Buscar

Apostila 01 (1)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 24 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 24 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 24 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

FACULDADE	MAURÍCIO	DE	NASSAU	
CURSO	DE	GRADUAÇÃO	EM	FARMACIA	
TECNOLOGIA	DOS	ALIMENTOS	
	
	
	
	
	
	
	
	
	
	
	
	
	
APOSTILA	DE	TECNOLOGIA	DE	ALIMENTOS	-	I	
	
	
	
	
	
	
	
	
	
	
	
PROF.	Me.	Diego	Valois	M.	Ribeiro	
 
 
INTRODUÇÃO 
 
 
De acordo com a Sociedade Brasileira de Ciência e Tecnologia de Alimentos, a 
Tecnologia de Alimentos se preocupa com a aplicação de métodos e da técnica para o 
preparo, armazenamento, processamento, controle, embalagem, distribuição e utilização 
dos alimentos. Também se pode dizer que é o estudo da aplicação da Ciência e da 
Engenharia na produção, processamento, embalagem, distribuição e utilização dos 
alimentos. A Tecnologia de Alimentos inclui o a sequencia de operações desde a seleção 
da matéria prima até o processamento, preservação e distribuição. 
Para o futuro, a Tecnologia de Alimentos deverá se orientar segundo duas 
direções: por um lado haverá o início, a continuação ou o incremento da produção de 
alimentos mais sofisticados, mais nutritivos, mais convenientes e mais atrativos; por outro 
lado, o desenvolvimento dos processos tecnológicos se orientará para o aproveitamento 
de subprodutos ou excedentes e para a produção de alimentos mais nutritivos, que sejam 
oferecidos a baixo preço e possam ser utilizados por grande parte da população mundial, 
hoje carente de alimentos. 
 
CAUSAS, OBJETIVOS E CONSEQUÊNCIAS DA INDUSTRIALIZAÇÃO DE 
ALIMENTOS 
 
1) CAUSAS – aquilo que precede. 
 
§ Perecibilidade dos alimentos; 
§ Periodicidade das produções (diferenças entre safras nos anos); 
§ Continuidade doe consumo; 
§ Impossibilidade de consumo in natura de certos produtos ou partes; 
§ Sazonalidade das produções (diferentes épocas); 
§ Distribuições geográficas das produções e dos centros de consumo. 
 
2) OBJETIVOS – Aquilo que se busca. 
 
§ Aumento da durabilidade dos alimentos; 
§ Regularizar oferta e demanda dos alimentos; 
§ Reduzir espaços, economizando em embalagens, transporte, etc.; 
§ Sanidade e qualidade dos alimentos; 
§ Lucro (produtos in natura o preço é mais baixo); 
§ Tecnificação (produtos mais atraentes, etc.) 
§ Aproveitamento de excedentes das produções. 
 
3) CONSEQUÊNCIAS - Aquilo que se obtém. 
 
§ Manutenção da qualidade; 
§ Desenvolvimento de atividades correlatas; 
§ Transporte e comunicação. 
§ treinamento de mão-de-obra; 
§ geração de empregos diretos e indiretos; 
§ ganhos ambientais; 
§ implantações de agroindústrias no interior, fixando o homem no campo. 
 
ALIMENTOS: CONCEITO, FUNÇOES, COMPOSIÇÃO E CLASSIFICAÇÀO 
 
Conceito: É toda a substância que captada do meio exterior seja capaz de cumprir as 
funções fisiológicas, psicológicas e sociais 
 
FUNÇÕES 
 
§ Fisiológica: quando fornece ao organismo energia e materiais plásticos de modo 
a formar e regenerar tecidos e fluídos e quando for capaz de regular o 
metabolismo; 
§ Psicológica: diz respeito a reação o indivíduo frente ao alimento; 
§ Social: é a inter-relação frente aos alimentos, ou o papel que um determinado 
alimento cumpre na comunidade; 
§ Composição: glicídios, protídeos, lipídios, minerais, água, fibras e outros 
microelementos. 
 
CLASSIFICAÇÃO 
 
Os alimentos podem ser classificados quanto à origem, quanto à composição, quanto à 
durabilidade, etc. Uma das classificações citadas na bibliografia está descrita a seguir: 
 
GRUPOS BÁSICOS DE ALIMENTOS 
 
LEITE E DERIVADOS: Proteínas, Lactose, Cálcio e Fósforo; 
CARNES: Proteínas, Ferro e Vitamina B; 
OVOS: Proteínas, Gordura, Vitamina A e Riboflavina; 
LEGUNINOSAS: Proteínas, Glicídios. Fósforo, Ferro e Niacina; 
FRUTAS SECAS OLEAGINOSAS: Proteínas e Lipídios 
FRUTAS E VEGETAIS: Vitaminas, Minerais, Fibras, Pigmentos (caroteno); 
CEREAIS E DERIVADOS: Proteínas vegetais, Fósforo, Niacina, Tiamina, Lisina; 
AÇÚCAR: Glicídios; 
ÓLEOS: Ácidos graxos insaturados (óleos vegetais); 
GORDURAS: Ácidos graxos saturados (banha); 
 
OBJETIVO DA DIVISÃO: Indicação de forma prática de uma alimentação adequada 
e desejável 
 
 
TRIANGULO EQUILÁTERO DOS ALIMENTOS 
 
§ Aceitabilidade 
§ Preço 
§ Qualidade 
 
 
 
ALTERAÇÕES DAS MATÉRIAS-PRIMAS E/OU PRODUTOS: CAUSAS E 
FATORES 
 
1) INTRODUÇÃO: 
 
Os alimentos são constituídos por tecidos vivos e assim estão sujeitos a reações 
bioquímicas, biológicas e físicas. 
O que se busca na tecnologia de alimentos é retardar/suprimir estas reações, 
preservando o máximo possível às qualidades do alimento. 
 
2) CAUSAS DAS ALTERAÇÕES EM ALIMENTOS 
 
§ Crescimento e atividade de microrganismos 
§ Ação das enzimas presentes no alimento 
§ Reações químicas não-enzimáticas 
§ Alterações provocadas por seres superiores como insetos e roedores 
§ Ação física e mecânica (frio, calor, desidratação, etc.). 
 
a) MICRORGANISMOS 
 
Fatores que levam os microrganismos a serem a principal causa de alterações em 
alimentos: 
 
§ Competem com o homem pelo alimento; 
§ Rápido crescimento, exemplo de Bactérias que tem ciclo vital de 15 minutos; 
§ Encontram-se em todos os ambientes, como ar, água e solo; 
§ Podem provocar sérios problemas de saúde no homem. 
 
