Buscar

Eletromagnetismo 1 - Capitulo 03 - Problemas de Valores de Fronteira em Eletroestática

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 62 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 62 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 62 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 1/62
ELETROMAGNETISMO - PARTE 1 - Edição 01.2011
Eduardo Fontana, PhD
Professor Titular
Departamento de Eletrônica e Sistemas
UFPE
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
Capítulo 3 - Problemas de Valores de Fronteira em Eletrostática
3.1 Introdução
3.2. Uma Solução Integral para a Equação de Poisson
3.3 Teorema da Unicidade
3.4. Problemas em Eletrostática Governados pela Equação de Laplace
3.4.1 O conceito de capacitância
3.4.2 Energia armazenada no capacitor
3.4.3 Solução da Equação de Laplace pelo método da separação de variáveis
Separação de Variáveis dm Coordenadas Cartesianas
Separação de Variáveis em Coordenadas Cilíndricas
3.5 Solução da Equação de Poisson - Método das Imagens
3.5.1 O Método das Imagens
3.5.2 Distribuição de carga na vizinhança de um plano condutor
3.5.3 Distribuição de carga na vizinhança de uma casca esférica condutora
Esfera Condutora Aterrada
Esfera Condutora Submetida a um Potencial V
Esfera Condutora Isolada e Carregada com carga total Q
Problemas
3.1 Introdução
 
 Freqüentemente, carga pode ser transferida externamente para um meio condutor, migrando para a superfície do
material. Após atingido o equilíbrio de forças, a distribuição superficial de carga na superfície do material se estabelece
de forma a manter o potencial do condutor constante. Assim, do ponto de vista da eletrostática, a especificação
matemática de uma superfície condutora é feita, de forma conveniente, em termos do valor do potencial do condutor.
 
Neste capítulo, analisam-se problemas em eletrostática envolvendo a presença simultânea de distribuições de
carga e de superfícies condutoras na região de existência do campo. Na ausência de distribuições volumétricas de
carga, a função potencial satisfaz uma equação diferencial homogênea, a equação de Laplace, e algumas técnicas de
solução dessa equação serão investigadas. Com a presença simultânea de superfícies condutoras e de distribuições de
carga, a função potencial satisfaz uma equação diferencial não-homogênea, a equação de Poisson, cuja solução é mais
elaborada, e que será investigada no contexto do método das imagens.
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 2/62
3.2. Uma Solução Integral para a Equação de Poisson
 
 O problema de determinação de campos em meios lineares, homogêneos e isotrópicos, pode ser formulado com
base na geometria da Fig.3.1, que ilustra um volume V de um meio de permissividade εε, limitado por uma superfície
fechada Σ, e contendo em seu interior uma distribuição de cargas, descrita pela função ρ. Uma vez obtida a função
potencial Φ em V, o campo elétrico pode ser determinado. Na situação presente, não se está interessado no
comportamento dessa função no exterior de V, mas para isso torna-se necessário ter alguma informação a respeito
dessa função na superfície Σ. Nesta seção será obtida uma expressão integral para a função Φ que evidencia o tipo de
informação necessária à solução do problema. Na seção seguinte, serão estabelecidas as condições a serem satisfeitas
para que a solução obtida seja única.
 
 É importante lembrar que uma expressão para a função Φ, que satisfaz a equação de Poisson i.e., a Eq.(2.32)
reproduzida a seguir,
 
 , (2.32)
 
já foi obtida no Capítulo 2 para o caso de uma distribuição de cargas, localizada em uma região ilimitada. Essa
solução, dada pela Eq.(2.20), foi obtida utilizando-se o princípio da superposição.
 
Ao considerar-se problemas governados pela equação de Poisson, surge uma importante questão relacionada ao
tratamento de cargas puntiformes:
 
Que tipo de função densidade deveria ser utilizada na Eq. (2.32), para representar uma carga puntiforme?
 
A resposta a essa questão é de fundamental importância para a determinação de uma expressão integral para a
função Φ em uma região limitada, como mostrado a seguir. 
 
Considere-se que a carga esteja localizada no ponto , e imersa em um meio de permissividade ε. O potencial
associado a essa carga no ponto é dado por,
 
Fig.3.1 Geometria para determinação da função potencial em uma região limitada por uma superfície Σ.
 
Copyright Versão Impressa 1994 by Eduardo Fontana
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 3/62
Copyright Versão ebook 2011 by Eduardo Fontana
Para representar matematicamente a densidade de carga associada à carga puntiforme, considere-se a definição
 
 (3.1)
 
onde a função , ainda a ser especificada, deve ser medida em unidades de L-3 para o correto
dimensionamento da função . Devido a alta concentração de carga associada a carga discreta, a função δ deve ser
extremamente acentuada na posição da carga, devendo anular-se em qualquer ponto satisfazendo a condição . 
Isso implica nas seguintes relações, que devem ser obedecidas pela função , 
o que resulta nas seguintes propriedades para a função δ:
 
 (3.2)
 
Como a função δ se anula para , para qualquer função , pode-se escrever,
 
 (3.3)
Definida a função densidade associada a carga discreta, podemos utilizar a equação de Poisson, e escrever,
 
 
que resulta na seguinte relação,
 
 (3.4)
 
 Em resumo, a função δ, usada para representar a função densidade associada a uma carga discreta, satisfaz a Eq.
(3.4), e exibe as propriedades representadas pelas Eqs.(3.2) e (3.3). Obtidas essas propriedades a determinação da
função potencial para a geometria da Fig.3.1 pode ser feita de forma simples e direta. Para isso considere-se a
identidade de Green derivada no Capítulo 1, dada pela Eq.(1.52), reproduzida a seguir,
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 4/62
 
Nessa expressão, é importante observar que as variáveis de integração são aquelas que definem o vetor , que no
primeiro membro localiza o elemento diferencial de volume e no segundo, o elemento diferencial de área sobre a
superfície Σ. Utilizando-se as funções
 
 
na identidade de Green, tem-se
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Das Eqs.(2.32) e (3.4),
 
 
 
resultando em
 
 
Utilizando-se a Eq.(3.3) no primeiro membro da equação anterior, e notando-se que o vetor posição é interior ao
volume de integração, tem-se
 
 
Representando-se o vetor área diferencial na forma , com o vetor unitário normal à cada ponto da
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 5/62
superfície Σ e dirigido para fora da região de interesse, obtém-se finalmente,
 
 (3.5)
onde é o comprimento diferencial medido ao longo da direção normal à superfície que limita a região de interesse.
A Eq.(3.5) evidencia o tipo de informação necessária a obtenção da função potencial no volume V. O primeiro
termorepresenta a contribuição das cargas livres existentes no interior do volume V, que é a mesma obtida para uma
distribuição de carga em uma região ilimitada. A integral de superfície contém os elementos adicionais que devem ser
especificados para obtenção da solução, ou seja, o valor e a derivada normal da função potencial na superfície Σ.
Entretanto, para obtenção de uma solução única para a função Φ, a especificação simultânea desses dois parâmetros
não pode ser feita arbitrariamente, como examinado a seguir.
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
3.3 Teorema da Unicidade
 
 Conforme discutido na seção anterior, dada uma distribuição de cargas no interior de uma região limitada por 
uma superfície sobre a qual são dadas especificações para o potencial, é possível obter-se uma solução integral para a
equação de Poisson, que depende da distribuição de carga e das condições impostas na fronteira da região. Como
expresso pela Eq.(3.5) as condições de fronteira correspondem a especificação do potencial e de sua derivada normal
sobre a superfície. No entanto, essas especificações não podem ser feitas arbitrariamente. O Teorema da Unicidade,
demonstrado a seguir, implica que uma solução única para a equação de Poisson só pode ser obtida em uma das
seguintes situações:
 
i) Apenas o potencial é especificado sobre Σ,
ii) Apenas a derivada normal do potencial é especificada sobre Σ,
iii) O potencial e a derivada normal do potencial são ambos especificados, mas em porções complementares da
superfície Σ.
 
