Buscar

20090901_Apostila_Processo_Fabricação_I (1)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 145 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 145 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 145 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Centro Universitário do Leste de Minas de Gerais 
UNILESTEMG 
Coronel Fabriciano - MG 
 
 
 
 
 
 
 
 
 
 
PROCESSOS DE FABRICAÇÃO I 
SOLDAGEM E FUNDIÇÃO 
 
 
 
 
 
 
 
 
ENGENHARIAMECÂNICA 
PROF. REGINALDO PINTO BARBOSA 
Janeiro de 2009 
 
Processos de Fabricação: Soldagem e Fundição 2 
SUMÁRIO 
1. PROCESSOS DE FABRICAÇÃO..........................................................................6 
1.1. INTRODUÇÃO ........................................................................................................6 
1.1.1 Características do trabalho a quente................................................................7 
1.1. 2 Características do trabalho a frio: ..................................................................7 
2. INTRODUÇÃO À SOLDAGEM ............................................................................9 
2.1. CONCEITO DE SOLDAGEM .....................................................................................9 
2.2. A IMPORTÂNCIA DA SOLDAGEM .........................................................................10 
2.3. EFEITOS DA SOLDAGEM NOS AÇOS ......................................................................10 
2.4. CLASSIFICAÇÃO DOS PROCESSOS DE SOLDAGEM .................................................11 
2.5. O ENGENHEIRO DE SOLDAGEM............................................................................13 
2.6. SELEÇÃO DOS PROCESSOS DE SOLDAGEM ...........................................................14 
2.7. AS PROPRIEDADES DOS AÇOS E A SOLDAGEM .....................................................14 
2.8. O ARCO ELÉTRICO...............................................................................................15 
2.8.1. Perfil Elétrico ...............................................................................................16 
2.8.2. Efeitos Magnéticos.......................................................................................18 
2.9. PREPARAÇÃO DAS JUNTAS A SOLDAR..................................................................19 
2.10. EXERCÍCIOS PROPOSTOS ....................................................................................22 
3. METALURGIA DA SOLDAGEM .......................................................................23 
3.1. MACROESTRUTURA DE UMA JUNTA SOLDADA ....................................................23 
3.2. FLUXO TÉRMICO NA SOLDAGEM .........................................................................28 
3.3. CICLOS TÉRMICOS DE SOLDAGEM .......................................................................30 
3.4. VELOCIDADE DE RESFRIAMENTO E TEMPERATURAS MÁXIMAS...........................33 
3.5. DIAGRAMA DE IRSID..........................................................................................36 
3.6. TRATAMENTOS TÉRMICOS ...................................................................................38 
3.6. TRATAMENTOS TÉRMICOS ...................................................................................39 
3.7. EXERCÍCIOS PROPOSTOS ......................................................................................42 
4. PROCESSO ELETRODO REVESTIDO.............................................................45 
4.1. FUNDAMENTOS DO PROCESSO .............................................................................45 
4.2. EQUIPAMENTO DE SOLDAGEM .............................................................................46 
4.3. CONSUMÍVEIS ......................................................................................................48 
Processos de Fabricação: Soldagem e Fundição 3 
C) CLASSIFICAÇÃO DOS ELETRODOS ..........................................................................51 
4.4. VARIÁVEIS OPERACIONAIS ..................................................................................53 
4.5. APLICAÇÕES ........................................................................................................55 
4.6. DESCONTINUIDADES INDUZIDAS PELO PROCESSO ...............................................56 
4.7. EXERCÍCIOS PROPOSTOS ......................................................................................58 
4.8. EXERCÍCIOS PRÁTICOS ........................................................................................59 
5. PROCESSO DE SOLDAGEM TIG......................................................................63 
5.1. FUNDAMENTOS DO PROCESSO .............................................................................63 
5.2. EQUIPAMENTO DE SOLDAGEM .............................................................................64 
5.3. CONSUMÍVEIS ......................................................................................................66 
5.4. TÉCNICA DE SOLDAGEM ......................................................................................69 
5.5. VARIÁVEIS DE SOLDAGEM...................................................................................70 
5.6. DESCONTINUIDADES INDUZIDAS PELO PROCESSO ...............................................72 
5.7. EXERCÍCIOS PROPOSTOS ......................................................................................73 
6. PROCESSO MIG / MAG ......................................................................................75 
6.1. FUNDAMENTOS ....................................................................................................75 
6.2. MODOS DE TRANSFERÊNCIA DA GOTA METÁLICA ..............................................78 
6.3. EQUIPAMENTOS DE SOLDAGEM ...........................................................................82 
6.4. CONSUMÍVEIS ......................................................................................................84 
6.4.1. Comportamento da Atmosfera Ativa no Processo MAG.............................85 
6.5. TÉCNICA OPERATÓRIA.........................................................................................86 
6.6. DESCONTINUIDADES INDUZIDAS PELO PROCESSO ...............................................88 
6.7. EXERCÍCIOS PROPOSTOS ......................................................................................91 
7. SOLDAGEM POR RESISTÊNCIA .....................................................................92 
7.1. A RESISTÊNCIA ELÉTRICA NOS PROCESSOS DE SOLDAGEM .................................92 
7.2. SOLDABILIDADE DOS MATERIAIS ........................................................................94 
7.3. PROCESSOS DE SOLDAGEM POR RESISTÊNCIA......................................................95 
7.3.1. Soldagem por Pontos ...................................................................................96 
7.3.2. Soldagem por Costura..................................................................................97 
7.4. EQUIPAMENTOS ...................................................................................................99 
7.5. VARIÁVEIS OPERACIONAIS ................................................................................100 
Processos de Fabricação: Soldagem e Fundição 4 
7.5.1. Corrente de soldagem.................................................................................100 
7.5.2. Tempo de passagem da corrente ................................................................101 
7.5.3. Resistência total do circuito .......................................................................101 
7.5.4. Força aplicada pelos eletrodos ...................................................................103 
7.6. APLICAÇÕES INDUSTRIAIS .................................................................................103 
7.7. EXERCÍCIOS PROPOSTOS ....................................................................................103 
8. FALHAS INTRODUZIDASPELO SERVIÇO.................................................105 
8.1. DEFORMAÇÃO NA SOLDAGEM ...........................................................................105 
8.1.1. Causas da Deformação na Soldagem .........................................................105 
8.1.2. Tipos de Deformação na Soldagem ...........................................................107 
8.1.3. Prevenção e Controle da Deformação na Soldagem..................................109 
8.2. TÉCNICAS ESPECIAIS DE REPARO ......................................................................113 
8.2.1. Correção de Deformações ..........................................................................113 
8.3. EXERCÍCIOS PROPOSTOS ....................................................................................115 
9. CUSTOS EM SOLDAGEM.................................................................................116 
9.1- PREMISSAS BÁSICAS .........................................................................................116 
9.2- CÁLCULO DA MASSA DE METAL DEPOSITADO (MS) ..........................................117 
9.3- CÁLCULO DO TEMPO DE SOLDAGEM OU TEMPO DE ARCO ABERTO (TARC)........118 
9.4- CÁLCULO DE CUSTOS EM SOLDAGEM ...............................................................120 
9.4.1. Custos com Eletrodos (Ce) ........................................................................120 
9.4.2. Custos com Fluxo (Cf) ...............................................................................120 
9.4.3. Custos com Gás de Proteção (Cg)..............................................................121 
9.4.4. Custos com Mão de Obra e Custos Fixos (Cl)...........................................121 
9.4.5. Custos com Energia Elétrica (Cel).............................................................121 
9.4.6. Custos Total (CT) .......................................................................................122 
9.5. TABELAS AUXILIARES .......................................................................................123 
10. FUNDIÇÃO.........................................................................................................125 
10.1- FENÔMENOS QUE OCORREM DURANTE A SOLIDIFICAÇÃO ................................126 
10.1.1 – Cristalização...........................................................................................126 
10.1.2 - Contração de volume ..............................................................................127 
10.1.3 - Concentração de impurezas ....................................................................129 
Processos de Fabricação: Soldagem e Fundição 5 
10.1.4 - Desprendimento de gases .......................................................................129 
10.2 - FUNDIÇÃO PASSO-A-PASSO .............................................................................130 
10.3 - CARACTERÍSTICAS E DEFEITOS DAS PEÇAS FABRICADAS.................................134 
10.4 - TIPOS DE FUNDIÇÃO........................................................................................135 
10.4.1 - Fundição em areia...................................................................................135 
10.4.2 - Fundição de Precisão ( Cera perdida ) ....................................................139 
10.4.3 - Molde Permanente ou Coquilha .............................................................142 
10.4.4 - Fundição sob Pressão..............................................................................144 
11. REFERÊNCIAS BIBLIOGRÁFICAS..............................................................145 
Processos de Fabricação: Soldagem e Fundição 6 
1. PROCESSOS DE FABRICAÇÃO 
1.1. Introdução 
 
Nem sempre a estrutura de um metal obtido por fundição é adequado para 
determinadas aplicações que exigem altas resistências à tração e ductilidade, como é o caso, 
por exemplo, de perfis estruturais, chapas que serão conformadas, fios, cabos, etc. 
Para obtenção de propriedades mais compatíveis com estes tipos de aplicação, os metais 
passam por outros tipos de processamento, que se caracterizam por trabalharem o metal 
através da aplicação de pressão ou choque. 
Este trabalho visa duas coisas: obtenção do metal na forma desejada e melhoria de 
suas propriedades mecânicas, o que é obtido com o rompimento e refino da estrutura 
dendrítica presente nos metais fundidos. 
Embora classificados como primários, estes processos podem dar origem a produtos 
acabados, tais como trilhos, arames, tubos, etc., mas, na maioria dos casos, é necessária a 
utilização de processos secundários para a obtenção da peça pronta. 
Dentre os processos chamados de primários, os mais comuns são: 
∗ Laminação 
∗ Trefilação 
∗ Forjamento 
∗ Extrusão 
∗ Estampagem 
∗ Usinagem 
∗ Soldagem 
Nestes processos, o metal pode ser trabalhado a quente ou a frio: 
 
Definimos como trabalho a quente aquele realizado acima da temperatura de 
recristalização do metal e, trabalho a frio como aquele realizado abaixo desta temperatura, ou 
seja, na maioria dos casos, à temperatura ambiente. 
 
