Buscar

Medição da Velocidade da Luz com Microondas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO 
 
 
 
 
Laboratório de Física Moderna 
Sumário 
Experiência 1 ................................................................................................................................. 2 
A velocidade da Luz ....................................................................................................................... 2 
Experiência 2 ................................................................................................................................. 4 
Radiação Térmica ......................................................................................................................... 4 
Experiência 3 ................................................................................................................................. 7 
A constante de Planck .................................................................................................................. 7 
Experiência 4 ............................................................................................................................... 10 
O efeito Fotoelétrico .................................................................................................................... 10 
Capítulo 5 .................................................................................................................................... 14 
Espectros Atômicos .................................................................................................................... 14 
Capítulo 6 .................................................................................................................................... 17 
Absorção e emissão de radiação .................................................................................................. 17 
 
 
 
Experiência 1 
 
 
 
A velocidade da Luz 
 
1. Introdução 
 
Até o século XVII se acreditava que a propagação da luz era instantânea, ou seja, sua 
velocidade era infinita. Uma das primeiras tentativas para se medir a velocidade da luz 
foi feita por Galileu. Ele tentou medir o tempo que um feixe luminoso demoraria para 
percorrer uma dada distância. No entanto, sem aparelhos de medida bastante sensíveis 
seria impossível obter um valor para este tempo e o experimento fracassou. Por volta 
de 1675, o astrônomo dinamarquês Olaf Römer fazia observações dos sucessivos eclip- 
ses de uma das luas do planeta Júpiter. Ele mostrou que quando a Terra estivesse em 
posições diametralmente opostas ao Sol, ocorria um atraso entre dois eclipses de 
aproximadamente 20minutos. Römer sugeriu que este atraso era devido ao tempo gasto 
pela luz para percorrer a distância correspondente ao diâmetro da órbita da Terra e 
concluiu que a velocidade da luz embora muito alta, era finita. Uma medida bastante 
precisa foi feita pelo físico francês H.L. Fizeau, por volta de 1849, usando um 
dispositivo óptico constituido de dois espelhos e uma roda dentada que permitia ao 
observador sincroni- zar os raios incidente e refletido. Mais tarde o físico e astrônomo 
francês Jean Bernard Léon Foucault adaptou o experimento de Fizeau e calculou a 
velocidade com bastante precisão. Fez ainda comparações entre a velocidade da luz se 
propagando na água e no ar. Experimentos mais precisos foram feitos, dentre eles as 
técnicas precisas desenvolvidas pelo físico A. A. Michelson, e hoje o valor exato da 
velocidade da luz é c = 299.792.458m/s. 
 
Em sua teoria eletromagnética, J. C. Maxwell mostrou que toda onda eletromagnética 
se propaga no vácuo com a mesma velocidade c = (µoo)
-1/2
, onde o é a 
permissividade elétrica e µo é a permeabilidade magnética do vácuo, respectivamente. 
Pode-mos ainda medir a velocidade de propagação de uma onda através da medição 
direta de sua frequência ν e comprimento de onda λ da forma 
c = λν. (1.1) 
Neste experimento vamos medir a velocidade da luz à partir da radiação de micro- 
ondas. 
 
 
2. Roteiro: Experiência 1- Medida da velocidade da luz. 
Objetivo 
Medir a velocidade da luz. 
 
 
Material Utilizado 
 
• Forno de microondas; 
 
• Prato para microondas; 
 
• Marshmallows ou Tabletes de Manteiga; 
 
• Régua. 
 
 
Procedimento 
 
• Retire o prato giratório do microondas; 
 
• Disponha os marshmallows lado a lado em um prato que possa ser colocado no 
microondas. Se você for usar os tabletes de manteiga corte pequenos pedaços, to- 
mando o cuidado para que tenham o mesmo comprimento e espessura e organize- 
os da mesma foma; 
 
• Verifique a frequência das microondas do seu forno. Você pode verificar a frequên- 
cia em um adesivo colocado na parte de trás ou procure no manual do forno de 
microondas. O valor mais frequente é 2450 MHz (2.45 × 109H z). 
 
• Leve tudo ao forno de microondas. Deixe os marshmallows por 40s e a manteiga 
por 5s. Use a potência máxima do forno; 
 
• Retire o prato do forno com cuidado para não se queimar e observe que aparecem 
alguns pontos derretidos. A distância entre dois pontos derretidos corresponde a 
dois máximos das microondas e já sabemos que a distância entre dois máximos 
consecutivos de uma onda é o que chamamos de comprimento de onda. 
 
• Meça essa distância e anote em uma tabela. Repita esse procedimento 5 vezes, 
substituindo por novos marshmallows (ou pedaços de manteiga). 
 
• Calcule o valor médio e o desvio padrão da medida. 
 