Muito do que se conhece hoje sobre microrganismos devemos a Pasteur (1857) 
 
a.1) CRESCIMENTO MICROBIANO 
 
Ao chegarem no alimento, em condições favoráveis, os microrganismos iniciam a 
multiplicação e crescimento, passando por uma série de fases sucessivas: 
 
FASE LATÊNCIA: Nesta fase a célula procura se adaptar ao novo meio. Não há 
crescimento e é influenciada por vários fatores, como: idade da cultura, quantidade do 
inoculo, tempo de geração, tipo de microrganismo, meio ambiente (pH, O2, temperatura, 
etc). 
 
FASE LOGARÍTMICA: ou exponencial, onde a multiplicação é máxima; 
 
FASE ESTACIONÁRIA: Quando o número de células permanece constante; 
 
FASE DESTRUIÇÃO: Os microrganismos começam a morrer, devido à formação de 
substâncias tóxicas (metabólitos); 
 
Objetivo que se tem na tecnologia de alimentos: Prolongar a fase de latência. Como 
podemos fazer isso? 
§ Reduzindo o grau de contaminação inicial através de princípios higiênicos de 
obtenção de alimentos. 
§ Proporcionando condições ambientais desfavoráveis, como mudanças do pH, 
redução da taxa de oxigênio, baixas temperaturas, etc. 
§ Efetuando tratamentos físicos como calor, irradiação, etc); 
 
 
FATORES QUE INFLUECIAM O CRESCIMENTO MICROBIANO 
 
 
ASSOCIAÇÕES: 
 
As associações dos microrganismos entre si intervêm nas alterações e 
fermentações da maioria dos alimentos. A concorrência entre distintos tipos de bactérias, 
fungos e leveduras de um alimento determina geralmente o que predominará e ocasionará 
uma alteração que lhe é característica. Se as condições são favoráveis para todos, as 
bactérias geralmente crescem mais rapidamente que as leveduras e estas mais que os 
mofos. Portanto, as leveduras predominarão sobre as bactérias somente quando existirem 
originalmente em maior número ou quando as condições são tais que impedem o 
crescimento bacteriano. Os mofos somente predominarão quando as condições 
ambientais são desfavoráveis para as leveduras e bactérias. As diversas espécies de 
bactérias competem entre si sobressaindo-se uma sobre as demais; do mesmo modo se as 
condições são favoráveis às leveduras, uma espécie superará as outras, e o mesmo para 
os mofos. 
Os microrganismos nem sempre são antagônicos entre si, comportando-se as 
vezes como simbióticos, isto é, ajudam-se mutuamente. Podem também crescer 
simultaneamente sem favorecimento ou inibição entre si. Há vezes em que aparece o 
sinergismo entre dois microrganismos; o crescimento conjunto poderá ocasionar certas 
transformações que não poderiam ser realizadas isoladamente. 
O efeito mais importante de um organismo sobre outro é o metabiótico, onde um 
favorece condições favoráveis para o crescimento do outro. Em algunscasos, ambos 
poderia crescer ao mesmo tempo, porém o fazem separadamente. A maioria das 
fermentações e decomposições dos alimentos constitui exemplos de metabiose. 
 
EFEITO DAS CONDIÇÕES AMBIENTAIS 
 
O meio ambiente determina qual dos microrganismos presentes no alimento 
sobrepujará os outros e assim produzirá uma alteração ou transformação que lhe 
característica. 
Os fatores do meio ambiente estão relacionados entre si e seus efeitos 
combinados determinam quais os microrganismos que dominarão. Entre os fatores 
principais, temos: 
 
1. Propriedades físicas dos alimentos; 
2. Propriedades químicas dos alimentos; 
3. Disponibilidade de oxigênio; 
4. Temperatura; 
 
 
 
PROPRIEDADES FÍSICAS DOS ALIMENTOS 
 
 
O estado físico do alimento, sua natureza coloidal ou o estado após ter sido 
congelado, aquecido umedecido ou secado, junto com sua estrutura biológica determina 
se pode alterar-se ou não e qual o tipo de alteração que sofrerá. 
 
ÁGUA – o que interessa mais nesse fator é a atividade de água (Aw ou aa), que é aquela 
água efetivamente utilizada pelos microrganismos. É a quantidade de água livre presente 
no substrato. Pode ser representa pela equação: Aw = URE/100. Atividade de água média 
necessária para o desenvolvimento de alguns grupos de microrganismos: 
 
Grupo de Microrganismos Aw: 
 
§ Bactérias: 0,90 
§ Leveduras: 0,88 
§ fungos (mofos): 0,80 
§ Microrganismos osmofílicos: 0,62 
 
ESTRUTURA BIOLÓGICA: Apresenta importância na alteração dos alimentos. A 
menos que os microrganismos penetrem, a parte interna dos alimentos é praticamente 
livre de contaminantes. Geralmente os alimentos possuem na proteção externa como as 
cascas das frutas, ovos, tegumento, etc. Essa proteção não somente protege o alimento 
como também determina o tipo, velocidade e desenvolvimento da alteração. 
 
 
PROPRIEDADES QUÍMICAS DOS ALIMENTOS 
 
A composição química do alimento determina sua idoneidade com o meio de 
cultura microbiano. Cada microrganismo utiliza certas substâncias como alimento 
energético e outras para o seu crescimento, havendo um máximo relacionado com a 
umidade disponível e a concentração de hidrogênio. 
 
Nutrientes: energéticos (CHO), crescimento (N) e complementares. Bactérias aproveitam 
melhores as proteínas enquanto os fungos e as leveduras são especialistas em utilizar o 
açúcar. Não produzem todas as vitaminas que necessitam, por isso, devem ser buscadas 
no alimento. 
 
pH: De acordo com a concentração de ácidos, os alimentos podem ser classificados em 
dois grupos básicos: 
 
§ Alimentos ácidos ph < 4,5 
 
§ Alimentos pouco ácidos ph > 4,5 
 
O pH altera a permeabilidade das membranas celulares: em baixo pH a membrana está 
saturada de H+ dificultando a passagem de cátions. Em pH alto a membrana está saturada 
de OH-, inibindo a passagens de ânions. Em pH alcalino, alguns íons tornam-se 
insolúveis, bem como as moléculas não dissociadas de ácidos e bases que penetram nas 
células podem ser tóxicas. 
O pH 4,5 é utilizado em função de que nestes valores e em anaerobiose pode ocorrer o 
desenvolvimento da bactéria Clostridium botulinum, podendo produzir a toxina do 
botulismo. Abaixo do pH 3,0 praticamente não ocorrem microrganismos. 
 