 
 As condições i) e ii) correspondem aos problemas de valores de fronteira de Dirichlet e Neumann para a
equação de Poisson, respectivamente. A condição iii) corresponde ao problema de condições mistas na fronteira. A
Fig.3.2 ilustra qualitativamente as geometrias associadas às três situações.
 
 Considere-se a existência de duas soluções, Φ e Φ , satisfazendo a equação de Poisson na mesma região, i.e.,
 
 
e um dos tipos de especificação na superfície Σ:
 
1 2
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 6/62
 
Para demonstração do teorema da unicidade, basta verificar que as duas soluções são idênticas, a menos de uma
constante. Será mostrado que essa constante é não nula apenas no caso b). O valor dessa constante não é de
importância, uma vez que não influencia o valor obtido para o campo eletrostático em cada ponto da região. Para isso,
seja a função , que satisfaz a equação de Laplace,
 
 
e uma das condições de fronteira,
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
 
 
PFV de Dirichlet
 
PVF de Neumann
 
 
PVF misto
 
Fig.3.2 Geometrias associadas aos problemas de valores de fronteira de Dirichlet, de Neumann e misto.
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 7/62
 
Utilizando-se a identidade de Green, dada pela Eq.(1.53), com , vem
 
 
 
Para os casos a) ou b), o integrando no segundo membro da última expressão é nulo, o que fornece
 
 
Como o integrando dessa última expressão é positivo definido, a integral de volume só será nula se a função ψ
satisfizer a condição,
 
 
que tem como solução
 
 
onde K é uma constante. O valor de K pode ser obtido a partir das condições de fronteira na superfície Σ, ou seja:
 
i) Para o problema de Dirichlet, , o que implica K = 0, e a solução é única.
 
ii) Para o problema de Neumann, , satisfaz a condição , e as soluções exibem a
mesma distribuição espacial, diferindo apenas por uma 
constante. O campo eletrostático, no entanto, é o mesmo nos dois casos.
 
iii) Para condições mistas K = 0 o que assegura que as condições de fronteira nas porções complementares da superfície
sejam simultaneamente satisfeitas, e a solução é única. 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 O teorema da unicidade é de extrema importância na solução de problemas em eletrostática, pois garante que 
independentemente do método utilizado para resolver-se a Eq. de Poisson, uma vez obtida uma função potencial
satisfazendo as condições impostas na fronteira, esta terá que corresponder à solução almejada.
 
 A partir do teorema da unicidade, nota-se que a relação integral dada pela Eq. (3.5) não é a forma mais
conveniente de expressar-se a função potencial, uma vez que o potencial e sua derivada normal são ambos
especificados na fronteira da região. Vale observar que a Eq.(3.5) foi obtida utilizando-se a função auxiliar 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 8/62
 na identidade de Green. No entanto, qualquer função do tipo,
 
 
pode satisfazer a equação,
 
 
 (3.6)
 
 
contanto que a função satisfaça a Eq. de Laplace, i.e.,
 
 
Portanto, para obter-se uma expressão integral mais apropriada para a função potencial, pode-se utilizar a
função auxiliar em lugar da função 
 na identidade de Green [Eq.(1.53)], o que, em vista da Eq.(3.6), equivale a realizar a mesma substituição na Eq.(3.5),
ou seja,
 
 (3.7)
 
Para o problema de valores de fronteira de Dirichlet, determina-se uma função auxiliar G=GD, tal que,
 
 
e satisfazendo a condição de fronteira,
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
Com essas duas propriedades impostas à função GD, obtém-se a seguinte expressão integral para a função
potencial:
 
 (3.8)
 
A Eq. (3.8) mostra que uma vez determinada GD, a função potencial pode ser obtida, especificando-se o seu
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 9/62
valor na superfície Σ e a densidade de carga ρ.
 
 Para o problema de valores de fronteira de Neumann, a especificação de uma derivada normal nula na superfície
Σ não pode ser feita em vista da Eq.(3.6). Isso torna-se evidente integrando-se a Eq.(3.6) no volume limitado pela
superfície Σ, o que fornece,
 
 
Aplicando-se o teorema de Gauss nessa última relação, tem-se,
 
o que resulta em
 
 (3.9)
 
e portanto um valor nulo para a derivada normal da função G não pode ser imposto na fronteira Σ. A condição mais
simples que pode ser imposta nessa superfície é aquela na qual a derivada normal assume o mesmo valor em todos os
pontos da superfície, ou seja,
 
 
A constante K pode ser obtida da Eq.(3.9), que fornece
 
 
onde S é a área da superfície Σ.
 
Em resumo, para o problema de valores de fronteira de Neumann, determina-se inicialmente a função 
 satisfazendo a,
 
 
Utilizando-se essas expressões na Eq.(3.7) tem-se
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 10/62
 
 
Definindo-se o valor médio da função potencial na superfície Σ pela relação,
 
 
obtém-se finalmente,
 
 (3.10)
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 A Eq.(3.10) mostra que para o problemade Neumann, dada a densidade de carga e a derivada normal do
potencial na superfície , a função potencial no interior da região é determinada a menos da constante .
 
 A determinação da função potencial, para o caso de um volume contendo dois meios materiais distintos nas
geometrias das Figs.3.3a e b, consiste da obtenção de soluções válidas em cada sub-região satisfazendo a
condições de fronteira de Dirichlet ou Neumann, nas superfícies e , respectivamente. Como nesse caso, o
potencial não é a priori conhecido na superfície fechada que envolve cada sub-região, as soluções são
expressas em termos de constantes a serem determinadas. Essas constantes são obtidas impondo-se condições de
contorno na interface comum aos dois meios materiais. Essas condições de contorno surgem daquelas para os vetores 
 e , dadas pelas Eqs(2.56) e (2.57). No lugar da Eq.(2.57), por exemplo, pode se utilizar a condição de
continuidade da função potencial na interface comum aos dois meios, i.e.,
 
 (3.11)
 
Se os meios são lineares, a Eq.(2.56) leva a seguinte relação,
 
 (3.12)
 
onde é a variável que mede comprimento ao longo da direção normal à superfície no sentido do vetor mostrado
na Fig.3.3. Ou seja, cada interface comum a dois meios gera um par de condições de contorno na forma das Eqs.(3.11)
e (3.12), e essa este resultado pode ser facilmente generalizado para um número arbitrário de meios materiais distintos
compondo a região de existência dos campos.
 
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 11/62
 
 
 (a) (b)
 
Fig.3.3. Geometrias de regiões com meios materiais distintos. Em (b), a superfície Σ se reduz a um ponto, geralmente
escolhido como a origem de um sistema de eixos.
 
 
 
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
3.4. Problemas em Eletrostática Governados pela Equação de Laplace
 
 Nesta seção consideram-se problemas caracterizados pela ausência de distribuições volumétricas de carga na
região de campo. Essa situação é encontrada por exemplo, na geração de campos eletrostáticos por materiais
condutores carregados. Cargas injetadas no interior de um condutor isolado, repelem-se devido ao campo elétrico
inicialmente causado por essas cargas. Esse campo inicialmente estabelecido causa um movimento de cargas para a
superfície do condutor. Na ausência de uma fonte supridora de cargas, esse movimento não pode manter-se
indefinidamente e o campo elétrico no interior do condutor decai rapidamente até um valor nulo no regime permanente.
Assim, a densidade volumétrica de cargas no condutor tende a zero, restando apenas uma distribuição de cargas na
superfície do material. Nessas condições, todo o volume do material condutor fica submetido a um potencial constante,
e é de interesse a determinação dos campos na região exterior ao condutor.
 