 
 
 
Processos de Fabricação: Soldagem e Fundição 7 
 
 
Conformação a quente e a frio 
 
 
1.1.1 Características do trabalho a quente 
 
∗ Não altera a dureza do metal; grãos deformados durante o processo, logo mudam 
para ovos grãos não deformados. Nesta mudança os grãos podem ser refinados 
através de, o que aumenta a tenacidade do metal. 
∗ O metal aumenta sua resistência à tração em determinada direção, uma vez que as 
impurezas existentes são segregadas em fibras com orientação definida. 
∗ O metal pode ser deformado em formas extremas quando quente, porque a 
deformação contínua dos cristais elimina fissuras e trincas. Conseqüentemente as 
deformações são mais profundas que no trabalho a frio. 
∗ A temperatura de trabalho deve ser acima da de recristalização, mas não muito 
elevada para evitar a formação de granulação grosseira. 
 
As temperaturas altas promovem oxidação e formação de carepa na superfície do 
metal, de forma que tolerâncias rigorosas podem não ser mantidas. 
 
1.1. 2 Características do trabalho a frio: 
 
∗ O trabalho a frio é normalmente precedido do trabalho a quente, remoção de 
carepa, limpeza da superfície e possivelmente decapagem. 
∗ Materiais deformados a frio permitem a obtenção de tolerâncias rigorosas, bom 
acabamento superficial e boas propriedades mecânicas. 
Processos de Fabricação: Soldagem e Fundição 8 
∗ O trabalho a frio deve ser efetuado acima do limite de escoamento do material para 
que a deformação seja permanente, embora a deformação sempre sofra um pequeno 
decréscimo com a retirada da carga, devido ao retorno elástico. Este fenômeno é 
chamado histerese. 
∗ Quando um metal é trabalhado a frio os seus cristais são internamente deformados, 
provocando aumento de dureza e da resistência mecânica, perda de ductilidade e 
tensões residuais que, muitas vezes poderão levar à ruptura da peça. Isso pode ser 
evitado através de um tratamento térmico de recozimento ou normalização. 
∗ O trabalho a frio exige a aplicação de elevadas taxas de deformação de forma que 
os equipamentos para execução de trabalhos a frio são, normalmente, mais robustos 
do aqueles para trabalhos a quente. 
 
No nosso estudo daremos ênfase aos processos de fabricação de fundição e soldagem. 
A fundição é o processo de fabricação de peças metálicas que consiste essencialmente 
em encher com metal líquido a cavidade de um molde com formato e medidas 
correspondentes aos da peça a ser fabricada. A fundição é um dos processos mais antigos e 
também um dos mais versáteis, principalmente quando se considera os diferentes formatos etamanhos das peças que se pode produzir por esse processo. 
Soldagem é um processo de união rígida de duas ou mais partes metálicas, com ou 
sem a adição de material de enchimento, através do fornecimento de energia a região 
adjacente à zona que está sendo unida, de modo a provocar uma interfusão entre as partes. 
Embora conhecida há muito tempo, a soldagem era considerada como um processo de 
fabricação de segunda categoria. Isto se devia ao fato da baixa qualidade dos eletrodos 
usados, do uso inadequado, ao desconhecimento da metalurgia da solda e a falta de ensaios 
não destrutivos eficientes. 
 
 
 
 
 
 
 
Processos de Fabricação: Soldagem e Fundição 9 
2. INTRODUÇÃO À SOLDAGEM 
2.1. Conceito de Soldagem 
 
Classicamente a soldagem é considerada como um processo de união, porém, na 
atualidade, muitos processos de soldagem ou variações destes são usados para deposição de 
material sobre uma superfície, visando à recuperação de peças desgastadas ou para a 
formação de um revestimento com características especiais. 
 Usualmente costuma-se definir soldagem como "processo de união de metais por 
fusão", entretanto deve-se ressaltar que não apenas os metais são soldáveis e que é possível se 
soldar sem fusão. Para efeito de nosso estudo, vamos utilizar duas definições de soldagem 
propostas na literatura: 
- "Operação que visa obter a união de duas ou mais peças, assegurando na 
junta a continuidade das propriedades físicas e químicas". (Dutra & Quites) 
 
- "Processo de união de materiais usados para obter a coalescência localizada 
de metais e não metais, produzida por aquecimento até uma temperatura 
adequada, com ou sem utilização de pressão e/ou material de adição". 
(American Welding Society - AWS) 
 
Durante a soldagem dos diversos materiais, a temperatura do metal adjacente à solda 
atinge valores nos quais transformações microestruturais podem ocorrer. A ocorrência destas 
mudanças e o seu efeito sobre a junta soldada - em termos de resistência à corrosão e 
propriedades mecânicas - depende do teor de elementos de liga, espessura da chapa, metal de 
adição usado, configuração da junta, método de soldagem utilizado e habilidade do soldador. 
Apesar destas transformações microestruturais, o principal objetivo da soldagem é produzir 
uma solda com qualidade igual ou superior àquela do metal de base. 
O processo de soldagem teve seu grande impulso durante a II Guerra Mundial, devido 
à fabricação de navios e aviões soldados. A evolução dos processos de soldagem ocorreu ao 
longo do tempo. Segundo Houldcroft, cada processo de soldagem deve preencher os seguintes 
requisitos: 
* Gerar uma quantidade de energia capaz de unir dois materiais, similares ou não. 
* Remover as contaminações das superfícies a serem unidas. 
Processos de Fabricação: Soldagem e Fundição 10 
* Evitar que o ar atmosférico contamine a região durante a soldagem. 
* Propiciar o controle da transformação de fase, para que a solda alcance as 
propriedades desejadas, sejam elas físicas, químicas ou mecânicas. 
 
2.2. A Importância da Soldagem 
 
A soldagem é um dos mais importantes e versáteis meios de fabricação disponíveis na 
indústria. A soldagem é usada para unir centenas de diferentes ligas comerciais em muitas 
diferentes formas. Aços carbono, ligados e aços inoxidáveis, bem como numerosas ligas não 
ferrosas tais como o alumínio, níquel e cobre, e metais como o titânio, nióbio, molibdênio e 
zircônio são extensivamente soldados. Muitos metais resistentes às altas temperaturas e 
superligados são transformados em componentes úteis pela soldagem. Metais numa larga 
faixa de espessura, desde poucos milímetros até materiais espessos são soldados. Realmente, 
muitos produtos não podem ser fabricados sem a utilização da soldagem, como por exemplo, 
produtos da usina nuclear, vasos de pressão e equipamentos da indústria química, etc.. 
A soldagem é de grande importância econômica devido ser uma das ferramentas 
disponíveis mais importante para o engenheiro em seu esforço para reduzir custos de 
produção e fabricação. A maior liberdade de projeto também é possível pelo uso da soldagem; 
o que é uma grande vantagem deste processo de fabricação. 
 
2.3. Efeitos da Soldagem nos Aços 
 
A grande maioria dos aços usados na soldagem consistem de aço carbono baixo 
carbono (C ≤ 0,30%). A fração restante consiste de aços carbono alto carbono e aços ligados. 
A experiência prática tem mostrado que estas ligas não podem ser soldadas com o 
mesmo grau de dificuldade. Por exemplo, aços carbono com menos de 0,15% de carbono 
podem ser facilmente soldados por quase todos os processos resultando soldas de boa 
qualidade. Aços com conteúdo de carbono entre 0,15 a 0,30% podem ser totalmente soldados 
em espessuras até 12,7 mm. A soldagem de seções mais espessas poderá ou não necessitar de 
cuidados especiais. A soldagem de aços de alta resistência requer consideração especial, de 
forma que o calor de soldagem não prejudique a sua microestrutura temperada e revenida. 
Processos de Fabricação: Soldagem e Fundição 11 
A razão pela qual todos os aços não podem ser soldados sem o uso de materiais 
especiais ou operações suplementares é que os mesmos são mais facilmente alterados pelo 
calor de soldagem do que outros. A aplicação do calor produz uma alteração estrutural, efeitos 
térmicos e mecânicos no metal a ser soldado ou em qualquer outro que venha a ser parte 
integrante da união. È suficiente dizer que os efeitos incluem expansão e contração, mudanças 
metalúrgicas (tais como, crescimento de grão) e alterações composicionais. No componente 
soldado, estes fatos podem aparecer de duas maneiras: 
a) A presença de trincas no metal base e no metal de solda bem como porosidade 
ou inclusões no metal de solda. 
b) Mudanças nas propriedades do metal base tais como resistência, ductilidade, 
tenacidade e resistência à corrosão. 
Estes efeitos da soldagem podem ser minimizados ou eliminados através de mudanças 
nos métodos e práticas envolvidos na soldagem. 
 
2.4. Classificação dos Processos de Soldagem 
 
Uma peça metálica pode ser considerada como sendo formada por um grande número 
de átomos ligados aos seus vizinhos, estabelecendo um arranjo espacial característico. Cada 
átomo está distante do outro numa extensão r0 onde a energia do sistema é mínima, não 
tendendo a ligar-se a qualquer outro. 
 
