Buscar

APOSTILA COMPLETA DE RM

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 33 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 33 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 33 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

2 
 
Conteúdo 
 
Definição ............................................................................................................................................................ 5 
Vantagens .......................................................................................................................................................... 5 
Desvantagens .................................................................................................................................................... 5 
Componentes do Sistema de RM ...................................................................................................................... 5 
Magneto ............................................................................................................................................................ 6 
Magneto Resistivo ............................................................................................................................................. 6 
Magneto Permanente ....................................................................................................................................... 7 
Magneto Supercondutor ................................................................................................................................... 7 
Bobinas de Radiofreqüência .............................................................................................................................. 7 
Átomo ................................................................................................................................................................ 8 
Propriedades dos Átomos ................................................................................................................................. 8 
Núcleos Ativos ................................................................................................................................................... 8 
Momento Angular ............................................................................................................................................. 8 
O Hidrogênio...................................................................................................................................................... 9 
Propriedades Magnéticas .................................................................................................................................. 9 
Alinhamento ...................................................................................................................................................... 9 
Ressonância ....................................................................................................................................................... 9 
Contraste na Imagem ...................................................................................................................................... 11 
Mecanismo de Contraste ................................................................................................................................ 11 
T2* e Decaimento Livre da Indução ................................................................................................................ 11 
Tempo de Eco (TE) ........................................................................................................................................... 12 
Relaxamento .................................................................................................................................................... 13 
Recuperação T1 ............................................................................................................................................... 13 
Contraste T1 .................................................................................................................................................... 13 
Ponderação T1 ................................................................................................................................................. 14 
Declínio T2 ....................................................................................................................................................... 14 
3 
 
Contraste T2 .................................................................................................................................................... 14 
Ponderação T2 ................................................................................................................................................. 14 
Contraste por Densidade de Prótons .............................................................................................................. 15 
Ponderação por Densidade de Prótons ........................................................................................................... 15 
Suscetibilidade Magnética ............................................................................................................................... 15 
Formação da Imagem ...................................................................................................................................... 16 
Gradientes ....................................................................................................................................................... 16 
Seleção dos Cortes........................................................................................................................................... 17 
Espessura dos Cortes ....................................................................................................................................... 18 
Espaço K ........................................................................................................................................................... 19 
Parâmetros de Ressonância Magnética .......................................................................................................... 19 
Relação sinal-ruído (RSR) ................................................................................................................................. 20 
Fatores que alteram o RSR .............................................................................................................................. 20 
Densidade de prótons ..................................................................................................................................... 20 
Volume do voxel .............................................................................................................................................. 20 
Diferença entre Pixel e Voxel .......................................................................................................................... 20 
Área do pixel .................................................................................................................................................... 21 
Espessura de corte........................................................................................................................................... 21 
FOV (field of view) ........................................................................................................................................... 21 
Flip Angle ......................................................................................................................................................... 21 
NEX ou NSA (n° de excitação) .......................................................................................................................... 22 
Comparação entre imagens com mais ou menos NEX .................................................................................... 22 
Largura da Banda .............................................................................................................................................22 
Tipo de Bobina ................................................................................................................................................. 23 
Resolução Espacial ........................................................................................................................................... 23 
Comparação entre imagens com alta e baixa Resolução Espacial .................................................................. 24 
Seqüência de pulso .......................................................................................................................................... 24 
4 
 
Pulsos de Radiofreqüência .............................................................................................................................. 24 
Formação de uma Sequência de Pulso ............................................................................................................ 25 
Spin Eco ........................................................................................................................................................... 26 
Vantagens ........................................................................................................................................................ 26 
Desvantagens .................................................................................................................................................. 27 
Parâmetros ...................................................................................................................................................... 27 
Aplicações ........................................................................................................................................................ 27 
Spin Eco-Ponderações ..................................................................................................................................... 28 
Turbo/Fast Spin Eco (FSE-TSE). ........................................................................................................................ 29 
Desvantagens .................................................................................................................................................. 29 
Single short Fast Spin-Eco (SSFSE) ................................................................................................................... 29 
Aplicação ......................................................................................................................................................... 29 
Gradiente Eco .................................................................................................................................................. 30 
Recuperação Inversão (IR) ............................................................................................................................... 30 
Aplicações ........................................................................................................................................................ 31 
Vantagens ........................................................................................................................................................ 31 
Desvantagens .................................................................................................................................................. 31 
STIR .................................................................................................................................................................. 31 
FLAIR ................................................................................................................................................................ 31 
Gradiente Eco .................................................................................................................................................. 32 
Aplicações ........................................................................................................................................................ 32 
Imagem Eco Planar (EPI) .................................................................................................................................. 33 
 
 
 
 
5 
 
Definição 
 
A Ressonância Magnética (RM) refere-se ao uso de campos magnéticos e ondas de rádio 
para obtenção de uma imagem. A imagem gerada representa as diferenças existentes 
entre os vários tecidos do organismo, quantidade de Hidrogênio. A aquisição é feita de 
modo não invasivo, com extraordinária resolução espacial, não empregando radiação 
ionizante. 
 