Admitindo-se na região de campos, a Eq.(2.32), reduz-se à Eq. de Laplace, 
 
 (3.13)
 
 Nas seções seguintes, serão investigados alguns métodos de solução dessa equação. Inicialmente será
investigado o conceito de capacitância, um parâmetro de importância no estudo de sistemas elétricos e eletrônicos e
cuja determinação pode ser feita a partir da solução da Eq. de Laplace.
 
3.4.1 O conceito de capacitância
 
 Um par de condutores carregados imersos em um meio de permissividade ε, conforme ilustrado na Fig.3.4,
constitui um capacitor. Conectando-se uma fonte ou bateria entre os condutores, pode-se transferir carga de um
condutor para o outro. É de interesse determinar-se a capacidade de transferência de carga para uma dada diferença de
potencial aplicada entre os condutores e assim inferir-se tipos de configurações com maior ou menor capacidade de
armazenamento de carga. Um parâmetro útil nessa determinação é a capacitância, definida pela relação,
 
1
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 12/62
 (3.14)
 
onde Q é a carga total armazenada no condutor positivamente carregado, e V é a diferença de potencial entre os
condutores positivo e negativo. Capacitância de acordo com a definição dada pela Eq.(3.14) é medida em
Coulombs/Volt, que define a unidade de capacitância, Farad (F), i.e., 1F ≡ 1C/V.
 
Se o meio de imersão dos condutores é linear, a diferença de potencial é diretamente proporcional a carga Q, e
conseqüentemente, a capacitância depende apenas da geometria associada ao par de condutores e da permissividade
elétrica do meio de imersão. É importante observar que a relação entre carga e diferença de potencial, pode ser
convenientemente obtida resolvendo-se a Eq. de Laplace para a função potencial na região exterior aos condutores,
como demonstram os exemplos a seguir.
 
 
Fig.3.4 Par de condutores de forma arbitrária formando um capacitor
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Exemplo 3.1: Capacitor de placas paralelas.: Considere-se o capacitor de placas condutoras paralelas ilustrado na
Fig. 3.5, preenchido por um meio de permissividade ε. A capacitância dessa estrutura pode ser obtida de forma
aproximada, no regime em que as dimensões lineares de cada placa sejam grandes comparadas com a distância de
separação d. Essa aproximação equivale a admitir-se que o vazamento de energia para o exterior do meio dielétrico,
que tende a ocorrer nas bordas da estrutura, mesmo existindo, seja pequeno quando comparado com a energia
armazenada no interior do dielétrico.
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 13/62
 
Fig.3.5 Capacitor de placas paralelas
 
Com base nessa aproximação, admitindo-se uma diferença de potencial V > 0 aplicada entre as placas e o
sistema de coordenadas ilustrado na Fig.3.4, com o condutor inferior servindo como referência de potencial, tem-se as
condições de contorno . Da Eq. de Laplace com o operador expresso na forma
 
 
resulta,
 
 
A aproximação adotada no presente exemplo equivale a considerar-se planos infinitamente extensos para as
superfícies internas de cada placa. Nessa condição o problema apresenta simetria de translação nas direções y e z. 
Portanto a função potencial só depende da variável x, e a Eq. de Laplace reduz-se a
 
Essa equação diferencial tem como solução a função linear
 
 
As constantes A e B são obtidas das condições de contorno que fornecem
 
 
 
e a distribuição de potencial no interior do capacitor é dada por,
 
Essa expressão mostra que as superfícies equipotenciais são os planos x=cte. 
 
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 14/62
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
A partir da função potencial, o campo eletrostático entre as placas é obtido de,
 
 
que é uniforme e dirigido da placa superior para a placa inferior.
 
 A densidade superficial de carga na placa positiva é obtida da componente normal do vetor densidade de fluxo
elétrico, utilizando-sea condição de contorno dada pela Eq.(2.52), com , , o que fornece,
 
 
donde,
 
 
Se cada placa do capacitor tem área S, a carga total da placa positiva é , e a capacitância é dada por,
 
 
 
 Para ter-se uma estimativa de valores típicos de capacitância, considere-se que cada placa seja um quadrado de
2 cm de lado, e que o espaçamento seja de 1 mm, sem preenchimento dielétrico, i.e., . Para
esses parâmetros, . Ou seja, para esse capacitor a aplicação de uma diferença de
potencial de 1 Volt, produz uma transferência de cargas de 3.54 pC entre os condutores.
 
Pode-se aumentar a capacitância de uma estrutura fixa de dois condutores utilizando-se preenchimento
dielétrico. Como mostra a expressão anterior, se o capacitor é preenchido com um dielétrico de permissividade ε, a
capacidade de armazenamento de carga aumenta de um fator ε/ε .
 
 
Exemplo 3.2: Capacitor esférico: Considere-se o problema de determinação da capacitância associada ao par de
cascas esféricas condutoras de raios a e b, com o espaço entre elas preenchido por um material de permissividade ε,
conforme ilustrado na Fig.3.6. Utilizando-se o sistema de coordenadas esféricas, e uma diferença de potencial V entre
superfícies, com a superfície de raio a servindo como referência de potencial, tem-se as seguintes condições de
fronteira,
 
 
 
 
Utilizando-se a Eq.(1.36), a equação de Laplace adquire a forma
 
0
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 15/62
 
Como o potencial é constante em cada superfície condutora, o problema apresenta simetria de rotação nas
variáveis angulares θ e ϕ , e o potencial só depende da variável R,. Assim, a equação de Laplace reduz-se a forma
 
 
Fig.3.6. Geometria e sistema de coordenadas para o capacitor esférico.
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
A função potencial é obtida por integração da equação diferencial. Dado que
 
,
 
obtém-se
 
donde
Aplicando-se as condições de fronteira,
 
 ,
 
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 16/62
 ,
 
e resolvendo-se o par de equações lineares, obtém-se,
 
 
Obtidos os parâmetros A e B, a função potencial na região pode ser expressa na forma
 
 
A carga total na superfície de raio b, requer o conhecimento da densidade superficial de carga, que por sua vez é
obtida da componente normal do vetor em R=b. Este é obtido de,
 
 
Em R=b,
 
 
Da Eq.(2.56), com e , resulta em,
 
 
Como a densidade superficial de carga é constante sobre a superfície R=b, a carga total nessa superfície é dada
por
 
donde
 
 
É interessante notar que no limite em que a ≈ b, e , com , obtém-se,
 
 
que corresponde ao valor aproximado da capacitância de um sistema de placas paralelas, com cada placa tendo área S.
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 17/62
 
3.4.2 Energia armazenada no capacitor
 
 O capacitor armazena energia elétrica, e esta pode ser diretamente expressa em termos da capacitância da
estrutura. Para isso considere-se a geometria da Fig.3.3, e a Eq.(2.27), que expressa a energia no ponto de vista das
fontes do campo,
 
 
Como só existe carga nas superfícies condutoras, a integração de volume reduz-se a integrações de superfície sobre os
condutores, ou seja,
 
 
 
onde e representam as superfícies condutoras positiva e negativa, respectivamente. Como sobre cada
superfície o potencial é constante, i.e.,
 
 
 
tem-se
 
 
Sendo Q e -Q as cargas em cada condutor, essa última expressão adquire a forma
 
 
Dado que , obtém-se
 
 
Alternativamente essa equação pode ser expressa em termos da capacitância do par de condutores, nas formas,
 
 (3.15)
 
 (3.16)
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 18/62
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
3.4.3 Solução da Equação de Laplace pelo método da separação de variáveis
 
 O método da separação de variáveis é utilizado na solução de uma determinada classe de problemas, nos quais
as superfícies que delimitam a região de existência de campos coincidem com as superfícies coordenadas. A técnica
consiste em pesquisar soluções para a função potencial da forma
 
 
,
 
onde u, v e w são as variáveis associadas ao sistema de coordenadas. Para uma determinada geometria, se for possível
obter uma solução nessa forma separável, então o teorema da unicidade garante que esta será a solução procurada.
 
