Buscar

BALANÇOS DE MASSA SEM REAÇÃO QUÍMICA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Introdução aos Processos Química
47
Capítulo 2 - BALANÇOS DE MASSA SEM REAÇÃO QUÍMICA
2.1 – O Conceito de Balanço de Massa
O Balanço de Massa (BM) é uma restrição imposta pela natureza.
! A lei da conservação de massa nos diz que a massa não pode nem ser criada, nem
destruída.
Logo, não havendo acúmulo de massa no interior de um equipamento, tem-se ao longo
de um determinado intervalo de tempo que:
massa total na entrada = massa total na saída
equipamento
ei sj
Fazendo o intervalo de tempo tender a zero, ao invés de quantidades de massa passamos a
falar em termos de vazões:
vazão mássica total que entra = vazão mássica total que sai
Reescrevendo em linguagem matemática, tem-se:
∑∑
==
=
m
j
j
n
i
i se
11
onde ei é a vazão mássica da corrente de entrada identificada pelo índice i e n o número total
de correntes de entrada, ou seja, para o processo representado na figura n = 2. Por outro lado,
Introdução aos Processos Química
48
sj é a vazão mássica da corrente de saída, identificada pelo índice j, e m é o número de
correntes de saída (no processo da figura m=3).
Observe que na elaboração de um BM deve-se definir um sistema (volume de
controle), que pode ser um processo completo, um equipamento ou um conjunto de
equipamentos. As corrente envolvidas no BM são então aquelas que atravessam as fronteiras
do sistema (superfície de controle). Assim o BM nada mais é do que um inventário de um
determinado material em relação à um sistema definido.
O balanço de massa é fundamental para a análise do projeto de um novo processo, bem
como de um processo já existente.
2.2 – Algumas Definições Importantes
Um sistema é classificado em função da ocorrência de transferência de massa através
de sua fronteira em:
Aberto ⇒ há transferência de material através da fronteira do sistema;
Fechado ⇒ não há transferência de material através das fronteiras do sistema, durante
o intervalo de tempo de interesse.
Analogamente, a operação de um processo pode ser classificada como:
Operação em Batelada ⇒ massa não cruza as fronteiras do processo durante o tempo
da batelada. O sistema é alimentado e os produtos são retirados de uma só vez, no início e ao
final do tempo de processo, respectivamente. Assim, o processo ao longo da batelada se
comporta como um sistema fechado. Normalmente, esta estratégia de operação é usada para
produzir pequenas quantidades de especialidades químicas, produtos sazonais ou feitos por
encomenda;
Operação Contínua ⇒ há, continuamente, a passagem de massa através das
fronteiras do processo através das correntes de entrada e de saída. Desta forma o processo se
comporta como um sistema aberto. Esta operação é característica de grandes volumes de
produção, como ocorre, por exemplo, no refino do petróleo e na indústria petroquímica;
Operação Semi-batelada ou Semi-contínua ⇒ qualquer processo que não é operado
nem em batelada e nem contínuo. Um exemplo deste tipo de processo é aquele onde uma
Introdução aos Processos Química
49
massa de líquido é alimentada em um reator e gás é borbulhado durante um certo tempo
através do líquido. Ao final, a passagem de gás é interrompida e o líquido retirado do reator.
Um processo que opera desta forma é o de cloração de benzeno.
A operação de um processo também pode ser classificada conforme o comportamento
das variáveis ao longo do tempo:
Operação em Regime Estacionário ⇒ os valores das variáveis de processo (T, P,
vazões, concentrações etc) não variam com o tempo em qualquer posição fixa;
Operação em Regime Transiente ⇒ os valores das variáveis variam com o tempo
em alguma posição fixa do processo.
O processo em batelada tem uma natureza tipicamente transiente, enquanto os
processos contínuos operaram normalmente em regime estacionário.
O comportamento típico de uma variável de processo ao longo do tempo, de acordo
com o tipo de operação, é apresentado nas Figuras 2.2.1 e 2.2.2.
processo real contínuo
partida parada
Figura 2.2.1 – Comportamento Típico de uma Variável em um Processo Contínuo
Introdução aos Processos Química
50
X
t
Figura 2.2.2 – Comportamento Típico de uma Variável em um Processo em Batelada
2.3 – Equações Relacionadas ao Balanço de Massa
De uma forma geral, um processo pode ser representado pelo esquema a seguir:
ei sj
processo
Pensando em termos do balanço de qualquer grandeza em relação às fronteiras do
processo, tem-se
consumo
geração
acúmulo
entradas saídas
Introdução aos Processos Química
51
O balanço, ou inventário, da grandeza em relação à fronteira definida é dado por:
{e} - {s} + {g} - {c} = {a}
onde,
e ⇒ quantidade da grandeza que entra através da fronteira do sistema
s ⇒ quantidade da grandeza que sai através da fronteira do sistema
g ⇒ quantidade da grandeza gerada no interior do sistema
c ⇒ quantidade da grandeza consumida no interior do sistema
a ⇒ quantidade da grandeza acumulada no interior do sistema
Uma forma alternativa de representar o balanço une em uma única parcela os termos
ligados à geração e ao consumo. A equação geral do balanço é então escrita na forma:
{e} - {s} + {g} = {a}
onde agora o termo {g} representa a quantidade da grandeza gerada no interior do sistema,
agora admitindo valor negativo quando houver consumo.
Um exemplo corriqueiro onde aplicamos este conceito de balanço no dia a dia é uma
conta corrente ou conta de poupança em um banco, na qual a grandeza envolvida é o dinheiro.
Nos balanços de massa a grandeza envolvida está relacionada com a quantidade de
matéria. Os balanços de massa podem ser efetuados em termos globais ou por componente.
Quando baseados nos componentes eles podem ser representados em termos de substâncias
(moléculas) ou de átomos.
Balanços de Massa: Global
Por Componente: - substâncias (moléculas)
 - átomos
Note que os termos que representam a geração ou o consumo de massa no interior do
sistema são, por definição, nulos quando se trabalha em termos globais. Na ausência de
reações nucleares, estes termos também são nulos em balanços atômicos.
Introdução aos Processos Química
52
Seja o processo representado a seguir, onde há uma corrente de entrada e uma de saída,
e três componente:
A B
x1
x2
x3
y1
y2
y3
Sendo A a vazão total (global) da corrente de entrada e B a da corrente de saída, as respectivas
composições são representadas pelas frações correspondentes, xi e yi, onde o índice i varia de
1 a 3 identificando os componentes (por uma obrigação de compatibilidade, se as vazões são
informadas em termos mássicos as frações devem ser mássicas ou se as vazões forem molares
as frações também têm que ser molares).
Para este processo, pode-se escrever:
• Balanço de Massa Global:
A - B + {g} = {a}
• Balanço de Massa por Componente:
Componente 1: e1 - s1 + g1 = a1
Componente 2: e2 - s2 + g2 = a2
Componente 3: e3 - s3 + g3 = a3
O termo que representa a geração na equação global {g} é nulo quando se trabalha em termos
mássicos (massa não é gerada) e pode ser diferente de zero em termos molares quando há
reação química no interior do processo.
Convém ainda ressaltar que, nas equações dos balanços por componente, as vazões dos
componentes (ei e si) estão relacionadas com as vazões totais através das relações: ei = xi A
ou si = yi B. Assim, por exemplo, e1 = x1 A ou s2 = y2 B. Pode-se então escrever as
equações dos balanços por componente, alternativamente, da seguinte forma:
Componente 1: A.x1 - B.y1 + g1 = a1
Componente 2: A.x2 - B.y2 + g2 = a2
Componente 3: A.x3 - B.y3 + g3 = a3
Introdução aos Processos Química
53
Além das equações que representam o balanço de massa, em função da definição das frações
querepresentam a composição de cada corrente, há duas restrições implícitas:
x e yi i= =∑ ∑1 1 .
Observe que, como
. 1 
; e 
===
==
∑∑
∑
n
n
n
nx
nn
n
nx
i
i
i
i
i
onde ni é o número de moles do componente i na corrente e n é o número total de moles na
corrente. Isto prova a validade das duas restrições apresentadas.
Cabe também ressaltar que o somatório das gerações e dos acúmulos, computados em
relação à cada componente ({gi) e {ai}), é igual ao valor global correspondente:
Σ {gi} = {g} e Σ {ai} = {a}.