Vantagens 
Identificação das estruturas com possibilidade de caracterização tecidos; Obtenção de 
imagens em quatro planos – axial, coronal, sagital e oblíquos; Obtenção de imagens de 
vasos sanguíneos, determinando direção e velocidade de fluxo sanguíneo, sem a 
necessidade de contraste; Uso de contraste paramagnético e não iodado, em caso de 
pacientes alérgicos a iodo. 
Desvantagens 
Tempo de realização dos exames relativamente demorado; Necessidade de cooperação 
por parte do paciente, evitando artefatos de movimento; Altos custos operacionais; 
Próteses ou corpos estranhos que podem ser deslocados (dano funcional e anatômico) 
em portadores de Clipes cerebrais ou cirúrgicos, Marcapasso, DIU, Diafragma, Implantes 
auditivos e Próteses. 
Componentes do Sistema de RM 
a) Magneto 
b) Bobinas de Radiofreqüência 
c) Bobinas de Gradiente 
d) Sistema de Suporte Eletrônico 
e) Computador e Monitor 
 
 
6 
 
Magneto 
 
 
 
 
 
 
 
Campo Magnético Estático (força constante = 0,1 a 3 teslas), campo magnético da terra = 
0,00005 tesla 
Magneto Resistivo 
 
 
 
 
 
 
Cargas elétricas em movimento induzem um campo magnético em torno de si mesmo; Se 
uma corrente elétrica passar por um fio, é criado um campo magnético ao redor deste; O 
campo magnético é criado pela passagem de corrente elétrica através de rolos de fio que 
formam uma bobina; Campo pode ser desativado imediatamente; 
 
 
 
 
 
 
 
Necessitam de uma grande quantidade de energia; Seu custo operacional é muito 
elevado; Campos de baixa potência; Tempos de exame mais longos; Forças de campo 
magnético de até 0,3 tesla; Grandes campos marginais (que se desviam do corpo do 
magneto). 
7 
 
Magneto Permanente 
 
 
 
 
 
 
Utilização de materiais, como o ferro, o cobalto e o níquel, que possuem propriedades 
magnéticas permanentes; Material mais utilizado: alnico – liga de alumínio, níquel e 
cobalto. Não necessitam de fonte de energia; Baixo custo operacional; Inabilidade para 
desligar a força do campo magnético; Campos de baixa potência; Tempos de exame mais 
longos; Forças de campo magnético de até 0,3 tesla; Pequenos campos marginais (que 
se desviam do corpo do magneto). 
Magneto Supercondutor 
 
 
 
 
 
 
 
 
Mais comum que os outros; Utiliza materiais que não se opõem a passagem da corrente 
elétrica sob uma dada temperatura muito baixa; Um material largamente utilizado é a liga 
de nióbio e titânio; São utilizados materiais de resfriamento denominados criogênios (hélio 
líquido e nitrogênio líquido); O custo de manutenção deste sistema de resfriamento é da 
mesma ordem ou até maior que os custos elétricos do sistema resistivo; Campo de alta 
potência; Tempos de exame mais curtos; Forças de campo magnético mais altas, de 2 ou 
3 tesla; Grandes campos marginais. 
Bobinas de Radiofreqüência 
Emitem o pulso de radiofreqüência e captam o sinal de radiofreqüência emitido pelo 
organismo; Encontram-se embutidas na armação do magneto; As bobinas de corpo todo 
envolvem o paciente completamente; Melhoram a relação sinal-ruído e, portanto, a 
qualidade da imagem. As bobinas de volume total circunferenciais são externase 
envolvem somente a parte do corpo do paciente que está sendo examinada. Exemplos: 
bobina de cabeça e para membros; As bobinas de superfície, como a bobina para ombro, 
são usadas para a obtenção de imagens de estruturas superficiais. 
8 
 
Na área de interesse a ser registrada, usa-se uma bobina (bobina de superfície / volume) 
que ampliará o sinal a ser recebido, relativo a esta região. Esta bobina estará localizada 
na região de interesse do exame, possuindo diversos tamanhos e modelos diferentes 
(funciona como uma “antena”) 
 
Átomo 
Consiste de três partículas fundamentais 
 
Prótons : carga positiva 
Nêutrons: não têm carga 
Elétrons: carga negativa 
 
Propriedades dos Átomos 
Depende do número de prótons, nêutrons e elétrons presentes 
Caracterização de elementos 
 
 
 
 
 
Núcleos Ativos 
Os princípios da RM têm por base o movimento giratório de núcleos específicos presentes 
em tecidos biológicos. Os núcleos ativos se caracterizam por sua tendência a alinhar seu 
eixo de rotação a um campo magnético aplicado. 
Hidrogênio 1; Carbono 13; Nitrogênio 15; Oxigênio 17; Flúor 23; Fósforo 31 
 
Momento Angular 
É o movimento de rotação de um corpo, diferente de zero, para que ocorra o fenômeno de 
ressonância. 
 
 
 
 
 
9 
 
O Hidrogênio 
É o núcleo ativo na RM. Contém apenas um próton (número atômico e de massa 1). 
Abundante no corpo humano. Apresenta momento magnético grande ( y. 42,57MHz/T). 
 
Propriedades Magnéticas 
O núcleo de hidrogênio contém um próton com carga positiva que efetua uma rotação. O 
núcleo de hidrogênio tem um campo magnético induzido a sua volta e age como um 
magneto. 
 
 
 
 
 
Alinhamento 
Na ausência de um campo magnético, os momentos magnéticos dos H+ têm orientação 
ao acaso. Na presença de um forte campo magnético estático externo, os momentos 
magnéticos dos H+ se alinham a este campo magnético. 
 