 
 
 
 
 
 
 
Na superfície, o número de vizinhos é menor implicando em energia maior que o 
átomo do interior. Uma união é possível se houver uma diminuição desta energia, como por 
exemplo, através da aproximação a distâncias bem pequenas (da ordem de r0) de duas peças 
metálicas. É o que acontece quando se coloca em contato dois blocos de gelo. 
Energia 
Distância 
r0 
Processos de Fabricação: Soldagem e Fundição 12 
No caso de duas peças metálicas isto não ocorre, exceto em raras situações, devido a: 
- As superfícies metálicas apresentam grande rugosidade em escala atômica; 
- As superfícies metálicas estão cobertas por camadas de óxidos, umidade, graxa, 
poeira, etc., impedindo a ligação metal/metal. 
Os dois modos de superar estes obstáculos deram origem aos dois grandes grupos de 
processos de soldagem. De acordo com a natureza da união os mesmos podem ser divididos 
em dois grandes grupos a saber: soldagem por fusão e soldagem por pressão. 
A soldagem por pressão consiste na aplicação de pressões elevadas que deformam a 
superfície dos materiais, diminuindo a rugosidade da superfície e, consequentemente, a 
distância média entre as mesmas. São processos de aplicação mais ou menos restritas. Dentre 
estes podemos citar: 
* Resistência Elétricacom junta overlap (sobreposição): por pontos e por costura. 
* Resistência Elétrica com junta de topo: por centelhamento e por resistência pura. 
* Por Indução 
* Por Atrito 
 
Na soldagem por fusão, a energia é aplicada com a intenção de produzir calor capaz de 
fundir o material, produzindo a ligação das superfícies na solidificação. Inclui a maioria dos 
processos mais utilizados atualmente, podendo ser subclassificado em: 
* Soldagem a chama: oxi-acetilênica e ar-acetileno. 
* Soldagem a arco encoberto com fio contínuo ou com fita contínua. 
* Soldagem a arco descoberto com eletrodo autoprotetor: eletrodo revestido (protetor 
externo) ou eletrodo tubular (protetor interno). 
* Soldagem a arco descoberto com eletrodo imerso em atmosfera gasosa: com fio contínuo 
(MIG/MAG) ou com eletrodo permanente (TIG). 
 
Os processos de soldagem também podem ser classificados de acordo com o tipo de 
fonte de energia. As fontes de energia empregadas nos processos de soldagem são mecânica, 
química, elétrica e radiante. 
a) Fonte mecânica – O calor é gerado por atrito ou por ondas de choque, ou por deformação 
plástica do material. 
b) Fonte química – O calor é gerado por reações químicas exotérmicas como, por exemplo, a 
queima de um combustível (chama) ou a reação de oxidação do alumínio. 
Processos de Fabricação: Soldagem e Fundição 13 
c) Fonte elétrica – O calor é gerado ou pela passagem de corrente elétrica ou com a formação 
de um arco elétrico. No primeiro caso, o aquecimento é realizado por efeito joule, 
enquanto no segundo é através do potencial de ionização, corrente e outros parâmetros de 
soldagem. 
d) Fonte radiante – O calor é gerado por radiação eletromagnética (laser) ou por um feixe de 
elétrons acelerados através de um potencial. 
 
2.5. O Engenheiro de Soldagem 
 
O engenheiro de soldagem pode ser considerado em quatros campos da engenharia, a 
saber: 
1. O projeto de máquinas, estruturas e equipamentos; 
2. As propriedades dos materiais disponíveis; 
3. Os processos, procedimentos e equipamentos da indústria de soldagem; 
4. Inspeção para manter a qualidade e sanidade das juntas soldadas até um nível 
definido e apropriado para o serviço. 
Ele é chamado para decidir sobre problemas pertinentes a estes campos. Por exemplo, ele 
deve responder perguntas tais como: 
- O projeto é adequado para o serviço requerido? 
- O material é adequado para o serviço requerido? 
- O processo de soldagem, os procedimentos e o equipamento de soldagem são 
adequados? 
Quando discute estas questões, o engenheiro de soldagem freqüentemente refere-se à 
característica do material denominada "soldabilidade". O que significa soldabilidade? Este termo 
não tem um significado aceitável universalmente e a sua interpretação varia largamente de 
acordo com o ponto de vista de cada um. A AWS define soldabilidade como "a capacidade do 
metal ser soldado sob condições de fabricação impostas para uma estrutura específica e adequada 
e para satisfazer plenamente o serviço requerido". 
Deve ser entendido, primeiramente, que a adequação de uma estrutura soldada para uma 
condição específica de serviço depende dos seguintes fatores: 
a) o projeto da estrutura, incluindo as juntas soldadas, 
b) as características e propriedades do material base, 
Processos de Fabricação: Soldagem e Fundição 14 
c) as propriedades e características das soldas e do material na região adjacente ao 
cordão de solda. 
 
2.6. Seleção dos Processos de Soldagem 
 
As estruturas de aços baixo carbono e não ligados podem ser projetadas com base nas 
propriedades do metal base e na composição do metal de solda. Entretanto, quando aços de alta 
resistência e aços ligados necessitam de serem soldados deve-se levar em consideração a seleção 
dos processos de soldagem e das técnicas de soldagem. Estes parâmetros podem exercer uma 
influência significante na qualidade da solda e nas características da zona afetada pelo calor e por 
conseqüência, na soldabilidade destes aços. 
A indústria da soldagem desenvolveu vários processos que são capazes de produzir 
satisfatoriamente uma junção em um aço. Freqüentemente, a seleção para uma aplicação 
particular baseia-se em numerosos fatores que podem afetar as propriedades mecânicas desejadas 
da junta. Eles incluem a espessura e dimensão das partes; a posição das juntas a soldar; a 
quantidade de componentes a serem fabricados; a possibilidade de mecanização do processo; a 
aparência da junta acabada; e o custo e limitações estabelecidas para o produto. 
 
2.7. As Propriedades dos Aços e a Soldagem 
 
A extensiva substituição das estruturas rebitadas pelas soldadas iniciou-se durante a II 
Guerra Mundial e continua até hoje. Inicialmente esta substituição baseava-se nos ganhos de 
custos e produtividade, entretanto, os projetistas perceberam que as propriedades requeridas na 
construção de certas estruturas somente podiam ser obtidas através da soldagem. Por 
conseguinte, as propriedades do aço e da junta soldada são importantes para o projetista, 
metalurgista de soldagem e o engenheiro de soldagem. 
Neste caso, deve-se conhecer as propriedades da junta que deve ser considerada no 
projeto da estrutura soldada e que influenciam a performance da mesma. As propriedades mais 
importantes incluem o limite de resistência à ruptura, ductilidade, tenacidade da fratura, 
resistência à fadiga, propriedades a temperatura elevada e resistência à corrosão. As propriedades 
dos materiais e aquelas requeridas na junta soldada é que vão ditar os procedimentos de 
soldagem a serem adotados. Abaixo citam-se alguns casos práticos: 
Processos de Fabricação: Soldagem e Fundição 15 
a) Soldagem de aços resistentes ao desgaste e de alta temperabilidade necessitam de 
tratamentos de pré e pós aquecimento para evitar a formação de estruturas frágeis na 
zona afetada pelo calor. 
b) Aços de alto coeficiente de expansão térmica devem ser soldados com baixo aporte 
de calor ou deve-se utilizar técnicas especiais de soldagem para evitar distorções. 
c) Na soldagem de aços inoxidáveis ferríticos, deve-se controlar o aporte de calor para 
evitar crescimento de grão ou formação de martensita no seu contorno, o que pode 
fragilizar a junta soldada. 
d) Materiais susceptíveis à corrosão sob tensão devem ser submetidos a tratamento de 
alívio de tensão ou ter aplicação de alguma técnica para as tensões internas de tração. 
 
2.8. O Arco Elétrico 
 
O estudo do arco elétrico é importante na soldagem porque: 
a) Nos processos em que ele se aplica, o arco elétrico é a fonte de calor necessária 
para se executar a soldagem, sendo responsável pela formação da poça de fusão, 
pelo aquecimento do eletrodo e pelos ciclos térmicos de soldagem. 
b) Sua alta temperatura e turbulência produz intensas reações químicas, 
principalmente, reação gás-metal e reações escória-metal. 
c) O arco elétrico é o responsável pela transferência do metal de adição da ponta do 
eletrodo para a poça de fusão. 
d) A demanda necessária para manter um arco estável determinas as características 
que a fonte de energia deve possuir. 
Um arco elétrico ou voltaico pode ser definido como "a descarga de corrente elétrica 
mantida através de um gás, iniciada por uma quantidade de elétrons emitidos do eletrodo 
negativo (cátodo) aquecido". Todavia todo gás é isolante térmico nas condições normais de 
temperatura e pressão. Portanto para que ele se torne condutor é necessário ionizá-lo, ou seja, 
formar íons ou elétrons livres em sua constituição. Um gás ionizado recebe a denominação de 
plasma. Nessa definição existem três conceitos importantes para o conhecimento do arco 
elétrico: calor, ionização e emissão. 
Em soldagem,o arco normalmente ocorre entre um eletrodo cilíndrico e um plano (a 
peça), dando a esse um formato típico de tronco de cone. O eletrodo pode ser um material 
Processos de Fabricação: Soldagem e Fundição 16 
refratário como o tungstênio (eletrodo não consumível) ou de metal de menor ponto de fusão 
como o aço (eletrodo consumível). Neste último caso, o processo é mais complicado pois 
tem-se: (a) passagem de metal fundido (e, às vezes, de escória) através do arco, (b) geometria 
variável da ponta do eletrodo e (c) comprimento de arco variável e dependente do balanço 
entre as velocidades de alimentação e fusão do eletrodo. 
 