Em sistemas sem reações químicas os termos ligados à geração são identicamente
nulos. Por outro lado, em operações em regime estacionário os termos ligados aos acúmulos
são nulos, por definição. Assim, não havendo reação química e considerando operação em
regime estacionário, tem-se:
• Balanço de Massa Global:
A - B = 0
• Balanço de Massa por Componente:
Componente 1: A.x1 - B.y1 = 0
Componente 2: A.x2 - B.y2 = 0
Componente 3: A.x3 - B.y3 = 0
• Restrições de Composição:
x e yi i= =∑ ∑1 1 .
Introdução aos Processos Química
54
Note então que, nesse problema, com 3 componentes e 2 correntes, sem reação e em
regime estacionário, são obtidas as seguintes equações:
1 BM global
3 BM por componente ⇒ 6 equações
2 Restrições de Composição
⇓
Modelo matemático do processo
⇓
Sistema de equações algébricas
A solução deste modelo, que estabelece relações entre diversas variáveis, permite a
determinação de variáveis antes não especificadas. Desta forma é possível completar o
conhecimento do conjunto de parâmetros que descrevem a operação do processo e são
pertinentes para avaliações econômicas, análise de controle, cálculos de otimização etc.
posteriores.
Neste capítulo, serão trabalhos problemas sem a presença de reação química. Em
relação ao acúmulo, os termos correspondentes são normalmente representados por
expressões diferenciais, o que gera equações diferenciais para representar os balanços. Como
ainda não temos conhecimento suficiente de Cálculo para resolver este tipo de equação, nos
restringiremos neste curso a problemas em regime estacionário, nos quais, por definição, o
acúmulo é nulo.
2.3.1 – Análise do Grau de Liberdade em Sistemas de Equações
Neste ponto é interessante relembrar que para resolver um sistema de equações é
necessário efetuar uma análise da relação entre as quantidades disponíveis de variáveis (Nv) e
de equações independentes (Neq). Esta análise pode ser feita através do grau de liberdade do
sistema(G), definido da seguinte forma:
G = Nv - Neq .
Introdução aos Processos Química
55
De acordo com o valor do grau de liberdade, tem-se:
Nv = Neq ⇒ G = 0 → solução única
Nv > Neq ⇒ G > 0 → solução indeterminada
Nv < Neq ⇒ G < 0 → solução impossível
A seguir são apresentados alguns exemplos para uma melhor visualização do conceito
de grau de liberdade.
Exemplos:
#1.
2x - 3y = 1
3x - 4y = 4
2 eqs independentes
2 variáveis ⇒ G = 0 ⇒ Solução única para x e y.
#2.
2x - 3y = 1
4x - 6y = 2
2 eqs. dependentes ⇒ 1 eq. independente
2 variáveis ⇒ G = 1.
Havendo um grau de liberdade, o sistema tem infinitas soluções localizadas sobre a
reta, definida pela equação independente do sistema. Assim,
2x - 3y = 1 ⇒ Infinitas Soluções - Pares (x,y) localizados sobre a reta
definida pela equação.
Introdução aos Processos Química
56
y
x
Note que nesse caso, o problema terá solução única se uma das duas variáveis (x ou y)
for especificada. Assim, para x = 2, da equação 2x - 3y = 1, temos que y = 1. Observe que, ao
especificar o valor de um número de variáveis igual ao grau de liberdade do sistema, o
conjunto de equações passa a ter solução única.
#3.
2x - 3y = 1
3x - 4y = 4
-x + y = 5
3 eqs. dependentes
2 variáveis ⇒ G = - 1 G < 0
O sistema não tem solução possível, ou seja, há a especificação de um número
excessivo de variáveis.
Voltando ao exemplo do balanço de massa, note que a combinação das equações dos
balanços por componente com as restrições de composição das correntes leva à equação do
balanço de massa global. Desta forma, no conjunto de equações que forma o modelo
matemático do problema há uma equação dependente, ou seja, o número de equações
independentes é igual ao número de equações menos um. Assim, temos neste modelo 5
equações independentes, ou seja: Neq = 5.
Em relação ao número de variáveis envolvidas, tem-se:
Nv = 8 → ( A , B , x1 , x2, x3, y1 , y2 , y3 )
⇓
G = 3
Introdução aos Processos Química
57
ou seja, devemos especificar, pelo menos, três variáveis para que o problema seja bem
formulado.
O estudo dos Balanços de Massa neste Curso será efetuado através da solução
comentada de exemplos ilustrativos. Os novos conceitos que aparecem nestes exemplos são
apresentados de forma destacada, antes da discussão do exemplo.
2.3.3 – Procedimento para a Solução de Problemas Envolvendo Balanços de Massa:
Antes de partirmos para o nosso estudo de balanços de massa, apresentamos uma
seqüência de etapas que devem ser cumpridas na solução de problemas. Na realidade, esta
seqüência serve para orientar a resolução de problemas envolvendo balanços, principalmente
para alunos iniciantes nesta arte. Cabe ressaltar que ela não representa uma receita que deva
ser seguida eternamente e de forma imutável, pois certamente, com o passar do tempo e
aumento do número de exercícios resolvidos, você acabará desenvolvendo a sua forma de
resolver estes problemas.
1) Definir o processo e conseqüentemente as fronteiras nas quais o balanço será
efetuado → construção do fluxograma: diagrama do fluxo de massa;
2) Rotular vazões e composições, identificando assim as variáveis pertinentes;
3) Verificar valores conhecidos e desconhecidos:
⇒ colocar no fluxograma
4) Definir a base de representação das vazões e composições (mássicas ou molares) e
unificar as unidades nas quais estão representadas as variáveis conhecidas;
5) Fazer os balanços convenientes, escrevendo as equações correpondentes:
⇒ equações do modelo - lembre que ao fazer cálculos o conjunto de equações
deve conter somente equações independentes
6) Selecionar base de cálculo
⇒ geralmente, próprio dado do problema.
Introdução aos Processos Química
58
Exemplo Ilustrativo 01:
1000 kg/h de uma mistura de benzeno e tolueno, que contém 50% de benzeno em
massa, são separados por destilação em 2 frações. A vazão mássica na corrente de topo
contém 450 kg/h de benzeno e na corrente de fundo há 475 kg/h de tolueno. Calcule as vazões
dos componentes, as vazões totais de cada corrente e as frações mássicas e molares dos
componentes nas correntes.
Solução:
A - 1000 kg/h
zb = 0,5
zt = 0,5
Zb = 500 kg/h
Zt = 500 kg/h
B - 475 kg/h
Yb = 450 kg/h
Yt = 25 kg/h
B
Yb=450kg/h
C
Xb, Xt = 475kg/h
C - 525 kg/h
Xb = 50 kg/h
Xt = 475 kg/h
Base de Cálculo: 1000 kg/h na alimentação
Equações:
Restrição de Composição na corrente A e definição de fração mássica:
zb + zt = 1 ⇒ 0,5 + zt = 1 ⇒ zt = 0,5
Zb = zb * B ⇒ zb = 0,5*100 ⇒ zb = 500 kg/h
zt = zt * B ⇒ zt = 0,5*100 ⇒ zt = 500 kg/h
Balanço de Massa por Componente: e = s
Introdução aos Processos Química
59
 benzeno: Zb = Yb + Xb ⇒ 500 = 450 + Xb ⇒ Xb = 50 kg/h
 tolueno: Zt = Yt + Xt ⇒ 500 = Yt + 475 ⇒ Yt = 25 kg/h
Assim:
B = Yb + Yt = 450 + 25 = 475 kg/h
C = Xb + Xt = 50 + 475 = 525 kg/h
Verificação, utilizando o Balanço de Massa Global:
A = B + C ⇒ 1000 = 475 + 525 OK!
Note que esse problema envolve poucas equações, sendo então possível resolvê-lo
seqüencialmente.Conhecidas as vazões totais e as vazões por componente em cada corrente é possível, a
partir da definição de fração, a determinação das frações mássicas de cada componente (wi)
em cada corrente. Lembrando então que:
 totalvazão
componente do vazão 
 totalmassa
mw iii ==
corrente A ⇒ wb = 0,5 e wt = 0,5
corrente B ⇒ wb = 0,947 e wt = 0,053
corrente C ⇒ wb = 0,095 e wt = 0,905
Definidas todas as informações na base mássica, pode-se fazer a mudança de base para
a molar facilmente, desde que se defina uma quantidade de referência para os cálculos.
Lembre-se que a composição de uma mistura não é função da quantidade total da mistura.