 
 
 
 
 
 
Ressonância 
Cada núcleo de H+ que constitui o VME está girando sobre seu eixo. 
 
 
 
 
 
10 
 
A influência de B0 produz uma rotação adicional ou oscilação do VME em torno de B0. 
 
A frequência de precessão é conhecida como frequência ressonante ou de Larmor.
 
 
A frequência é proporcional à potência do campo magnético.
 
 
ωωωω = γγγγ x B0 
ωωωω = Frequência precessional 
γγγγ = Razão giromagnética H+42,57mhz:t 
B0 = Potência do campo magnético estático 
 
A freqüência de precessão e a velocidade com que VME oscila em torno de B0 e 
designada como freqüência de precessão.
 
 
Unidade de medida (MHZ). 
1HZ=equivale a 1 ciclo por Segundo. 
1MHZ=1 milhão de ciclos por segundos. 
A ressonância é um fenômeno que ocorre quando um núcleo é exposto a uma 
perturbação oscilatória que tem uma freqüência próxima de sua própria freqüência natural 
de oscilação. Esse núcleo ganha energia da força externa e entra em ressonância. A 
ressonância não ocorre se a energia é aplicada a uma freqüência diferente da freqüência 
de Larmor do núcleo. O VME se afasta do alinhamento em relação a B0. 
O ângulo, segundo o qual o VME sai do alinhamento, é denominado ângulo de inclinação 
(flip angle). A magnitude deste ângulo depende da amplitude e duração do pulso RF. Os 
momentos magnéticos dos núcleos de H+ no VME transverso se movem em fase uns em 
relação aos outros.
 
 
Fase é a posição de cada momento magnético na trajetória precessional em torno de B0. 
Em conseqüência da ressonância, o VME fica em precessão em fase no plano transverso.
 
 
O VME em precessão no plano transverso induz uma voltagem numa bobina receptora.
 
 
O sinal é produzido quando uma magnetização em fase passa pela bobina.
 
Quando o 
VME entra em precessão à frequência de Larmor no plano transverso, induz uma 
voltagem (sinal) na bobina.
 
Os momentos magnéticos dos núcleos de Hidrogênio no VME 
no Plano transverso se move em fase uns em relação aos outros. 
 
 
 
 
11 
 
Contraste na Imagem 
O contraste nas imagens se baseia na diferença de intensidade do sinal em áreas de 
estrutura ou composição diferentes. Uma imagem tem contraste quando apresenta áreas 
de sinal intenso, áreas de sinal intermediário e áreas de sinal fraco. A frequência de 
Larmor do hidrogênio na água é maior que a do hidrogênio no tecido adiposo.
 
 
• Alto sinal=gordura, água, tecidos moles. 
• Médio=Músculo, tecido fibroso. 
• Baixo sinal=Pulmão, osso cortical. 
O tecido adiposo é composto de hidrogênio ligado à carbono. Consiste grandes moléculas 
denominadas lípides. A água é o hidrogênio ligado ao oxigênio. O oxigênio é mais 
eletronegativo, pucha mais os elétrons do H+ que o carbono. A água ligada ao oxigênio 
rouba os elétrons que estão ao redor do núcleo do hidrogênio tornando mais sensível ao 
efeito de B0. O tecido adiposo o carbono não retira os eletrons em Volta do nucleo de H+, 
permanecendo uma núvem de eletrons protegendo o nucleo dos efeitos de B0. A 
frequencia de larmor da água > que do tecido adiposo.
 
 
 
Mecanismo de Contraste 
 
As imagens por RM obtêm contraste principalmente pelos mecanismos de recuperação 
T1, declínio T2 e densidade de prótons. DP de um tecido=número de prótons por unidade 
do volume de tecido excitado. 
 
T2* e Decaimento Livre da Indução 
Ao retirar-se o pulso RF, o VME passa novamente a sofrer a influência de B0 e tenta 
realinhar-se com este.
 
 
 
O VME perde a energia que lhe foi dada pelo pulso RF (relaxamento).
 
Quando diminui o 
grau de magnetização transversa, o mesmo se dá com a magnitude da voltagem induzida 
no fio receptor. A indução no sinal reduzido é denominada sinal de declínio da indução 
livre (DIL).
 
A razão de declínio é caracterizada pelo termo de declínio exponencial T2*. 
12 
 
Tempo de Eco (TE) 
 
O TE controla o grau de magnetização transversa que pode declinar antes de colher-se 
um eco. Um TE longo possibilita um declínio considerável da magnetização transversa 
antes que o eco seja colhido, o que não ocorre com o TE curto. É o tempo que vai da 
aplicação de um pulso de radiofreqüência ao pico máximo do sinal. Também é medido em 
milisegundos (ms). Determina o grau de declínio da magnetização transversa que pode 
ocorrer antes de ler-se o sinal. Controla o grau de relaxamento T2 . 
Um TE longo diminui RSR, já um TE curto aumenta a RSR. 
 
Tempo de Repetição (TR) 
 
O TR controla o grau de magnetização longitudinal que se permite recuperar antes que se 
aplique o próximo pulso de excitação. Um TR longo permite a recuperação maior da 
magnetização longitudinal, de modo a ser mais disponível para ser lançado na repetição 
seguinte, Um TR curto não permite a recuperação total da magnetização longitudinal. É o 
tempo que vai da aplicação de um pulso de radiofreqüência à aplicação do pulso 
seguinte. É medido em milisegundos (ms). O TR controla o grau de relaxamento T1 que 
pode ocorrer entre o término de um pulso e a aplicação do pulso seguinte. 
 