§ Para bactérias o pH ótimo se aproxima de 7,0 (4,0 a 9,0) 
§ Leveduras: o pH ótimo está entre 4,5 a 5,5 (1,5 a 8,5) 
§ Mofos: o pH ótimo está entre 4,0 e 5,0 (1,5 a 11,0) 
 
Substâncias Inibidoras: Do próprio alimento (ácido benzóico em certas frutas) e 
adicionados (aditivos como sorbatos, benzoatos, SO2, etc) 
 
 
DISPONIBILIDADE DE OXIGÊNIO 
 
Do ponto de vista de aproveitamento de oxigênio livre, os microrganismos podem ser 
classificados em: 
 
§ Aeróbios 
§ Anaeróbios 
§ Facultativos 
§ Microaerófilos 
 
Os mofos são estritamente aeróbios, as leveduras se desenvolvem melhor aerobicamente 
mas podem viver na ausência de oxigênio, enquanto as bactérias podem ser aeróbias, 
anaeróbias e facultativas. 
 
 
TEMPERATURA 
 
As possibilidades de alterações dos alimentos por microrganismos estão 
compreendidas numa faixa de temperatura que pode variar entre –15 a + 90 ºC. É comum 
classificarem-se os microrganismos conforme o seu comportamento em relação á 
temperatura, em psicrofilos, mesófilo e termófilos. O termo termodúrico é algumas vezes 
empregado para aqueles microrganismos resistentes ao calor. Todo organismo termófilo 
é termodúrico, mas nem todo termodúrico é termófilo. Temperaturas aproximadas de 
crescimento de alguns grupos de microrganismos. 
 
 
MICROORGANISMOS MAIS IMPORTANTES EM ALIMENTOS 
 
MOFOS – Alguns gêneros importantes são: 
 
§ Phytium – decomposição de hortaliças, raízes; 
§ Mucor – maturação de queijos, sacarificação do amido; 
§ Rhizopus – alteração de frutas, hortaliças, pão, etc; 
§ Aspergillus – produção de sakê, aflotoxina; 
§ Penicillium – alteração em frutas, maturação de queijos; 
§ Botrytis – ataca a uva; 
 
LEVEDURAS: Alguns gêneros importantes são: 
§ Saccharomyces – produção de pão, cerveja, glicerina; 
§ Kleyveromyces – deterioração de laticínios; 
§ Pichia e Hansenula – contaminação de salmouras; 
§ Zigosaccharomyces – alteração de mel, xaropes, etc; 
§ Candida – produção de proteína microbiana; 
§ Mycoderma – alteração em vinhos, cervejas e queijos. 
 
BACTÉRIAS: Alguns gêneros importantes são: 
 
§ Pseudomonas – deterioração de pescados e laticínios; 
§ Acetobacter – ácido acético; 
§ Escherichia e Enterobacter – índice de higiene e sanidade (coliformes); 
§ Samonella – infecção alimentares(tifo, paratifo); 
§ Micrococcus – contaminação de leite; 
§ Staphilococcus – intoxicações alimentares; 
§ Lactobacillus – elaboração de laticínios; 
§ Streptococcus – contaminação e produção de laticínios; 
§ Pediococcus – problemas na cerveja (diacetil); 
§ Leuconostoc – diacetil e acetoína; 
§ Bacillus – intoxicações alimentares; 
§ Clostridium – intoxicações alimentares. 
 
a.2) AÇÕES DE ENZIMAS PRESENTES NO ALIMENTO 
 
As enzimas são também chamadas de diástases, são proteínas que apresentam a 
capacidade de catalisar reações químicas e as alterações enzimáticas se caracterizam por 
modificar o produto através de enzimas. A atividade enzimática é influenciada pela 
presença de determinados compostos, chamados cofatores enzimáticos (coenzimas, 
grupos prostéticos e ativadores enzimáticos) e pelas condições ambientais (pH, 
concentração de enzima, inibidores, temperatura, atividade de água, substrato, presença 
de oxigênio). 
A primeira enzima a ser cristalizada foi a UREASE por Summer em 1926. 
Existem pelo menos 1.000 enzimas em cada célula. A principal característica das enzimas 
é sua especificidade, ou seja, cada enzima atua em um único substrato. 
A obtenção de enzimas pode ser a partir de vegetais, animais e microrganismos. 
Na tecnologia de alimentos as enzimas são muito importantes. A seguir são menciondas 
algumas delas e sua respectiva atuação. 
 
AMILASE- hidrolisam o amido a moléculas menores 
 
§ α-amilase (hidrolisa amido a dextrina) 
§ β-amilase (hidrolisa amido a maltose) 
* Usada na industria de bebidas, panificação, etc., sendo prejudicial no armazenamento 
de grãos. 
 
INVERTASE: hidrolisa a sacarose a glicose + frutose. 
 
§ α-glucosidase- reconhece o resíduo glicose. 
§ β-frutofuranosidase – reconhece o resíduo frutose. 
* São usadas na produção de álcool. 
PROTEASAES – hidrolisam as proteínas a peptídeos e aminoácidos. 
 
Ex.: papaína, ficina, bromelina, quimosina, renina, pepsina, etc. 
 
PECTINASES – Hidrolisam a pectina a compostos menores. 
 
pectinesterase (PE) 
poligalacturonase (PG) 
* São usadas na produção de geléias, sucos de frutas e vinhos. 
 
LIPASES- catalisam reações de oxidações de ácidos graxos 
* São problemáticas no armazenamento de grãos oleaginosas e provocam o ranço 
hidrolítico. 
 
OXIDASES: são asque provocam reações de oxidações, principalmente as responsáveis 
pelo escurecimento enzimático, detalhado a seguir. 
 
 
ESCURECIMENTO ENZIMÁTICO 
 
Quando a maioria das frutas e dos vegetais é amassada, cortada ou triturada, 
rapidamente se toma escura. Esta descoloração é oriunda de reações catalisadas por uma 
enzima genericamente conhecida como polifenol oxidase (PPO). A ação desta enzima em 
várias frutas e vegetais in natura acarreta perdas econômicas consideráveis, além de 
diminuição da qualidade nutritiva e alterações do sabor. 
O escurecimento de frutas e de certos vegetais é iniciado pela oxidação 
enzimática de compostos fenólicos pelas polifenóis oxidases (PPOs). O produto inicial 
da oxidação é a quinona, que rapidamente se condensa, formando pigmentos escuros 
insolúveis, denominada melanina, ou reage não-enzimaticamente com outros compostos 
fenólicos, aminoácidos e proteínas, formando também melanina. 
A reação de escurecimento em frutas, vegetais e bebidas é um dos principais 
problemas na indústria de alimentos. Estima-se que em torno de 50,0% da perda de frutas 
tropicais no mundo é devida à enzima polifenol oxidase. A ação desta enzima resulta na 
formação de pigmentos escuros, freqüentemente acompanhados de mudanças 
indesejáveis na aparência e nas propriedades organolépticas do produto, resultando na 
diminuição da vida útil e do valor de mercado. 
 