2.8.1. Perfil Elétrico 
 
Eletricamente, o arco de soldagem pode ser caracterizado pela diferença de potencial 
entre as suas extremidades e pela corrente que circula por este. A queda de potencial não é 
uniforme ao longo do mesmo, podendo ser divido em três regiões principais: 
a) Zona de Queda Catódica: os elétrons são emitidos e acelerados para o ânodo 
através de campos elétricos. 
b) Coluna de Plasma: constituída de elétrons livres, íons positivos, íons negativos. 
Forma o plasma, sendo a parte visível e brilhante do arco. 
c) Zona de Queda Anódica: constituída por elétrons. A queda de tensão é igual ao 
potencial de ionização do gás circundante. 
A coluna de plasma corresponde a quase todo o volume do arco, podendo Ter vários 
milímetros de comprimento, enquanto que as zonas de queda são pequenas regiões junto aos 
eletrodos, com espessuras da ordem de 10-2 a 10-3 mm. A queda de tensão na região anódica 
(VA) varia entre 1 e 10V e a catódica (VC), entre 1 e 15V, e são normalmente independente do 
comprimento do arco (la). 
A queda de tensão na coluna de plasma é aproximadamente proporcional ao 
comprimento do arco (VCP ≈ E.la). E é o campo elétrico na coluna e depende da composição 
do gás de plasma. Em função do exposto, a tensão no arco, para um dado valor de corrente, 
pode ser representada pela equação de uma reta em função de la: 
 
V = (VC + VA) + E . la 
 
O calor é devido à movimentação de cargas elétricas no arco de um eletrodo 
permanente; a ocorrência de choques entre estas cargas gera o calor. O cátodo precisa emitir 
uma grande quantidade de elétrons, pois estes conduzem mais de 90% da carga elétrica 
através do arco. No arco, os íons positivos são praticamente imóveis se comparados com a 
Processos de Fabricação: Soldagem e Fundição 17 
velocidade dos elétrons, sendo estes, portanto, os responsáveis pela geração do calor. No caso 
de arco elétrico de eletrodos consumíveis, além do choque entre íons, ocorre também choque 
entre estes e átomos gerados na fusão do eletrodo e entre íons e as gotas que atravessam o 
arco. 
A emissão termoiônica é um processo de liberação de elétrons de uma superfície 
aquecida. A mesma ocorre, basicamente, do aquecimento do material a uma temperatura 
suficientemente alta para causar a emissão (ou "vaporização") de elétrons em sua superfície 
por agitação térmica. A densidade de corrente resultante do efeito termoiônico é estimada pela 
equação empírica de Richardson-Dushman, também conhecida por "taxa de emissão 
termoiônica (Ie)": 
 
Ie = A.T
2.exp(-eφ/κT) (A/m2) 
 
Onde: A = constante que vale 6 a 7 x 105 A/m-2.oK-2 
 T = temperatura absoluta (oK) 
 e = carga do elétron (1,6 x 10-19C) 
 κ = constante de Boltzmann (1,38 x 10-23 J/oK) 
 φ = função trabalho termiônico do material (eV) 
 
A função trabalho termiônico representa a energia térmica que ser absorvida pelo 
elétron para ser emitido como elétron livre. 
A ionização ocorre quando um elétron localizado em uma órbita mais externa recebe 
uma quantidade de energia, sendo forçado para a órbita de maior energia. Conforme a energia 
que o elétron recebe, ele pode ou não sair da influência de campo eletromagnético do átomo e 
tornar-se um elétron livre. A energia necessária à produção de um elétron livre é chamada de 
potencial de ionização. No caso dos arcos elétricos de soldagem, o interesse está voltado para 
a ionização térmica, que é a ionização por colisão entre as partículas bem aquecidas. 
Para se obter um arco voltaico para soldagem deve-se aquecer o gás existente entre o 
eletrodo e a peça e sujeitá-lo a um bombardeio eletrônico. Isto é conseguido, por exemplo, 
quando se toca o eletrodo na peça fazendo com que a tensão caia rapidamente para um valor 
próximo de zero e a corrente cresça a um valor elevado. Por efeito Joule, isto provoca um 
aquecimento na região de contato até a incandescência, favorecendo a emissão termoiônica. A 
quantidade de calor liberada facilita o arrancamento dos elétrons dos átomos do ambiente 
Processos de Fabricação: Soldagem e Fundição 18 
gasoso, ionizando o gás. Com a ionização térmica, o eletrodo pode ser afastado do metal base 
sem que o arco elétrico seja extinto. 
 
2.8.2. Efeitos Magnéticos 
 
O arco de soldagem é um conduto de corrente elétrica e assim sensível às interações 
da corrente elétrica por ele transportada com os campos magnéticos por ela gerada. Se um 
condutor de comprimento l, percorrido por uma corrente elétrica i, é colocado numa região 
onde exista um campo magnético B, então ele experimenta uma força F, conhecida como 
"Forca de Lorentz", que é dada por: 
 
F = B . i . l 
 
Um importante efeito magnético que é o responsável pela penetração do cordão de 
solda e por garantir a transferência da gota metálica, sempre no sentido eletrodo-peça, 
independente da polaridade, é conhecido por "Jato de Plasma". 
Sendo o arco de soldagem um condutor elétrico gasoso de forma cônica, quando a 
corrente elétrica passa por ele, induz um campo magnético de forma circular concêntrico com 
seu eixo. Surgem assim forças de Lorentz na região do arco, que têm sempre o sentido de fora 
para dentro. 
 
 
 
 
 
 
 
 
 
A intensidade do campo magnético diminui com o quadrado da distância ao eixo 
condutor. Como o diâmetro do arco é menor na região próxima ao eletrodo, as forças de 
Lorentz tendem a ser maiores nessa região. Assim a pressão interna do arco na região próxima 
P2 
P1 
d1 
d2 
Eletrodo 
Peça 
Fs Fs 
Fi Fi 
d1 < d2 ⇒ Fs > Fi 
⇓ 
P1 > P2 
Processos de Fabricação: Soldagem e Fundição 19 
do eletrodo é sempre maior que na proximidade da peça. Essa diferença de pressão causa um 
fluxo de gás no sentido eletrodo peça, que é o "Jato de Plasma". 
Considerando que tanto o campo magnético como as forças de Lorentz são 
proporcionais à intensidade da corrente, quanto maior for esta, mais forte será o jato de 
plasma e consequentemente, maior a penetração do cordão de solda. 
Na extremidade fundida de eletrodos consumíveis, as forças de Lorentz são capazes de 
deformá-la, tendendo a estrangular a parte líquida e separá-la do fio sólido, promovendo dessa 
forma a transferência da gota metálica. 
Um outro efeito das forças de Lorentz é o chamado "Sopro Magnético". Usualmente o 
campo magnético induzido pela corrente tende a se distribuir uniformemente em torno do 
arco. Quando esta distribuição é perturbada, levando a uma maior concentração do campo 
magnético em um dos lados do arco, a força magnética passa a possuir uma componente 
transversal que tende a desviar lateralmente o arco. Este efeito, sopro magnético, dificulta a 
soldagem e aumenta as chances de formação de descontinuidades no cordão. Suas causas 
relacionam-se, principalmente, às mudanças bruscas na direção da corrente elétrica e uma 
distribuição assimétrica de material ferromagnético em torno do arco. O sopro magnético 
pode ser minimizado por medidas como: 
• Inclinar o eletrodo para o lado que se dirige o arco, 
• Reduzir o comprimento do arco,• Balancear a saída de corrente da peça, ligando-a à fonte por mais de um cabo, 
• Reduzir a corrente de soldagem, 
• Soldar com corrente alternada. 
 
2.9. Preparação das Juntas a Soldar 
 
A soldagem visa produzir uma junta entre dois elementos sólidos, conforme definição 
já comentada. Esta junta pode configurar-se de diversas maneiras, condicionando 
diferentemente o processo de soldagem. 
O posicionamento das peças para união determina os vários tipos de juntas. Os 
principais tipos de juntas são os seguintes: 
Processos de Fabricação: Soldagem e Fundição 20 
Junta de Topo: são aquelas em que os componentes a soldar encontram-se topo a topo, 
de modo que, numa seção transversal, estes componentes apresentam-se num mesmo nível. 
Exemplo: 
 
 
 
 
Junta em Ângulo: juntas em que, numa seção transversal, os componentes a soldar 
apresentam-se sob a forma de um ângulo. Exemplo: 
 
 
 
 
 
Juntas Sobrepostas: juntas formadas por dois componentes a soldar, de tal maneira que 
suas superfícies se sobrepõem. Exemplo: 
 
 
 
Juntas de Aresta: junta formada por dois componentes a soldar, de tal modo que os 
bordos dos mesmos formam um ângulo de 180o . Exemplo: 
 
 
 
 
 
Muitas vezes durante a soldagem, as dimensões das peças, a facilidade de se movê-las 
e a necessidade de projeto exigem uma preparação das mesmas na forma de cortes ou 
conformação especial da junta. Estas aberturas ou sulcos na superfície da peça ou peças a 
serem unidas e que determinam o espaço para conter a solda recebe o nome de chanfro. Os 
chanfros podem ser preparados por operações de corte a chama, plasma ou por usinagem. 
O tipo de chanfro a ser usado em uma soldagem específica é escolhida em função do 
processo de soldagem, espessura das peças, suas dimensões, facilidades de acesso à região da 
Processos de Fabricação: Soldagem e Fundição 21 
solda, etc.. Alguns dos principais tipos de chanfros mais comumentes usados em soldagem 
são mostrados na figura abaixo. 
 