 
 
 
 
 
 
Um TR longo aumenta a SNR e um TR curto reduz a RSR. 
 
 
 
 
 
 
Um TR longo aumenta a RSR e um TR curto reduz a RSR 
13 
 
Imagens ponderadas em T1 
TR curto: de 350 a 800 ms 
TE curto: de 30 ms ou menos 
Estruturas que aparecem brilhantes ( T1 curto): gordura, líquidos proteinógenos 
Estruturas que aparecem escuras (T1 longo): neoplasia, edema, inflamação 
 
Imagens ponderadas em T2 
TR longo: 2000 ms 
TE longo: 60 a 80 ms 
Estruturas que aparecem brilhantes ( T2 longo):. neoplasia, edema, inflamação 
Estruturas que aparecem escuras (T2 curto): gordura, estruturas que contèm ferro como produtos de degradação do sangue. 
 
Relaxamento 
 
Duranteo relaxamento, o VME libera a energia RF absorvida e retorna a B0. Os 
momentos magnéticos do VME perdem magnetização transversa devido ao efeito da 
defasagem.
 
Tem-se a recuperação da magnetização longitudinal (recuperação T1).
 
Tem-
se o declínio da magnetização transversa (declínio T2).
 
 
 
Recuperação T1 
É causada pelos núcleos liberando sua energia no ambiente.
 
A energia liberada no 
retículo circundante faz com que os núcleos recuperem sua magnetização longitudinal.
 
A 
razão de recuperação é um processo exponencial, com tempo de recuperação constante 
denominado T1.
 
O tempo de repetição (TR) é o tempo (ms) que vai da aplicação de um 
pulso RF à aplicação do pulso RF seguinte.
 
O TR determina o grau de relaxamento T1 
que ocorreu.
 
 
 
 
 
 
 
 
Contraste T1 
 
O lento balanço molecular no tecido adiposo possibilita que o processo de recuperação 
seja relativamente rápido.
 
O tempo T1 do tecido adiposo é CURTO.
 
Na água, a 
mobilidade molecular é elevada, ocasionando uma recuperação T1 menos eficiente.
 
O 
tempo T1 da água é LONGO.
 
 
14 
 
Ponderação T1 
 
Uma imagem ponderada em T1 é aquela em que o contraste, predominantemente, 
depende das diferenças entre os tempos T1 do tecido adiposo e da água. O TR controla o 
grau de recuperação T1.
 
 Para a ponderação T1 o TR tem de ser curto. 
 
Declínio T2 
 
É causado pela troca de energia entre núcleos vizinhos.
 
É denominada relaxamento spin 
spin e acarreta o declínio da magnetização transversa.
 
A razão de declínio é um processo 
exponencial, dessa forma o tempo de relaxamento T2 de um tecido é sua constante 
temporal de declínio.
 
 
Esta aceleração e desaceleração relativas, em conseqüência dos distúrbios na 
homogeneidade de B0 e das diferenças na freqüência de precessão em certos tecidos, 
fazem com que o VME saia de fase imediatamente. Esta saída de fase é responsável pelo 
declínio T2. O tempo de eco (TE) é o tempo (ms) que vai da aplicação do pulso RF até o 
pico máximo de sinal induzido no fio.
 
O TE controla o grau de relaxamento T2 que 
ocorreu.
 
 
 
 
 
 
 
Contraste T2 
 
A troca de energia é mais eficiente no tecido adiposo. O tempo T2 do tecido adiposo é 
CURTO.
 
Na água, a troca de energia é menos eficiente que no tecido adiposo.
 
O tempo 
T2 da água é LONGO.
 
 
 
Ponderação T2 
 
Uma imagem ponderada em T2 é aquela em que o contraste , predominantemente, 
depende das diferenças entre os tempos T2 do tecido adiposo e da água. O TE controla o 
grau de declínio T2.
 
Para a ponderação T2 o TE tem de ser longo. 
Representação das imagens: 
 
15 
 
As imagens T1 se caracterizam por tecido adiposo brilhante e H20 escura. 
As imagens DP se caracterizam por: áreas com elevada densidade de prótons 
(brilhantes), e áreas com baixa densidade de prótons (escura). 
As imagens T2 se caracterizam por H20 brilhante e tecido adiposo escuro ou com baixo 
sinal. 
Contraste por Densidade de Prótons 
 
Este é o contraste básico da RM. É a diferença na intensidade do sinal dos tecidos que 
são decorrentes de seu número relativo de prótons por unidade de volume. O contraste 
por DP está sempre presente e depende do paciente e da área que está sendo 
examinada. 
 
Ponderação por Densidade de Prótons 
 
Para obter-se a ponderação por DP tem-se de diminuir os efeitos dos contrastes T1 e T2. 
Para isso, utiliza-se um TE CURTO e um TR LONGO. 
 
