Buscar

ipq_livro

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 89 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 89 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 89 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

INTRODUÇÃO AOS PROCESSOS QUÍMICOS 
NOÇÕES E CÁLCULOS BÁSICOS 
 
 
 
ISABEL BELO 
 
 
 
 
 
 
 
 
 
 
DEPARTAMENTO DE ENGENHARIA BIOLÓGICA 
 
2004 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PREÂMBULO 
 
 
 
 
“It is not enough to have a good intelligence; the principal thing is to apply it well” 
“Discurso do Método” 
Descartes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Este texto destina-se a apoiar a disciplina de Introdução aos Processos Químicos da 
Licenciatura em Engenharia Biológica da Universidade do Minho, bem como a 
disciplina de Introdução à Engenharia de Processos do Mestrado em Biotecnologia da 
Universidade do Minho. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ÍNDICE 
 
1 Unidades e Dimensões ............................................................................................. 1 
Objectivos..................................................................................................................... 1 
1.1 Introdução aos sistemas de unidades................................................................ 1 
1.2 Sistemas de unidades........................................................................................ 2 
1.3 Sistema Internacional de Unidades – SI ........................................................... 2 
1.3.1 Unidades de base ...................................................................................... 2 
1.3.2 Unidades derivadas................................................................................... 4 
1.3.3 Equação de Dimensões............................................................................. 5 
1.3.4 Prefixos do SI ........................................................................................... 6 
1.3.5 Outras unidades aceites pelo SI ................................................................ 7 
1.4 Outros sistemas de unidades............................................................................. 7 
1.4.1 Sistema CGS............................................................................................. 7 
1.4.2 Sistema Inglês........................................................................................... 8 
1.5 Conversão de unidades entre sistemas diferentes............................................. 8 
1.5.1 Regra da multiplicação por factores iguais a 1......................................... 8 
1.5.2 Unidades de pressão ............................................................................... 10 
1.5.3 Unidades de temperatura ........................................................................ 12 
1.5.4 A unidade Mole ..................................................................................... 13 
1.6 Conversão de unidades em equações........................................................... 14 
1.7 Análise Dimensional....................................................................................... 16 
1.7.1 Importância da análise dimensional ....................................................... 16 
1.7.2 Método de Rayleigh ............................................................................... 17 
1.8 Exercicios propostos....................................................................................... 21 
2 Composição de misturas......................................................................................... 23 
Objectivos................................................................................................................... 23 
2.1 Composição mássica e composição molar ..................................................... 23 
2.1.1 Conversão de fracção molar para mássica:............................................. 23 
2.1.2 Conversão de fracção mássica para molar:............................................. 24 
2.2 Massa molar média ou peso molecular médio: .............................................. 24 
2.3 Misturas gasosas ............................................................................................. 26 
2.3.1 Massa volúmica de gases ideais ............................................................. 27 
2.3.2 Densidade relativa .................................................................................. 29 
2.4 Concentração de soluções líquidas ................................................................. 29 
 
 
2.4.1 Molaridade.............................................................................................. 29 
2.4.2 Concentração em g/L.............................................................................. 30 
2.5 Exercícios Propostos ...................................................................................... 31 
3 Balanços Materiais ................................................................................................. 33 
Objectivos................................................................................................................... 33 
3.1 Princípio da conservação da matéria .............................................................. 33 
3.2 Sistema e fronteira .......................................................................................... 34 
3.2.1 Processo.................................................................................................. 34 
3.3 Equação genérica de balanço material............................................................ 36 
3.4 Estado estacionário sem reacção química ...................................................... 38 
3.4.1 Metodologia............................................................................................ 38 
3.4.2 Correntes de reciclagem, purga e curto-circuito..................................... 44 
3.5 Equação química e estequiometria – balanços com reacção .......................... 48 
3.5.1 Reagente limitante .................................................................................. 49 
3.5.2 Reagente em excesso.............................................................................. 49 
3.5.3 Conversão ............................................................................................... 49 
3.5.4 Rendimento............................................................................................. 50 
3.6 Exercícios propostos....................................................................................... 53 
4 Introdução ao equilíbrio de fases............................................................................ 57 
Objectivos................................................................................................................... 57 
4.1 Definições....................................................................................................... 57 
4.1.1 Estado ..................................................................................................... 57 
4.1.2 Propriedade............................................................................................. 58 
4.1.3 Equilíbrio ................................................................................................ 58 
4.1.4 Fase......................................................................................................... 58 
4.1.5 Gás Perfeito ............................................................................................ 58 
4.1.6 Gás real ................................................................................................... 60 
4.2 Diagrama de fases de uma substância ............................................................ 60 
4.2.1 Pressão de vapor ..................................................................................... 63 
4.2.2 Variação da pressão de vapor com a temperatura .................................. 65 
4.3 Misturas de gases e vapores condensáveis .....................................................68 
4.3.1 Definições............................................................................................... 70 
4.4 Equilíbrio líquido-vapor em sistemas multicomponente................................ 70 
4.4.1 Solubilidade de gases em líquidos.......................................................... 70 
4.5 Misturas de dois ou mais líquidos .................................................................. 72 
4.5.1 Lei de Raoult .......................................................................................... 72 
 
 
4.5.2 Diagrama de equilíbrio de misturas binárias .......................................... 73 
4.5.3 Volatilidade relativa ............................................................................... 78 
4.6 Exercícios propostos....................................................................................... 79 
5 Bibliografia............................................................................................................. 81 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Unidades e Dimensões 
 
1 Unidades e Dimensões 
 
Objectivos 
Neste capítulo pretende-se que o aluno adquira as seguintes competências: 
Identificar as dimensões de uma grandeza. 
Descrever as principais unidades e dimensões do sistema internacional de 
unidades, SI. 
Usar a análise dimensional para relacionar unidades derivadas com as 
unidades fundamentais de um sistema. 
Converter unidades de sistemas diferentes. 
Aplicar a análise dimensional no estabelecimento de equações empíricas 
entre várias grandezas. 
 