• Usando a equação 1.1 encontre o melhor valor para a velocidade de propagação 
da microonda e comprare com o valor exato. 
 
 
Responda às questões 
 
1. Explique o funcionamento do forno de microondas. 
 
2. Por que os alimentos não são uniformementes cozidos quando colocados em um 
forno de microondas? 
 
 
Sugestão 
 
Você pode usar dois ovos ao invés dos materiais propostos e medir a distância entre 
dois pontos de cozimento. Deixe por apenas 15s. 
 
 
3. Bibliografia 
 
1. D. Halliday, R. Resnick e J. Walker; Fundamentos de Fisica, Vol IV, Óptica e Fí- 
sica Moderna, Editora LTC, 8
a 
edição (2008). 
 
2. R. H. Stauffer Jr, The Physics Teacher , 35 231 (1997). 
Experiência 2 
 
 
Radiação Térmica 
 
Radiação de corpo negro 
 
1. Introdução 
 
Quando colocamos um pedaço de ferro no fogo, deixamos por alguns segundos e o 
aproximamos de nossas mãos podemos sentir a radiação emitida pelo corpo na forma 
de calor. Esta radiação, no entanto, não é visível. À medida que a temperatura 
aumenta, a quantidade de radiação emitida também cresce e começamos a observar 
uma mudança na coloração da superfície do ferro; em temperaturas muito altas a 
superfície do ferro adquire uma cor vermelha brilhante. A radiação emitida por um 
corpo devido à sua temperatura é chamada de radiação térmica. Em geral, em 
temperaturas abaixo de 600
o 
C a radiação térmica emitida pelos corpos não é visível, 
seu comprimento de onda é muito maior do que o comprimento da luz visível. 
Existem, no entanto, corpos que emitem radiação visível como por exemplo, o Sol, o 
carvão em brasa, as lâmpadas incandescentes, dentre outros. O espectro de radiação 
térmica emitida pelo corpo dependerá, essencialmente, da natureza desse corpo. 
Entretanto, alguns objetos quando aquecidos emitem espectros idênticos, ou seja, a 
radiação emitida por estes corpos à mesma temperatura não dependerá da 
constituição do material. Estes objetos são chamados de corpos negros. Se um corpo 
absorve toda a radiação incidente sobre ele considerado um corpo negro. De fato, 
esses i não refletem a luz incidente e portanto eles possuem a coloração negra. 
A distribuição espectral da radiação de corpo negro é especificada pela chamada 
Radiância Espectral, RT (ν ), que é definida de forma queRT (ν )dν seja igual à energia 
por unidade de tempo por unidade de área emitida por uma superfície à temperatura T 
num intervalo de frequência de ν a ν + dν . Se plotamos um gráfico de RT (ν ) em função 
de ν para diferentes temperaturas absolutas T , observaremos que RT cresce rapidamente 
com o aumento da temperatura. Por volta de 1879, Josef Stefan escreveu uma relação 
empírica entre a energia por unidade de tempo por unidade de área irradiada pelo corpo 
 
negro e sua temperatura 
 
RT = σT 
4 
(1)
em que σ = 5, 67 × 10−08W/m2 K 4 é a constante de Stefan-Boltzmann e T é a tem- 
peratura em unidades de Kelvin. Veja que, de acordo com a Lei de Stefan-Boltzmann, 
RT só depende da temperatura do corpo e não de qualquer outra característica do corpo 
e pode ser entendida como a rapidez com que um corpo emite energia. Os corpos que 
não são negros também irradiam energia por unidade de área por unidade de tempo 
porém, com uma rapidez menor do que um corpo negro à mesma temperatura. Para 
estes corpos a cor e a composição do material são fatores extremamente relevantes. 
Outro resultado interessante é que espectro de radiância se desloca para frequências 
maiores à medida que a temperatura aumenta. Este resultado ficou conhecido como 
a Lei do Deslocamento de Wien 
 
νmax / T = 2, 898 × 10
−3
(m × K ) (2) 
 
em que νmax é a frequência na qual RT tem seu valor máximo para uma dada 
temperatura. 
Uma cavidade também se comporta como um corpo negro. A radiação térmica que 
incide sobre o orifício entra na cavidade e é repetidamente refletida pelas suas paredes. 
Se a área da orifício for muito pequena comparada ao interior da cavidade, podemos 
considerar que toda a radiação será absorvida no interior da cavidade e o orifício será 
um absorvedor ideal, caracterizando um corpo negro. 
Neste experimento vamos estudar a absorção de radiação por dois objetos de cores 
diferentes, exemplificando a teoria da radiação térmica. 
 
 
Roteiro: Experiência 2- Radiação de Corpo Negro. 
Objetivo Geral 
Estudar a absorção e emissão de radiação por um corpo negro. 
 