 
 
 
 
Suscetibilidade Magnética 
 
É o grau de magnetização de uma substância. Substâncias Diamagnéticas são aquelas 
que quando colocadas num campo magnético, se magnetizam ligeiramente na direção 
oposta e, ao ser removido do campo magnético externo, sua magnetização retorna a 
zero. 
Substâncias Paramagnéticas são aquelas cujos átomos possuem elétrons não pareados 
que induzem um pequeno campo magnético ao redor de si mesmo (momento magnético). 
Fora do campo magnético, esses momentos magnéticos ocorrem ao acaso, cancelando-
se. Sob a ação de um campo magnético, esses momentos magnéticos se alinham 
positivamente, somando-se. 
Substâncias Ferromagnéticas são também chamadas de magnetos permanentes, pois 
mesmo fora da ação do campo magnético continuam magnetizadas. Quando submetidas 
a um campo magnético se alinham fortemente, sendo atraídas a ele. 
 
16 
 
Z
X
Y
Formação da Imagem 
 
Para ocorrer RM deve-se aplicar um pulso RF a 90o em relação a B0 à frequência de 
precessão do H+ . 
Este pulso de RF dá ao VME uma energia tal que ele é lançado no plano transverso. O 
pulso de RF também coloca em fase os momentos magnéticos individuais que constituem 
o VME. A magnetização transversa coerente daí resultante entra em precessão à 
frequência de Larmor do H+ no plano transverso. 
Induz-se a bobina receptora posicionada no plano transverso uma voltagem ou sinal. Este 
sinal tem uma frequência igual à frequência de Larmor do H+, independente da origem do 
sinal no paciente. O sistema deve ser capaz de localizar espacialmente o sinal em três 
dimensões, de modo a poder posicionar cada sinal no ponto correto da imagem. 
 
O processo de transformação do eco em imagem depende de duas etapas principais: 
• Localização espacial do plano de corte; 
• Localização espacial dos prótons do maior eixo deste plano de corte. 
 
 
 
 
 
Gradientes 
 
São alterações do campo magnético principal e são gerados por bobinas localizadas no 
corpo do magneto, através do qual passou a corrente. A passagem de uma corrente por 
uma bobina gradiente induz um campo gradiente (magnético) em torno dela. 
Há três bobinas gradientes situadas no corpo do magneto: 
 
 
 
 
O gradiente Z altera a potência do campo magnético ao longo do eixo Z do magneto; 
O gradiente Y altera a potência do campo magnético ao longo do eixo Y do magneto; 
O gradiente X altera a potência do campo magnético ao longo do eixo X do magneto. 
 
17 
 
O isocentro magnético é o ponto central do eixo de todos os três gradientes e do corpo do 
magneto. 
Os gradientes podem ser usados para tirar de fase ou recolocar em fase os momentos 
magnéticos dos núcleos. 
Seleção de cortes – localizar um corte no plano de exame selecionado. 
Codificação de freqüência – localização espacial (codificação) de um sinal ao longo do 
eixo longo da anatomia. 
Codificação de fase – localização espacial (codificação) de um sinal ao longo do eixo 
curto da anatomia. 
 
Seleção dos Cortes 
 
Quando uma bobina gradiente é ligada, a potência do campo magnético altera-se de 
maneira linear. Os gradientes podem alterar o campo de forma suave ou acentuada, 
dependendo da corrente elétrica aplicada. O corte é excitado de forma seletiva, pela 
transmissão de RF com uma faixa de freqüências coincidindo com as freqüências de 
Larmor. 
 
O gradiente Z seleciona os cortes AXIAL. 
 
 
 
 
 
 
 
O gradiente Y seleciona os cortes CORONAIS. 
 
 
 
 
 
18 
 
O gradiente X seleciona os cortes SAGITAIS. 
 
 
 
 
 
 
 
 
Espessura dos Cortes 
 
A inclinação do gradiente de seleção de cortes determina a diferença entre dois pontos do 
gradiente. O pulso de RF transmitido para excitar o corte tem de conter uma faixa de 
freqüências compatíveis com a diferença entre dois pontos. A faixa de freqüências dos 
prótons de um corte específico é o fator determinante para a seleção de um gradiente 
suave ou acentuada. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19 
 
A aplicação de todos os gradientes seleciona um corte individual, produzindo um desvio 
de freqüênciaao longo de um eixo do corte e um desvio de fase ao longo de outro eixo. 
 
 
 
 
 
 
 
Espaço K 
Durante a aquisição de dados, enquanto a sequência ainda não terminou, o 
armazenamento é feito de forma organizada numa área chamada espaço K 
O eixo de fase do espaço K é horizontal. 
O eixo de frequência do espaço K é vertical. 
Durante cada TR, uma linha do espaço K é preenchida com dados de codificação de fase 
e de freqüência, até que todas as linhas estejam preenchidas e a sequência tenha sido 
terminada. Como a freqüência é definida como a alteração de fase por unidade de tempo 
e é medida em radianos, a unidade do espaço K é rad / cm. Após a localização espacial 
dos dados e coleta e armazenamento, estes dados estarão prontos para ser 
transformados em imagens. 
O processo de conversão em imagem é matemático e baseia-se na chamada 
Transformada de Fourier, para transformar os dados em imagem. O espaço K não 
corresponde à imagem, ou seja, a linha superior do espaço K não corresponde à linha 
superior da imagem. 
 