SUBSTRATO – Tirosina (animais) e Ácido Clorogênico (vegetais); 
 
MECANISMO: Atuação de duas diferentes atividades catalíticas, ambas envolvendo o 
oxigênio: 
 
Monoxigenase (cresolase) – Oxidação de monofenóis (tirosina, fenol, ortocresol, etc) 
para formar dihidróxifenois. Os dois elétrons são fornecidos pelo cobre, sempre associado 
à enzima. 
Catecolase – Envolve a remoção de 2 H+ de fenóis diidroxilados (catecol, 
diidroxifenilalanina), para dar uma ortoquinona correspondente. Estas, por 
polimerização, produzem malanoidinas 
 
CONTROLE: 
Várias maneiras de inibição da PPO são conhecidas, muito embora os métodos 
utilizados pelas indústrias sejam relativamente poucos. Isto se deve ao aparecimento de 
“flavor” desagradável e toxidez e a questões econômicas. Três componentes devem estar 
presentes para que a reação de escurecimento enzimático ocorra: enzima, substrato e 
oxigênio. No caso de ausência ou bloqueio na participação de um destes na reação (seja 
por agentes redutores, temperatura ou abaixamento do pH), esta não prosseguirá. 
 
1) pH: em valores menores de 4, diminui bastante a atividade enzimática 
2) O2 – o oxigênio é imprescindível na reação; 
3) Inibidores químicos (SO2 e Acido ascórbico) – reduzem o substrato, porém é 
temporário; 
4) Temperatura: acima de 70ºC ocorre a inativação enzimática 
5) Ácidos – atuam reduzido o pH. 
 
Exemplos: 
 
a) Ácido Ascórbico – dosagem 0.06% em frutas enlatadas 
b) Sorbato de K(0,2%) + Ácido Cítrico (0,3 a 1,0%) + Ácido Ascórbico (0,3 a 1,0%): 
Batatas descascadas conservam a 4ºC por 20 dias 
 
 
TESTE DA CATALASE E PEROXIDASE 
 
Pode-se avaliar efetividade do tratamento térmico na inativação da enzima 
responsável pelo escurecimento através do teste da catalase ou peroxidase. Razões para 
realizar os testes: 
 
1. Presentes em todos os tecidos 
2. Facilidade de encontrá-las 
3. Resistentes ao calor até 60 –70 ºC 
 
 
TESTE DA CATALASE 
 
A catalase desdobra a água oxigenada em água e oxigênio. Em presença de enzima 
catalase e de água oxigenada começa e borbulhar. É o teste mais seguro. 
 
 
TESTE DA PEROXIDASE 
 
Observa-se a coloração que aparece no produto, se houver presença de 
peroxidase vai ficar marrom. O guaicol garante o substrato devido a sua estrutura que 
pode sofrer oxidação igual aos compostos fenólicos. Colando-se um redutor com o 
substrato, retarda-se e escurecimento enzimático do produto, um exemplo é o ácido 
ascórbico. Todo o produto que for congelado deve ser branqueado anteriormente. 
 
Resultado: se após o branqueamento os testes da catalase e/ou da peroxidase são 
positivos, conclui-se que a inativação não foi completada. 
 
 
a.3) REAÇÕES QUÍMICAS NÃO ENZIMÁTICAS 
 
a) REAÇÃO DE OXIDAÇÃO 
 
Os centros de insaturações dos ácidos graxos são facilmente oxidados por 
agentes oxidantes com formação de vários compostos (aldeídos, cetonas, ácidos, álcoois, 
etc). Rompimento das cadeias insaturados de ácidos graxos, originando diversos 
carbonilados de peso molecular mais baixo, responsáveis pelo odor desagradável. 
 
REAÇÃO: Só ocorre com ácidos insaturados. Mecanismo de radicais livres, através de 
três etapas ou fases: 
 
1ª fase - é a da indução. Não ocorre cheiro de ranço e forma-se os primeiros radicais 
livres. 
2ª fase - é a propagação. Já apresenta cheiro e sabor que tendem a aumentar. Ocorre a 
formação de peróxidos e de seus produtos de degradação. São as reações em cadeia. 
3ª fase - terminação. Os radicais reagirão entre si formando moléculas inativas. 
 
Caracteriza-se pela formação de sabor e odor fortes, alterações de cor e viscosidade do 
lipídio e alteração de sua composição. 
 
MECANISMO - Ocorre à formação de radicais livres que reagiria com O2 atmosférico 
formando um radical peróxido. Inicialmente necessita de uma fonte de energia externa 
(radiação, Calor, luz, íons metálicos). 
Após a formação suficiente de radicais livres a reação é propagada pela remoção 
do H+ da dupla ligação. A adição do Oxigênio nesta posição resulta um radical peroxil 
(ROO-), este radical remove novamente o H+ da dupla ligação produzindo o peróxido 
(ROOH) e radicais livres e estes reagem com o oxigênio e a reação e repete ou formam 
produtos inativos. 
 
ACELERAM A REAÇÃO: O2, luz (UV), metais (Cu e Fe), enzimas (lipoxidases) e 
oxidantes naturais, temperatura. 
 
INIBEM A REAÇÃO: Antioxidantes físicos (embalagem / luz e temperatura) 
Químicos (carotenóides, ácido Cítrico, tocoferóis, BHT, BHA) 
 
b) ESCURECIMENTO QUÍMICO 
 
Também chamado de “browning químico”. É o nome de uma série de reações químicas 
que culminam com a formação de pigmentos escuros chamados de MALANOIDINAS, 
que são polímeros insaturados, coloridos e de composição variada 
 
§ Desejável: Doce de leite, café churrasco, caramelo, cerveja, batata-frita; 
§ Indesejável: frutas secas, sucos de frutas. 
 
b.1) CARAMELIZAÇÃO 
 
Compostos polihidroxicarbonilados são aquecidos a temperaturas altas, 
ocorrendo desidratação com a formação de aldeídos muito ativos. HMF é intermediário 
da reação. Degradação de açúcares na ausência de proteínas ou aminoácidos, a + de 120 
ºC. 
 
REAÇÃO: Desidratação do açúcar redutor e rompimento das ligações, introdução da 
dupla ligação e formação de intermediários incolores de baixo PM. Os dissacarídeos são 
hidrolisados a monossacarídeos para participar da reação. 
 