Assim, essa quantidade de referência pode ser qualquer uma, podendo ser então escolhida de
modo a facilitar as contas. Nas tabelas a seguir são mostradas as passagens da base mássica
para a molar em todas as correntes. O valor de referência para os cálculos foi arbitrado igual a
vazão total de cada corrente.
Introdução aos Processos Química
60
Na corrente A:
Composto Vazão mássica
(kg/h)
Massa
molecular
Vazão Molar
(kmol/h)
Fração
molar
benzeno 500 78 6,41 0,54
tolueno 500 92 5,44 0,46
∑ 1000 ∑ 11,85
Na corrente B:
Composto Vazão mássica
(kg/h)
Massa
molecular
Vazão Molar
(kmol/h)
Fração
molar
benzeno 450 78 5,77 0,955
tolueno 25 92 0,27 0,045
∑ 475 ∑ 6,04
Na corrente C:
Composto Vazão mássica
(kg/h)
Massa
molecular
Vazão Molar
(kmol/h)
Fração
molar
benzeno 50 78 0,64 0,11
tolueno 475 92 5,16 0,89
∑ 525 ∑ 5,80
2.4 - Componente Chave ou de Amarração
Componente que aparece em um menor número de correntes. Em função desta
característica, a equação do balanço de massa deste componente possui menos termos do que
as equações para os demais componentes. Este fato implica, em muitas vezes, no
aparecimento de somente uma incógnita do problema na equação relativa ao componente
chave, permitindo assim a sua imediata determinação.
Introdução aos Processos Química
61
Exemplo Ilustrativo 2:
O processo de dessalinização de água salgada pode ser conduzido de diversas formas e
pode ser utilizado com dois objetivos: produção de sal (NaCl) e produção de água
dessalinizada para posterior utilização pela comunidade.
A produção de sal (NaCl) a partir da água do mar envolve a concentração da água
salgada até a sua saturação, quando inicia a precipitação do sal, que é então separado. Em
função das características climáticas no Brasil, aqui este processo é conduzido utilizando
energia solar como fonte de energia para o processo de evaporação da água do mar. O local
onde ele é conduzido é chamado de salina, sendo praticamente uma atividade artesanal.
A produção de água dessalinizada a partir da água do mar é comum nos países do
Oriente Médio, onde os recursos hídricos são escassos e há grande disponibilidade de
combustíveis fósseis. Com este objetivo, a água do mar é evaporada formando duas correntes:
uma de água salgada (salmora), com uma concentração de sal acima da água do mar
alimentada, que é retornada ao mar; e outra de vapor livre do sal, que é posteriormente
condensado formando a corrente de água dessalinizada. Um esquema simplificado desse
processo é mostrado na figura a seguir:
Água do Mar
Salmora
Água Dessalinizada
Processo de 
Dessalinização
Considere que a fração mássica de sal na água do mar seja igual a 0,035. Determine a
quantidade de água do mar necessária para produzir 1.000 lb/h de água dessalinizada. Em
função de problemas relacionados à corrosão dos equipamentos envolvidos no processo, a
fração mássica na salmora descartada está limitada a 0,07.
Esquema, com as informações fornecidas:
Água do Mar
Salmora
Água Dessalinizada
Processo de 
Dessalinização
xs = 0,035
xa = ?
ys = 0,07
ya = ?
H2Od = 1000 lb/
za = 1,0
zs = 0,0
H2Om = ?
H2Os = ?
Introdução aos Processos Química
62
Balanço de Informações:
Número de incógnitas: 04
Equações: 02 restrições (correntes de água do mar e de salmora);
 02 equações do balanço de massa por componente;
 01 equação do balanço de massa global;
 - 01 em função da dependência linear entre as equações
de balanço dos componentes e a global;
Equações independentes: 04
Grau de liberdade na formulação: G = Ni - Ne = 4 - 4 = 0
Solução:
# As frações mássicas restantes são facilmente determinadas através das restrições:
Na corrente de água do mar: xa + xs = 1,0 ⇒ xa + 0,035 = 1,0 ⇒ xa = 0,965
Na corrente de salmora: ya + ys = 1,0 ⇒ ya + 0,07 = 1,0 ⇒ ya = 0,93
# Quantidade necessária de água do mar:
Identificando o sal como componente chave neste problemas, temos para o seu balanço
de massa:
xs . H2Om = ys . H2Os ⇒ 0,035 H2Om = 0,07 H2Os (1)
Do balanço global:
H2Om = H2Os + H2Od ⇒ H2Om = H2Os + 1000 (2)
Resolvendo o sistema formado por (1) e (2): H2Om = 2.000 lb/h
H2Os = 1.000 lb/h.
Observações:
i) A equação restante do balanço de massa, não utilizada em função da dependência
linear, pode ser empregada para verificar os resultados obtidos:
Em relação à água: xa . H2Om = ya . H2Os + za . H2Od
⇒ 0,965 x 2000 = 0,93 x 1000 + 1 x 1000 ⇒ 1930 = 1930.
Introdução aos Processos Química
63
ii) Apesar da simplicidade destes resultados, eles representam o ponto de partida para
o dimensionamento dos equipamentos do processo (evaporadores, condensadores, bombas,
etc.) e das tubulações, e permitem ainda uma avaliação preliminar dos custos envolvidos no
empreendimento.
iii) Apesar de não ter sido especificado, o resultado está baseado na produção de 1.000
lb/h de água dessalinizada. Este dado é chamado de base de cálculo no procedimento de
solução.
Exemplo Ilustrativo 3:
Um experimento sobre a taxa de crescimento de certos micro-organismos requer que
se estabeleça um ambiente de ar úmido enriquecido em oxigênio. Três correntes são
alimentadas em um evaporador para produzir a corrente com a composição desejada. As três
correntes de entrada são:
i) Água líquida, alimentada na vazão de 20 cm3/min;
ii) Ar (21% de O2 e 79% de N2 , em base molar);
iii) Oxigênio puro, com vazão molar igual a (1/5) da vazão do ar.
A corrente de saída, no estado gasoso, apresenta 1,5% de H2O, em base molar. Calcule
as vazões de ar, de oxigênio puro e de produto, bem como a composição do produto.
Dados complementares:
Densidade da água líquida: ρ = 1 g/cm3;
Massa molar da água: Ma = 18 g/mol.
Esquema, com as informações fornecidas:
Evaporador
H2O líq.
20 cm3/min = W mol/min
Ar; Q mol/min
0,21 de O2
0,79 de N2
O2 puro; A mol/min
Produto; P mol/min
0,015 de H2O
x de O2
y de N2
Como as unidades dos dados fornecidos não são compatíveis, nesta etapa de sua
organização é importante providenciar a sua homogeneização. Isto feito, não há necessidade
de preocupação com unidades ao longo dos cálculos e já se sabe qual a unidade dos resultados
obtidos.
Introdução aos Processos Química
64
Concentrações: Frações molares;
Vazões: Vazões molares, em mol/min. Assim, falta representar a vazão da corrente de
água líquida em mol/min:
W g
cm
mol= 20 cm
min
 1
M g
 = 1,11 mol / min
3
a











ρ 3
Balanço de Informações:
Número de incógnitas: 05
Equações: 01 restrição (corrente de produto);
 03 equações do balanço de massa por componente;
 01 equação do balanço de massa global;
 - 01 em função da dependência linear entre as equações
de balanço dos componentes e a global;
Equaçõesindependentes: 04
Grau de liberdade na formulação: G = Ni - Ne = 5 - 4 = 1
Este grau de liberdade é especificado através da retrição adicional que indica que a
vazão de oxigênio puro é (1/5) da vazão de ar.
Solução:
Este problema envolve balanços de massa em regime estacionário, sem a presença de
reação química. desta forma:
Balanço global: W + Q + A = P (1)
Balanços por componentes:
H2O: W = 0,015 P (2)
N2: 0,79 Q = y P (3)
Restrição: x + y + 0,015 = 1 (4)
Restrição adicional: A = 0,2 Q (5)
A equação representativa do balanço de massa do componente O2 fica para ser
utilizada para verificar o resultado.
Resolvendo o sistema formado pelas eqs. (1) a (5):
P = 74 mol/min;
Q = 60,74 mol/min;
A = 12,15 mol/min;
Introdução aos Processos Química
65
y = 0,65;
x = 0,335.
Observação:
i) Na solução foram utilizadas as equações representativas dos balanços dos
componentes H2O e N2 , pois eles aparecem em um menor número de correntes.