Parâmetros de Ressonância Magnética 
 
É o conjunto de fatores que diretamente ou indiretamente interferem nas imagens de 
forma a otimizar a qualidade desta imagem. O objetivo de manipular estes parâmetros é 
obter imagens de excelente qualidade, baseado em quatro características: contraste, 
resolução espacial, relação sinal-ruído (RSR) e ausência de artefatos. 
20 
 
Relação sinal-ruído (RSR) 
 
Esta é uma relação entre amplitude (quantidade) de sinal recebido e a média de 
amplitude de ruído. O sinal depende principalmente da área de estudo, da região 
anatômica, do tamanho do paciente e do tipo de sequência de pulso utilizada. O ruído é 
inerente ao sistema e estará sempre presente, independe dos fatores mencionados 
acima. O importante é adquirir imagens c/ alto sinal e baixo ruído. 
 
Fatores que alteram o RSR 
Densidade de Prótons, Volume do voxel, TR, TE e Flip Angle, NEX ou NSA, Largura da 
banda receptora, Tipo de bobina 
 
Densidade de prótons 
A quantidade de prótons na região em estudo determina a amplitude de sinal, isto é, 
quanto maior a quantidade de prótons de hidrogênio maior a quantidade de sinal. 
Exs.: Pulmões apresentam baixa intensidade de sinal, logo: baixa RSR. 
 Pelve apresenta alta intensidade de sinal, logo: alta RSR. 
 
Volume do voxel 
A RSR é diretamente proporcional ao volume do voxel e qualquer parâmetro que alterar o 
tamanho do voxel vai alterar a RSR. Nós podemos alterar o tamanho do voxel de três 
formas: 1. na área do pixel, 2. na espessura de corte e 3. FOV 
Obs1.: Pixel: Unidade base de uma imagem digital. 
Obs2.: Voxel: Constitui o volume de uma determinada região (em estudo) do paciente e é 
representado pela área do pixel e pela espessura de corte. 
 
Diferença entre Pixel e Voxel 
 
 
 
 
 
 
 
21 
 
Área do pixel 
 
Está diretamente relacionada com a matriz. 
* Matriz alta: Resulta em pequenos pixels e voxels. Ex.: 512x512 
* Matriz baixa: Resulta em grandes pixels e voxels. Ex.: 192x192 
 
 
 
 
 
 
 
Espessura de corte 
É diretamente proporcional ao RSR, isto é, quanto maior a espessura maior a RSR. 
 
 
 
 
 
 
FOV (field of view) 
É o tamanho da área em que o sistema irá realizar a leitura do dados, é o tamanho da 
área em estudo, é meu campo de visão. Interfere no tamanho da área do pixel, ou seja, 
quanto maior o FOV pixel formador de imagem, maior será a RSR. 
 
Flip Angle 
 
O ângulo de inclinação controla o grau de magnetização transversa criado que induz uma 
sinal na bobina. A amplitude máxima de sinal é produzida por ângulos de inclinação de 
90°. Quanto menor for o ângulo de inclinação, menor vai ser a RSR. 
22 
 
Representação gráfica do Flyp Angle e a RSR. 
 
 
 
 
 
 
 
 
NEX ou NSA (n° de excitação) 
 
O NEX representa quantas vezes o sistema faz a leitura dos mesmos dados adquiridos a 
cada codificação de fase. Quanto maior o NEX, mais vezes a mesma codificação de fase 
será lida e armazenada na mesma linha do espaço K, e portanto os dados serão mais 
ricos em informação sobre a área em estudo. Quanto maior o NEX, maior vai ser RSR. 
 
Comparação entre imagens com mais ou menos NEX 
 
 
 
 
 
 
 
 
Largura da Banda 
 
Também chamada de faixa de recepção, é a gama de freqüência que são colhidas pelo 
gradiente de leitura. A redução da largura da banda receptora resulta em menos ruído 
sendo amostrado juntamente com o sinal. Como é colhido menos ruído em relação ao 
sinal a RSR aumenta na proporção em que diminui a largura da banda de recepção. 
Quanto menor a banda maior a RSR. 
23 
 
 
 
 
 
 
 
 
 
 
 
 
Tipo de Bobina 
 
A utilização de bobinas adequadas tem um papel fundamental na otimização da RSR. 
Dependendo da bobina que está sendo utilizada nós podemos influenciar na quantidade 
de sinal recebido e portanto afetar RSR. Se eu utilizar a bobina correta eu terei uma alta 
RSR. 
 
Opções para aumentar RSR. 
I. Aumentar NEX, porém aumenta o tempo; 
II. Aumentar espessura de corte, porém diminui a resolução; 
III. Aumentar o FOV, também diminui a resolução 
IV. Aumentar o TR, porém diminui o contraste T1; 
V. Diminuir a matriz, diminuo o tempo porém diminui a resolução. 
 
Resolução Espacial 
Resolução Espacial tecnicamente é a capacidade de distinguir entre dois pontos como 
separados e distintos, em outras palavras, consiste no detalhamento anatômico de uma 
determinada estrutura em estudo e é controlado pelo tamanho do voxel, isto é, voxel 
pequenos resultam numa boa resolução espacial, já quando usamos voxels grandes 
diminuímos a resolução espacial. 
24 
 
Comparação entre imagens com alta e baixa Resolução Espacial 
 
 
 
 
 
 
 
Opções para aumentar a Resolução Espacial 
I. Aumentar a matriz, porém aumenta o tempo de exame e diminui RSR; 
II. Diminuir o FOV, porém diminui RSR, 
III. Diminuir a espessura de corte, porém diminui a RSR; 
 
Seqüência de pulso 
 
Forma com os pulsos de RF são aplicados e a obtenção dos sinais de RM influencia no 
contraste das imagens. A partir da aplicação de pulsos com ângulos diferentes, obtém 
contraste distinto entre os tecidos. 
TR-TE 
TE - Tempo de Eco é o tempo de aplicação do pulso de radiofreqüência (90 graus), e 
amplitude máxima do sinal de RM em uma seqüência spin-eco. 
TR- Tempo de Repetição é o tempo medido entre dois pulsos radiofreqüência de 90 graus 
em seqüência spin-eco. 
 