Processos de Fabricação: Soldagem e Fundição 22 
2.10. Exercícios Propostos 
 
1. Conceitue soldagem e dê três exemplos de situações em que se realiza um processo de 
soldagem. 
2. Por que é possível se soldarem dois blocos de gelo por aproximação? 
3. Quais são os tipos de fonte de energia empregados nos processos de soldagem? 
Identifique pelo menos dois processos de soldagem que empregam cada uma delas. 
4. Desenhe esquematicamente os quatro tipos de juntas possíveis de serem usadas nos 
diversos processos de soldagem e caracterize cada uma delas. 
5. Explique como ocorre a soldagem nos processos de soldagem por pressão. Exemplifique. 
6. Cite o nome de quatro processos de soldagem por fusão. 
7. Considerando que o gás é isolante nas condições normais de temperatura e pressão, o que 
é necessário para que ele se torne condutor da corrente elétrica? Explique o fenômeno. 
8. Explique como se dá a abertura de um arco voltaico de soldagem. 
9. Por que o arco elétrico é a fonte de calor mais usada hoje em dia para a soldagem por 
fusão? 
10. Explique como a correta definição e escolha do chanfro aplicável a uma junta pode 
interferir com a redução dos custos, considerando que esta deve ser uma das mais 
importantes preocupações do profissional de soldagem. 
11. Se você fosse soldar uma chapa de 25 mm de espessura utilizando o processo de soldagem 
por eletrodo revestido e uma junta de topo com acesso somente por um lado, que tipos de 
chanfros você poderia usar? Você realizaria a solda em passe único? 
12. Por que a preparação das juntas a soldar é de extrema importância num processo de 
soldagem? 
13. Caracterize as três regiões do arco de soldagem. 
14. Explique como as forças de Lorentz influenciam no grau de penetração do cordão de solda 
e na transferência da gota metálica. 
15. Conceitue sopro magnético e indique medidas para minimizar ou eliminar a sua 
ocorrência. 
16. Que proporção da corrente elétrica no arco é transportada por elétrons? E por íons 
positivos? 
 
Processos de Fabricação: Soldagem e Fundição 23 
3. METALURGIA DA SOLDAGEM 
 
A maioria dos processos de soldagem utiliza o calor como principal fonte de energia, 
sendo necessário fornecê-lo à poça de fusão em quantidade e intensidade suficientes, de forma a 
garantir a execução de uma solda de boa qualidade. O calor é, portanto, elemento essencial à 
execução de uniões soldadas mas pode por outro lado, representar fonte potencial de problemas 
devido à sua influência direta nas transformações metalúrgicas que ocorrem na junta soldada. 
As condições térmicas na solda e nas regiões próximas a ela devem ser estabelecidas 
para controlar estes fenômenos metalúrgicos na soldagem. De particular interesse pode-se citar: 
- aporte de energia ou de calor à junta soldada; 
- rendimento térmico do arco elétrico; 
- a distribuição da temperatura máxima (ciclo térmico) na zona afetada pelo calor (ZAC); 
- as velocidades de resfriamento em pontos do metal de solda e zona afetada pelo calor; 
- a velocidade de solidificação do metal de solda. 
A velocidade de resfriamento é um dos aspectos mais importantes do fluxo térmico, 
uma vez que, após um ponto de solda ter alcançado sua temperatura máxima, o tempo no qual 
ele resfria exerce um efeito significativo sobre a estrutura e as propriedades do metal de base. 
A maioria dos processos de soldagem por fusão é caracterizado pela utilização de uma fonte 
de calor intensa e localizada. A história térmica de um ponto na soldagem pode ser dividida 
de maneira simplificada, em duas etapas básicas: uma etapa de aquecimento e outra de 
resfriamento. 
 
3.1. Macroestrutura de uma Junta Soldada 
 
É interessante sabermos que nas soldas existem três zonas de particular interesse, as 
quais podem ser identificadas por exame macrográfico. Na figura 1 representa-se a seção 
transversal de uma solda identificando as três regiões principais da solda. 
 
 
 
 
 
Processos de Fabricação: Soldagem e Fundição 24 
 
 
 
Figura 1 – Macrografia de uma junta soldada 
 
Zona Fundida (ZF) → composta pelo metal de base e metal de adição ou somente 
pelo metal de base, no caso de soldagem autógena. Nesta região as temperaturas são maiores 
que a temperatura de fusão do material, sendo pois, a região da junta soldada onde 
efetivamente ocorreu a fusão e subsequente solidificação. 
A zona fundida pode ser formada sob as mais diversas condições. Na soldagem a arco 
com eletrodo consumível, o metal de adição fundido é transferido para a poça de fusão na 
forma de gotas, aquecidas a temperaturas muito elevadas, acima de 2000oC, no caso de aços. 
A composição química final da zona fundida depende da diluição, ou seja, da 
participação relativa do metal de base e do metal de adição na formação da zona fundida. A 
diluição (D) é determinada pela razão entre a massa do metal de base fundida e a massa total 
da solda. 
 
 
 
 
Uma das formas de se avaliar a diluição é através de macrografias da seção transversal 
da junta soldada. A diluição varia com o processo de soldagem, sendo por exemplo de 10 a 
30% para o processo de soldagem por eletrodo revestido, de até 80% na soldagem por arco 
submerso e 0% na brasagem. 
O controle da diluição é importante na soldagem de metais dissimilares, na deposição 
de revestimentos especiais sobre uma superfície metálica, na soldagem de metais de 
composição química desconhecida, caso muito comum em soldagem de manutenção e na 
soldagem de materiais que tenham altos teores de elementos prejudiciais à zona fundida, 
como o carbono e o enxofre. 
Vejamos um exemplo prático da importância do controle da diluição envolvendoaços 
inoxidáveis. Para tal utilizaremos os diagramas de Schaefler e Bystram situando nos mesmos as 
composições químicas do metal base e metal de adição e, como conseqüência poderemos prever 
a estrutura da zona fundida e os problemas característicos. 
ZF 
MB 
ZAC 
A 
D = (%) onde: A = quantidade de metal base na ZF 
 B + A B = quantidade de metal de adição na ZF 
Processos de Fabricação: Soldagem e Fundição 25 
Exemplo: 
Soldagem de chapas de aço AISI 430 utilizando eletrodo AWS E309-16. Considerar 
diluição de 30%, que é o percentual do metal de base no metal de solda. 
Composição química do metal depositado com eletrodo E309-16 é a seguinte: 
C = 0,09% Mn = 0,70% Cr = 22,1% Ni = 12,5% Si = 0,70% 
Composição química do aço AISI 430: 
C = 0,03% Mn = 0,90% Cr = 19,3% Si = 0,40% 
 
Utilizando o Diagrama de Schaefler, calcula-se os valores de cromo e níquel equivalentes 
para o metal de base e o metal depositado: 
 
 
 
a) Creq = %Cr + %Mo + 1,5 %Si + 0,5 %Nb 
 Metal depositado: Creq = 22,1 + 0,00 + 1,5 . 0,70 = 23,20% 
 Metal de base: Creq = 19,3 + 0,00 + 1,5 . 0,40 = 19,9% 
b) Nieq = %Ni + 30 %C + 0,5 %Mn 
 Metal depositado: Nieq = 12,5 + 30 . 0,09 + 0,5 . 0,70 = 14,74% 
 Metal de base: Nieq = 0 + 30 . 0,03 + 0,5 . 0,90 = 1,35% 
 
Localizando no diagrama de Schaefler as composições químicas relativas ao metal de 
base e ao eletrodo, encontramos dois pontos equivalentes ao metal depositado e metal de base. 
Unindo-os e considerando a diluição de 30% vemos que a zona fundida será formada por 
austenita e ferrita, com o teor desta última da ordem de 18%. Nesta região, a liga está livre dos 
Processos de Fabricação: Soldagem e Fundição 26 
quatro defeitos previstos no diagrama de Bystram, ou seja, a solda poderá ser executada sem 
problemas. 
 
Diagrama de Bystram 
 
 
 
 
Zona Afetada pelo Calor (ZAC) → correspondente à região do metal de base não 
fundida adjacente à zona de fusão, porém, cujas temperaturas são sempre superiores à 
temperatura de transformação do material, podendo provocar alterações nas suas propriedades 
e microestrutura. Também chamada Zona Termicamente Afetada (ZTA). 
Processos de Fabricação: Soldagem e Fundição 27 
As características da ZAC dependem principalmente do tipo de metal de base e do 
processo e procedimentos de soldagem, ou seja, do ciclo térmico e da repartição térmica. De 
acordo com o tipo de metal que está sendo soldado, os efeitos dos ciclos térmicos poderão ser 
os mais variados. No caso de metais não transformáveis (o alumínio, por exemplo), a 
mudança estrutural mais marcante será o crescimento de grão. 
Em metais transformáveis, a ZAC será mais complexa. No caso dos aços carbono e 
aços baixa liga, a ZAC apresentará as seguintes regiões características: 
a) Região de Crescimento de Grão: compreende a região do metal de base, mais 
próxima da solda, que foi submetida a temperaturas próximas da temperatura de fusão. Nesta 
situação a estrutura austenítica sofre um grande crescimento de grão. Este crescimento 
depende do tipo de aço e da energia de soldagem e, constitui a região mais problemática da 
ZAC podendo apresentar menor tenacidade e problemas de fissuração. É caracterizada por 
uma estrutura grosseira, com placas de ferrita, podendo apresentar perlita, bainita ou 
martensita. 
b) Região de Refino de grão: compreende a região da junta aquecida a temperaturas 
comumente usadas na normalização dos aços (900 a 1000oC). Após o processo de soldagem, 
esta região é caracterizada por uma estrutura fina de ferrita e perlita, não sendo problemática 
na maioria dos casos. 
 
c) Região Intercrítica: nesta região, a temperatura de pico varia entre 727oC e a linha 
A3, sendo caracterizada pela transformação parcial da estrutura original do metal de base. 
 