Separação de Variáveis dm Coordenadas Cartesianas
 
Para o sistema de coordenadas cartesianas a solução separável da Eq. de Laplace assume a forma,
 
 
 
 
Inserindo-se essa expressão na Eq. (3.13) vem,
 
 
 
donde
 
 
Multiplicando-se a última relação pelo fator vem,
 
 
,
 
ou equivalentemente
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 19/62
 
 Como o primeiro membro da última relação depende apenas da variável x, e o segundo, das variáveis y e z , a
igualdade só ocorrerá se ambos os membros forem iguais a uma constante. Pode-se escrever portanto,
 
 (3.17)
 
 (3.18)
 
onde α é a constante de separação. Os sinais atribuídos aos segundos membros das Eqs.(3.17) e (3.18) são arbitrários
em princípio, com a especificação precisa desses sinais e do valor da constante de separação dependendo do tipo de
condições de fronteira impostas na superfície delimitando a região de interesse. Da Eq.(3.18), pode-se ainda escrever,
 
 
 (3.19)
 
 
Com essa escolha das constantes de separação α e β, obtêm-se as seguintes equações diferenciais:
 
 , (3.20)
 , (3.21)
 
, (3.22)
 
com . Para α e β reais, as Eq.(3.20) e (3.21) geram como soluções, funções senoidais (ou
combinações de exponenciais complexas), e a Eq.(3.22), funções hiperbólicas (ou combinações de exponenciais reais).
As soluções gerais são das formas,
 
 (3.23a)
ou
, (3.23b)
 
 (3.23c)
ou
, (3.23d)
 
 (3.23e)
ou
 (3.23f)
 
 Note-se que existem apenas duas possibilidades de combinação de soluções, que dependem do sinal escolhido
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm20/62
no processo de separação das equações, a saber:
 
· Duas funções senoidais e uma função hiperbólica
· Duas funções hiperbólicas e uma senoidal
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 O tipo de combinação de funções depende da especificação do potencial na fronteira da região de interesse,
como será examinado em mais detalhe nos exemplos a seguir. Antes de analizar-se o problema tri-dimensional, é
conveniente considerar-se a situação mais simples de problemas em que o potencial dependa apenas de duas variáveis.
Esse é o caso, por exemplo, de uma estrutura de seção reta uniforme ao longo de uma dada direção, definida na
presente análise, como sendo a direção z. Para essa situação, a função potencial assume a forma,
 
 
 
que após inserida na Eq. de Laplace e separação dos termos, gera as seguintes equações diferenciais:
 
 
ou
 
 
Portanto em duas dimensões pode-se expressar as soluções nas formas,
 
 
ou
 
Exemplo 3.3: Cuba com variação senoidal do potencial em um segmento da fronteira
 
 Considere-se o problema de determinação da função potencial no interior da região ilustrada na Fig.3.6, onde
assume-se que a estrutura seja inifinitamente longa da direção z. Note-se que as superfícies compondo o limite da
região de interesse coincidem com os planos coordenados, x = constante e y = constante , e portanto, a forma
separável para o potencial deve ser apropriada para o problema. Escolhendo-se inicialmente a solução
 
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 21/62
 
Fig.3.6 Cuba com potenciais especificados na superfície.
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
Com as condições de fronteira mostradas na Fig.3.6 obtém-se as seguintes relações:
 
,
 
 
o que fornece A2=0,
 
 
,
 
Dessa última expressão, se a condição A1=0 for escolhida, a função potencial irá anular-se em toda região de interesse,
não podendo satisfazer a condição imposta na fronteira y = b. Para evitar essa situação deve-se impor B2=0 e A1≠ 0.
 
Aplicando-se a condição de fronteira em x = a,
 
 
 
 
o que fornece A1B1=0. Portanto, para satisfazer as três condições de fronteira com essa combinação de funções, gera-se
como resultado a função trivial Φ =0 que não satisfaz a condição de fronteira em y = b. Assim, essa escolha de funções
não é apropriada para o problema em questão.
 
 Utilizando-se a segunda opção para a função Φ,
 
 
 
 
as condições de fronteira em x= 0 e y = 0, reduzem essa função à forma,
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 22/62
 
 
,
 
 
com A=A1B1. Em x=a,
 
 
.
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
Para obter-se A ≠ 0 , deve-se impor a condição,
 
 
 
o que fornece,
 
 (n=1,2,3,...)
 
Gera-se assim a família de soluções
 
 
,
 
satisfazendo as condições de fronteira em x=0, y=0 e x=a. Aplicando-se finalmente a condição em y​=b,
 
 
 
obtém-se n=1 e
 
Assim, a função potencial que satisfaz todas as condições de fronteira é dada por,
 
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 23/62
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
 
A Fig.3.7 ilustra a representação gráfica da função potencial associada ao problema da Fig.3.6. Nessa figura a
distribuição de alturas dos pontos da superfície corresponde aos valores do potencial sobre o domínio xy da região
limitada pela fronteira. Note-se que a figura se assemelha a uma "rede" esticada por sobre um arco de forma senoidal,
com as três outras extremidades da "rede", que definem o restante da fronteira da região (0≤ x ≤a , 0 ≤ y ≤ b), fixadas
no plano Φ=0.
 
 
 
 
 
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 24/62
Exemplo 3.4: Cuba com potencial arbitrário em um segmento da fronteira
 
 Considere-se agora, que o potencial na superfície y = b da Fig.3.6, seja dado por uma função arbitrária 
, com as superfícies restantes permanecendo aterradas. Para essa situação, um único membro da família 
, não pode ser utilizado como solução pois não satisfaz a condição , para f arbitrário. Pode-se no
entanto tentar uma combinação da família de funções da forma,
 
 
 
 A função dada acima, satisfaz as três condições de fronteira em x=0 , y=0 e x=a. Para que a condição
em y=b seja satisfeita, deve-se impor
 
 
ou equivalentemente
 (3.24)
 
com
 
 (3.25)
 
 
 Ou seja, quer-se determinar os coeficientes Cn de forma que f(x) possa ser decomposta em funções senoidais de
periodicidade 2a/n. O problema é semelhante a decomposição de um vetor em uma base de vetores ortogonais 
,ou seja,
 
 
Utilizando-se a propriedade de ortogonalidade, , a projeção Cm é prontamente obtida na forma,
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 25/62
 A família de funções senoidais , forma uma base de funções ortogonais no intervalo 0 ≤ x ≤ a.
 A ortogonalidade dessas funções é obtida com base na relação integral,
 
 (3.26)
 
Assim, no contexto do espaço de funções, definidas no domínio 0 ≤ x ≤ a, pode-se definir simbolicamente o
produto escalar pela relação
 (3.27)
 
Com essa definição simbólica, o produto escalar entre funções de base, obtido da Eq.(3.26) fornece a propriedade de
ortogonalidade,
 
 
 (3.28)
 
 
Assim, em analogia com a decomposição de um vetor em uma base de vetores ortogonais, pode-se também
decompor uma função em uma base de funções ortogonais, uma vez definindo-se essa operação, como aquela
correspondente a Eq.(3.27) no espaço de funções.
 
Considere-se portanto a Eq.(3.24) na forma
 
.
 