Exemplo Ilustrativo 4:
Encontra-se disponível em uma planta de processo uma vazão de 1.000 mol/h de uma
mistura com a seguinte composição:
Componentes Identificação % molar
Propano A 20
i-Butano B 30
i-Pentano C 20
n-Pentano D 30
Esta mistura deve ser separada em duas frações por destilação. O destilado (corrente de
topo) deve conter todo o propano alimentado e 80% do i-pentano, enquanto a fração molar de
i-butano deve ser igual a 0,4 nesta corrente. A corrente de fundo deve conter todo o n-pentano
alimentado. Com base nas informações fornecidas, calcule o resto das variáveis do processo.
Esquema, com as informações fornecidas:
C
O
L
U
N
A
Alimentação
F = 1000 mol/h
za = 0,2 ; Fa = 200 mol A/h
zb = 0,3 ; Fb = 300 mol B/h
zc = 0,2 ; Fc = 200 mol C/h
zd = 0,3 ; Fd = 300 mol D/h
Destilado; D = ?
xa = ? ; Da = 200 mol A/h
xb = 0,4 ; Db = ?
xc = ? ; Dc = Fc x 0,8 = 1
xd = ? ; Dd = ?
Corrente de Fundo; B = ?
ya = ? ; Ba = ? mol A/h
yb = ? ; Bb = ? mol B/h
yc = ? ; Bc = ? mol C
yd = ? ; Bd = 300 mol D/h
Introdução aos Processos Química
66
Não há necessidade de ajuste de unidades. As vazões e as frações estão todas em base
molar. A Base de Cálculo é tomada como 1.000 mol/h de alimentação. A representação das
vazões dos componentes é utilizada em função das informações fornecidas.
Balanço de Informações:
Como as vazões dos componentes são variáveis diretamente relacionadas às vazões
globais e às frações molares,
Fa = F . xa
elas são dependêntes destas duas e não há necessidade de envolvê-las na solução do problema.
Desta forma,
Número de incógnitas: 09 (vazões globais e frações molares);
Equações: 02 restrições (destilado e corrente de fundo);
 04 equações do balanço de massa por componente;
 01 equação do balanço de massa global;
 - 01 em função da dependência linear entre as equações
de balanço dos componentes e a global;
Equações independentes: 06
Grau de liberdade na formulação: G = Ni - Ne = 9 - 6 = 3
Estes graus de liberdade são amarrados através das imposições de que 80% do
isobutano e 100% do propano alimentados saiam na corrente de destilado, assim como a
totalidade do n-pentano alimentado deva sair pelo fundo. Estas três imposições têm como
consequências, respectivamente:
xc D = Fc . 0,8 ⇒ xc D = 200 x 0,8 = 160 mol C/h ;
Fa = Da ⇒ Ba = 0 ⇒ ya = 0 ;
Fd = Bd ⇒ Dd = 0 ⇒ xd = 0 .
Solução:
Como a operação é em regime estacionário e não há reação química:
Balanço global: F = B + D ⇒ 1000 = B + D ; (1)
Balanços por componentes:
A: Fa = xa D + ya B ⇒ 200 = xa D ; (2)
Introdução aos Processos Química
67
B: Fb = xb D + yb B ⇒ 300 = 0,4 D + yb B ; (3)
D: Fd = xd D + yd B ⇒ 300 = yd B ; (4)
Restrições: xa + xb + xc + xd = 1 ⇒ xa + 0,4 + xc = 1 ; (5)
ya + yb + yc + yd = 1 ⇒ yb + yc + yd = 1 ; (6)
Restrição adicional: xc D = 160 ; (7)
O sistema acima somente apresenta sete equações, pois as duas restrições que
implicam em ya = xd = 0 já estão levadas em conta na definição das expressões.
Como de costume, uma das equações representativas dos balanços de massa dos
componentes é deixada de lado e pode ser utilizada na verificação do resultado obtido.
Resolvendo o sistema formado pelas Eqs. (1) a (7):
B = 400 mol/h ; D = 600 mol/h ;
xa = 0,33 ; xc = 0,27 ;
yb = 0,15 ; yc = 0,1 ; yd = 0,75 .
Observação:
O sistema da forma que está escrito é não-linear. Esta característica contribui para
tornar mais complicada a sua solução. Sempre que possível, deve-se procurar formular o
modelo utilizando-se equações lineares, pois há métodos sistemáticos e simples para a solução
de seus sistemas.
A utilização das vazões por componente neste exemplo, como feito no Exemplo
Ilustrativo 1, permite a representação do modelo matemático através de um sistema de
equações lineares. Nesta abordagem, as frações são substituídas pelas respectivas vazões dos
componentes. Como já visto, a relação entre estas variáveis é:
A = Ai xi ,
onde A é a vazão total da corrente, Ai a vazão do componente na corrente e xi a fração do
componente na corrente.
Note também que, neste enfoque utilizando as vazões por componentes, as restrições
de composição das correntes são escritas na forma:
A = Ai∑ .
Introdução aos Processos Química
68
Desafio:
Reescreva o modelo matemático para esta coluna utilizando as vazões por
componente, obtendo assim um sistema de equações lineares. Escreva este sistema na forma
matricial e resolva-o utilizando cálculo matricial.
Dicas/Lembretes:
Seja o sistema linear m x n:
mnmn22m11m
2nn2222121
1nn1212111
b xa ..... xa xa
.......................................
b xa ..... xa xa
b xa ..... xa xa
=+++
=+++
=+++
Com m = n ele é chamado normal e pode ser escrito na forma matricial:
B X A 
b
...
b
b
 
x
...
x
x
 
a...aa
............
a...aa
a...aa
n
2
1
n
2
1
nn2n1n
n22221
n11211
=×→








=








×








A matriz A é chamada matriz do sistema. Quando ela tem determinante diferente de
zero o sistema tem solução única.
Para ordens acima de três, o determinante pode ser determinado pela expressão
(Teorema de Laplace):
( ) ∑∑
==
==
m
1 j
ijij
m
1 i
ijij A . a A . a A det
Na equação acima, quando o somatório é feito em i (linhas) o valor de j (colunas) deve ser
mantido constante e no intervalo 1 ≤ j ≤ m. Quando ele é feito em j, i é que deve ser
mantido constante e 1 ≤ i ≤ m. Os Aij são os cofatores dos elementos aij , determinados
por:
ij
j i
ij D ) 1 - ( A
+
=
onde Dij são os determinantes das matrizes obtidas ao se retirar a linha i e a coluna j da
matriz A. Dij é denominado menor complementar do elemento aij .
Sabendo calcular determinantes, a solução do sistema linear pode ser obtida, por
exemplo, utilizando o Teorema de Cramer. Esse teorema dita que a solução de um sistema
Introdução aos Processos Química
69
linear normal (representado por uma matriz quadrada A com determinante diferente de zero)
é dado por:
)A(det 
Adet
 x
j
i



=
na qual Aj é a matriz obtida a partir da matriz A com a substituição da coluna i pela coluna
dos termos independentes (B).
2.5 - Escalonamento de um Processo
Quando as informações sobre o balanço de massa são coerentes, diz-se que elas estão
balanceadas ou que o processo encontra-se balanceado.
Suponha que 1 kg de benzeno se misturecom 1 kg de tolueno, formando uma corrente
com 2 kg de mistura com 50% de benzeno e 50% de tolueno, em base mássica, conforme
mostrado na figura:
1 kg de benzeno
1 kg de tolueno
2 kg de mistura
50% de benzeno
50% de tolueno
Note que a massa de todas as correntes pode ser multiplicada por uma mesmo fator e o
processo continua balanceado. O mesmo não é verdade para a composição, que se mantém
constante. Como a mudança das unidades que representam a quantidade em cada corrente é
feita por uma fator de correção constante, a troca nominal de todas as unidades representativas
das quantidades ou vazões de cada corrente também mantém o processo balanceado. Estas
características podem ser observadas nas figuras a seguir:
Introdução aos Processos Química
70
300 kg de benzeno
300 kg de tolueno
600 kg de mistura
50% de benzeno
50% de tolueno
(x 300)
1 lbm/h de benzeno
1 lbm/h de tolueno
2 lbm/h de mistura
50% de benzeno
50% de tolueno
Este procedimento de multiplicar todos as correntes de massa por um fator, mantendo
a composição constante, é chamado de escalonamento (ou extrapolação) e o fator utilizado é
chamado de fator de escala.