§ Reação é iônica, pode ser catalisada por ácidos (pH: 2-4) ou bases (pH: 9-11); 
§ A velocidade é maior em meio alcalino; 
§ É o corante mais usado na indústria de alimentos. 
 
b.2) REAÇÃO DE MAILLARD 
 
É a Reação entre um açúcar redutor e um grupo amina de aminoácidos, formando 
pigmentos escuros de composição variada denominados MELANOIDINAS 
Principal causa de escurecimento não enzimático produzido durante o 
aquecimento e armazenamento prolongado. 
 
QUANDO A REAÇÃO É INDESEJÁVEL: 
 
§ Escurece os produtos. 
§ Reduz digestibilidade de proteínas. 
§ Inibe a ação de enzimas digestivas. 
§ Destrói nutriente (aminoácidos essenciais e Vitamina C). 
§ Interfere no metabolismo de minerais por complexação com metais. 
 
UTILIZAÇÃO DE INIBIDORES: 
 
a) Dióxido de enxofre (SO2): porém leva ao odor desagradável e a destruição da vitamina 
B1. 
b) Remoção do açúcar: Remover a glicose enzimaticamente (ovo em pó). 
c) Através de condições adversas. 
 
CONDIÇÕES PARA A REAÇÃO OCORRER 
 
§ Temperatura: Entre 40 -70 ºC, aumenta 2 a 3 vezes a velocidade da reação a cada 
aumentode 10 ºC. 
§ pH: - 3 a 8, descoloração maior 9 a 10. Ótimo entre 6 e 7. 
§ TIPO DE AMINA: Aminoácido básico (lisina)> ácido (glutâmico) >neutro 
(glicina) . 
§ TIPO DE AÇÚCAR: açúcar redutor > pentoses > hexoses > lactose 
§ TEOR DE UMIDADE: velocidade máxima com aa entre 0,5 e 0,8). 
 
b.3) DEGRADAÇÃO DO ÁCIDO ASCÓRBICO 
 
Ácido ascórbico + meio acido e calor = Melanoidinas 
 
c) ALIMENTOS x METAIS 
 
Reação de produtos enlatados ou alimentos contaminados com metais. 
 
c.1) Alimentos x embalagens: embalagens metálicas o ácido pode encontrar um 
microfuro e ocorrer um contato com o estanho. 
 
§ Alimentos ácidos + metais = passam para o meio; 
§ Alimentos de natureza proteica, com desnaturação forma os aminoácidos, 
continuando a degradação produzem o radical –SH, que com FeS2 torna o produto 
com coloração escura, neste caso usa-se verniz tipo C (ZnO ou AlO) que em 
presença de –SH forma ZnS2 ou AlS2 que é incolor, mas o gosto de lata 
permanece. 
 
c.2) Casses vínicas: vinhos com metais quando conservado a frio, precipitam formando 
uma borra no fundo, escurecendo e alterando o sabor do vinho. 
 
a.4) ALTERAÇÕES FÍSICAS E MECÂNICAS 
 
Alterações provocadas pelas temperaturas baixas (dano fisiológico do frio, 
desnaturação proteica e dano por congelamento), pelas temperaturas altas (desnaturação 
proteica), remoção de água, pela exposição à luz e alterações mecânicas (quebra, 
trituração, perfuração etc.). 
 
a.5) ALTERAÇÕES POR SERES SUPERIORES: 
 
Principalmente por roedores e insetos; os primeiros muito importantes em 
produtos derivados de cereais e os segundos relacionados a produtos derivados de cereais 
e frutas. 
 
 
 
PRINCÍPIOS E MÉTODOS DE CONSERVAÇÃO DE ALIMENTOS 
 
PRINCÍPIOS: 
 
ü Uso de temperaturas 
ü Controle da quantidade de água 
ü Controle da taxa de oxigênio 
ü Uso de substâncias químicas 
ü Uso de irradiações 
ü Combinação de dois ou mais princípios 
 
USO DE TEMPERATURAS 
 
As temperaturas usadas podem ser baixas ou altas temperaturas. 
 
A) USO DE BAIXAS TEMPERATURAS 
 
§ Diminuem as reações químicas, microbiológicas e enzimáticas; 
§ Reduz ou elimina seres superiores; 
§ A conservação por baixas temperaturas se baseia na lei de Want’Hoff, que diz que 
a redução de 10 ºC na temperatura do meio reduz de 2 a 3 vezes a velocidade das 
reações. Podemos utiliza a refrigeração e/ou o congelamento: 
 
a.1) REFRIGERAÇÃO 
 
§ Utiliza temperatura de 0 a 15 ºC; 
§ O produto se mantém vivo, conservando as características do produto “in natura”; 
§ È um método temporário (dias ou semanas); 
§ Método eficiente para conservação de frutas; 
§ Os microrganismos psicrófilos são o maior problema; 
§ A temperatura utilizada não inativa enzimas. 
 
a.2) CONGELAMENTO 
 
§ Utiliza temperaturas menores de ºC; 
§ O produto não resiste pois ocorre morte de tecidos; 
§ Método eficiente para conservação de carnes, hortaliças e pescado; 
§ A conservação é por tempos mais prolongados (meses ou anos); 
§ Reduz as reações enzimáticas, porém não inativa. Reações como escurecimento 
de frutas não é solucionado somente com congelamento; 
§ O congelamento pode destruir microrganismos, pois durante o armazenamento 
eles queimam as reservas e morre de inanição; 
§ Normalmente armazena-se os alimentos a –18ºC, assim os psicrófilos não 
resistem e morrem; 
§ Podemos ter dois métodos para o congelamento: 
 
Congelamento Lento: demora mais de três horas para se congelar o produto, 
normalmente usa-se temperaturas na faixa de –25 ºC sem circulação de ar. 
Neste processo, os primeiros cristais de gelo são formados nos espaços 
intercelulares forçando a migração de água do interior da célula para os espaços 
intercelulares, aumentando os cristais de tamanho causando ruptura de algumas paredes 
celulares. Ao descongelar os alimentos, grandes quantidades dos fluídos celulares acabam 
sendo liberados e o alimento fica mais flácido. No caso da carne a proteína é que possui 
maior teor de água. O suco liberado é rico em sais, vitaminas hidrossolúveis e proteínas. 
 
Congelamento Rápido: Demora menos de 3 horas para o congelamento, usa-se 
temperatura da ordem de –25 ºC com circulação de ar ou –40 ºC com ou sem circulação 
de ar. A circulação de ar é um meio que se utiliza para acelerar as trocas de calor. 
Neste processo a água não migra, congelando onde se encontra, com isto tem-se 
maior número de cristais de gelo distribuídos com menor dano às células, evitando o 
rompimento de membranas. O produto é armazenado a –18ºC ou menos. A oscilação 
térmica é uma das maiores causas de alterações, causando movimentos físicos como 
dilatação e contração, provocando formação de grandes cristais de gelo. 
Para a eficiência do congelamento é necessário o uso de embalagens apropriadas. 
O descongelamento deve ser lento para que o alimento possa reabsorver o 
líquido proveniente do descongelamento pelos sais, proteínas, açúcares etc. Não são 
recomendados o congelamento e descongelamento sucessivo porque causaria problemas 
com microrganismos e ativaria algumas enzimas. 
O congelamento lento é mais letal para os microrganismos, mas recomenda-se o 
rápido porque altera menos os alimentos. 
 