Realizando-se o produto escalar, com uma das funções de base um , em ambos os membros da expressão anterior, i.e,
 
tem-se
 
.
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Com base na Eq.(3.27) essa última expressão pode ser escrita na forma
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 26/62
donde
 
 (3.29)
 
 A partir desse método formal de cálculo do coeficiente Cm e das Eqs(3.27) e (3.28) obtém-se
 
 (3.30)
 
 A decomposição dada pela Eq.(3.24) é uma forma particular da expansão em série de Fourier de umafunção. A
convergência da série é geralmente assegurada para funções de quadrado integrável, onde recaem a maioria das funções
fisicamente realizáveis, e a aproximação em série será tanto melhor quanto maior for o número de termos no segundo
membro da Eq.(3.24).
 
 Considere-se por exemplo que a superfície y=b seja condutora, mantida a um potencial V, i.e., f(x)=V. Nesse
caso, a Eq.(3.30) fornece
 
donde:
 
e a expressão para a função potencial reduz-se a
 
 (3.31)
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 27/62
 A Fig.3.8 ilustra a dependência com o número de termos da aproximação em série de Fourier para V=10 V, nos casos
em que a série é truncada em 4 e 40 termos. Como pode ser aí observado, o aumento do número de termos melhora o
grau de aproximação.
 
Fig.3.8 Dependência com o número de termos da aproximação em série de Fourier para o potencial na superfície y=b,
para o caso V = 10 V.
A Fig.3.9 ilustra a distribuição de potencial sobre o domínio xy que define a região de interesse, para o caso em que a
série é truncada em 40 termos.
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 28/62
Fig.3.9 Distribuição de potencial obtida com a inclusão de 40 termos na expansão em série de Fourier.(checar número
de termos – parece 8 termos apenas)
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
 Para resolver problemas de valores de fronteira em que as quatro superfícies são mantidas em potenciais
arbitrários, utiliza-se o princípio da superposição de acordo com o diagrama ilustrado na Fig.3.10. Nessas condições, a
solução para o potencial corresponderá à soma de soluções de problemas com três superfícies aterradas, ou seja,
 
 
 É fácil verificar que a função Φ é a solução do problema de valores de fronteira da Fig.3.10, pois satisfaz as
condições
 
 
 
 
 
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 29/62
 
Fig.3.10 Esquema para solução da equação de Laplace em coordenadas cartesianas, em duas dimensões, para condições
de contorno arbitrárias.
 
Exemplo 3.5: Função potencial no interior do paralelepípedo
 
Considere-se o paralelepípedo ilustrado na Fig.3.11 tendo uma face mantida a um potencial arbitrário definido
pela condição,
 
 
com as faces restantes aterradas. Um exame das Eqs.(3.23) indica que as componentes da solução produto devem ser
periódicas nas variáveis , com a terceira função h(z) assumindo a forma hiperbólica. Seguindo-se a mesma linha
de argumentação descrita no Exemplo 3.3, a função que satisfaz a condição Φ = 0 nas faces localizadas sobre os planos
 deve ser da forma,
 
 
com
 
 
 
z= 0, x = 0, x = a, y = 0 e y = b
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 30/62
 
Fig.3.11 Geometria utilizada para a determinação da função potencial no interior do paralelepípedo com potenciais
especificados na superfície.
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Para satisfazer a condição de fronteira na face localizada em z = c utiliza-se a expansão,
 
 
 .
 
 
Impondo-se a última condição de fronteira, resulta em
 
 
com
 
Novamente o problema reduz-se a decomposição de uma função ( de duas variáveis ) na base de funções,
 
.
 
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 31/62
As relações de ortogonalidade das funções de base no caso presente podem ser obtidas com base nas relações
unidimensionais representadas pela Eq.(3.18), resultando em,
 
,
 
onde os parâmetros δ são definidos pela Eq.(3.21). Semelhantemente ao que foi desenvolvido no Exemplo 3.4, os
coeficientes C são obtidos da operação produto escalar,
 
 
e o coeficiente A é obtido a partir da relação,
 
.
 
 
 
Separação de Variáveis em Coordenadas Cilíndricas
 
 Com base na Eq.(1.35), a equação de Laplace em coordenadas cilíndricas assume a forma
 
 
 
 
 
Soluções dessa equação para problemas de interesse prático são discutidas a seguir.
 
Caso 1: Potencial independente de ϕ e z
 
 Quando o potencial é independente das coordenadas e z, a equação de Laplace reduz-se a
 
 
 
 
que pode ser resolvida por integrações sucessivas, ou seja,
 
 
o que fornece
 
 
 (3.32)
 
nm
nm
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 32/62
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Exemplo 3.6: Capacitância por unidade de comprimento do cabo coaxial
 Um exemplo típico associado ao Caso 1, é a determinação da capacitância por unidade de comprimento do
cabo coaxial ilustrado na Fig.3.12. Assume-se que o cabo é longo o suficiente na direção longitudinal, de forma a
permitir a hipótese de comprimento infinito para a estrutura. Nessas condições, o problema apresenta, além da simetria
de rotação na variável ϕ, simetria de translação ao longo da direção z, e conseqüentemente, a expressão geral para a 
função potencial é aquela dada pela Eq.(3.32).
 
Fig.3.9. Trecho de um cabo coaxial infinitamente longo.
Admitindo-se uma diferença de potencial V > 0 entre os condutores cilíndricos, com o condutor interno
aterrado, as condições de contorno em r = a e r = b fornecem:
 
 
 
 
e a função potencial na região entre condutores é dada por,
 
 
O campo elétrico na região a ≤ r ≤ b é obtido de
 
a partir do qual a densidade superficial de carga em r=b é obtida, i.e.,
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 33/62
 
A carga total em um comprimento l dessa superfície é simplesmente,
 
 
 
o que permite obter a capacitância por unidade de comprimento da estrutura,
 
 
 
 
 
Caso 2: Potencial independente de z
 
 
Se o potencial depende de r e , seja a solução produto,
 
 
 
que inserida na equação de Laplace, fornece,
 
,
 
ou equivalentemente,
 
 .
 
 Multiplicando-se ambos os membros da expressão anterior pelo fator , obtém-se
 
,
 
 
onde α é a constante de separação, escolhida real no presente exemplo. Se α = 0, as equações diferenciais para f e g se
reduzem as respectivas formas,
 
,
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 34/62
gerando como soluções,
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Vale salientar que a solução linear obtida paraa função g(ϕ) ( C ≠ 0 ), só será permitida se a geometria do
problema não envolver o intervalo completo 0 ≤ ϕ ≤ 2π. Para problemas cuja geometria envolve todo esse intervalo, a
unicidade da função potencial em cada ponto do espaço requer que a condição C=0 seja satisfeita.
 
Se α ≠ 0, obtêm-se as relações
 
 , (3.33)
 
 . (3.34)
 
 
A solução geral da Eq.(3.34) é da forma
 
 
 . (3.35)
 
 
A solução da Eq.(3.33) pode ser obtida com base no método de Frobenius, largamente utilizado na solução de
equações diferenciais, e que utiliza uma série de potências da variável independente como representação da solução.
Para o caso particular da Eq.(3.33) apenas um termo da série é suficiente, como verificado a seguir. Assumindo-se
portanto f da forma, f(r)=r , com k representando um parâmetro a ser determinado, a Eq.(3.33) fornece
 
 
 
 
donde,
 
 
 Uma vez que a variável r pode assumir qualquer valor não nulo para problemas de geometria arbitrária, essa
última relação só poderá ser satisfeita na condição
 
,
 
 
ou seja, para k = ± α. Obtêm-se portanto duas soluções independentes para a equação diferencial. A solução geral para
a função f pode assim ser expressa como combinação linear dessas soluções, na forma
 
 
 (3.36)
 
 
k
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 35/62
 Em resumo, se a geometria do problema de valores de fronteira for tal que 0 ≤ ϕ < β , com β < 2π, então a
função potencial pode ser obtida a partir da combinação de produtos das formas,
 
 (3.37)
 
 
 . (3.38)
 
 Em geral o parâmetro α pode assumir uma infinidade de valores discretos, determinados a partir da
especificidade do problema de valores de fronteira em questão. Dessa forma, uma solução geral para o potencial pode
ser escrita como
 
, (3.39)
onde admite-se α ≠ 0 no somatório da Eq.(3.39).
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
 
Exemplo 3.7: Seja a determinação da função potencial para o conjunto de superfícies submetidas aos potenciais
especificados na Fig.3.10. Como a faixa de variação da variável azimutal está compreendida no intervalo 0 ≤ ϕ ≤ β <
2π, o tipo de solução produto utilizado é aquele representado pela Eq.(3.39).
 