 
Material Utilizado 
 
• Duas latas de alumínio iguais; 
 
• Tintas preta e branca; 
 
• Termômetros; 
 
• Uma lâmpada incandescente de 100W e um bocal; 
 
• Relógio; 
 
• Água 
 
 
 
Procedimento 
 
• Pinte uma das latas com a tinta branca e a outra com a tinta preta; 
 
• Encha as duas latas com a mesma quantidade de água; 
 
• Meça a temperatura inicial da água nas duas latas e anote este valor. Aguarde 
alguns instantes até que a temperatura seja a mesma nas duas latas; 
 
• Ligue a lâmpada incandescente colocada próxima às latas de maneira simétrica; 
 
• Anote a temperatura em cada lata a cada minuto até que a temperatura se estabi- 
lize; 
 
• Desligue a lâmpada e meça novamente a temperatura a cada minuto. 
 
• Anote seus dados em uma tabela e faça o gráfico de Temperatura X Tempo. Você 
terá dois conjuntos de valores: Um para a absorção (aquecimento das latas) e 
outro para a emissão (resfriamento das latas) e portanto terá que fazer dois gráficos 
para cada lata; 
 
• Obtenha a taxa de variação da temperatura para as duas latas. 
 
 
Responda às questões: 
 
1. Qual das latas aquece mais rapidamente. Qual delas esfria mais rapidamente? Por 
que isso ocorre? 
 
2. Aproxime suas mãos no lado das latas oposto à lâmpada e verifique em que caso a 
radiação emitida é maior. É possível estimar o comprimento de onda da radiação 
emitida? 
 
3. Apenas parte da energia fornecida a uma lâmpada de 100W surgem na forma de 
radiação visível. O que acontece com o resto da energia? O que poderia ser feito 
para melhor a a eficiência desta lâmpada? 
 
 
Bibliografia 
 
1. D. Halliday, R. Resnick e J. Walker; Fundamentos de Fisica, Vol IV, Óptica e 
Física Moderna, Editora LTC, 8
a 
edição (2008). 
 
2. R. Eisberg e R. Resnick, Física Quântica, Editora Campus, 27 Edição (1979). 
 
3. http://www.if.ufrgs.br/oei/exp/exp3.html. Acesso em 26/06/2012. 
 
 
1 
Experiência 3 
 
A constante de Planck 
 
Introdução 
 
A Lei de Stefan-Boltzmann e a Lei de Wien não descreviam completamente a 
radiação térmica. Era necessária uma teoria que explicasse o espectro de radiação 
de corpo negro, ou seja, uma expressão para radiância espectral que explicasse os 
pontos observados experimentalmente. A densidade de energia espectral foi calculada 
por Rayleigh-Jeans utilizando o princípio da equipartição da energia da teoria 
clássica da Termodinâmica. Ele obteve uma equação para RT (λ)dλ da forma 
 
em que k é a constante de Boltzmann. Essa expressão concorda com os resultados 
experimentais somente no limite de grandes comprimentos de onda. Para pequenos 
valores de λ o modelo de Rayleigh-Jeans diverge. Este resultado ficou conhecido como a 
catástrofe do ultravioleta. Por volta de 1900, o físico alemão Max Planck propôs 
uma nova formulação para a radiação de corpo negro que não considerava o princípio 
clássico de equipartição de energia. Ele sugeriu que o problema para as altas frequências 
( λ pequeno) poderia ser eliminado se existisse uma energia de corte tal que E → 0 se 
ν → ∞, ou seja, o valor médio da energia tende a zero se ν → ∞. Planck então 
sugeriu que a energia média é uma função da frequência e mostrou que as variações das 
energias térmicas de um corpo negro só poderia assumir valores múltiplos de uma certa 
quantidade, ou seja, 
E = 0, ∆E, 2∆E, 3∆E... (3.4) 
Planck queria mostrar que E ≈ kT quando a diferença de energia ∆E fosse pequena 
e que E ≈ 0 se ∆E fosse grande. Então, ele precisava obter uma expressão em que 
∆E fosse uma função crescente de ν . Planck propôs que ∆E ∝ ν e a constante de 
proporcionalidade é a chamada constante de Planck, h. Em outros termos 
 
∆E = hν. (3.5) 
 
 
Planck obteve o valor desta constante que melhor ajustava seu resultado aos dados 
experimentais. O valor considerado foi de 
h = 6.63 × 10−34 J.s (3.6) 
A expressão obtida por Planck para a radiância é da forma
 
 
RT (ν )dν = 
 
8πν 
2 
c3 
 
hν 
hν 
e kT 
− 
 
 
dν (4.7)
 