 
 
B) ALTAS TEMPERATURAS 
 
As grandes características destes processos são: 
 
§ Destruição de microrganismos e seres superiores 
§ Inativação de enzimas 
 
 
 
B.1) ESTERILIZAÇÃO: 
 
§ Aplicação de temperaturas superiores a 100 ºC; 
§ É utilizada para destruir tanto as formas vegetativas quanto esporuladas de 
microrganismos; 
§ A esterilização comercial destrói 99,99% da população microbiana; 
§ Método permanente de conservação; 
§ Necessita de embalagens apropriadas, não permitindo a recontaminação dos 
alimentos; 
§ Pode ser realizado através de vários processos, como: appertização (esterilização 
na embalagem, através de cozedor rotativo, autoclaves, esterilizador hidrostáticos, 
etc.); esterilização a granel (principal processo é o UHT, onde se utiliza alta 
temperatura por curtos tempos, sendo realizada á vácuo. Exemplo é o leite longa 
vida). 
 
B.2) BRANQUEAMENTO 
 
§ Aplicação de calor em curto espaço de tempo com posterior resfriamento em água 
gelada. Tem a finalidade principal de inativar enzimas, fixar cor e textura do 
produto, remover gases dos tecidos e realizar desinfecção parcial do produto. 
§ Método usado como complementar a outros métodos de conservação; 
 
B.3) PASTEURIZAÇÃO 
 
§ Aplicação de temperaturas inferiores a 100 ºC; 
§ Destruição de formas vegetativas de microrganismos; 
§ Método de conservação temporário; 
§ Necessita de outro método de conservação complementar como a refrigeração; 
§ Recomendado para produtos sensíveis ao calor como sucos de frutas, leite, etc.; 
§ É recomendado para eliminar certos grupos de microrganismos. 
 
Pasteurização lenta: (65 ºC/ 30 minutos), que é recomendada para destruição da flora 
microbiana a posterior inoculação de uma cultura selecionada, como é o caso da 
fabricação de derivados de leite ou para produtos ácidos como sucos de frutas; 
Pasteurização rápida: (73 a 75 ºC / 15 segundos), usada para o leite que é 
comercializado na forma fluída. 
 
 
 
B.4) TINDALIZAÇÃO 
 
§ Caracteriza-se pela aplicação de uma série de tratamentos térmicos brandos ao 
produto intercalados pela exposição à temperatura ambiente. Esta exposição faz 
com que os esporos dos microrganismos que não foram eliminados pelo calor 
germinem e posteriormente as formas vegetativas são destruídas pelo uso de 
temperaturas da ordem de 60 ºC; 
§ Na realidade são várias pasteurizações sucessivas, obtendo no final um produto 
estéril sem contudo utilizar temperaturas de esterilização; 
§ Método pouco usado para alimentos, devido ao seu alto custo. 
 
 
B.5) MICROONDAS 
 
§ As micro-ondas são ondas eletromagnéticas curtase altas frequências, na ordem 
de 300 a 3000 MHz, obtidas de determinadas fontes de energia. 
§ O fundamento da geração de calor por micro-ondas é centrado no fato de que 
ondas curtas promovem fricções e oscilações de moléculas dipolares como a água, 
gerando calor. Promove o aquecimento de dentro para fora. O aquecimento é mais 
rápido e mais uniforme que por condução e convecção. Utilizado para 
descongelamento e cocção de alimentos; 
§ Pode ser utilizada para realizar esterilizações e/ou pasteurização de alimentos. 
 
 
CONTROLE DO TEOR DE UMIDADE 
 
A água é o constituinte que predomina na maioria dos alimentos e está 
distribuída de várias formas nesses alimentos. O que interessa do ponto de vista dos 
processos de conservação é o teor de água livre, também chamada atividade de água (aa), 
que é a quantidade de umidade que está disponível para reações químicas, enzimáticas e 
microbianas. Assim temos como características dentro deste princípio de conservação dos 
alimentos: 
 
1. Reduz reações químicas, enzimáticas e microbianas; 
2. Processo econômico (redução de peso e volume dos produtos: transporte, embalagens 
e armazenamento); 
3. Produto seco é de fácil manuseio; 
4. Elaboração de alimentos instantâneos (praticidade). 
 
Podemos utilizar vários métodos para realizar este controle de umidade: 
 
§ Secagem/Desidratação: efetuar a retirada quase que total da água, em torno de 2/3 
da água 
§ Concentração: para produtos ricos em açúcar, onde se retira pequena quantidade 
de água; 
§ Pressão osmótica: Ao invés de retirar água, acrescenta-se solutos como o açúcar 
ou sal. 
 
A) SECAGEM E DESIDRATAÇÃO 
 
A secagem é um dos processos mais antigo utilizados pelo homem na 
conservação de alimentos, copiado da natureza e aperfeiçoado. Todos os cereais são 
conservados por secagem. Há inúmeras vantagens na aplicação destes métodos: 
 
§ Melhor conservação do produto; 
§ Redução do peso (50 a 80%) e de volume do produto, pela retirada de água, 
cascas, sementes, redundando em menores custos de transporte, embalagens e 
armazenamento; 
§ É um método mais barato que os demais; 
§ Facilidade de embalagem; 
§ Os produtos secos conservam razoavelmente suas características físicas e 
nutritivas 
§ Os processos de secagem podem estar em dois grupos: 
 
A.1 - SECAGEM NATURAL: 
 
É recomendável para regiões de clima quente, com boa irradiação solar, pouca 
pluviosidade e de preferência, ventosas na época da secagem. 
O local de secagem deve ser cercado e longe de estradas (poeira) 
Para um melhor resultado convém que a secagem seja dividida em duas etapas: 
a primeira iniciada ao sol e continuada até que os alimentos tenham perdido 50 a 70% da 
umidade, e a segunda à sombra, para que os produtos não se ressequem a não percam o 
sabor e o aroma naturais. Com a secagem total ao sol, frequentemente as frutas escurecem 
e tornam-se coriáceas. 
Antes de expor o alimento ao sol deve-se fazer um tratamento antioxidante para 
evitar escurecimento enzimático; 
O tempo de secagem necessário para cada produto depende do seu teor de água, 
do total de irradiação solar, mas pode-se calcular como sendo de 2 a 12 dias para climas 
tropicais. 
No Brasil a secagem natural não apresenta muita importância prática. Apenas 
frutas como a banana, em alguns pontos do país, é processada de maneira bem empírica. 
Outros exemplos são o café e o cacau, carne e pescado. 
 