 
Como o potencial deve ser finito na região r ≤ a, as funções e devem ser excluídas pois divergem na
origem, resultando em . A função assume portanto a forma,
 
 
 
 
Aplicando-se a condição de fronteira no trecho da superfície ϕ=0, resulta
 
 
e para essa equação se verificar , deve-se impor
 
 
o que fornece
 
 
 
Aplicando-se a condição de fronteira no trecho da superfície ϕ=β, resulta
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 36/62
 
 
e para que a última igualdade se verifique , é necessário que
 
 
e
 
.
 
A última condição fornece valor não nulo para a amplitude se o parâmetro α for da forma
 
 
Foi obtida portanto a solução geral
 
 
 
 
Fig.3.10 Geometria de definição do problema de valores de fronteira do Exemplo 3.7.
 
com
 
 
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 37/62
A condição de fronteira em r = a implica em
 
,
 
com
 
 
As funções de base,
 
 
são ortogonais no intervalo, , e satisfazem a relação de ortogonalidade
 
 
e conseqüentemente os coeficientes da expansão são obtidos da relação,
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
 
 Considerando-se o caso em que a faixa de variação da coordenada azimutal seja definida pela condição 0 ≤ ϕ ≤
2π , duas questões devem ser consideradas,
 
O termo linear em ϕ na Eq. (3.39) deve ser nulo pois o potencial é único em cada ponto do plano xy,
Pela mesma razão, as funções senoidais na Eq.(3.39) devem se reproduzir para uma rotação azimutal de 2π. 
Portanto a constante de separação deve α ser um número inteiro.
 
Nessas condições, a solução geral da Eq. de Laplace, com Φ independente de z, assume a forma
 
 . (3.40)
 
Os seguintes detalhes devem ser observados quanto ao uso das Eqs. (3.39) e Eq.(3.40):
 
 Se a região de interesse inclui o ponto r=0, as funções devem ser excluídas da expressão para a
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 38/62
função potencial.
 
 Se a região de interesse incluir r → ∞ e na ausência de campos distantes, as funções também devem
ser excluídas da expressão para a função potencial.
 
 
Exemplo 3.8: Considere-se o problema de valores de fronteira ilustrado na Fig.3.11, onde tem-se uma estrutura
infinitamente longa de secção reta constante. Note-se que para essa situação, a solução desenvolvida no Exemplo 3.7
não pode ser utilizada, uma vez que a condição de potencial nulo nas superfícies r = a e r = b só pode ser satisfeita se 
, o que corresponde a solução trivial para a função potencial. Para determinar-se uma solução
para o presente problema, considere-se a modificação α2 → - α2 nas Eqs.(3.33) e (3.34). Com essa substituição, a
solução da Eq.(3.34) pode ser expressa na forma
 
 . (3.41)
 
A solução da Eq.(3.33) pode ser obtida diretamente da Eq.(3.36) a partir da substituição α → jα, o que fornece
 
 (3.42)
 
 A Eq.(3.42) é uma forma possível da parte radial associada à função potencial, mas não é muito conveniente,
uma vez que envolve a manipulação de números complexos e a função potencial é uma função real. Para determinar-se
uma forma real alternativa para f , seja a definição
 
 
ou equivalentemente
 
 
o que fornece
 
,
 
com
.
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 39/62
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Com essa definição duas combinações envolvendo as funções r±jα podem ser obtidas, ou seja,
 
, (3.43)
. (3.44)
 
 
Assim, as funções e formam um par de funções reais e independentes que permitem
expressar a função radial na forma
 
 (3.45)
 
 Uma forma equivalente à Eq.(3.45) pode ser escrita como
 
 (3.46)
 
que satisfaz a condição f(r​0)=0.
 
Com essa escolha para a constante α, uma solução possível para a Eq. de Laplace é uma combinação de
produtos de funções dadaspelas Eqs.(3.41) e (3.46), ou seja,
 
 
 (3.47)
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 40/62
Aplicando-se a condição de fronteira no trecho da superfície ϕ=0, resulta
 
 
e para essa equação se verificar , deve-se impor
 
 
o que fornece
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Aplicando-se a condição de fronteira no trecho da superfície r =a, resulta
 
 
 
e para que a última igualdade se verifique é necessário que
 
 
e a função potencial assume a forma
 
 
 
 
Aplicando-se a condição de fronteira no trecho da superfície r =b, resulta
 
 
e para que a última igualdade se verifique é necessário que
 
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 41/62
e para evitar a obtenção da solução trivial, deve-se escolher
 
 
 
 
Foi obtida portanto a solução geral
 
. (3.48)
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Aplicando-se a condição de fronteira na superfície ϕ = β resulta
 
, (3.48a)
 
com
 
 
 (3.48b)
 
 As funções
 
 
. (3.49)
 
têm propriedades semelhantes àquelas das funções un(ϕ) do Exemplo 3.7. A Fig.3.12 mostra gráficos de w​n​ para n
=1, 2, 3. Note-se que todas essas funções têm nós em r =a, b. Essas funções também obedecem a relações de
ortogonalidade no intervalo a ≤ r ≤ b. Para isso define-se o produto escalar nesse intervalo de acordo com a relação
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 42/62
Fig.3.12 Representação gráfica da função wn para n = 1, 2, 3.
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
. (3.50)
 
Com essa definição do produto escalar, tem-se
 
Fazendo-se a mudança de variáveis
 
 
tem=se
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 43/62
 
ou equivalentemente
 
 (3.51)
 
 Realizando-se o produto escalar da Eq.(3.48a) com a função wm e com base na relação de ortogonalidade dada
pela Eq.(3.51), tem-se
 
,
ou equivalentemente
 
.
 
Inserindo-se essa última relação na Eq.(3.48b) obtém-se
 
 (3.52)
 
 
 
 
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
 
3.5 Solução da Equação de Poisson - Método das Imagens
 
3.5.1 O Método das Imagens
 
 Nas secções anteriores foram discutidas técnicas de solução de problemas de valores de fronteira governados
pela equação de Laplace, ou seja, problemas caracterizados pela ausência de cargas discretas ou distribuições contínuas
de carga na região de interesse. Quando cargas estão presentes na região de interesse, e considerando-se que o meio de
imersão das cargas seja linear, homogêneo e isotrópico, a função potencial satisfaz à equação de Poisson, reproduzida a
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 44/62
seguir
 
 (2.32)
 
Uma solução formal dessa equação já foi obtida através do método das funções de Green, como por exemplo na
Eq.(3.8), aplicável para problemas de valores de fronteira de Dirichlet. O método das imagens é uma técnica simples a
partir da qual pode-se obter conceitualmente uma solução da equação de Poisson. O método pode ser generalizado para
uma distribuição qualquer de cargas, a partir de sua aplicação para o caso de um conjunto de cargas discretas. Na
discussão que se segue a aplicação do método das imagens será restrita à situações em que a fronteira da região de
interesse seja formada por uma superfície ou casca condutora e, quando for o caso, por uma superfície imaginária no
infinito.
 