Essa ficou conhecida como Lei da Radiação de Planck para o corpo negro. A lei de 
Stefan-Boltzmann e a Lei de deslocamento de Wien podem ser obtidas pela fómula de 
Planck. Por toda a sua contribuição para as bases da Teoria Quântica, Max Planck 
ganhou o Prêmio Nobel em 1918. 
Em 1905, partindo da teoria de Planck, Einstein sugeriu que “na propagação de um 
raio de luz emitido por uma fonte puntiforme, a energia não é continuamente distri- 
buída sobre volumes cada vez maiores de espaço, mas consiste em um número finito 
de quanta de energia, localizados em pontos do espaço, que se movem sem se dividir e 
que podem ser absorvidos ou gerados somente como unidades integrais”. Em outras 
palavras, Einstein propôs que a luz era composta de pequenos pacotes cada um com 
uma energia E = hν . Esses pacotes de energia foram, mais tarde, denominados fótons. 
Com esta hipótese Einstein generaliza a ideia de Planck, recupera a ideia de Newton 
que acreditava ser a luz composta de pequenas partículas e introduz a quantização do 
campo eletromagnético. 
A constante de Planck provou ser a constante fundamental da teoria quântica. 
 
 
Roteiro: Experiência 3- Medida da constante de Planck. 
Objetivo 
Obter o valor da constante de Planck a partir da luz emitida por um LED (Light 
Emitting Diode). 
 
 
Material Utilizado 
 
• Leds de 4 cores diferentes. Escolha os leds de alto brilho e transparentes para 
facilitar as medidas; 
 
• Resistores de 300Ω; 
 
• Pilha de 6V; 
 
• Potenciômetro; 
 
 
• Multímetro;• Fios para o arranjo experimental. 
 
 
Procedimento 
 
• Você precisa conhecer o comprimento de onda e a frequência de cada Led. Use a 
rede de difração caracterizada no Experimento 04, substituindo a caneta laser 
pelos Leds de diferentes cores ligados a uma pilha. Refaça o procedimento para 
todos os Leds e obtenha o comprimento de onda λ. Use c = λν e obtenha a 
frequência de cada Led. Anote os valores de frequência obtidos. Você precisará 
destes valores para concluir a medida. Estime o erro de sua medida; 
 
• Monte o seu experimento conforme a figura; 
 
e 
 
 
Figura 4.1: Arranjo experimental para a medida da constante de Planck 
 
• O Led possui um terminal positivo (longo) e um negativo (curto). Preste atenção 
para que a conexão com os polos dos demais dispositivos seja correta; 
 
• Varie o potenciômetro e observe o limiar da diferença de potencial medida pelo 
multímetro quando o Led começa a acender. Repita esse procedimento 5 vezes, 
anote os valores de Vlimiar e tome o valor médio. Faça o mesmo com todos os 
Leds; 
 
• Faça um gráfico de Vlimiar versus frequência ν ; 
 
• Obtenha o coeficiente de inclinação desta curva; 
 
• Usando 
 
E = hν = eVlimiar (4.8) 
h 
Vlimiar = 
e 
ν 
 
em que e = 1.60×10−16 C é a carga elementar. Veja que h corresponde à incliação 
da reta na curva Vlimiar × ν . Com base em seu gráfico obtenha o valor para a 
constante de Planck. Estime o erro de sua medida. Compare seu resultado com o 
valor esperado. 
 
 
Bibliografia 
 
1. D. Halliday, R. Resnick e J. Walker; Fundamentos de Fisica, Vol IV, Óptica e 
Física Moderna, Editora LTC, 8
a 
edição (2008). 
 