A.2 – DESIDRATAÇÃO 
 
É a secagem pelo calor produzido artificialmente em condições de temperatura, 
umidade e circulação de ar, cuidadosamente controlado. 
O ar é o mais usado meio de secagem por causa de sua abundância, conveniência 
e porque o seu controle no aquecimento do alimento não apresenta maiores problemas. O 
ar conduz o calor ao alimento, provocando evaporação da água, sendo também o veículo 
no transporte do vapor úmido liberado do alimento. A velocidade de evaporação da água 
do alimento, além da velocidade do ar, depende de sua área superficial e porosidade numa 
razão diretamente proporcional. 
 
a) SECAGEM POR TÚNEL 
 
Sistema formado por uma câmara, aonde o produto vai se deslocar no mesmo 
sentido do deslocamento do ar quente (corrente paralela), ou em sentido contrário ao 
deslocamento do ar quente (contracorrente). A secagem inicial é mais rápida na corrente 
paralela e a secagem final é mais rápida na contracorrente. O produto fica mais seco e de 
melhor qualidade na contracorrente, pois seca devagar o produto sem deixar formar casca 
dura (crosta). 
É o sistema mais difundido para frutas e hortaliças. Em termos de aplicação é 
um sistema flexível, pois permite a secagem simultânea de vários produtos. É 
relativamente econômico. Na operação do secador de túnel é conveniente a renovação do 
ar, recirculando o ar utilizado (economia de energia) e eliminar um pouco de ar utilizado. 
 
b) SECAGEM POR ATOMIZAÇÃO (Spray dryer) 
 
Muito usado para produtos como leite, café, sucos de frutas, etc. É um método 
bastante eficiente e mantém bastante as características do produto. O alimento líquido 
pode ser concentrado previamente, pois a concentração é um método mais barato e mais 
eficiente de retirada de água. Podemos dividir a secagem por atomização nas seguintes 
etapas: 
a) atomização do produto: o produto líquido é bombeado para dentro da câmara 
de secagem e atomizado (transformado em névoa) através de bicos pressurizados ou 
turbinas atomizadoras. O tamanho da gota formada é função da pressão nos bicos ou 
velocidade de rotação nas turbinas, e resulta em um produto de granulometria maior ou 
menor, influenciando a hidratação final do alimento. 
b) mistura da névoa com ar quente: pode ser em corrente paralela ou 
contracorrente. 
c) secagem: A alimento atomizado entra em contato com ar aquecido, 
geralmente com temperaturas ao redor de 150 ºC, evaporando a água rapidamente, cerca 
de 3 a 5 segundos, o que não permite que a temperatura interna do alimento ultrapasse os 
70 ºC 
d) separação do pó e do ar: após a secagem o alimento seco sedimenta no fundo 
do secador onde é retirado por sistema de transporte pneumático até o setor de 
embalagem. O alimento mais leve (pó) e retirado junto com o ar através de exaustores, 
que devem ser separados por meio de ciclones e depois incorporado ao restante do 
produto seco no setor de embalagem. 
 
c) SECAGEM POR TAMBOR (Drum-dryer) 
 
Aplicação de calor por contato, também chamado secador de superfície raspada. 
O aquecimento é representado por um tambor aquecido internamente por vapor ou 
energia elétrica, podendo trabalhar a pressão atmosférica ou com vácuo. O líquido é 
derramado sobre o tambor quente e desidrata, posteriormente é raspado do tambor, o qual 
gira a baixas rotações (3 a 5 rpm). Usado para alimentos que apresentam facilidade de 
oxidações. Não é um processo caro, custo manutenção é baixo e é bastante versátil. Pode 
ser usado para formulações de alimentos. 
 
d) DESIDRATAÇÃO POR LIOFILIZAÇÃO (Freezer dryer) 
 
Baseia-se no ponto tríplice da água, que ocorre com a pressão em 4,6 mmHg e 
temperaturas menor de 0ºC. Abaixo desses valores a água para diretamente da forma 
sólida (gelo) para forma gasosa (vapor de água) pelo processo de sublimação, o que é 
conseguido através do congelamento prévio do alimento (< -50 ºC) e vácuo parcial do 
sistema. A não passagem pelo estado líquido trás inúmeros benefícios ao produto final: 
a) maior retenção de nutrientes; 
b) maior retenção de constituintes de aroma, sabor e cor; 
c) maior facilidade de hidratação do produto seco; 
 
Porém apresenta problemas como: 
a) O alto custo do sistema, que é o maior obstáculo a sua expansão; 
b) A necessidade de embalagens especiais, dado a grande higroscopicidade do 
produto seco. 
 
 
B - CONCENTRAÇÃO 
 
Retirar parte da água: (1/3 a 2/3). 
 
Ex. doce de leite, geléias, sucos concentrados,massa de tomate 
 
Razões: 
 
§ Conservação de alimentos; 
§ Economia cm transporte, embalagem, armazenamento, etc; 
§ Antes da desidratação, alimentos líquidos são concentrados, pois esse processo é 
mais econômico; 
§ Certos alimentos são preferidos concentrados; 
§ Utiliza o processo de evaporação; 
§ Necessita outros métodos de conservação. 
 
EVAPORADOR (partes) 
 
§ Trocador de calor — aquecimento indireto 
§ Separador — separa o vapor da fase líquida 
§ Condensador — Condensa o vapor produzido (não necessita se for a pressão 
atmosférica) 
 
Evaporador a vácuo; 
Evaporador simples e múltiplos efeitos. 
 
TIPOS DE EVAPORADORES: 
 
a) TACHO ABERTO: mais simples, mais baratos, baixo custo inicial, pouco 
econômico (perdem muita energia); 
b) EVAPORADOR TUBULAR DE FILME DESCENDENTE; 
c) EVAPORADOR DE SUPERFÍCIE RASPADA “LUWA”; 
d) EVAPORADOR CÓNICO ROTATIVO. 
 
ALTERAÇOES NOS ALIMENTOS 
 
a) Altera propriedades nutricionais e sensoriais; 
b) Escurecimento - aparecimento de sabor e aroma queimado; 
c) Cristalização de açúcares (são solúveis em água); 
d) Desnaturação de proteínas (altera textura no leite condensado); 
e) A 100 ºC destrói formas vegetativas, mas não os esporos dos microrganismos; 
f) Desenvolvimento de microrganismos no concentrador que utiliza temperaturas 
baixas. 
 