Metal de Base (MB) → região mais distante do cordão de solda moderadamente 
aquecida ou sem nenhuma influência do calor de soldagem. Não apresentam mudanças 
microestruturais perceptíveis. As temperaturas são inferiores às temperaturas críticas para o 
material (inferior a 727oC no caso dos aços carbono). 
A linha de fusão ou zona de ligação é a região que faz a ligação entre os cristais da 
zona de fusão com os cristais da zona termicamente afetada. Em uma micrografia observa-se 
que se trata de uma linha de transição estrutural. É a região que durante a soldagem foi 
aquecida entre a linha liquidus e a linha solidus. 
 
Quanto à sua geometria, os cordões de solda apresentam os seguintes elementos: 
Processos de Fabricação: Soldagem e Fundição 28 
- Reforço: máxima altura alcançada pelo excesso de material de adição, medida a 
partir da superfície do material de base. 
- Largura: máxima distância entre os pontos extremos alcançados pela fusão, sobre a 
superfície do material de base. 
- Penetração: máxima profundidade alcançada pela fusão, medida perpendicularmente 
à superfície do material de base. 
- Raiz da Solda: região do primeiro passe ou demão, junto à parede ou encosto dos 
bordos. 
 
3.2. Fluxo Térmico na Soldagem 
 
Para a soldagem a arco, pode-se considerar o arco como a única fonte de calor, definida 
pela sua energia de soldagem. Verifica-se que uma parte desta energia disponível é dissipada 
para a atmosfera sob a forma de calor irradiante, outra pequena fração perde-se por convecção no 
meio gasoso que protege a poça de fusão e, uma terceira parte é realmente usada para a execução 
da soldagem. Conclui-se, portanto, que nem toda a energia disponível é integralmente 
aproveitada para fundir o metal base e o eletrodo, sendo as perdas computadas através do que se 
chama rendimento térmico do processo, o qual é uma relação entre a quantidade de energia 
efetivamente absorvida na soldagem e a energia total fornecida ao arco. 
A energia de soldagem é uma medida da quantidade de calor cedido à peça, por 
unidade de comprimento, definida por Eab = ηt .E. A dissipação do calor ocorre principalmente 
por condução na peça, das regiões aquecidas para o restante do material. 
Considerando que E = U.I / V, podemos rescrever a equação de Eab como: 
 
 Eab = ηt . U.I / V onde: 
 
Eab = energia absorvida pela peça, em J/mm 
ηt = rendimento térmico do processo 
U = tensão do arco, em volts 
I = corrente de soldagem, em A 
V = velocidade de soldagem, em mm/s 
Processos de Fabricação: Soldagem e Fundição 29 
Como não se consegue quantificar com precisão as perdas de energia em cada processo 
e, consequentemente, não se sabe a energia entregue à peça, as equações apresentam um certo 
erro. Uma das principais fonte de erro reside no fato de se considerar o rendimento térmico (ηt) 
constante para cada processo, independentemente dos parâmetros de soldagem. Geralmente 
consideram-se os seguintes valores para o rendimento térmico: 
 - Eletrodo revestido e MIG/MAG = 85 a 90% - Arco submerso = 95% 
 - Processo Oxi-acetileno = 35 a 65% - Processo TIG = 40 a 50% 
O baixo rendimento térmico no processo TIG é devido ao fato do calor gerado no 
eletrodo não ser transferido à peça, uma vez que o mesmo é retirado pela água de refrigeração, e 
devido aos gases usados, os quais resfriam a peça. 
O rendimento de fusão correlaciona a energia de soldagem absorvida com a energia 
efetivamente utilizada na fusão da solda. É definida pela equação: 
 
ηf = (S.H.V) / (ηt.q), onde: 
 
ηf = rendimento de fusão 
S = área da seção transversal ao cordão (mm2) 
H = energia necessária para aquecer e fundir o material (J/mm3) 
q = calor por unidadede tempo (J/s) 
 
Apresentam-se na tabela 1 alguns valores típicos para ηf e H. 
 
Tabela 1 - Valores típicos de rendimento e energia de fusão 
PROCESSO ηηηηf (%) MATERIAL H (J/mm3) 
Oxiacetelênico < 5 Aço Baixa Liga 10 
TIG 20 Aço Inoxidável 10 
ER 30 Níquel 10 
MIG / MAG 40 Cobre 06 
AS 50 Alumínio 03 
ET 80 
Plasma 90 
Laser 100 
 
Processos de Fabricação: Soldagem e Fundição 30 
Como E = q/V e Eab = ηt .E pode-se rescrever a equação de ηf como: 
 ηf = (S.H) / ( ηt E) ou ηf = (S.H) / Eab 
 
3.3. Ciclos Térmicos de Soldagem 
 
O processo de aquecimento e resfriamento da junta é denominado ciclo térmico de 
soldagem. Na figura 2 representa-se esquematicamente um ciclo térmico de soldagem, o qual 
consiste basicamente de três fases: a etapa de aquecimento do material num início do processo, o 
ponto em que a temperatura máxima é atingida e finalmente, a etapa de resfriamento gradual até 
que a temperatura retorne ao valor inicial. 
 
T (o C) 
1200 
1000 
 800 
600 
400 
200 
 
 0 1 2 3 4 5 6 7 8 t (s) 
Figura 2 – Ciclo Térmico de Soldagem 
 
Durante a soldagem, cada ponto de material processado passa por um ciclo térmico 
cuja intensidade será função de sua localização em relação à fonte de energia, no caso, o 
eletrodo. Esse ciclo térmico representa as temperaturas que o ponto em estudo atinge em cada 
instante do processo. É possível, portanto, obter para qualquer ponto do sólido em estudo o 
valor instantâneo da temperatura. 
Dessa forma, se desejarmos conhecer o ciclo térmico a que será submetido um 
determinado ponto da zona afetada pelo calor de uma junta soldada, ou se desejarmos 
interpretar as transformações metalúrgicas em um ponto do metal de base próximo à região da 
solda, bastará utilizarmos a equação abaixo: 
 
Processos de Fabricação: Soldagem e Fundição 31 
1 / (Tm - To) = (4,13.δ.C.e.y) / (Eab) + 1 / (Tf - To), onde 
 
Tm = temperatura máxima (oC) a uma distância y (mm) da linha de fusão da solda. 
To = temperatura de pré aquecimento (oC) 
Tf = temperatura de fusão (
oC ) 
Eab= energia absorvida pela chapa (J/mm) 
δ = densidade do material (g/mm3) 
C = calor específico do metal sólido ( J/g. oC ) 
e = espessura da chapa (mm) 
 
A equação da temperatura máxima acima pode ser usada para várias finalidades, entre 
as quais: 
1. determinação da temperatura máxima em um ponto específico da ZAC; 
2. para estimar a largura da ZAC; 
3. mostrar o efeito da temperatura de pré aquecimento sobre a largura da ZAC. 
Apesar da utilidade da equação de temperatura máxima, é importante recordar certas 
restrições ao seu uso. A mais importante destas é que a equação é derivada para a condição de 
"placas finas" na qual o calor é conduzido em direções paralelas ao plano da chapa. Quando o 
fluxo de calor for essencialmente planar, o volume do metal afetado pelo calor (ZAC) por 
unidade de comprimento de solda é 2.e.y. Este valor aplica-se às "placas espessas". 
Para uma dada temperatura de pré aquecimento, os tempos de permanência de um 
ponto considerado à temperatura máxima aumentam com o aumento do aporte de energia e 
causam um decréscimo na velocidade de resfriamento. Para um dado valor de energia absorvida, 
aumentando-se a temperatura de pré aquecimento diminui-se a velocidade de resfriamento.. 
À medida que nos distanciamos da fonte de energia, os ciclos térmicos assumem 
características importantes. A figura 3 representa curvas típicas de uma família de ciclos 
térmicos correspondentes à soldagem por arco de uma chapa de aço onde a curva superior 
representa o ciclo térmico correspondente a uma temperatura máxima de 1400oC a qual foi 
encontrada em um ponto localizado a 10 mm do centro do cordão de solda e a curva inferior 
corresponde ao ciclo térmico de um ponto que alcança 515oC de temperatura máxima e que se 
encontra a 25 mm do centro da solda, podemos fazer as seguintes observações: 
 
 
Processos de Fabricação: Soldagem e Fundição 32 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 3 – Ciclos Térmicos de Soldagem 
 
• a temperatura máxima alcançada decresce rapidamente com o aumento da distância do ponto 
considerado ao centro da solda. 
• o tempo requerido para se chegar à temperatura máxima cresce à medida que se aumenta a 
distância ao centro do cordão. 
• as velocidades de aquecimento e resfriamento decrescem à medida que aumenta sua distância 
ao centro do cordão. 
Por outro lado, a determinação dos ciclos térmicos permite a obtenção das linhas 
isotérmicas, ou seja, o efeito que o aporte de calor concentrado na poça de fusão de um cordão de 
solda produz sobre a superfície da chapa mostrando a distribuição das linhas que alcançam igual 
temperatura (isotermas) a distintas distâncias do centro do arco. 
Supõe-se que a solda avança segundo uma linha horizontal na chapa; as linhas internas 
encerram regiões que se encontram em temperaturas mais elevadas. 
Quando se aumenta a temperatura de pré aquecimento as isotermas crescem, uma vez 
que a entrega de energia adicional desloca a isoterma para pontos mais distantes do centro do 
Processos de Fabricação: Soldagem e Fundição 33 
arco. Isto proporciona um aumento no tempo de aquecimento e eleva a temperatura máxima, 
porém, diminui a velocidade de resfriamento. 
Efeito contrário tem a condutividade térmica do material, ou seja, quanto maior for a 
condutividade térmica da chapa as isotermas se contraem equivalendo dizer que o tempo de 
aquecimento e a temperatura máxima diminuem e a velocidade de resfriamento aumenta. 
 