 Dois problemas envolvendo uma fronteira condutora Σ estão ilustrados na Fig.3.13. No problema interior a
superfície ou casca condutora envolve a região de interesse. Por outro lado, no problema exterior, a região de interesse
é ilimitada, e tem uma fronteira condutora, geralmente, de dimensão finita e que em alguns pode ser infinitamente
extensa. Em ambas as situações o potencial na superfície Σ é dado por Φ0. A região de interesse tem permissividade e
e contém N cargas discretas. A j-ésima carga é qj (j = 0, 1, 2, ..., N) e está localizada no ponto definido por . Sem a
imposição do potencial em Σ e admitindo que a região condutora fosse substituída por uma região de permissividade ε,
a solução para o potencial seria da forma
 
 (3.53)
 O método das imagens consiste em determinar-se os parâmetros Qk e , representando, respectivamente, o
valor e o vetor posição da k-ésima carga imagem pertencente a um conjunto de M cargas discretas, todas localizadas no
exterior da região de interesse, de tal forma que o potencial eletrostático do conjunto de N+M cargas discretas se reduza
ao valor Φ0 na superfície Σ, conforme ilustrado na Fig.3.14. Uma vez determinados os parâmetros Qk e (k = 1, 2, 3,
..., M), a solução para o potencial na região de interesse é da forma
 
,
 
ou equivalentemente, com o emprego da Eq.(3.53),
 (3.54)
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 45/62
 
Fig.3.14 Problema equivalente ao problema interior mostrado na Fig.3.13 em que um conjunto adiciona
l de cargas imagem é utilizado para impor o valor Φ0 para o potencial eletrostático na superfície Σ.
 
 Assim, pelo teorema da unicidade, se a função potencial obtida com a adição das cargas imagem satisfaz a
condição de contorno imposta na superfície Σ, então essa é de fato a solução do problema. Algumas observações
podem ser feitas quanto ao método das imagens:
 
· As cargas imagem estarão sempre localizadas na região exterior à região de interesse. Se isso não ocorresse,
surgiriam singularidades adicionais no laplaciano da função potencial na região de interesse, o que violaria a
especificação original da distribuição de carga nessa região.
· O meio de imersão das cargas imagem tem a mesma permissividade elétrica da região de interesse.
· A solução para a função potencial não é válida no exterior da região de interesse. 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
3.5.2 Distribuição de carga na vizinhança de um plano condutor
 
 Para ilustrar a utilidade do método das imagens, considere-se inicialmente o problema ilustrado na Fig.3.15, de
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm46/62
determinação da função potencial no semi-espaço z ≥ 0, para o caso de uma carga q posicionada a uma distância d de
um plano condutor aterrado. Na ausência da superfície condutora, a solução para a função potencial seria aquela de
uma carga puntiforme. Essa solução, no entanto, não satisfaz a condição de potencial nulo no plano xy indicado na
Fig.3.15. Intuição e experiência na determinação do potencial de cargas discretas permite antecipar que apenas uma
carga imagem -q, posicionada sobre o eixo z no ponto de coordenadas (0,0,-d) seja suficiente para produzir a função
potencial que se anule no plano z = 0. Pode-se generalizar um pouco mais a especificação da magnitude e da
localização da carga imagem, e esse procedimento será útil em outras geometrias, admitindo-se a adição de uma carga
imagem q’ no ponto de coordenadas (0,0,-d´), conforme ilustrado na Fig.3.16. Nessas condições, a função potencial na
região z > 0 é dada por
 
 
 
 
Os parâmetros q’ e d’ são obtidos impondo-se a condição de potencial nulo na superfície z = 0. Da expressão anterior
essa condição fornece
 
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 47/62
 Essa última expressão mostra que a carga q’ tem de ter sinal oposto ao da carga q, ou equivalentemente
 Para determinar a distância d´, eleva-se ao quadrado a expressão anterior e após algumas manipulações obtém-
se
 
 Para que a última expressão seja válida para um valor arbitrário de r ≥ 0, deve-se impor
 
,
,
que é o resultado já antecipado anteriormente. Obtidos esses parâmetros, a função potencial na região z ≥ 0 é dada
por
 
 (3.55)
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
 Uma questão importante no presente problema é a determinação da distribuição de carga induzida no plano
condutor. Essa distribuição pode ser obtida da condição de contorno em z =0, i.e.,
,
e da Eq.(3.55) obtém-se
 
 (3.56)
 
 A Fig.3.17 ilustra a dependência radial da densidade de carga induzina no plano condutor. Note-se que a
densidade máxima prevista pela Eq.(3.56) varia com o inverso do quadrado da distância da carga q ao plano condutor, e
isso é observado na Fig.2.17. A medida que a carga se aproxima do plano, a densidade máxima aumenta e a
distribuição de carga se concentra na região próxima ao eixo z. Se a carga q é afastada do plano, a carga induzida se
distribui em uma região mais extensa do plano condutor. A carga total induzida pode ser calculada diretamente da
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 48/62
definição
 A última expressão foi obtida a partir da mudança de variáveis u = r/d. Como pode ser aí observado a integral
não depende da distância d, e o cálculo da integral leva ao resultado
 O método das imagens permite também calcular, de forma simples, a força de interação entre a carga q e a
superfície condutora. Essa é exatamente a força entre a carga e a carga imagem. Dessa forma, a magnitude da força
de atração entre a carga q e o plano condutor da Fig.3.15 é simplesmente
Fig.3.17 Dependência radial da distribuição de carga induzida no plano condutor do problema da
Fig.3.15.
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 49/62
 Conforme discutido no início desta secção, uma vez obtida uma solução para o caso de uma carga discreta,
pode-se generalizar o resultado para uma distribuição arbitrária de cargas, conforme ilustrado na Fig.3.18a. Para o
problema de uma distribuição próxima ao plano condutor, pode-se subdividir a distribuição em volumes elementares,
cada um com carga , associado a uma carga elementar imagem de mesma magnitude e sinal oposto para
equilibrar o potencial na superfície z = 0. Assim, conforme ilustrado na Fig.3.18b, a distribuição imagem é de fato a
reflexão da distribuição original, com cada elemento da distribuição imagem satisfazendo as condições
 (3.57a)
 (3.57b)
 (3.57c)
 A função potencial na região z ≥ 0 exibe a forma geral
,
onde V é o volume da distribuição de carga e Vimagem é o volume da distribuição de carga imagem. . Utilizando-se as
Eqs.(3.57a) a (3.57c) resulta
 (3.58)
 
 
(a) (b)
Fig.3.18 (a) Geometria do problema de valores de fronteira envolvendo uma distribuição de carga de forma arbitrária
na vizinhança de uma superfície condutora aterrada. (b) Problema equivalente resultante do método das imagens.
 Assim, em essência a solução integral dada pela Eq.(3.58) nada mais é do que a solução da equação de Poisson
para o problema de valores de fronteira de Dirichlet, em que o potencial é especificado em z =0.
 O método das imagens permite também obter imagens de dipolos elétricos ou de materiais polarizados nas
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 50/62
proximidades de uma superfície condutora. Para o caso de um dipolo próximo a um plano condutor aterrado, conforme
ilustrado na Fig.3.19a, pode-se facilmente construir o dipolo imagem decompondo-se o dipolo original como um par
de cargas de mesma magnitude e de sinais opostos. Assim, o dipolo imagem obtido é aquele mostrado na Fig.3.19b. 
Para o caso de um material polarizado próximo a uma superfície condutora, decompõe-se a região polarizada em
dipolos elementares e constrói-se a distribuição imagem com base no conceito ilustrado na Fig.3.19.
(a) (b)
Fig.3.19 (a) Dipolo elétrico próximo a um plano aterrado.(b) Problema equivalente pelo método das imagens.
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
3.5.3 Distribuição de carga na vizinhança de uma casca esférica condutora
 