Pulsos de Radiofreqüência 
 
O pulso consiste em um sinal de freqüência, duração e amplitude de fixas. 
 Freqüência Freqüência de precessão ω0 = B0 + γ 
 Duração Milesegundos (ms) 10-3 
 Amplitude Kilowatts (Kw) 
 
25 
 
É a energia de RF usada para perturbar os prótons quando se alinham no campo 
magnético externo e é fornecido como uma energia aferente denominada pulso de RF. 
 
As sequências de pulso apresentam dois objetivos básicos: 
 
� A magnetização transversa deve ser criada usando um ou mais 
pulsos de RF, e esta magnetização deve ser codificada (pulso gradiente), 
determinando a posição espacial do tecido e formando a imagem. 
 
� O contraste desejado entre os tecidos deve ser baseado no tempo 
de aplicação e duração dos vários pulsos de RF e pulsos de gradiente. 
 
Formação de uma Sequência de Pulso 
 
Quando a energia do pulso de RF é aumentada, a intensidade do sinal observada no 
VME (plano transverso) atinge um máximo. O VME induz uma voltagem na bobina 
receptora. 
 
 
 
 
 
 
O transmissor de RF é desligado ou inativado quando se deseja detectar o sinal de RM.Dessa forma são colhidas várias centenas de sinais, consistindo em uma série de eventos 
com a seguinte ordem: 
 pulso de RF, leitura, aguardar... 
 pulso de RF, leitura, aguardar... 
Cada série é uma repetição da anterior na ordem e momento dos pulsos de RF 
adequados. 
A combinação específica é denominada sequência de pulso de RF. Seqüência mais 
comum usado em RM; Inicia-se com pulso de RF de 90 graus excitatório, seguido de um 
pulso de 180 graus de repolarização. 
26 
 
 
 
 
 
 
 
 
 
 
 
As sequências de pulso de RM em uso clínico são agrupadas em duas classes básicas: 
sequências em spin-eco e sequências em gradiente-eco. 
Foram desenvolvidas várias técnicas utilizando-se estas sequências básicas, assim 
cobrindo uma ampla faixa de valores de contraste. 
 
Spin Eco 
As sequência de pulso do tipo SE são aplicadas com um pulso inicial de 90° de excitação 
dos prótons presentes no VME. 
Pulso a 90° (pulso pi/2) – É a menor intensidade do pulso de RF que produz uma resposta 
máxima. 
O VME induz uma voltagem na bobina receptora. O VME é transferido par o plano 
transverso ao plano do campo magnético principal e inicia a precessão em fase. 
Ao ser removido o pulso de 90°, é produzido um sina l de declínio de indução livre (DIL). 
A saída de fase T2* ocorre imediatamente e o sinal declina. 
A seguir, aplica-se um ou mais pulsos de 180° que r epolarizam o VME no plano 
transverso criando um ou mais spin-ecos. 
Esse pulso RF é o de 180° que é usado para compensa r esta saída de fase. 
Pulso a 180° (pulso pi) – é o pulso com o dobro daquela intensidade, que não produz 
sinal. 
Vantagens 
 
As seqüência de pulsos spin-eco são o padrão ouro da maior parte das aquisições de 
imagens. 
27 
 
Elas podem ser usadas em quase todos os exames. 
Ponderação T2 efetiva sensível a patologias. 
 
 
 
 
 
 
 
Desvantagens 
Tempos de exame relativamente longos. 
 
Parâmetros 
 
Ponderação T1; Ponderação T2; Ponderação DP 
 
Na sequência SE convencional, tem-se um pulso de excitação de 90° seguido de um 
pulso de restituição de fase de 180° 
Somente uma etapa de codificação de fase é aplicada por TR em cada corte e portanto 
apenas uma linha do espaço K é preenchido por TR. 
Na sequência TSE, o tempo de exame é reduzido efetuando-se mais de etapa de 
codificação de fase e preenchendo-se subsequentemente mais de uma linha do espaço K 
por TR. 
Utiliza-se uma sequência de ecos que consiste em vários pulsos de restituição de fase de 
180°. 
 
Aplicações 
 
O contraste observado nas imagens TSE é semelhante ao SE. 
Há porem duas diferenças quanto ao contraste que se devem aos pulsos de 180° 
repetidos a intervalos curtos da sequência de ecos. 
28 
 
Spin Eco-Ponderações 
� T1- TR até 700ms e TE inferior 15ms; 
� DP- TR 1800-2000 e TE 20-40ms; 
� T2- TR acima de 2200 e TE acima 50ms. 
 
A transferência de energia dos núcleos para o meio é denominada relaxamento tipo spin-
meio ou longitudinal – T1. 
 
 
 
 
 
 
 
 
O tempo T2 por sua vez corresponde ao tempo necessário para que o vetor de 
magnetização transversa caia de 63% de seu valor ou, em outras palavras, adquira um 
valor 37% do original total. 
 