3.4. Velocidade de Resfriamento e Temperaturas Máximas 
 
Costuma-se caracterizar a etapa de resfriamento pelo valor da velocidade de 
resfriamento a uma determinada temperatura T, ou pelo tempo t necessário para o ponto resfriar 
de uma temperatura T1 a outra T2. Diversas variáveis podem influenciar a velocidade de 
resfriamento de um material, dentre as quais citam-se: 
 
a) Tipo de Metal de Base: quanto maior a condutividade térmica do material, maior é a 
velocidade de resfriamento; 
 
b) Geometria da Junta: considerando todos os outros parâmetros idênticos, uma junta em T 
possui três direções para o fluxo de calor, enquanto uma junta de topo possui apenas duas, 
como mostra a figura abaixo. Logo, juntas em T tendem a esfriar mais rapidamente. 
 
 
 
 
 
 
 
Junta de Topo Junta em “T” 
c) Espessura da Junta: até uma espessura limite, a velocidade de resfriamento aumenta com a 
espessura da peça. Acima deste limite, a velocidade de resfriamento independe da espessura. 
 
d) Energia de Soldagem e Temperatura Inicial da Peça: a velocidade de resfriamento diminui 
com o aumento destes dois parâmetros e a repartição térmica torna-se mais larga. 
Processos de Fabricação: Soldagem e Fundição 34 
Visando verificar a relação da velocidade de resfriamento com o comprimento do cordão, 
foi feito um experimento utilizando uma junta de topo (bitérmica) e uma junta em T (tritérmica) 
sendo que em cada uma foi acoplado um termopar na região central do comprimento do cordão e 
na cratera do mesmo. Os parâmetros de soldagem utilizados foram: corrente de 170 A, tensão de 
28 V e velocidade de soldagem de 15 cm/min. 
 
 
 
 
 
 
 
 
Pode-se fazer as seguintes observações: 
1. A velocidade de resfriamento no início do cordão é maior do que ao longo do mesmo. O 
mesmo ocorre com cordões pequenos. Isto é devido ao fato da peça estar inicialmente fria o 
que favorece a troca de calor, além de que o calor pode fluir em várias direções ao passoque 
ao longo do cordão, estas direções são apenas duas. 
Esta velocidade de resfriamento alta pode gerar problemas na qualidade da solda de 
forma que pode-se adotar alguns artifícios para minimizar o seu efeito, tais como pré aquecer 
o local de início da soldagem ou usar almofada (sobremetal para ser cortado). 
 
2. Quanto mais alta for a temperatura máxima num ponto, maior será a velocidade de 
resfriamento. 
 
3. Na cratera, a velocidade de resfriamento também é alta devido ao fato de inexistir arco durante 
a solidificação nesta região, bem como, devido ao calor voltar a fluir em várias direções. Na 
cratera ocorrem rechupes, cujo interior é irregular devido à formação de dendritas, implicando 
em pontos de concentração de tensões e de heterogeneidade química, devido à segregação de 
impurezas. 
As soluções que podem ser adotadas para evitar o problema são: 
. soldar a mais e cortar o excesso, 
. retornar o arco antes de apagá-lo e aquecer o final, 
Termopar 
Junta Bitérmica Termopar 
Junta Tritérmica 
Processos de Fabricação: Soldagem e Fundição 35 
. refundir a cratera, 
. fazer a “unha” do cordão que consiste em esmerilhar a região da cratera. Ao 
recomeçar a operação de soldagem, a “unha” será preenchida com material de 
adição, novamente. Este procedimento deve ser aplicado principalmente aos 
materiais susceptíveis à fragilização. 
 
Para se calcular a velocidade de resfriamento da linha de centro de uma união de topo 
entre duas chapas grossas de mesma espessura, quando se deposita um grande número de passes, 
usa-se frequentemente a expressão: 
 
R = [2. π . K . (Tc - To)2 ]/ E ab , 
 
Onde: R = velocidade de resfriamento (oC /s) 
 K = condutividade térmica do metal (J/mm . s . oC) 
To = temperatura inicial da chapa (oC) 
Tc = temperatura a partir da qual se deseja calcular a velocidade de resfriamento (oC) 
E ab = energia absorvida pela chapa (J/mm) 
 
Para chapas finas emprega-se a seguinte expressão: 
 
R = 2 . π . K . δ . C. (e / Eab)2. (Tc - To)3 
 
Onde: δ = densidade do material (g / mm3) 
 C = calor específico do material (J/g . oC) 
e = espessura da chapa (mm) 
 
A velocidade de resfriamento também é afetada pela espessura da peça. A 
velocidade de resfriamento é tanto maior quanto maior for a espessura da placa, porém, a 
partir de um certo valor de espessura a mesma torna-se constante. O aumento da velocidade 
de resfriamento em função do aumento da espessura pode ser explicado pelo efeito de 
contorno, o qual representa a condução de calor na peça a partir da extremidade. Para os 
mesmos parâmetros de soldagem, o efeito de contorno deixa de existir ao se atingir uma 
determinada espessura, conhecida como espessura limite, tendo em vista que para esta 
Processos de Fabricação: Soldagem e Fundição 36 
espessura o gradiente de temperatura torna-se tão pequeno que mesmo aumentando-se a 
massa de material, já não se verifica nenhuma influência na velocidade de resfriamento. A 
este fenômeno é atribuído o fato da velocidade de resfriamento tornar-se constante a partir de 
certo valor de espessura. 
A espessura limite depende da energia de soldagem, sendo sua variação diretamente 
proporcional à energia de soldagem. Como regra prática para os aços baixa liga pode-se adotar a 
espessura limite como aproximadamente igual à energia de soldagem. Espessuras menores que a 
espessura limite caracterizam as chapas finas e as maiores, as chapas grossas. 
Para temperaturas máximas maiores, a velocidade de resfriamento assume valores mais 
altos. 
A temperatura de pré-aquecimento também tem efeito sobre a velocidade de 
resfriamento. Com temperaturas de pré-aquecimento mais altas, o gradiente de temperatura é 
menor e, portanto, menor será a velocidade de resfriamento. 
 
3.5. Diagrama de IRSID 
 
O diagrama francês ou IRSID é um ábaco para determinação do tempo de 
resfriamento nas temperaturas entre 800 e 500oC. É muito usado pois considera a energia 
equivalente absorvida pela peça em função da eficiência do processo e geometria da junta. 
A seguir descreve-se as etapas para a sua utilização. 
a) A partir dos parâmetros de soldagem (corrente, tensão e velocidade de soldagem) 
calcula-se a energia total entregue à peça. 
 
E = (60.U.I) / (1000.V) [kJ/cm] 
 
b) Em função da geometria da junta ou do ângulo formado na junta em "X" ou "V" 
após o primeiro passe, efetua-se a correção da energia de soldagem, agora denominada 
energia corrigida (Ecorr). 
Para se obter o valor de Ecorr deve-se traçar uma linha perpendicular ao eixo da 
energia total, anteriormente calculada, até atingir uma das três linhas que indicam a condição 
da junta, a saber: ϕ = 270o ou a = s; ϕ = 240o ou a = s/2 e ϕ = 180o ou a = 0. 
Processos de Fabricação: Soldagem e Fundição 37 
A partir do ponto onde encontrou uma das linhas que indicam a condição da junta, 
traça-se uma perpendicular à escala da energia corrigida, determinando-se o valor de Ecorr. 
 
c) A próxima etapa consiste na determinação da energia equivalente absorvida pela 
peça, a qual é determinada de modo análogo à energia corrigida, porém, a perpendicular deve 
encontrar a linha de eficiência do processo (TIG, MIG/MAG ou SMAW/SAW). 
 
d) O diagrama IRSID tem como abcissa a energia equivalente transferida e como 
ordenada, a espessura da placa. Uma vez conhecidos estes valores basta marcar o ponto de 
interseção no diagrama e ler o valor do tempo de resfriamento. No caso de haver pré 
aquecimento da placa, deve-se fazer a correção dos valores de espessura e da energia 
equivalente transferida em função da temperatura de pré aquecimento. 
Uma outra utilização para o diagrama IRSID está na determinação dos parâmetros de 
soldagem. Os mesmos podem ser obtidos a partir do tempo de resfriamento, o qual pode ser 
calculado pelos diagramas CRC em função do teor de martensita admitida ou pela dureza e da 
espessura da placa, bastando para isto um procedimento inverso ao anteriormente comentado. 
Processos de Fabricação: Soldagem e Fundição 38 
Processos de Fabricação: Soldagem e Fundição 39 
3.6. Tratamentos Térmicos 
 
