Buscar

ATIVIDADE PRÁTICA DE FÍSICA MODERNA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

CENTRO UNIVERSITÁRIO INTERNACIONAL UNINTER
ESCOLA SUPERIOR POLITÉCNICA
BACHARELADO EM ENGENHARIA ELÉTRICA
DISCIPLINA DE eletrônica analógica
 
atividade prática
Física ótica e princítpios de física moderna
116Nome:
Turma: 2015
Data / /
Difração e interferência
28
Objetivo
Estudar difração em fendas simples e padrões de interferência em fendas duplas.
Introdução 
Se você direcionar um feixe de luz através de fendas estreitas espaçadas entre si por intervalos pequenos, a luz forma um padrão de difração. O padrão de difração é um conjunto de áreas claras e escuras e é causado pela interferência das ondas. A interferência das ondas pode ser construtiva (áreas claras) ou destrutiva (áreas escuras). Nesta atividade, você vai direcionar um laser sobre um dispositivo com duas fendas, que podem ser ajustadas para ficarem mais ou menos próximas, e vai investigar os padrões produzidos do outro lado das fendas.
Habilidades em foco
Fazer previsões, tirar conclusões, observar, interpretar dados, fazer generalizações e 
aplicar conceitos.
Procedimento
Inicie o Virtual Physics e selecione Diffraction and Interference na lista de experimentos. O programa vai abrir a bancada de física quântica (Quantum). 
Almoxarifado
117
Um laser é usado como fonte luminosa porque ele tem somente um comprimento de onda. Portanto, você não vai observar padrões de difração de outros comprimentos de onda interferindo na imagem. Qual o comprimento da onda (Wavelenght) do laser? 
R: O comprimento Wavelenght padrão adotado foi de 700nm.
Qual o espaçamento entre as duas fendas (Slit Spacing) no dispositivo? Compare o comprimento de onda do laser com a distância entre as fendas.
R: O espaçamento entre fendas Slit Spacing é de 00.2 μm.
Como seria o padrão de difração se mantivéssemos a distância entre as Fazendo previsões
 
3
fendas mas diminuíssemos o comprimento de onda da fonte? (Dica: pense na distância entre as fendas como um obstáculo que as ondas de luz encontram no caminho.)
R: Teríamos pouca luz chagando ao visor da câmara, visto que com o comprimento reduzido se aumentaria o padrão de difração.
Observe o padrão exibido pela câmera de vídeo conforme você reduz Tirando conclusões
 
4
o comprimento de onda para 600 nm e depois para 300 nm, clicando na seta abaixo do valor da centena. O que você pode afirmar sobre a relação entre o comprimento de onda e o padrão de refração quando o comprimento de onda é maior do que o obstáculo?
R: Quanto menor o comprimento diminui a percepção aos olhos humanos, ou seja, a JR infravermelho, abaixa dos 400 nm, não temos mais percepções, sendo que a faixa onde podemos visualizar fica entre 400 e 700 nm.
Sendo assim quanto maior o comprimento da onda, maior o impacto das fendas na luz provinda do laser.
Uma vez que a refração altera a velocidade da luz ao depender do material e da intensidade da aplicação da luz, assim como nos sistema de multiplexadores, como na fibra ótica dá perdas, quanto maior o amplificador, ou seja, quanto maior a potência do feixe de luz transporta dados, menor a perda de dados por interferência, causada pelo material ao qual a luz é exposta, no casa a fibra ótica.
Agora você vai investigar outros efeitos causados pela interferência da luz. Ao Observando
 
5
distanciar mais as fendas, você vai começar a ver a interferência quando as ondas que atravessam as fendas afetarem umas às outras. Mude o comprimento de onda do laser para 500 nm e o espaçamento entre as fendas para 3 μm. Descreva o que você observa. O que está causando esse efeito?
R: A luz se concentra na parte central.
Isso é característico dos efeitos da refração da luz em uma fenda larga, a intensidade da luz projetada varia de acordo com a posição, e vai diminuindo a intensidade conforme vai se afastando da região central.
Ou seja, conforme aumentamos o espaçamento da fenda, a característica de manter a intensidade na região central se acentuou mais, praticamente eliminando as luzes que podíamos visualizar anteriormente em 00.2 μm.
118	Difração e interferência
6 Mude a intensidade (Intensity) do laser de 1 nW para 1 W. A intensidade da luz afeta o padrão de difração?
R: Não afeta, essa é uma característica que depende da fenda e não da intensidade. A caracterização da refração se manteve, devido a posição da fenda de 3 μm ter sido mantida.
Mude a distância entre as fendas para 1 μm. Observe o padrão exibi-Interpretando dados
 