2. R. Eisberg e R. Resnick, Física Quântica, Editora Campus, 27 Edição (1979). 
 
3. S. L. de Moura, F. I. da Silva, F. C. M. da Silva e J. A. V. dos Santos, Química 
Nona na Escola, 33, 246 (2011) 
 
4. M. A. Cavalcante, C. R. C. Tavolaro e R. Haag, Física na Escola, 6, 75 (2005). 
 
5. P. H. Dionisio, Cad. Brás. Ens. Fís.22, 147 (2005). 
 
6. M. A. Cavalcante e R. Haag, Rev. Bras. Ensino Fís.27, 343 (2005). 
 
Experiência 4 
 
 
O efeito Fotoelétrico 
 
 
Introdução 
 
Por volta de 1886, o físico alemão Heinrich Hertz mostrou que uma descarga elétrica 
entre dois eletrodos ocorre mais facilmente quando se incide luz ultravioleta sobre um 
deles. Mais tarde, o físico Wilhelm Hallwachs estimulado por estes trabalhos de Hertz, 
mostrou que corpos metálicos irradiados com luz ultravioleta adquiriam uma carga posi- 
tiva. Esse fenômeno foi explicado pelo físico alemão Phillip Lenard onde propôs que a 
luz ultravioleta era responsável pela emissão de partículas da superfície do metal. Foi o 
britânico Joseph John Thomson quem descobriu que as partículas emitidas da superfície 
são os elétrons. A emissão de elétrons de uma superfície devido à incidência de luz 
sobre ela é chamada efeito fotoelétrico. Para entender o efeito fotoelétrico, considere o 
esquema mostrado na figura 4.1. 
Quando a luz incide sobre a superfície metálica (catodo) os elétrons desta superfície 
podem ser ejetados, sem nenhum atraso, e se uma diferença de potencial ∆V é estabe- 
lecida entre as placas, os elétrons ejetados são coletados pela placa coletora (anodo) e 
podemos observar uma corrente fotoelétrica no circuito. 
A figura 4.2 mostra a corrente fotoelétrica em função da diferença de potencial. 
Se a diferença de potencial entre as duas placas for grande o suficiente, a corrente 
fotoelétrica atinge um valor constante, ou seja, todos os elétrons ejetados são coletados 
no anodo. Se ∆V for reduzido a zero a corrente não será nula, porém se o sinal da 
diferença de potencial for invertido haverá um valor para |∆V | = Vo , chamado potencial 
de corte, em que a corrente fotoelétrica é zero. 
Isso ocorre porque os elétrons emitidos, mesmo os de maior energia, são forçados a 
retornar ao catodo devido à mudança no sinal de ∆V . Neste caso, os elétrons per- 
dem energia cinética e ganham energia potencial e o potencial de corte corresponde ao 
valor máximo da diferença de potencial necessária para que toda energia cinética se 
 
 
Figura 4.1: Diagrama esquemático para observar o efeito fotoelétrico. 
 
 
 
 
 
 
Figura 4.2: Variação da corrente fotoelétrica com a diferença de potencial aplicada às 
placas. I1 e I2 são as intensidades da luz incidente, ν1 e ν2 são as frequências e Vo é o 
potencial de corte. 
 
transforme em energia potencial, ou seja, ∆U = −∆K . Uma vez que os elétrons mais 
energéticos tem energia cinética máxima, Kmax , e a energia potencial de um elétron é 
 
 
 
 
28
∆U = −e∆V , podemos escrever 
 
 
eVo = Kmax (5.1)
 
A teoria ondulatória previa que a energia cinética dos elétrons ejetados deveria au- 
mentar com o aumento da intensidade da luz incidente e portanto, o potencial de corte 
Vo também aumentaria. No entanto, os experimentos mostravam que o potencial de 
corte não depende da intensidade I da fonte incidente como mostra a figura 4.2 e deve 
depender, no entanto, da frequência ν da luz incidente. Além disso, a teoria ondulatória 
previa que o efeito fotoelétrico deveria ocorrer para qualquer frequência da luz incidente 
o que não era observado. Se a frequência da luz incidente for menor do que um dado 
valor chamado frequência de corte, νo , o efeito não era observado. 
Para explicar estas questões, Einstein propôs, em 1905, que a luz incidente sobre a 
placa emissora era compostas de fótons que transportam uma energia E = hν . Cada 
fóton incidente transfere esta energia a a um único elétron da placa. Parte desta energia 
será usada para retirar o elétron da placa e o restante será a energia cinética máxima 
adquirida pelo elétron ejetado. Isso pode ser resumido na equação 
hν = φ + Kmax (4.2) 
Nesta equação, φ é a chamada função trabalho, ou seja, é a energia necessária para que 
o elétron seja ejetado e só depende da natureza da placa emissora. Com essa expressão, 
Einstein explicou que se aumentamos a intensidade da luz incidente, o número de in- 
terações entre fótons e elétrons também é aumentado e portanto, o número de elétrons 
ejetados também será maior. Isso, entretanto, não modifica o potencial de corte Vo , ape- 
nas o valor da corrente fotoelétrica é aumentada. Além disso, se Kmax = 0 teremos que 
 
hνo = φ (4.3) 
 
o que significa que um fóton de frequência νo tem exatamente a energia necessária para 
retirar um elétron da placa. Se a frequência for menor do que este valor nenhum elétron 
será ejetado e o efeito não será observado. 
Com esta teoria, Einstein recebeu o Prêmio Nobel em 1921. 
 
 
Roteiro: Experiência 4- Observando o efeito fotoelétrico 
 
Objetivo 
 
Analisar a interação da radiação com a matéria, através do efeito Fotoelétrico. 
 
 
Material Utilizado 
 
• Multímetro 
 
 
• LDR (Light Dependent Resistor) 
 
• Cartolina preta 
 
O LDR, também conhecido como célula foto-condutiva ou foto-resistência, é um dis- 
positivo semicondutor cuja resistência varia linearmente com a intensidade de luz inci- 
dente. 
 