Conforme já estudamos, para se obter o controle metalúrgico de uma junta soldada e, 
por conseqüência, o controle das propriedades mecânicas, é necessário que se conheça os ciclos 
térmicos a que a junta soldada é submetida. Os tratamentos térmicos tem o objetivo de alterar ou 
conferir características determinadas à junta soldada. 
Os tratamentos térmicos mais comumente empregados para melhorar as propriedades 
das juntas soldadas são: 
a) antes da soldagem: pré aquecimento 
b) após a soldagem: recozimento para alívio de tensões, recozimento pleno e 
normalização. 
 
a) Pré aquecimento 
 
O pré aquecimento consiste em aquecer o metal base acima da temperatura ambiente 
antes da soldagem. Tem como objetivo, em princípio, a prevenção de nucleação de trincas na 
zona de fusão e na zona afetada pelo calor. 
Os principais efeitos do pré aquecimento são: 
- menor tendência à formação da martensita devido à diminuição do tempo de resfriamento; 
- redução da dureza obtida na zona afetada pelo calor; 
- diminuição das tensões e distorções residuais; 
- permitir que o hidrogênio tenha possibilidade de se difundir, reduzindo a tendência à 
fissuração a frio. 
A temperatura de pré aquecimento não deve ser excessiva, devendo ser apenas a 
necessária para evitar o obtenção da estrutura martensítica. O mesmo pode ser realizado em um 
forno com controle de temperatura ou através de maçarico. As temperaturas de pré aquecimento 
são recomendadas em função do teor de carbono ou do carbono equivalente e da espessura da 
liga a ser soldada.Para aços carbono, soldados por eletrodo revestido pode-se usar a equação 
seguinte para determinação da temperatura de pré aquecimento: 
 
T (oF) = 1000 x ( C - 0,11) + 18 x t onde: C = teor de carbono da liga 
t = espessura da junta (mm) 
T = temperatura de pré aquecimento (oF) 
Processos de Fabricação: Soldagem e Fundição 40 
b) Tratamento Térmico de Alívio de Tensões 
 
O tratamento térmico de alívio de tensões consiste, basicamente, em aquecer 
uniformemente a peça, de maneira a que o limite de escoamento do material fique reduzido a 
valores inferiores às tensões residuais. Nesta condição, as tensões residuais provocam 
deformações plásticas locais diminuindo de intensidade. 
 
As tensões residuais em juntas soldadas são causadas pela contração da junta quando 
esta é resfriada após a soldagem. Tensões de tração são geradas na região da solda e de 
compressão, nas vizinhanças da mesma, no metal base, para equilibrá-las. 
 
Este tratamento é executado através do aquecimento da peça à temperatura apropriada e 
pela manutenção nesta temperatura por um determinado tempo, seguida de um resfriamento 
uniforme de modo a impedir a introdução de novas tensões. Para impedir mudanças na 
microestrutura ou dimensões da peça, a temperatura é mantida abaixo da temperatura crítica. 
 
Para os aços carbono, somente os tratamentos realizados em temperaturas superiores a 
500oC são realmente eficazes. Para cada tipo de aço temperaturas específicas são recomendadas. 
 
c) Normalização 
 
A normalização consiste no aquecimento da peça a uma temperatura acima da zona 
crítica (temperatura A3), seguida de resfriamento ao ar. É necessário que a estrutura toda se 
austenitize antes do resfriamento. 
 
O objetivo da normalização é a obtenção de uma microestrutura mais fina e uniforme. 
Os constituintes que se obtém da normalização do aço carbono são ferrita e perlita fina ou 
cementita e perlita fina. Dependendo do tipo de aço pode-se, eventualmente, obter-se bainita. 
 
Via de regra, é recomendável a realização de um revenimento na junta soldada após o 
tratamento, para remover tensões residuais e diminuir a dureza. 
 
 
Processos de Fabricação: Soldagem e Fundição 41 
Temperatura (oC) 
 
 
 
 Curva de Resfriamento 
 
 
 
 
 
Tempo 
d) Recozimento Pleno 
 
O recozimento consiste no aquecimento da peça acima da zona crítica (A3) durante o 
tempo necessário para que toda a microestrutura se austenitize, seguido de um resfriamento 
muito lento, mediante o controle da velocidade de resfriamento. A micro estrutura obtida nos 
aços carbono é a perlita grossa e ferrita. 
Para os aços, a temperatura de recozimento corresponde a 50oC acima da temperatura 
de austenitização, ou seja, cerca de 900 a 950oC para aços de baixo teor de carbono. 
 
Temperatura (oC) 
 
 
 
 Curva de resfriamento 
 
 
 
 
Tempo 
Materiais de aços baixa liga ou endurecíveis ao ar sofrem uma redução considerável de 
propriedades mecânicas com o recozimento pleno, não sendo, portanto, recomendado este 
tratamento para juntas soldadas destes tipos de aços. 
Processos de Fabricação: Soldagem e Fundição 42 
e) Têmpera e Revenimento 
 
A têmpera consiste no aquecimento da peça acima da zona crítica seguido de 
resfriamento rápido. O objetivo da têmpera é a obtenção da estrutura martensítica resultando, por 
este motivo, o aumento da dureza e a redução da tenacidade da peça. 
O revenimento é o tratamento térmico que normalmente acompanha a têmpera, pois 
atenua os inconvenientes produzidos por esta. O revenimento consiste em aquecer o material a 
temperaturas bastante inferiores à temperatura crítica, permitindo uma certa acomodação do 
sistema cristalino e, como conseqüência, a diminuição da dureza e o aumento da tenacidade da 
peça. A estrutura resultante chama-se de martensita revenida. 
 
Temperatura (oC) Curva de resfriamento 
 
 
 
 Revenimento 
 
 
 
 
Tempo 
 
3.7. Exercícios Propostos 
 
1. Como você pode delimitar o tamanho da zona afetada pelo calor de uma solda por fusão? 
2. Defina reforço e largura do cordão de solda. Como estes parâmetros variam com a 
corrente e velocidade de soldagem numa solda por eletrodo revestido? 
3. Que variáveis podem influenciar a velocidade de resfriamento num processo de 
soldagem? Explique como as mesmas se relacionam com a velocidade de resfriamento. 
4. Conceitue energia de soldagem e mostre sua relação com os parâmetros elétricos e 
geométricos numa solda a arco voltaico. 
Processos de Fabricação: Soldagem e Fundição 43 
5. Um vaso de pressão de aço inoxidável AISI 304L foi soldado pelo processo eletrodo 
revestido utilizando um eletrodo AWS E308LSi. Calcule qual será a composição química 
aproximada do metal depositado considerando uma diluição de 25%. 
Dados: Metal Base: C = 0,03%, Mn = 1,00%, Si = 0,90%, Cr = 19,00% e Ni = 9,50% 
Metal de Adição: C = 0,02%, Si = 0,88%, Mn = 1,71%, Cr = 20,35% e Ni = 9,64% 
6. Defina rendimento térmico e rendimento de fusão. Por que é importante conhecer o 
rendimento térmico dos diversos processos de soldagem? 
7. Desenhe esquematicamente as três regiões de uma solda a arco metálico e explique cada 
uma delas. 
8. Com relação à soldagem por fusão, qual das três regiões deve ser considerada a mais 
crítica: ZF, ZAC ou MB? Justifique sua resposta com um exemplo prático. 
9. Que alternativas podem ser utilizadas para diminuir a diluição numa junta soldada? 
10. Por que a velocidade de resfriamento é maior no início e final do cordão do solda? 
11. O que você entende por temperatura máxima numa junta soldada? Por que é importante 
conhecermos esta variável? 
12. Que artifícios podem ser utilizados para minimizar os efeitos da velocidade de 
resfriamento na cratera do cordão de solda? 
13. Por que a energia de soldagem e o pré-aquecimento são as variáveis mais importantes que 
afetam o ciclo térmico, do ponto de vista do engenheiro de soldagem? 
14. Uma solda foi realizada utilizando uma temperatura de pré aquecimento de 100oC e uma 
outra foi realizada sem pré aquecimento. A primeira apresentou um menor valor para a 
velocidade de resfriamento. Explique o por que deste fato. 
15. Por que a velocidade de resfriamento é maior nas chapas mais espessas do que naquelas 
mais finas, considerando os mesmos parâmetros de soldagem? 
16. Por que a soldagem é capaz de induzir fissuras num material? 
17. Como varia a temperatura máxima e o tempo requerido para se atingir esta temperatura 
numa junta soldada por processo a arco voltaico? 
18. A equação da temperatura máxima pode ser utilizada para várias finalidades. Quais são 
elas? 
19. Considere um processo de soldagem por arco metálico por proteção gasosa (MAG), 
quando se solda um perfil de aço carbono SAE 1030, de espessura 6 mm. Calcule o que 
se pede (utilize o diagrama Fe-C, se necessário): 
Dados: 
Processos de Fabricação: Soldagem e Fundição 44 
Densidade do aço carbono = 0,00785 g/mm3 Corrente de Soldagem = 140 A 
Calor específico = 0,515 J/g.oC, Tensão = 23 V 
Condutividade Térmica = 0,048 J/s.mm.oC Veloc.de soldagem = 19 cm/min 
 
a) Determine qual é a distância máxima do cordão de solda que a ZAC apresenta uma 
granulação grosseira. 
b) Determine a largura da ZAC. 
c) Determine a velocidade de resfriamento da ZAC, após ter-se atingido a temperatura 
de 850oC. Considere que o soldador realizou um pré aquecimento de 200oC na 
junta. 
20. Quanto tempo uma solda realizada pelo processo TIG, junta em ângulo, chapa de 
espessura 15 mm demoraria para resfriar de 800 a 500oC? Considere a energia de 
soldagem calculada no exercício

Outros materiais