Em base molar este procedimento somente pode ser aplicado na ausência de reação
química.
Exemplo Ilustrativo 5:
Deseja-se verificar se é economicamente viável um processo para separar 1.200 mol/h
de uma mistura, 60% em benzeno e 40% em tolueno, em base molar. Sabe-se que, para haver
lucro, deve-se obter uma quantidade mínima de 540 mol/h de benzeno em uma corrente com
95% de benzeno, em base molar.
Em laboratório, 1 mol desta mistura é separada em duas correntes, com características
mostrada na figura. Este processo de separação é um processo físico, não havendo reação
química entre os compostos nele envolvidos.
Introdução aos Processos Química
71
1 mol
0,5 mol
0,95 em benzeno
0,05 em tolueno
0,5 mol
0,375 mol de tolueno
0,125 mol de benzeno
0,6 em benzeno
0,4 em tolueno
Solução:
Apesar das informações estarem em base molar, como não há reação química no
processo, ele pode ser escalonado diretamente com a utilização de um fator de escala. Com
um fator de escala igual a ((1200 mol/h)/(1 mol)), obtém-se:
1200 mol/h
600 mol/h
0,95 em benzeno
0,05 em tolueno
600 mol/h
0,375 mol de tolueno
0,125 mol de benzeno
0,6 em benzeno
0,4 em tolueno
Na corrente de topo a concentração de benzeno satisfaz a exigência imposta. A
quantidade de benzeno nesta corrente é igual a: 600 x 0,95 = 570 mol/h > 540 mol/h. Assim, o
processo será econômico.
Observação Importante:
Agindo desta forma pode parecer que o escalonamento de processos na prática é muito
simples. Não é realidade! Esta situação de somente utilizar um fator de escala no
escalonamento (ou extrapolação) considera condições ideais, nas quais todas as condições
geométricas, cinemáticas e dinâmicas são fielmente reproduzidas nas diferentes escalas. Na
prática, esta reprodução de condições nas diversas escalas é praticamente impossível, e a
extrapolação de escala é um dos grandes desafios a serem enfrentados.
Introdução aos Processos Química
72
Exemplo Ilustrativo 6:
Uma mistura dos compostos A e B, 60% e 40% em base molar, respectivamente, é
separada em duas frações. Em uma operação em batelada, são os seguintes os resultados
obtidos:
100 mol
0,6 em A
0,4 em B
50 mol
0,95 mol A/mol
0,05 mol B/mol
12,5 mol de A
37,5 mol de B
Deseja-se obter a mesma separação em uma operação contínua, com uma alimentação
da solução de A e B original a uma vazão de 1.250 lbmol/h. Esboce o fluxograma do processo
contínuo.
Solução:
As informações solicitadas podem ser obtidas diretamente a partir dos dados da
operação em batelada através da utilização do seguinte fator de escala(FE):
FE = =1250 12 5 lbmol / h
100 mol
 lbmol / h
mol
,
Assim, obtém-se:
1250 lbmol/h
0,6 em A
0,4 em B
625 lbmol/h
0,95 lbmol A/lbmol
0,05 lbmol B/lbmol
156 lbmol de A/h
469 lbmol de B/h
Note que no processo de escalonamento as composições não se alteram.
Introdução aos Processos Química
73
Exemplo Ilustrativo 7:
Uma solução aquosa de hidróxido de sódio contém 20% em massa de NaOH. Deseja-
se produzir uma solução de NaOH, 8% em massa, através da diluição da corrente a 20%
utilizando-se uma corrente de água pura. Com base nas informações fornecidas:
i) Calcule as razões (g de H2O/g de solução a 20%) e (g de solução produto/g de
solução a 20%);
ii) Determine as vazões de solução a 20% e de água pura necessárias à produção de
2310 lbm/min de solução a 8%.
Esquema, com as informações fornecidas:
Adotando como base de cálculo 100g de solução a 20% alimentada no processo:
100 g de solução
0,2 NaOH
0,8 H2O
água pura; Q1(g)
solução produto
0,08 NaOH
0,92 H2O
Balanço de Informações:
Número de incógnitas: 02
Equações: 02 equações do balanço de massa por componente;
 01 equação do balanço de massa global;
 - 01 em função da dependência linear entre as equações
de balanço dos componentes e a global;
Equações independentes: 02
Solução:
Note que o NaOH é um componente de amarração neste problema. Assim, o seu
balanço de massa fornece:
0,2 x 100 = 0,08 Q2 ⇒ Q2 = 250 g
Introdução aos Processos Química
74
Do balanço de massa global:
100 + Q1 = 250 ⇒ Q1 = 150 g
Com as variáveis todas determinadas, pode-se calcular as razões solicitadas,
utilizando-se a base de cálculo adotada:
1,5 
100
150 
20% solução de g
pura H2O g 1R ===
2,5 
100
250 
20% solução de g
produzida solução de g 2R ===
Para determinar as quantidades nas alimentações para a produção de 2310 lbm de
solução/min utiliza-se um fator de escala convenientemente definido:
g
/minlb
 24,9 
g 250
nproduto/mi de lb 2310
 FE mm ==
Assim, as correntes na alimentação para a produção desejada serão:
# solução a 20%: 100 x 9,24 = 924 lbm/min;
# água pura: 150 x 9,24 = 1386 lbm/min.
Exemplo Ilustrativo 8:
Uma corrente de ar úmido entra em um condensador, no interior do qual 95% do vapor
d'água é condensado, formando uma corrente com uma vazão de 225 l/h de água líquida.
Calcule a vazão da corrente de gás que deixa o condensador e a sua composição, expressando-
a em frações molares.
O ar seco pode ser considerado formado por 21% de O2 e 79% de N2, em base molar
ou volumétrica, e a mistura alimentada no condensador pode ser considerada um gás ideal a
uma pressão total de 1 atm abs e 35°C.
Introdução aos Processos Química
75
Esquema, com as informações fornecidas:
ar úmido
água
gás
225 l/h => n3 = 12500 mol/h
com n1 (mol/h de ar seco)
0,21.n1 de O2
0,79.n1 de N2
n2 (mol/h de H2O)
CONDENSADOR
(95% da H2O presente na car
n4 (mol/h de O2)
n5 (mol/h de N2)
n6 (mol/h de H2O
tem-se 
A única vazão fornecida encontra-se em litros/hora enquanto as informações sobre
composições estão em base molar. Por simplicidade, define-se trabalhar na base molar e
então, a unidade de trabalho para as vazões pode ser mol/h. Assim, antes de qualquer
procedimento, deve-se passar a vazão da corrente de água fornecida para a unidade de
trabalho:
H2O
H2O M
1 225 3n ρ=
A densidade e a massa molar da água são, respectivamente, 1 g/cm3 = 1000 g/l e 18
g/mol. Substituindo os valores na expressão, obtém-se: n3 = 12500 mol/h.
Em função do número de incógnitas no problema, a opção por trabalhar com base nas
vazões de componentes nas correntes evita o aparecimento das não linearidades que ocorrem
ao se trabalhar com as frações dos componentes sem que se conheça todas as vazões, como já
comentado em exemplos anteriores. Desta forma, o sistema de equações originário do balanço
de massaserá linear.
Balanço de Informações:
Número de incógnitas: 05 (n1, n2, n4, n5, n6)
Equações: 03 equações do balanço de massa por componente;
01 restrição especial(95% da água da carga em n3)
Equações independentes: 04
Note que neste equacionamento, como não estão sendo utilizadas as vazões globais
das correntes, o uso das restrições de composição é descartado. Por exemplo, a restrição de
composição na corrente de gás que sai do condensador:
Introdução aos Processos Química
76
n gás ni
i
( ) =
=
∑
4
6
,
representa uma equação independente, mas também adiciona ao problema mais uma
incógnita, n(gás).
Da forma que está colocado, este problema tem grau de liberdade igual a 1. Assim, há
a necessidade da especificação de mais uma restrição para que se tenha uma solução única.
Um parâmetro que pode ser medido e então especificado é a umidade relativa da corrente de
ar úmido alimentada no condensador. A umidade relativa, definida como a razão entre a
pressão parcial do vapor d'água presente no ar e a pressão parcial do vapor d'água que satura a
mistura nas mesmas condições de pressão total e temperatura, é um parâmetro largamente
utilizado para indicar o grau de umidade (concentração de água) no ar úmido.
A pressão de vapor d'água que satura a mistura é chamada de pressão de saturação.