 
Procedimento 
 
• Faça um tudo de cartolina preta com diâmetro idêntico ao LDR. Coloque o LDR 
dentro do tubo. 
 
• Ligue as extremidades do LDR ao Multímetro. 
 
• No outro lado do tubo de papel aproxime uma lâmpada incadescente. 
 
• Meça a resistência no Multímetro na escala de Ohms. Anote os valores. 
 
• Cubra a entrada de luz do tubo com um pedaço de papel preto e observe o valor 
medido no multímetro. Anote os valores. Repita as medidas 5 vezes e tome o 
valor médio da resistência. Obtenha o desvio padrão de sua medida. 
 
• Dobre o papel ao meio e repita o procedimento do item anterior.• Dobre mais uma vez e repita o processo. 
 
 
Responda às questões 
 
1. O que ocorre com a leitura medida se você cobre a entrada de luz sobre o LDR? 
Como você explica esse comportamento? 
 
2. Uma das aplicações do efeito fotoelétrico é nos postes de iluminação pública. 
Explique o seu funcionamento. 
 
 
Sugestão 
 
Construa um eletroscópio de folhas e reproduza o efeito fotoelétrico. 
 
Bibliografia 
 
1. R. Eisberg e R. Resnick, Física Quântica, Editora Campus, 27 Edição (1979). 
 
2. E. de C. Valadares e A. M. Moreira, Caderno Catarinense de Ensino de Física, 15, 
359 (1998). 
 
3. M. A. Cavalcante, C. R.C. Tavolaro, D. F. de Souza e J. Muzinatti, Física na 
Escola, 3, 24 (2002). 
 
4. D. R. de O. Pereira e O. Aguiar, Rev. Ponto de Vista, 3, 65. 
 
Capítulo 5 
 
 
Espectros Atômicos 
 
Introdução 
 
O espectro da radiação emitida por uma lâmpada incandescente, por exemplo, apre- 
senta uma estrutura contínua ao contrário da radiação emitida por átomos livres. O 
espectro atômico está distribuído em comprimentos de onda discretos de forma que cada 
espécie de átomo tem seu espectro característico que pode conter centenas de linhas 
espectrais. Podemos estudar os espectros de emissão atômica usando como fonte de luz 
uma descarga elétrica em um gás monoatômico, uma amostra de Hélio, por exemplo. 
Alguns elétrons da amostra são excitados para estados de energia mais altas e quando 
decaem para o estado fundamental emitem radiação eletromagnética que, ao passar por 
uma rede de difração, é decomposta em seu espectro discreto de comprimentos de onda. 
Um espectro de absorção ocorre quando a luz emitida por uma fonte, uma lâmpada 
incandescente, por exemplo, passa através de um gás frio e rarefeito. A radiação é então 
absorvida em determinados comprimentos de onda e as linhas observadas representam 
os comprimentos de onda que faltam no espectro contínuo. Interessante observar que 
para cada linha no espectro de absorção há uma linha correspondente no seu espectro 
de emissão. O contrário nem sempre acontece. A figura 1mostra um esquema dos 
diferentes espectros na região do visível. 
Por volta de 1913, Niels Bohr desenvolveu um modelo atômico que apresentava uma 
excelente concordância com os dados espectroscópicos que dispunha na época. Bohr 
observou que a teoria clássica não explicava porque átomos de uma mesma espécie de- 
veriam ter órbitas eletrônicas similares, como evidenciava os espectros atômicos. Bohr 
postulou que os elétrons de um átomo só poderiam se mover em órbitas circulares dis- 
cretas específicas em torno do núcleo, sob influência da atração Coulombiana, com uma 
energia total constante, caracterizando um estado estacionário. Nestes estados, os elé- 
trons acelerados não poderiam emitir radiação eletromagnética. 
 
 
 
Figura 5.1: Diferentes espectros na região do visível. 
 
O átomo só emitiria ou absorveria radiação eletromagnética se um elétron fizesse uma 
transição de um estado de energia Ei para um estado de energia Ef . A frequência da 
radiação emitida poderia ser calculada da forma 
 
𝜈 =
𝐸𝑖 − 𝐸𝑓
ℎ
 (5.1) 
o 
em que h é a constante de Planck. Esta energia, absorvida ou emitida, corresponde a 
energia transportada por um fóton, conforme o postulado de Einstein. 
Com seu postulado, Bohr sugere a quantização do momento angular L do elétron 
se movendo na órbita do núcleo que deve assumir valores L = n}, com n=1,2,3... E a 
quantização do momento angular leva à quantização da energia total. Para o átomo de 
Hidrogênio a energia total será 
 
mZ 2e4 1 
En = − 
(4π )22}2 n 
n=1,2,3... (5.2) 
 
em que m é a massa do elétron, Z é o número atômico e e é a carga do elétron. À 
partir deste valor e usando a expressão 5.1 é possível obter a frequência de radiação 
eletromagnética emitida quando um elétron sofre uma transição de um estado inicial ni 
para um estado final nf . Segundo Bohr cada uma das séries conhecidas no espectro do 
átomo de Hidrogênio corresponde a uma transição na qual o elétron vai para um certo 
estado final. Com essa análise foi possível obter os comprimentos de onda de todas as 
séries com bastante precisão. 
Neste experimento vamos construir um espectrômetro manual e observar os espec- 
tros produzidos por diferentes fontes. 
 