Esfera Condutora Aterrada
 
Considere-se o problema ilustrado na Fig.3.20(a), de determinação da função potencial no exterior da esfera
aterrada de raio a, para o caso de uma carga q posicionada a uma distância b da origem. Utilizando-se o princípio
discutido na secção anterior, seja a adição de uma carga imagem q’ no interior da região esférica a uma distância c da
origem, conforme ilutrado na Fig.3.20(b). O problema agora consiste em determinar-se a magnitude e localização
dessa carga imagem da condição de potencial nulo em R = a. A função potencial no exterior da região esférica é dada
por
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 51/62
(a) (b)
Fig.3.20 (a) Carga puntiforme na vizinhança de um esfera condutora aterrada. (b) Problema equivalente com a inclusão
de uma carga imagem no interior da esfera.
 A condição de potencial nulo na superfície esférica fornece
 
e como antes, essa última expressão mostra que a carga q’ tem de ter sinal oposto ao da carga q, ou equivalentemente 
. Para determinar-se a distância c, eleva-se ao quadrado a expressão anterior, obtendo-se
 
o que forneceapós algumas manipulações
Utilizando-se , a condição a ser satisfeita é da forma
Para que a última expressão seja válida para um valor arbitrário do ângulo polar θ no intervalo , deve-se
impor
 
 (i)
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 52/62
 (ii)
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
Inserindo-se a equação (ii) na equação (i) tem-se
 
 ⇒ 
o que fornece
 (3.59)
Essa última relação inserida na equação (ii) fornece ( com a restrição de sinal da carga q´)
 (3.60)
 Das Eqs.(3.59) e (3.60) podem-se extrair as seguintes observações
· O raio da esfera é a média geométrica das respectivas distâncias à origem da carga e de sua imagem.
· A carga imagem tem magnitude inferior a da carga q.
· A medida que a carga q se aproxima da superfície esférica o mesmo ocorre com a carga imagem e vice-versa
· Ainda nessa condição a magnitude da carga imagem torna-se próxima àquela da carga q. Nesse contexto a solução
é próxima àquela do plano aterrado infinitamente extenso tratado na secção anterior.
 Com as soluções dadas pelas Eqs.(3.59) e (3.60) a função potencial assume a forma
 
 (3.61)
 
 A densidade superficial de carga na superfície R = a é obtida da condição de contorno para o vetor densidade
de fluxo elétrico nessa superfície, ou equivalentemente,
e com base na Eq.(3.61) obtém-se
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 53/62
 (3.62)
 A Fig.3.21 ilustra a dependência angular da densidade de carga induzida na superfície esférica condutora. Como
pode ser aí observado essa função torna-se mais concentrada e acentuada em torno do eixo z a medida que a razão b/a
diminui. A carga total induzida pode ser obtida por integração de Eq.(3.62) ou de forma bem mais simples, utilizando-
se a lei de Gauss. Pela construção do método das imagens, todas as linhas de campo originadas na carga q que
terminam na superfície condutora, se prolongadas para o interior da esfera, vão terminar na carga imagem q´, conforme
ilustrado na Fig.3.22. Dessa forma, o fluxo elétrico para fora de qualquer superfície fechada que contenha a superfície
esférica é exatamente igual a q´, ou seja,
,
e portanto,
. (3.63)
Fig.3.21Dependência angular da densidade de carga induzida na esfera aterrada.
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 54/62
Fig.3.22 Linhas de campo e superfícies gaussianas envolvendo a carga imagem.
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Esfera Condutora Submetida a um Potencial V
 
 
Considere-se uma ligeira modificação do problema anterior, com a esfera submetida a um potencial V,
conforme ilustrado na Fig.3.22a. O problema pode ser resolvido utilizando-se o princípio da superposição, a partir das
soluções Φ1 e Φ2 ilustradas nas Figs.3.22b e c, respectivamente. A solução Φ1 já foi obtida anteriormente. Na
Fig.3.22b, a solução Φ2 é simplesmente
 
 
 
e a solução do problema da Fig.3.22a é da forma
 
 (3.64)
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 55/62
(a) (b) (c)
Fig.3.22(a) Carga puntiforme na vizinhança de uma esfera condutora submetida a um potencial V. O problema pode
ser decomposto como a superposição dos problemas envolvendo: (a) a carga puntiforme na vizinhança da esfera
aterrada e (b) esfera submetida a potencial V imersa em uma região livre de cargas.
 
Esfera Condutora Isolada e Carregada com carga total Q
 
Considere-se que a esfera de raio a esteja isolada e carregada com carga Q, conforme ilustrado na Fig.3.23. Se a carga
Q for exatamente igual a carga q´, então, com base no resultado obtido para o problema da esfera aterrada, o potencial
da esfera deve ser nulo, e a solução para o potencial no exterior da esfera é aquela dada pela Eq.(.3.61). Se 
 então a esfera não está aterrada, mas submetida a um potencial V. Com base no problema da Fig.3.22 a solução é dada
pela Eq.(.3.64), ou seja,
 
Os dois primeiros termos da expressão anterior fornecem uma carga total na esfera. Isso implica que o terceiro
termo da expressão anterior deve estar associado a uma carga total
distribuída uniformemente na superfície da esfera. A distribuição dessa carga tem que ser uniforme pois só esse tipo de
distribuição fornece o tipo de função potencial dado pelo terceiro termo do segundo membro da Eq.(3.61). Com essas
considerações, a solução para o caso da esfera carregada com carga Q é da forma
 
 (3.65)
 
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 56/62
Fig.3.23 Carga puntiforme na vizinhança de uma esfera condutora carregada com carga Q. O problema pode ser
decomposto como a superposição dos problemas envolvendo a esfera aterrrada de carga q´ e a esfera carregada
uniformemente com carga Q-q´.
 
 É interessante analisar a interação entre a carga q e a esfera carregada. A esfera de carga Q, na vizinhança da
carga q é equivalente a uma carga imagem a uma distância c da origem e uma carga posicionada na origem. 
Conseqüentemente a força da esfera sobre a carga q é dada por
 
 
o que pode ser escrito, após algumas manipulações na forma,
, (3.66)
com
, (3.67a) 
 
, (3.67b)
 
. (3.67c)
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 A Fig.3.24 mostra a dependência da força sobre q com o parâmetro ξ. Note-se que para Q/q ≤ 0 a força é
7/10/2014 Eletromagnetismo 1 - Capitulo 03 - Web Version - Copyright Eduardo Fontana 1994 - 2011
http://www.ufpe.br/fontana/Eletromagnetismo1/EletromagnetismoWebPart01/mag1cap3.htm 57/62
sempre atrativa. Por outro lado para Q/q > 0 a força pode tornar-se atrativa se a carga q aproximar-se da esfera a partir
de uma distância limite. Ou seja, apesar de as cargas serem de mesmo sinal, há a possibilidade de ocorrer atração entre
a carga e a esfera. Isso ocorre devido ao fato de a carga q, ao se posicionar a uma distância inferior a essa distância
limite, induzir uma distribuição de carga de sinal contrário na esfera, acentuada o suficiente para produzir um efeito
líquido de atração elétrica.
Fig.3.24 Dependência com a distância relativa da força de interação entre uma carga
puntiforme e uma esfera condutora.
 
 
 
 
 
 
Copyright Versão Impressa 1994 by Eduardo Fontana
Copyright Versão ebook 2011 by Eduardo Fontana
 
Problemas
 
3.1 Considere o capacitor de placas paralelas parcialmente preenchido com um material de permissividade e,

Outros materiais

Materiais relacionados

Perguntas relacionadas

Materiais recentes

Perguntas Recentes