Quando a pressão parcial do vapor d'água atinge uma valor igual ao da pressão de saturação
há a sua condensação. Para uma determinada temperatura, a pressão de saturação da água
(pressão de vapor) é obtida por uma expressão na forma (Equação de Antoine):
( )ln P A BC Tsat = − + (8.1)
Para a água, com Psat [=] mmHg e T [=] K, as constantes da equação de Antoine, para 284 ≤
T ≤ 441 K são: A = 18,3036; B = 3816,44 e C = - 46,13 (Himmelblau).
Com base no exposto, pode-se então especificar a umidade relativa da corrente de
alimentação igual a 80%. Utilizando a Eq.(8.1), obtém-se que a pressão de saturação do vapor
d'água a 35°C é de
Psat = 41,67 mmHg .
Então, a partir da definição da umidade relativa, a pressão parcial do vapor d'água na
corrente de alimentação é igual a
UR P T
Psat T
xH O
H O
=
2
2
100( )
( )
⇒ 100 x 67,41
P
80 O2H= ;
PH2O = 33,34 mmHg .
Como a mistura tem comportamento de gás ideal, pode-se escrever diretamente:
n
n
P
P
H O
total
H O
total
2 2
= ⇒
mmHg 760
mmHg 34,33 
2n1n
2n
=
+
⇒
Introdução aos Processos Química
77
n2 = 0,042 n1 (8.2)
A Eq.(8.2) é a representação matemática da restrição imposta pela especificação de
80% para a umidade relativa na corrente de alimentação.
Solução:
Em função da organização dada aos dados anteriormente, são utilizados para a solução
os balanços por componente, além das restrições impostas. Desta forma:
Balanços por componentes:
H2O: n2 = 12500 + n6 (8.3)
N2: 0,79 n1 = n5 (8.4)
O2: 0,21 n1 = n6 (8.5)
Restrições:
i) n3 = 0,95 n2 (8.6)
ii) n2 = 0,042 n1 (8.2)
Resolvendo o sistema linear, formado pelas Eqs. (8.2) a (8.6), obtém-se:
n1 = n2 = n4 = n5 = n6 =
Desafio Computacional:
As condições ambientes podem apresentar variação sensíveis ao longo do ano, e
mesmo durante um único dia. Considerando que o condensador continue operando nas
mesmas condições, analise o comportamento da composição da corrente de gás na saída se a
umidade relativa do ar alimentado variar de 50% a 100%. Represente graficamente os
resultados obtidos.
2.6 - Alguns Equipamentos Típicos da Indústria de Processos
Nos processos químicos há um grande número de equipamentos que operam com base
em diversos conceitos físicos e físico-químicos. A seguir são apresentados alguns
equipamentos mais comuns, nos quais o balanço de massa fornece informações importantes.
2.6.1 - Divisor de Corrente:
Não é propriamente um equipamento. Representa um ponto na tubulação onde há
divisão da vazão de uma corrente (à montante do divisor) em duas ou mais correntes (à
Introdução aos Processos Química
78
jusante do divisor). Como não ocorre nenhum processo físico ou químico neste ponto, a
composição das novas correntes é igual a da corrente à montante do divisor. No caso de haver
divisão em duas correntes, a distribuição da vazão entre as correntes à jusante do divisor é
descrita por um fator α, que pode ser definido na forma:
α−=
≤α≤
α=
1
F
F
1 0 com 
F
F
1
3
1
2 &
As vazões Fi são especificadas na Figura 2.6.1.1. O valor de α é definido pelo controle
operacional da planta, ou seja, um agente externo especifica o seu valor. A relação desse valor
com os parâmetros operacionais serão estudos em Mecânica dos Fluidos.
2.6.2 - Ponto de Mistura:
Ponto onde há a simples união (mistura) de duas ou mais correntes. Como não ocorre
nenhum processo físico ou químico neste ponto, a vazão e a composição da corrente à jusante
do ponto de mistura são determinadas pelo balanço de massa no ponto de mistura. Na Figura
2.6.2.1 é apresentado um esquema de um ponto de mistura com duas correntes à montante.
D
F1; xi
F2; xi
F3; xi
Região à montante do
divisor (D)
Região à jusante 
divisor (
Figura 2.6.1.1 - Divisor de Corrente com a Formação de Duas Correntes à Jusante
Introdução aos Processos Química
79
M
Região à montante do
misturador (M)
Região à jusante
misturador (
F1; xi
F2; yi
F3; wi
Figura2.6.2.1 - Ponto de Mistura de Duas Correntes
Do balanço de massa global no ponto da Figura 2.6.2.1:
F1 + F2 = F3 .
Do balanço de massa por componente, para o componente i:
xi F1 + yi F2 = wi F3 .
2.6.3 - Tambor de Flash
Tambor mantido em condições de temperatura e/ou de pressão diferentes da
temperatura e/ou da pressão da corrente nele alimentada. Esta diferença de condições
operacionais é imposta com o objetivo de vaporizar parcialmente a corrente de entrada, que
normalmente encontra-se no estado líquido, separando-a em duas correntes: uma vapor e outra
líquida. A causa principal desta vaporização parcial neste equipamento é uma
despressurização, ou seja, a pressão na corrente que entre no tambor é maior do que a pressão
no seu interior. Assim, o fluido ao entrar no Tambor de Flash passa por uma "expansão".
Nesta vaporização parcial, os componentes não vaporizam nas mesmas proporções em que
estão presentes no líquido. Os componentes mais voláteis têm uma maior tendência para
vaporizar, causando em situações onde o processo de mudança de fase não é completo uma
maior concentração dos componentes mais voláteis na fase vapor e dos menos voláteis na fase
líquida. Este fato pode ser observado na Figura X.1, onde é mostrado um processo envolvendo
Introdução aos Processos Química
80
uma corrente (F), no estado líquido, formada de iguais quantidades molares de etano e butano.
Os resultados na Figura X.1 deixam claro que se o Flash for utilizado com objetivo de
separação, ele somente é efetivo se a vaporização for parcial, situação na qual as
concentrações das correntes de saída são diferentes da concentração da corrente original.
Após a expansão, no interior do tambor de flash há um processo físico de equilíbrio
entre as fases vapor e líquida, formadas e mantidas em contato no seu interior. Sabe-se da
prática, que sempre que duas fases distintas são colocadas em contato elas tendem a entrar em
equilíbrio. Esta condição de equilíbrio dita algumas relações entre as variáveis que descrevem
os estados das fases presentes. mais tarde, no curso de Termodinâmica, você irá estudar este
fenômeno com mais detalhes. No momento, o que nos interessa é saber que as composições
das fases que deixam o tambor de flash devem obedecer uma relação de equilíbrio, que pode
ser representada da forma mais simples pela expressão:
yi = Ki xi , (3.1)
onde yi é a fração molar do componentei na fase vapor, que forma a corrente V; xi é a fração
molar do componente i na fase líquida, que forma a corrente L; e Ki é uma constante de
equilíbrio, com valores distintos para cada componente i.
F
0,5 C2H6
0,5 C4H10
V
L
0,3 C2H6
0,7 C4H10
0,8 C2H6
0,2 C4H10
Tambor de Flash
Vaporização Parcial
F
0,5 C2H6
0,5 C4H10
V
L = 0
0,5 C2H6
0,5 C4H10
Tambor de Flash
Vaporização Total
Figura X.1 - Processo de Flash
Introdução aos Processos Química
81
Mais tarde, nos seus estudos de Termodinâmica, você verá como os valores de Ki na
Eq.(3.1) podem ser previstos a partir das variáveis que definem o sistema(pressão,
temperatura e composições). Formas mais gerais para representar esta relação de equilíbrio
serão estudas naquela ocasião, bem como serão mostrados critérios que permitirão uma
previsão da "capacidade" do Tambor de Flash realizar uma certa separação desejada. Com
estes conhecimentos mais avançados, você ainda será capaz de prever quais deverão ser a
temperatura e a pressão no interior do tambor para uma determinada separação especificada.
Na Figura X.2 são mostradas as variáveis relevantes para o balanço de massa em um
Tambor de Flash.