Roteiro: Experiência - Observando o espectro do Sódio. 
Objetivo Geral 
Construir um espectrômetro manual para observar os espectros produzidos por 
diferen- 
tes fontes. 
 
Material Utilizado 
 
• Um tubo de papelão de aproximadamente 30cm de comprimento. Você pode 
usar o tubo de papel toalha; 
 
• UM CD; 
 
• Fita adesiva; 
 
• Papel cartão ou cartolina preta; 
 
• Lâmpada incandescente; 
 
• Lâmpada Fluorescente; 
 
• Vela; 
 
• Sal de cozinha; 
 
• Lápis de cor. 
 
Procedimento 
 
• Retire a película laminada do CD e corte-o em quatro partes iguais; 
 
• Pegue uma dessas partes e cole sobre um lado do tubo de papelão. O CD será 
a sua rede de difração; 
 
• Recorte um círculo de cartolina, faça uma fenda de aproximadamente 2cm 
de comprimento e 0,5cm de largura. Cole esse círculo no lado oposto do tubo 
como se fosse uma tampa. O espectrômetro está pronto; 
 
• Aponte o espectrômetro para a lâmpada incandescente cuidando para que a 
radi- ação incida diretamente sobre a fenda; 
 
• Observe o espectro formado dentro do tubo e faça um desenho detalhado da 
figura formada em um pedaço de papel; 
 
• Substitua a fonte pela lâmpada fluorescente e repita o procedimento. 
• Substitua a fonte pela vela. Observe o espectro produzido. Agora coloque um 
pouco de sal de cozinha na chama da vela e observe as modificações que surgem 
no espectro. Faça o desenho do espectro em detalhes. Você deve observar a linha 
característica de emissão do Sódio. É possível estimar o comprimento de onda 
desta linha? 
 
• Você pode fotografar os espectros ao invés de desenhá-los, se preferir. 
 
Responda às questões 
 
1. Identifique as principais características e diferenças entre os espectros produzidos 
pelas duas lâmpadas. 
 
2. Compare o espectro produzido pela vela com o espectro produzido pelas 
lâmpadas. 
 
3. O que ocorre quando você coloca o sal de cozinha sobre a chama da vela? Após 
alguns instantes, o que ocorre com as linhas de emissão observadas? 
 
4. Como podemos calcular os comprimentos de onda observados? 
 
 
Sugestão 
 
1. Se você tiver acesso à lâmpada de Sódio refaça o procedimento acima observando 
o espectro com a lâmpada acesa e imediatamente após ela ser apagada. Compare 
seu resultado com o sal de cozinha. 
 
2. Aponte seu espectrômetro para um poste de iluminação pública. Em geral, são 
usadas lâmpadas de vapor de mercúrio ou de sódio. Compare os espectros. 
 