A transferência de energia entre núcleos vizinhos é denominada relaxamento tipo spin-
spin ou transversal – T2. 
 
 
 
 
 
 
 
 
À medida que os magnetos retornam à sua orientação longitudinal (seguindo o B externo) 
é liberada esta energia ao ambiente. O tempo necessário para que 63% da magnetização 
longitudinal se recupere é denominado de T1. 
29 
 
Turbo/Fast Spin Eco (FSE-TSE). 
 
É uma sequência com tempo de aquisição menor em ralação à convencional 
 
 
 
 
 
 
 
O espaço K é preenchido de forma mais rápida 
 
Desvantagens 
 
Alguns efeitos de fluxo e movimento aumentados; 
Incompatível com algumas opções de aquisição de imagens; 
Tecido adiposo claro às imagens ponderadas T2; 
Turvação de imagens pode ocorrer porque os dados são colhidos a TSE diferentes. 
 
Single short Fast Spin-Eco (SSFSE) 
 
Espaço K preenchido em um único episódio; Quantidade de pulsos, equivale número de 
linhas da matriz; Seqüência ponderada em T2, cadeia de ecos demasiadamente longa, 
influencia na ponderação. 
 
Aplicação 
 
� Colangio- RM; 
� Uro-RM; 
� Mielo-RM. 
30 
 
Gradiente Eco 
 
Utiliza-se um pulso inicial de RF (Flyp angle), variável entre 5 à 180 graus; O refasamento 
dos prótons é obtido pela aplicação de um gradiente de polarização invertida de forma 
rápida, inversão de polaridade; 
TR e TE curto 
 
 
 
 
 
 
 
 
 
 
A tremenda flexibilidade de contraste nas imagens por RM são resultados da grande 
variedade das técnicas de seqüência de pulso. 
Ainda que a MRI seja uma modalidade de diagnóstico consolidada, novas sequências de 
pulso continuam sendo desenvolvidas, melhorando as aplicações já existentes ou na 
criação de novas seqüências. 
 
Recuperação Inversão (IR) 
 
Sequência de pulsos que se inicia por um pulso de inversão de 180°. O VME é invertido a 
180° até a saturação plena. Ao ser removido o pulso de inversão, o VME começa a 
relaxar de volta até B0. 
 
31 
 
Um plano de pulso de excitação de 90° é então aplic ado num tempo a partir do pulso de 
inversão de 180°. Este tempo é pré-estabelecido e é chamado de T1. 
 
Aplicações 
A recuperação de inversão é usada na aquisição de imagens ponderadas em T1, 
demonstrando a anatomia. As imagens ponderadas em T2 são utilizadas para o sistema 
muscular 
 
Vantagens 
Relação sinal ruído muito bom porque o TR é longo. Excelente contraste T1. 
 
Desvantagens 
Longos tempos de exame a não ser quando usado em associação à sequência TSE. 
 
STIR 
 
Recuperação de inversão com T1 curto. Sequência de pulsos com IR que usa um T1 que 
corresponde ao tempo que leva o tecido adiposo para se recuperar da inversão integral 
ao plano transverso. 
 
 
 
 
 
FLAIR 
 
Recuperação da inversão com atenuação líquida. O sinal do 
LCR é anulado pela seleção de um T1 correspondendo ao 
tempo de recuperação do LCR de 180° para o plano tr ansverso 
e não há magnetização transversa presente no LCR. 
 
 
 
32 
 
Gradiente Eco 
 
Essa seqüência usa ângulos de inclinação variáveis, de modo que o TR e, portanto, o 
tempo de exame podem ser reduzidos sem produzir a saturação. 
 
 
 
 
 
 
 
 
Quando é usado um ângulo de inclinação de diferente de 90°, somente parte da 
magnetização longitudinal é convertida em magnetização transversa, que entra em 
precessão no plano transverso e induz um sinal na bobina receptora. 
 
O sinal DIL é produzido logo após a retirada do pulso RF, devido a distúrbios na 
homogeneidade do campo magnético, e tem-se, pois a saída de fase T2*. Os momentos 
magnéticos no componente transverso da magnetização saem de fase e retornam então à 
fase por meio de um gradiente. 
 
O gradiente causa uma alteração na potência do campo magnético no magneto. O 
gradiente recoloca em fase os momentos magnéticos, de modo que a bobina possa 
receber um sinal, que contém informações T1 e T2. 
 
Este sinal é denominado Gradiente Eco. 
 
Aplicações 
 
� Podem ser usadas para aquisição de imagens com ponderação T2*, T1 e DP. 
� Possibilitam uma diminuição do tempo de exame. 
� Podem ser usado as na aquisição de certos indivíduos com apnéia do abdome e 
me imagens dinâmicas contrastadas. 
33 
 
Imagem Eco Planar (EPI) 
 
� Espaço K preenchido pelo uso de vários trem de eco (pulso de 180). 
� Tomada única (single shot), preenchimento em único disparo.� Modo de aquisição mais rápido da RM. 
� Aplicação estudo dinâmicos e funcionais em tempo real. 
 
Aplicação 
� Imagem em tempo real. Biopsia e estudo em movimento. 
� Gradiente eco. Coluna e articulações. 
� Imagens funcionais. RM cérebro estimulo e repouso. 
� Difusão. Áreas com restrição da água extra ou intra celular. AVE-H. 
� Time of flight (TOF), estudo arterial e venoso, 2D e 3D TOF.

Outros materiais