 
USO DE IRRADIAÇÕES 
 
A radiação ionizante pode conservar os alimentos inibindo ou destruindo as 
bactérias e outros microrganismos responsáveis pelo apodrecimento. 
A radiação é excelente método, que pode ser utilizado como meio direto para a 
conservação de alimentos e como complemento para reforçar a ação de outros processos 
aplicados com a mesma finalidade. O emprego da radiação, sob o ponto de vista técnico, 
satisfaz plenamente o objetivo de proporcionar aos alimentos, estabilidade nutritiva, 
condições de sanidade e de mais longo período de armazenamento. 
 
As principais vantagens da radiação são as seguintes: 
 
§ Os alimentos não são submetidos à ação do calor e, portanto, suas características 
organolépticas não são modificadas; 
§ Permite o tratamento de alimentos envasados (enlatados); 
§ Os alimentos podem conservar-se com uma única manipulação, sendo 
desnecessária a utilização de aditivos químicos; 
§ As necessidades energéticas do processo são muito baixas; 
§ As perdas do valor nutritivo dos alimentos tratados por este sistema são 
comparáveis aos métodos de conservação usados atualmente; 
§ O processo pode ser controlado automaticamente e requer pouca mão-de-obra. 
 
A principal desvantagem deste método é o elevado custo de instalação. Alguns autores 
têm manifestado cuidados ao consumo de alimentos irradiados. Pelas seguintes razões: 
 
§ As eventuais perdas do valor nutritivo. 
§ A possibilidade de algumas espécies microbianas desenvolverem resistência às 
radiações. 
§ A inexistência de sistemas analíticos adequados para a detecção de alimentos 
irradiados. 
§ A resistência do consumidor ao consumo de alimentos irradiados por medo dos 
efeitos da radioatividade induzida. 
 
A radiação de alimentos tem por objetivo, conservar o produto protegendo-o contra 
agentes de deterioração. 
 
§ Aumentar o tempo de vida útil de alimentos vegetais e animais; 
§ Exercer ação equivalente à dos processos de pasteurização e de esterilização; 
§ Complementar a atuação de outros processos de conservação de alimentos; 
§ Impedir o brotamento inconveniente de vegetais; 
§ Destruir insetos infestantes de vegetais; 
§ Retardar o ciclo de maturação de frutas; 
§ Facilitar o armazenamento de produtos estocados em baixas temperaturas. 
 
Os materiais para a radiação de alimentos provêm de duas fontes: radioativa 
(Cobalto 60 e Césio 137) e mecânica (Radiações obtidas através de aparelhos 
aceleradores de elétrons). 
Os íons radioativos produzidos pela irradiação dos alimentos danificam ou 
destroem os microrganismos de forma imediata já que mudam a estrutura da membrana 
celular e afetam as suas atividades enzimáticas e metabólicas. No entanto, um efeito 
todavia mais importante é aquele que produz sobre as moléculas de DNA e RNA do 
núcleo celular, ambos compostos essenciais para seu crescimento e proliferação. Os 
efeitos da irradiação não se manifestam até o término de algum tempo em que a dupla 
hélice de DNA é incapaz de desprender-se impedindo a duplicação celular. 
A rapidez com que uma célula morre por efeito das radiações depende da 
velocidade em que os íons são gerados e interagem com o DNA. A redução de uma 
determinada população microbiana depende da dose recebida. Em teoria, se espera que a 
medida em que se aumenta a dose radiante a população microbiana se reduza 
logaritmicamente. Algumas espécies de bactérias contêm mais de uma molécula de DNA 
e outras, são incapazes de reparar os danos que a radiação produz. 
Os vírus são muito resistentes às radiações e é improvável que as intensidades 
de radiação utilizadas nos processos de conservação de alimentos os afetem em absoluto. 
Em geral as formas vegetativas são menos resistentes à radiação que os esporos. 
Os insetos e parasitas são destruídos com as doses mais baixas empregadas 
industrialmente. 
Os mofos e leveduras são destruídos também com facilidade e para isso, doses 
de radiação relativamente baixas, são suficientes. 
As doses médias e máximas recomendadas para os alimentos são de 10 kGy e 
15 kGy, respectivamente. A estas doses as energias de emissão de Cobalto 60 e de Césio 
137 são incapazes de induzir nos alimentos nenhuma radioatividade. Por outro lado, as 
energias emitidas pelos geradores de elétrons e raios X são suficientemente elevadas, mas 
os níveis de radioatividade que esta radiação produz são insignificantes. 
As radiações ionizantes, que se diferenciam entre si por seu poder de penetração 
nos substratos são produzidas por partículas (raios alfa) e ondas eletromagnéticas (raios 
X e gama). Elas exercem sobre os alimentos atividades bactericida e, por não causar 
aumento da temperatura no produto, são indicadas para a esterilização de alimentos 
ácidos. 
O emprego das radiações ionizantes em doses esterilizantes, além de sua ação 
bactericida, gera, nos alimentos, reações secundárias inconvenientes, em menor ou maior 
grau, de acordo com as doses utilizadas e o tempo de exposição dos produtos aos raios. 
 
 
CONTROLE DA TAXA DE OXIGÊNIO 
 
Reduzindo a taxa de O2 inibe-se ou evita-se reações de oxidações (química ou 
enzimáticas) 
Evita-se o crescimento de microrganismos aeróbios; 
 
Pode ser executado pelos seguintes métodos; 
 
a) Vácuo: remoção do ar para produtos enlatados a vácuo 
b) Envasamento em atmosfera asséptica: onde o ambiente de embalagens está 
saturado com um gás inerte como nitrogênio ou CO2. 
c) Alteração da composição atmosférica: através da modificação da composição do 
ar (atmosfera modificada) ou modificação e controle da composição do ar 
(atmosfera controlada) 
 
 
USO DE SUBSTÂNCIAS QUÍMICAS 
 
Pode ser substâncias químicas adicionadas ou próprias do alimento 
 
Substâncias químicas adicionadas: São os aditivos químicos, principalmente os 
antioxidantes e conservantes. Serão estudados posteriormente. 
Substâncias químicas naturais: Principalmente aquelas substâncias produzidas pelas 
fermentações, como as provocadas por: 
 
§ Bactérias: acética (vinagre), láctica (iogurte, chucrute, picles, azeitonas), 
propiônicas (queijos); 
§ Leveduras: alcoólicas (cervejas, vinhos, álcool); 
§ Mofos: cítrica (produção do ácido cítrico), glucônica (ácido glucônico, usado para 
evitar rancificações, escurecimentos).

Outros materiais