3. Em um dia de sol observe o espectro do Sol. Não olhe diretamente para o Sol 
com o espectrômetro. 
 
 
Bibliografia 
 
1. R. Einsberg e R. Resnick, Física Quântica, Editora Campus, 27
a 
edição (1979). 
 
2. M. A. Cavalcante, C. R. C. Tavolaro e R. Haag, Física na Escola, 6, 75 (2005). 
 
3. M. A. Cavalcante, C. R. C. Tavolaro, Cad.Cat.Ens.Fís., 18, 297 (2001). 
 
4. Quântica para iniciantes, http://www.pontociencia.org.br/quantica.htm. Acesso em 
28/06/2012. 
 
Capítulo 6 
Absorção e emissão de radiação 
 
Objetivos 
 Analisar transferências e transformações de energia em sistemas. 
 Relacionar o poder de absorção e de emissão de radiação com a natureza das 
superfícies 
 Reconhecer que a radiação incidente num corpo pode ser parcialmente absorvida, 
refletida ou transmitida. 
 Relacionar as taxas de absorção e de emissão da radiaçãode um corpo com a 
diferença entre a sua temperatura e a do ambiente que o rodeia. 
Introdução 
A absorção de radiação, e também a emissão, por parte dos corpos está relacionada com a 
taxa de absorção, e de emissão, da radiação com a natureza da superfície do corpo e mede-se 
qualitativamente através da diferença de temperatura entre a temperatura a que está o corpo e 
a temperatura do ambiente que o rodeia. 
Quando a radiação eletromagnética emitida por um corpo incide noutro, uma parte pode ser 
refletida, outra parte pode ser transmitida através dele (se for transparente para essa radiação) 
e a restante pode ser absorvida. A parte que é absorvida aumenta a energia interna desse 
corpo e isto é traduzível por uma elevação de temperatura. 
Teoricamente temos dois extremos: o emissor ideal ou corpo negro, aquele cuja superfície não 
reflete radiação de nenhuma frequência, visível ou não, absorvendo-a, e depois emitindo-a, com 
emissividade e = 1 para todas as frequências, e o radiador ideal, aquele cuja superfície não 
emite nem absorve radiação de nenhuma frequência, visível ou não, apenas a refletindo, com 
emissividade e = 0 para todas as frequências. 
Na prática existem corpos que se aproximam do emissor ideal, sendo bons emissores, bons 
absorventes e maus refletores da radiação e existem outros que se aproximam do radiador 
ideal, sendo maus emissores, maus absorventes e bons refletores da radiação. 
Existem situações intermédias em que os mesmos corpos podem ser bons ou maus 
emissores/absorssores de radiação de apenas certas frequências. 
Vamos comparar um corpo de superfície preta, um corpo de superfície branca e um corpo de 
superfície metálica, em cada uma das seguintes situações: 
 Situação 1: incidência de luz visível por uma lâmpada de incandescência (220 v ; 100 
w) no corpo, indo este absorver radiação visível e emitir radiação infravermelha, em que 
ao ser atingido o equilíbrio térmico a taxa de absorção de radiação visível é igual à taxa 
de emissão de radiação infravermelha. 
 Situação 2: se o corpo estiver a uma temperatura de cerca de 50ºC e o deixarmos 
arrefecer, ele irá emitir radiação infravermelha para o ambiente e irá absorver, do 
ambiente, também radiação infravermelha. 
Material 
3 latas pintadas (preto, branco, metalizado) com orifícios na tampa cheias de ar, 3 latas 
pintadas (preto, branco, metalizado) com orifícios na tampa com água a 50ºC, aparelho de 
banho-maria, 6 termómetros, 3 cronómetros, 3 candeeiros com lâmpadas de incandescência 
(220 v ; 100 w), fita métrica, papel milimétrico 
 
Procedimento experimental 
1. Registe, para cada um dos aparelhos de medida utilizados, o alcance, a natureza e o 
erro absoluto de leitura. 
2. Insira um termómetro em cada uma das 3 latas cheias de ar. 
3. Anote a temperatura inicial do ar dentro de cada lata. 
4. Irradie cada uma das 3 latas com a lâmpada de incandescência, tendo o cuidado de 
deixar uma distância de 25 cm entre a lâmpada e a lata, colocando a lâmpada ao 
mesmo nível que a lata. 
5. Meça e registe a temperatura do ar contido em cada lata, de 60 s em 60 s, durante 30 
minutos. 
6. Coloque 250 cm
3
 de água previamente aquecida no aparelho de banho-maria, a 50ºC, 
no outro conjunto de 3 latas, e insira outros termómetros através dos orifícios nas suas 
tampas. 
7. Meça e registe a temperatura da água contida em cada lata, de 60 s em 60 s, durante 
30 minutos. 
8. Simultaneamente coloque o conjunto inicial de latas exposto ao Sol, durante 30 
minutos, e anote as respectivas temperaturas do ar contido no seu interior. 
Resultados obtidos 
1. Registe em tabela/quadro os dados obtidos para cada uma das latas, relativamente à 
absorção e à emissão de radiação. 
2. Construa os gráficos T = f(t), relativos à absorção e à emissão. 
3. Sobreponha os gráficos obtidos. 
Discussão e conclusões 
1. Relacione as taxas de absorção e de emissão de um corpo com a diferença entre a sua 
temperatura e a do ambiente que o rodeia. 
2. Relacione a taxa de absorção, e de emissão, de radiação com a natureza da superfície 
de cada lata utilizada. 
3. Compare os resultados obtidos e infira acerca do poder emissor/absorvente ou refletor 
dos corpos utilizados, comparando as diferentes temperaturas de equilíbrio. 
4. Explique como e porquê se atinge o equilíbrio térmico, ao fim de um certo tempo. 
5. Relacione o traçado dos gráficos de temperatura em função do tempo, T = f(t), obtidos 
com o atingir do equilíbrio térmico. 
6. Explique "Porque são as casas no Alentejo tradicionalmente pintadas de branco?" e 
"Porque é a parte interna das garrafas - termo espelhada?"

Outros materiais