Se considerarmos as constantes de equilíbrio Ki conhecidas e um processo envolvendo
n componentes, um balanço de informações indica que:
Número de incógnitas: 3n + 3
Equações: n equações do balanço de massa por componente;
01 equação do balanço de massa global;
03 restrições em relações as composições;
 n relações de equilíbrio (Eq. (3.1));
 - 01 em função da dependência linear entre as equações 
de balanço dos componentes e a global;
Equações independentes: 2n + 3
Graus de Liberdade: (3n + 1) – (2n + 1) = n
F
zi
V
yi
L
xi
Figura X.2: Tambor de Flash
Introdução aos Processos Química
82
Alguns problemas na Engenharia Química recebem nomes especiais não só pela
freqüência em que elas aparecem mais também pela sua importância no projeto e análise de
equipamentos e de processos químicos. Um exemplo é o chamado problema de simulação. A
nível de equipamento, um problema é dito de simulação quando são fornecidos todas as
variáveis que especificam o estado das correntes de entrada e as que especificam as condições
operacionais no interior do equipamento, e deve-se calcular as variáveis que definem o estado
das correntes de saída.
A simulação de um Tanque de Flash é exemplificada na Figura X.3. Neste caso, a
composição (zi) da corrente de entrada, com n componentes, é conhecida, bem como a sua
vazão global. As condições operacionais no interior do equipamento ditam os valores dos Ki,
que também são considerados conhecidos. Do balanço das informações disponíveis:
Número de incógnitas: 2n + 2
Equações: n equações do balanço de massa por componente;
01 equação do balanço de massa global;
02 restrições em relações as composições;
 n relações de equilíbrio (Eq. (3.1));
 - 01 em função da dependência linear entre as equações 
de balanço dos componentes e a global;
Equações independentes: 2n + 2 ;
podemos verificar que o problema de simulação apresenta grau de liberdade igual a zero, ou
seja, tem resposta única.
F
zi
V = ?
yi = 
L = ?
xi = ?
Ki
Figura X.3 - Problema de Simulação de um Tanque de Flash
Introdução aos Processos Química
83
2.6.4 - Colunas de Destilação
Como observado anteriormente, a separação completa de uma mistura é muito difícil
em um único tambor de flash. Uma possibilidade então é colocar um conjunto de tambores em
série. Assim, são obtidas melhores separações.
Esta idéia de vários flashes em série é utilizada nas colunas de destilação. Estas
colunas são equipamentos nos quais podemos considerar a presença de diversas regiões,
independentes e ligadas em série, de contato líquido-vapor, que funcionam como vários
flashes.
Em sua operação, via de regra, é alimentada uma corrente de uma mistura líquida em
sua lateral e em seu interior há uma corrente gasosa, rica nos elementos mais voláteis,
escoando na direção ascendente, e uma corrente líquida, rica nos componente menos voláteis,
escoando na direção descendente. Em sua parte superior (topo da coluna) é retirada esta
corrente gasosa e resfriada em um condensador (equipamento onde há condensação de
vapores). Parte do condensado formado sai como produto de topo e a parte complementar é
retornada a coluna para dar início a corrente líquida que escoa no sentido descendente. Na
base da coluna ocorre o inverso, ou seja, parte do líquido que chega é retirado como produto
de fundo e a outra parte passa através de um equipamento que fornece calor (este equipamento
tem o nome especial de refervedor), vaporizando este líquido, que é então realimentado na
coluna, dando origem a corrente de vapor ascendente.
Desta forma, tendo como objetivo somente o balanço de massa, uma coluna de
destilação é muito parecida com o tambor de flash: há uma corrente de alimentação e duas de
saída: (i) uma no topo, rica nos componentes não voláteis e (ii) uma no fundo, rica nos
componentes não voláteis. Como esta distribuição de componentes nas correntes ocorre, não é
mais função de uma única relação de equilíbrio. Você, ao longo do curso de Operações
Unitárias vai aprender como utilizar as relações de equilíbrio no projeto das colunas de
destilação. Neste primeiro curso, ao lidarmos com colunas de destilação, nos restringiremos a
utilização de equações diretamente ligadas aos balanços de massa.
Introdução aos Processos Química
84
Na figura X.4 é mostrado um esquema básico de uma coluna de destilação e as
principais correntes envolvidas.
Figura X.4 – Esquema Básico de uma Coluna de Destilação
2.6.5 - Extratores
O extrator é um equipamento onde uma corrente, normalmente pura, chamada de
solvente, é colocada em contato com uma mistura com objetivo de retirar, preferencialmente,
um dos componentes desta mistura. São então formadas duas correntes: uma formada por uma
solução envolvendo o solvente e as substâncias extraídas, chamada de extrato, e outra
composta do material restante da mistura original, chamada de rafinado.
Um exemplo clássico de extração ocorre na preparação do café. A mistura original é
representada pelo pó de café e a água quente desempenha o papel de solvente. Está água
quente entra em contato com o pó do café, retirando preferencialmente substâncias que
conferem o sabor e aroma ao líquido obtido, que é o extrato. O pó restante, agora sem as
substâncias de interesse, representa o rafinado.
Produt
o de
topo
Alimentaçã
o
Produto
de
fundo
Introdução aos Processos Química
85
Figura X.5 – Esquema Básico de um Extrator, formado por um etapa de Extração
propriamente dita e uma Etapa de Separação
2.7 – Balanços Envolvendo Múltiplas Unidades
Na prática os processo têm várias unidades e é importante em uma primeira análise
obter a vazão e principais parâmetros das correntes que unem estes equipamentos. Assim, uma
análise preliminar do tamanho dos equipamentos e, consequentemente, de seu desempenho e
custo pode ser efetuada. Esse tipo de análise é importante em uma primeira estimativa da
viabilidade econômica do processo.
Foi visto que balanços são efetuados em volumes de controle, que são arbitrariamente
definidos em função da conveniência dos cálculos a serem efetuados.. Então, em um problema
envolvendo vários equipamentos, a diferença para os problemas com um único equipamento é
a possibilidade de definição de diversos volumes de controle e assim de diversos conjuntos de
equações.
Seja o exemplo da Figura 2.7.1, onde há um ponto de mistura, um divisor de correntes
e dois equipamentos. As correntes A1 , A2 e A3 são correntes de entrada no processo; e as
correntes P1 , P2 eP3 são correntes de saída. Um volume de controle envolvendo todo o
Rafinad
o
Extrat
o
Decantado
r
Extrato
r
Solução Solvent
e
Introdução aos Processos Química
86
processo (VC5) é atravessado por estas seis correntes que representam a ligação do processo
com o exterior. As correntes C1 , C2 e C3 são correntes internas. Se necessitarmos de
informações sobre elas, devemos ter volumes de controle atravessados por elas de tal forma
que elas aparecem nas equações dos balanços. A Figura 2.7.2 mostra dois volumes de controle
VC1 e VC2), que ao serem efetuados balanços de massa em relação a eles, a corrente C1
aparece, tornando possível manipular informações sobre esta corrente. Para trabalhar com
dados das correntes C2 e C3 deve proceder de forma análoga, definindo outros volumes, como
por exemplo VC3 e VC4.
Figura 2.7.1 – Processo com Múltiplas Unidades
Figura 2.7.2 – Volumes de Controle em Processos com Múltiplas Unidades
Ao se definir os volumes de controle, deve-se ter em mente que os cálculos serão mais
simples quando os volumes de controle forem escolhidos de tal forma que as respectivas
superfícies de controle sejam atravessadas pelo menor número possível de incógnitas. Este
fato é mostrado no exemplo ilustrativo a seguir.
1 2A1
A2
C1
P1
C2
P2
A3
P3
C3
1 2A1
A2
C1
P1
C2
P2
A3
P3
C3
Introdução aos Processos Química
87
Exemplo Ilustrativo 9:
Um processo contém duas colunas de destilação, ligadas conforme o fluxograma
apresentado. Há dois componentes no processo e as composições conhecidas (frações
mássicas) das correntes são mostradas no fluxograma. Com base nos dados fornecidos,
calcule as vazões e composições das correntes C1, C2 e C3, completando assim os dados das
correntes do processo em tela.
Esquema, com as informações fornecidas:
Solução:
Deve-se definir os volumes de controle. De acordo com o problema, os volumes de
controle podem ser definidos seqüencialmente, permitindo a determinação das incógnitas
passa a passo, ou simultaneamente, o que gera um grande sistema de equações para ser
resolvido. A forma seqüencial é preferível, pois permite um melhor acompanhamento do
procedimento de cálculo.
Partiremos para resolver este problema de forma seqüencial. Note que todas as vazões
fornecidas estão nas mesmas unidades e que as frações são todas compatíveis com a vazões,
ou seja, vazões mássicas acompanhadas de frações mássicas. Assim, não há necessidade de
conversões para compatibilizar estas informações.