7
do no vídeo conforme você altera a distância das fendas de 1 μm para 7 μm, de 1 em 1 μm. Qual a relação entre a distância das fendas e o padrão de difração?
R: Quanto maior o espaçamento da fenda, maior a ação dos elementos refletivos, ou seja, a luz vai recebendo de volta padrões de refração com a mesma intensidade, fluxo e formas duplicadas, nas tudo de acordo com o primeiro sinal recebido. Existes fontes pontuais que emitem ondas coerentes com os sinais iniciais de luz, quanto maior a fenda, maiores quantidades de ondas coerentes irão existir. 
Mude a distância entre as fendas para 3 μm. Aumente o comprimento de onda do laser para 700 nm. Como o aumento no comprimento de onda afeta o padrão de interferência?
R: Afeta coloração a qual visualizamos, que conforme a tabela de Wavelenght (Spectrum Chart-Virtual Lab.) em 700nm enxergamos em uma cor mais avermelhada.
O padrão de interferência tem uma maior escala em relação ou experimento anterior, ou seja, a refração tem menor incidência quando for aumenta o comprimento da onda.
Fazendo generalizações Ajuste a intensidade do laser para 1 000 fótons/segundo (p/s, do inglês, photons per second). Aperte o botão (Persist) na câmera de vídeo para manter na tela a visualização dos fótons que atravessam as fendas. Observe por um minuto. O que você pode afirmar sobre esse padrão em relação ao padrão produzido pelo feixe contínuo?
R: A região central é preenchida gradualmente tomando forma conforme o experimento anterior, pois a luz é emitida por tempo, ou seja, em 1000 pixeis por segundo a característica de refração é mantida, porem só pode ser observada após algum tempo até o preenchimento total dos pixeis.
Diminua a intensidade do laser para 100 fótons/segundo. Ative novamente a função Persist e observe por um minuto. Em baixas intensidades (1 000 ou 100 fótons/segundo), nunca há um momento em que dois fótons atravessam as fendas ao mesmo tempo. Como ocorre a difração de um único fóton?
R: Esse único fóton será emitido de acordo com a área de difração apresentada anteriormente e esse fóton será emitido em pontos possíveis dentro dessa área de difração.
Ele sempre aparece em tempos diferentes, mantendo a tese em que ele nunca atravessa a fenda ao mesmo tempo.
	Difração e interferência
A partir desse experimento, o que você pode concluir sobre a natureza da luz?
11
R: A luz segundo o a teoria de Einstein mantem a mesma velocidade independente do ponto de observação, é que ela sofre alterações tanto na velocidade quando na direção a depender do meio de por onde ela é transportada, e que ela sofre efeitos difração, refração e interferência de acordo com os materiais onde a luz é projetada, efeitos aos quais foram feitos experimento acima.
Outro aspecto interessante de pode observar, é que a luz mantem aspecto similares, ou seja, padrões que condizem a luz inicial projetada, apesar transformada, assim como acontece com a corrente elétrica.
Entre no almoxarifado (Stockroom). Clique na prancheta e selecione Aplicando conceitos
 
