorrem a grandes distâncias se tornam inaudíveis ao percorrer alguns quilômetros e, assim, perderem energia. Além disso, o fato de tempestades ocorrerem em zonas de instabilidade atmosférica favorece a dissipação da energia sonora. 
-Radiação de alta energia
Os raios produzem radiação nas mais variadas faixas do espectro eletromagnético, desde frequências ultrabaixas, passando pela luz visível até raios X e gama. As últimas são de alta energia, e surgem a partir da aceleração dos elétrons no intenso campo elétrico do momento da descarga. Os dois tipos de radiação sofrem atenuação pela atmosfera, sendo que os raios X ficam restritos próximo ao raio, enquanto que raios gama, apesar de ter sua intensidade drasticamente reduzida conforme a distância, podem ser detectados tanto do solo quanto de satélites artificiais. Comumente associa-se às tempestades a ocorrência de relâmpago de raios gama terrestre, emissões de alta intensidade na alta atmosfera terrestre. Satélites, como o AGILE, monitoram a ocorrência deste fenômeno, cerca de dezenas de vezes todo o ano. 
Modelos sugerem que um tipo de descarga exótico pode ser produzido no interior das tempestades, na qual ocorre a interação entre elétrons de alta energia e sua antimatéria correspondente, os pósitrons. Este processo leva a produção de mais partículas energizadas que, por fim, acabam por produzir surtos de raios gama. Estas descargas são extremamente rápidas, mais que os próprios raios comuns e, apesar da grande quantidade de energia envolvida, emitem pouca luz. Existe a possibilidade de que aviões que cruzam próximo a tempestades recebam doses de radiação significativas, embora resultados conclusivos ainda não tenham sido obtidos. 
-Ressonância de Schumann
Entre a superfície da Terra e a ionosfera, a algumas dezenas de quilômetros de altura, forma-se uma cavidade dentro da qual radiação eletromagnética de frequência extremamente baixa (da ordem de poucos hertz) ficam presas. Como consequência, circulam todo o globo por várias vezes até se dissiparem. Os raios produzem radiação nesta faixa de frequências, por isso são as principais fontes para a manutenção deste fenômeno denominado ressonância Schumann. A sobreposição da radiação emitida a todo o momento e as posteriores ressonâncias produzem picos de radiação que são determinados. O monitoramento da ressonância Schumann é um importante método para acompanhar a atividade elétrica do planeta ligada á tempestades e, assim, pode ser utilizada em análises climáticas globais. 
-Eventos luminosos transientes
Na alta atmosfera terrestre, acima das nuvens de tempestades, ocorrem emissões com características diversas, denominadas coletivamente como eventos luminosos transientes. Embora se estendam por dezenas de quilômetros na estratosfera e mesosfera, é praticamente impossível observá-los a olho nu devido, sobretudo, a sua baixa luminosidade. Contudo, câmeras instaladas em aviões, satélites ou mesmo em terra, mas apontadas para tempestades próximas ao horizonte, são capazes de comprovar a existência deste fenômeno. Atribui-se a origem estes fenômenos à excitação dos elétricos pela variação do campo elétrico, sobretudo quando ocorre uma descarga nuvem-solo. 
Dentre os mais notáveis fenômenos transientes, destacam-se os sprites, que surgem imediatamente acima de um grande raio ocorrido em uma tempestade, tipicamente apresentando cores avermelhadas e formas cilíndricas que lembram tentáculos. Os jatos azuis, por sua vez, surgem no topo das grandes nuvens de tempestade e propagam-se em direção vertical até cerca de cinquenta quilômetros de altura. Ambos possuem duração máxima de alguns milissegundos. Por fim, os elves (acrônimo inglês que significa emissão de luz e radiação eletromagnética de baixa frequência devido a fontes de pulsos eletromagnéticos) possuem formato de disco e duram poucos milissegundos. Sua origem possivelmente provém da propagação de um pulso eletromagnético gerado no momento de grades descargas na nuvem abaixo. 
Distribuição:
Nota-se que nas regiões tropicais a atividade elétrica concentra-se sobretudo nos meses de verão. Acredita-se que o aquecimento global provocará o aumento da incidência de raios por todo o mundo. Contudo, as previsões diferem entre cinco e quarenta por cento da incidência atual para cada grau Celsius de aumento médio da temperatura atmosférica. 
Outras origens:
Além das tempestades, as erupções vulcânicas são uma origem comum de raios. Durante a erupção, as partículas das cinzas vulcânicas colidem entre si, o que gera atrito e consequentemente o acúmulo de cargas elétricas. Observa-se que a maior atividade elétrica está diretamente associada ao tamanho da nuvem de cinzas. Entretanto, tais descargas elétricas ficam tipicamente confinadas dentro da nuvem, poucos deles atingindo regiões mais afastadas. Apesar disso, representam uma grande fonte de interferência para radiotransmissões e por vezes originam incêndios florestais na montanha. 
Em virtude de explosões termonucleares podem surgir descargas elétricas. Estas tipicamente apresentam-se transferem elétrons do solo para a atmosfera formando canais ionizados com quilômetros de comprimento. Não se conhece a origem deste fenômeno, mas possivelmente está ligada a emissão radioativa da explosão. Há ainda relatos de raios originados a partir de nuvens provenientes de grandes incêndios. Tempestades de areia são também fontes de descargas elétricas, cuja origem possivelmente provém da colisão entre as partículas de areia que, ao colidirem, acumulam cargas e geram raios. 
Raios extraterrestres:
Em Vênus, foi confirmado à ocorrência de descargas por conta de sua espessa atmosfera. Em Marte, já foram detectados sinais diretos da ocorrência de descargas elétricas, que são possivelmente causadas pelas grandes tempestades de areia que acontecem no planeta. 
Em Júpiter, observaram a ocorrência de descargas elétricas, tanto na região equatorial quanto na região polar. As tempestades no planeta são causadas por convecção, semelhantes às da Terra. Os gases, incluindo vapor de água, sobem das profundezas do planeta e as pequenas partículas, quando congelam, entram em atrito umas com as outras, gerando assim uma carga eletrostática que é descarregada sob a forma de raios. Em Saturno, raios são bem menos frequentes. Entretanto, o surgimento de grandes sistemas de tempestades ocasiona o surgimento de descargas que superam em dez mil vezes a energia dos raios terrestres.

Outros materiais