Introdução aos Processos Química
88
1°°°° Volume de Controle: (VC1)
Volume envolvendo o processo como um todo. Permite o cálculo das variáveis da
corrente C3 (Q3, wA e wB)
Balanço de Informações – VC1:
Número de incógnitas: 03
Equações: 02 equações do balanço de massa por componente;
01 equação do balanço de massa global;
 - 01 em função da dependência linear entre as equações
de balanço dos componentes e a global;
01 restrição de composição (RC);
Equações independentes: 03 GL = 0 OK!
Equações:
BMG: 100 + 30 = 40 + 30 + Q3 ⇒ Q3 = 60 kg/h.
A: 100 x 0,5 + 30 x 0,3 = 40 x 0,9 + 30 x 0,6 + Q3 x wA
Como Q3 = 60 kg/h ⇒ wA = 0,083.
RC: wA + wB = 1 ⇒ wB = 0,917.
2°°°° Volume de Controle: (VC2)
Volume envolvendo a primeira coluna. Permite o cálculo das variáveis da corrente C1
(Q1, xA e xB)
Introdução aos Processos Química
89
Equações:
BMG: 100 = 40 + Q1 ⇒ Q1 = 60 kg/h.
A: 100 x 0,5 = 40 x 0,9 + Q1 x xA
Como Q1 = 60 kg/h ⇒ xA = 0,233 ⇒ xB = 0,767.
3°°°° Volume de Controle: (VC3)
Volume envolvendo o misturador. Permite o cálculo das variáveis da corrente C2 (Q2,
yA e yB), desde que as variáveis da corrente C1 já tenham sido determinadas.
Equações:
BMG: 60 + 30 = Q2 ⇒ Q2 = 90 kg/h.
A: 60 x 0,233 + 30 x 0,3 = Q2 x yA
Como Q2 = 90 kg/h ⇒ xA = 0,255 ⇒ xB = 0,745.
Observações:
i) Note que no lugar de utilizar o VC3 para determinar os parâmetros da corrente C2,
um volume de controle envolvendo a primeira coluna e o misturador poderia ter sido
utilizado. Nesse caso os dados relativos a C2 seriam calculados a partir somente dos dados
fornecidos no problema. Resultados destes outros volumes de controle podem ser utilizados
na verificação dos valores já obtidos.
ii) Conforme pode ser observado é grande o número de volumes de controles
possíveis. Assim, deve-se ter cuidado quando se escolhe o procedimento simultâneo para não
se escrever um número de equações maior do que o necessário.
Introdução aos Processos Química
90
2.8 – Correntes Especiais em um Processo
Existem algumas correntes de processo que têm um objetivo específico e aparecem em
uma grande quantidade de fluxogramas. Estas correntes são apresentadas a seguir, bem como
uma discussão inicial de suas finalidades.
2.8.1 – Corrente de Reciclo
A corrente de reciclo é uma corrente que retorna parte ou a totalidade da massa de um
ponto avançado do processo para um outro em uma posição pela qual esta massa já tenha
passado. Uma representação esquemática de uma corrente de reciclo é apresentada na Figura
2.8.1.1. Note que a corrente de reciclo nasce em um ponto de divisão que não necessariamente
é um divisor de corrente. Muitas vezes a sua origem é em um equipamento de separação, o
que trás como conseqüência que a sua composição é diferente da composição das outras
correntes que saem de tal equipamento.
Figura 2.8.1.1 – Representação Esquemática de uma Corrente de Reciclo
As correntes de reciclo servem para a recuperação de reagente não consumido na etapa
de reação, para a recuperação de catalisador que seja arrastado para fora do reator, assim como
podem auxiliar no controle de processos através da diluição da corrente que é alimentado no
reator, situação importante em reações altamente exotérmicas. Nesses casos, o reciclo é
parcial. Há ainda sistemas onde um fluido opera em circuito fechado, por exemplo em ciclos
de refrigeração e o circuito de água de resfriamento em plantas de processo. Nesses sistemas a
totalidade da corrente é recirculada.
Produto
Corrente de
Reciclo
Carga
Combinada
Carga
Fresca
Reação Separação
Introdução aos Processos Química
91
2.8.2 – Corrente de Bypass
As correntes de bypass podem ser entendidas como correntes de reciclo com o sentido
do escoamento invertido. Assim, o fluido que passa por uma corrente de bypass não atravessa
o(s) equipamento(s) posicionados na direção principal do processo entre o início do bypass e o
seu retorno para a corrente principal. A Figura 2.8.2.1 mostra, de forma esquemática, uma
corrente de bypass. As correntes de bypass, via de regra, são originadas em um divisor de
correntes e terminam em um misturador.
Figura 2.8.2.1 – Representação Esquemática de uma Corrente de Bypass
A corrente de bypass tem a sua utilização ligada principalmente ao controle
operacional da planta, ou especificamente, de equipamentos. Assim, é comum o bypass de
somente um equipamento, com o valor da vazão que passa por esta corrente sendo
manipulado para manter as condições de saída desejadas. Ao longo do seu curso, em
disciplinas ligadas à Modelagem e Controle de Processos você verá mais detalhes sobre como
operar estas correntes de bypass.
2.8.3 – Corrente de Purga
A corrente de purga é uma corrente que é retirada de uma outra e é descartada. Seu
objetivo é promover o descarte de substâncias que, sem a purga, iriam se acumular,
principalmente em circuitos de reciclo.
Seja o esquema mostrado na Figura 2.8.3.1. Imagine que haja a formação de um
produto secundário na reação e que o processo de separação não seja capaz de separá-lo da
matéria prima não reagida que é reciclada. Desde modo, a corrente de reciclo conterá toda a
quantidade deste produto secundário.Assim, a corrente de purga retirada do reciclo é o único
ponto de descarte deste produto secundário. Caso isto não fosse feito, haveria um acúmulo
deste produto secundário, pois ele é continuamente formado na reação.
Corrente de By-
pass
Process
Introdução aos Processos Química
92
Figura 2.8.3.1 – Representação Esquemática de uma Corrente de Purga
2.8.4 – Corrente de Make-up
A corrente de make-up é a corrente que repõe perdas em um circuito fechado. Seja, por
exemplo, o circuito de água de resfriamento em uma planta de processos. Este circuito
disponibiliza água, a temperatura ambiente, para retirar energia de qualquer ponto do
processo. Ele é formado, principalmente, por uma bomba, que joga a água fria para o
processo, e por uma coluna de resfriamento, que recebe a água aquecida que sai do processo e
torna a resfriá-la até a temperatura ambiente, disponibilizando-a para ser novamente
bombeada, fechando assim o circuito. Neste circuito, vazamentos e evaporação na torre de
resfriamento são as principais causas da diminuição da água que circula. Para manter a
quantidade constante, há a necessidade de repor esta água perdida, o que é feito através de
uma corrente de make-up.
Outros processos que operação com circuitos fechados são processos de extração por
solvente. Neste caso o solvente está presente para servir de agente extrator, não podendo sair
junto com o produto. Assim, após fazer a extração (retirar de uma matriz a substância
desejada) o solvente é separado da substância de interesse e reciclado. As perdas de solvente
são repostas através de uma corrente de make-up, conforme pode ser visto na Figura 2.8.4.1.
Problemas envolvendo estas correntes são resolvidos de forma análoga aos problemas
com múltiplas unidades apresentados no item anterior. Especial atenção deve ser dada às
Corrente de
Reciclo
Carga
Combinada
Carga
Fresca
Corrente de
Purga
ProdutoReação Separação
Introdução aos Processos Química
93
correntes de reciclo, pois elas retornam informações de mudanças efetuadas ao longo do
processo para o seu ponto inicial.
Figura 2.8.4.1 – Representação Esquemática de uma Corrente de Make-up
Solvent
e
Produto
Purificad
o
Make-up
Mistur
a
Solvente
Re uperado
Efluente
	Figura 2.6.1.1 - Divisor de Corrente com a Formação de Duas Correntes à Jusante
	Figura2.6.2.1 - Ponto de Mistura de Duas Correntes
	Figura X.1 - Processo de Flash
	Figura X.2: Tambor de Flash
	Figura X.3 - Problema de Simulação de um Tanque de Flash
	Figura X.4 – Esquema Básico de uma Coluna de Destilação
	Figura X.5 – Esquema Básico de um Extrator, formado por um etapa de Extração propriamente dita e uma Etapa de Separação

Outros materiais