12
o item 8,Two-Slit Diffraction – Electrons. Clique na seta verde Return to Lab. Este experimento é parecido com o experimento anterior, mas a fonte está emitindo elétrons e não fótons de luz. Por isso, o detector é uma tela de fósforo (Phosphor Screen) que detecta partículas com carga. Como o padrão de difração pode ser comparado com o padrão de difração da luz?
R: O sistema é bem parecido, pois os dois são emitidos por meio de ondas, e sofrem interferência dos meios aos quaissão conduzidos / Transportados, conforme comentário anterior os dois emitem sinais coerentes aos sinais iniciais aplicados, os tornando bastante parecidos.
E da mesma forma a fenda tem interferências na propagação dos elétrons, emitido padrões coerentes com os padrões aplicados na forma inicial, ocorrendo a difração desses elétrons através da fenda.
140	
2
	02 labor0711_FIS_BL2.indd 1	9/9/11 11:12 AM 
	02 labor0711_FIS_BL2.indd 166	9/9/11 11:12 AM 
	02 labor0711_FIS_BL2.indd 2	9/9/11 11:12 AM 
nome
turma
data / /
O efeito fotoelétrico
34
Objetivos
Estudar o efeito fotoelétrico e entender a ligação entre comprimento de onda e energia da luz incidente e a emissão de fotoelétrons. 
Introdução
Embora Albert Einstein tenha se tornado conhecido pela equação E = mc 2 e pelo seu trabalho sobre relatividade na mecânica, ele ganhou o prêmio Nobel por ter compreendido um experimento simples. Já se sabia que, ao direcionar um feixe de luz de determinado comprimento de onda sobre um metal, o metal emitia elétrons. Porém, a luz de outros comprimentos de onda não provocava a emissão de elétrons do metal, independentemente de seu brilho ou de sua intensidade. Na teoria clássica da Física, pensava-se que a energia da luz estava relacionada com sua intensidade, não com sua frequência. No entanto, os resultados do experimento fotoelétrico contradiziam a teoria clássica. Essas inconsistências levaram Einstein a sugerir que a luz deveria ser decomposta também em partículas (fótons) e não somente em ondas. Nesta atividade, você vai reproduzir um experimento fotoelétrico e demonstrar como a energia (E) de um fóton se relaciona à frequência e não à intensidade.
Habilidades em foco
Calcular, observar, desenhar gráfi cos, interpretar dados, tirar conclusões.
Procedimento
Inicie o Virtual Physics e selecione The Photoelectric Effect na lista de experimentos. O programa vai abrir a bancada de física quântica (Quantum).
Interruptor
Almoxarifado
Lâmina
de sódio
Laser
141
Observando O laboratório está montado com um laser em determinado ângulo incidindo na lâmina de sódio — Metal Foil (Na). Os átomos do metal absorvem a energia da luz e emitem elétrons. A tela de fósforo (Phosphor Screen), no canto inferior, vai detectar os elétrons que ricochetearem do metal. A intensidade (Intensity) e o comprimento de onda (Wavelenght) do laser podem ser ajustados. Qual a intensidade e o comprimento de onda com que o laser está inicialmente programado?
R: O comprimento de onda inicial é de 400nm.
Anote o comprimento de onda (em nm) na Tabela de dados da página seguinte. Calculando
 
3
Calcule a frequência (em Hz) e a energia (em J) do laser utilizando a seguinte equação: f = c 
 e E = h × f, em que c = 3 × 108 m/s é a velocidade da luz no vácuo e h = 6.626 × 1034 J · s. Não se esqueça de converter a unidade do comprimento de onda para metros. Lembre-se de que 109 nm = 1 m.
R: f = 3,00.10^8m/s/4,00.10^-7M f = 7,5.10^14Hz
Então E = 6,626 x 10^34 x 7,5.10^14 Hz E = 5.76^48J
Ligue a tela de fósforo (On/Off ) e clique no botão (Grid). O que o sinal da tela de fósforo indica sobre a luz do laser que está incidindo na lâmina de sódio?
R: O fluxo de luz do laser está ordenado e centralizado.
142	O efeito fotoelétrico
5 Diminua a intensidade do laser para 1 fóton/segundo (p/s, do inglês, photons per second) ajustando o controlador à esquerda. Como o sinal muda? O que isso indica sobre a relação entre a quantidade de fótons emitidos e a intensidade da luz incidente?
R: O sinal fica mais fraco, e isso mostra que quanto menor o número de fótons menor a intensidade da luz.
Porém a energia se mantém, pois, como sabemos para aumentar a energia aplicada, temos de diminuir o comprimento da onda de luz.
Observando
 
Mude a intensidade do laser novamente para 1 nW e aumente o comprimento 
6
de onda para 600 nm. O que você observa na tela de fósforo?
R: Praticamente não se nota a incidência de luz.
Determine o comprimento de onda máximo em que ocorre a emissão de elétrons do 
R: KMAX = 2,28/4,14.10¹ => fo = 5,5.10¹ Hz
Fo = 5,5.10¹ Hz
Clique no almoxarifado (
Stockroom
)
 para entrar. Clique na prancheta e selecione o item 5,
 
7
8
Photoelectric Effect (2). Clique na seta verde Return to Lab para retornar ao laboratório. A intensidade do laser está ajustada em 1 nW e o comprimento de onda em 400 nm. O detector usado neste experimento é o bolômetro (Bolometer), que será ligado automaticamente. Esse instrumento mede a energia cinética dos elétrons. Na janela do detector, clique na alavanca eV/Joules para mudar a unidade do eixo x. Você deve ver um pico verde no canto inferior esquerdo da tela de fósforo. A intensidade ou altura do sinal corresponde ao número de elétrons emitido do metal e o eixo x é a energia cinética dos elétrons. No gráfico, amplie a área pico clicando próximo a ele e arrastando o vértice do retângulo que vai aparecer.
9 Mova o cursor do mouse sobre o pico e anote a energia cinética e a intensidade dos elétrons na Tabela de dados. A unidade da energia cinética está em 10–19 J, então anote 10–19 para todo dado de energia que você coletar. Aumente o comprimento de onda em incrementos de 10 nm e anote, na tabela, a energia cinética e a intensidade do pico para cada comprimento de onda. Observe o que acontece se você continuar a aumentar o comprimento de onda depois de atingir o comprimento de onda máximo em que há emissão de elétrons do metal. Isso condiz com o que você havia observado anteriormente?
R: Sim, condiz, pois Einstein diz que aumentar a intensidade de luz não aumenta a energia cinética do elétron, e sim apenas a intensidade da luz, emitindo mais fótons, porém permanece com a mesma energia conforme vimos no experimento.
Quando começamos a alterar o comprimento da onda, aí sim variamos a energia cinética do elétron, se diminuímos o comprimento da onda aumentamos a energia cinética do elétron, e no experimento, fizemos justamente o contraio, aumentamos o comprimento da onda, que é proporcionalmente inverso, quanto mais aumentávamos esse comprimento de onda, menor era a energia cinética do elétron ( conforme a tabela preenchida) .
 
Análise e conclusão
1 Desenhando gráficos A partir dos dados da tabela, plote o comprimento de onda da luz incidente versus a energia cinética dos elétrons ejetados do metal. Inclua alguns valores maiores de comprimento de onda que você observou na etapa 9. Rotule o eixo x como Comprimento de onda (nm) e o eixo y como Energia cinética (10 –19 J).
	O efeito fotoelétrico
 	143
	02 labor0711_FIS_BL2.indd 65	9/9/11 11:12 AM 
	02 labor0711_FIS_BL2.indd 170	9/9/11 11:12 AM 
	02 labor0711_FIS_BL2.indd 11	9/9/11 11:12 AM 
 partir dos dados da tabela, plote a energia do laser versus a ener-Desenhando gráficos
 
3
gia cinética dos elétrons. Inclua alguns valores maiores de comprimento de onda que você observou na etapa 9. Rotule o eixo x como Energia do laser (10 –19 J) e o eixo y como Energia cinética (em 10 –19 J).
 
144	O efeito fotoelétrico
4 Interpretando dados Qual a relação entre a energia da luz incidente e a energia dos elétrons ejetados do metal?
R: A energia projetada pelo lazer não sofre alteração, apenas a energia cinética aplicada no metal.
Diminua o comprimento de onda para um valor em que há emissão de elé-Observando
 
5
trons do metal. Observe o que acontece com o pico quando você aumenta e diminui a intensidade. Você terá de ampliar algumas regiões do gráfico para observar as mudanças.
R: Os valores de pico aumentam de acordo com que a intensidade é aumentada.
Baseando-se neste experimento, explique por que a luz violeta causa a Tirando conclusões
 
6
emissão de elétrons, mas a luz laranja não. O que importa na formação de fotoelétrons: intensidade ou comprimento de onda?
R: Porque as luzes laranja tem comprimento de onda muito alto, tornando impossívela emissão dos elétrons.
Já nas luzes UV acontece o contraio, como as luzes possuem baixo comprimento de onda, favorece a emissão de elétrons, pois estamos nas faixas em que ocorrem este processo.
O que importa na formação de fotoelétrons é o comprimento da onda; E como já comentado anteriormente, as luzes UV estão nessa faixa de comprimento de onda que favorece a emissão de elétrons. 
	145
	02 labor0711_FIS_BL2.indd 66	9/9/11 11:12 AM 
	02 labor0711_FIS_BL2.indd 140	9/9/11 11:12 AM 
	02 labor0711_FIS_BL2.indd 14	9/9/11 11:12 AM

Outros materiais