 
1.1 Introdução aos sistemas de unidades 
 
Nas Ciências de Engenharia e na Tecnologia onde se descrevem fenómenos físicos, 
químicos e biológicos, intervêm maioritariamente grandezas quantificáveis, i.e, 
grandezas dimensionais. A medida de uma grandeza dimensional é constituída pelo 
valor numérico e a respectiva unidade. 
No universo científico de todas as áreas de conhecimento é infinito o número de 
grandezas que intervêm e que são necessárias para descrever e quantificar os 
fenómenos. 
1 
Unidades e Dimensões 
Assim, tornou-se necessário sistematizar a definição de unidades para as grandezas, de 
modo a generalizar o seu uso e compreensão nas comunidades científicas, tecnológicas 
e comerciais. 
 
1.2 Sistemas de unidades 
 
Os sistemas de unidades são constituídos por unidades de base ou fundamentais e 
unidades derivadas. Estas são obtidas através de combinações das unidades de base. 
Os sistemas de unidades devem ter as seguintes propriedades: 
Usar terminologia clara e precisa 
Ser coerente, i.e., as unidades derivadas são obtidas através das unidades de base por 
relações simples (produtos e divisões) 
Ser exaustivo, i.e., permitir a medição de qualquer grandeza 
Apresentar unicidade entre unidades e grandezas 
Ser universal, i.e., deve ser aceite por toda a comunidade 
 
1.3 Sistema Internacional de Unidades – SI 
 
1.3.1 Unidades de base 
 
O sistema internacional de unidades é o sistema de medida mais generalizado, 
actualmente cerca 25 % dos países do mundo (países mais desenvolvidos) são seus 
signatários, incluindo Portugal. O SI foi criado em 1960 na Conferência Geral de Pesos 
e Medidas, tendo sofrido várias modificações ao longo dos tempos. Actualmente e 
desde 1983, o SI é baseado em sete grandezas e unidades de base ou fundamentais 
2 
Unidades e Dimensões 
(Tabela 1.1) a partir das quais todas as outras unidades (unidades derivadas) podem ser 
definidas. 
Tabela 1.1 Grandezas, dimensões e unidades fundamentais do sistema internacional de 
unidades e símbolos respectivos. 
GRANDEZA DIMENSÃO UNIDADE SÍMBOLO 
Comprimento L METRO m 
Massa M QUILOGRAMA kg 
Tempo T SEGUNDO s 
Temperatura Θ KELVIN K 
Quantidade de matéria N MOLE mol 
Corrente eléctrica I AMPERE A 
Intensidade luminosa J CANDELA cd 
 
Cada grandeza de base apenas tem uma unidade, e esta é definida por padrões 
inalteráveis e que permitem aferir instrumentos de medida. A seguir apresentam-se 
algumas definições de unidades do SI (Tabela 1.2). 
 
Tabela 1.2. Definições das unidades de base 
UNIDADE DEFINIÇÃO 
Metro comprimento do trajecto percorrido pela luz no vazio em 
1/299792458 de segundo 
Quilograma massa do protótipo internacional 
 
 
Segundo 
duração de 9192631770 períodos da radiação correspondente à 
transição entre os dois níveis hiperfinos do estado fundamental do 
átomo de césio 133, em repouso a 0 K 
Kelvin temperatura igual a 1/273.15 da temperatura do ponto triplo da 
água 
 
 
Mole 
quantidade de matéria que contém um número de entidades 
elementares igual ao número de átomos que existem em 0.012 kg 
de carbono 12. 
 
3 
Unidades e Dimensões 
1.3.2 Unidades derivadas 
 
As unidades derivadas são expressas algebricamente em termos das unidades de base ou 
em termos de outras unidades derivadas. Os símbolos das unidades derivadas são 
obtidas através de operações matemáticas simples de multiplicação e divisão das 
unidades de base (ver Anexo 1). Na Tabela 1.3 apresentam-se alguns exemplos de 
unidades derivadas. 
 
Tabela 1.3. Exemplos de unidades derivadas do sistema SI 
GRANDEZA UNIDADE 
Área m2 (m x m) 
Volume m3 (m x m x m) 
Massa específica kg/m3
Massa molar kg/mol 
 
 
Algumas unidades derivadas do SI têm nomes e símbolos especiais conforme se ilustra 
na Tabela 1.4. 
 
Tabela 1.4. Exemplos de unidades derivadas no SI com nomes e símbolos especiais 
GRANDEZA UNIDADE SÍMBOLO 
Força Newton N 
Pressão, tensão Pascal Pa 
Energia, trabalho Joule J 
Potência Watt W 
Potencial eléctrico Volt V 
Carga eléctrica Coulomb C 
Resistência eléctrica Ohm Ω 
4 
Unidades e Dimensões 
1.3.3 Equação de Dimensões 
 
A equação algébrica que relaciona uma unidade derivada com as unidades de base é 
facilmente encontrada com a ajuda da análise dimensional, estabelecendo-se 
inicialmente a equação de dimensões da grandeza, cuja forma genérica é a seguinte: 
 
[ ] J I N T M L dim gfedcba Θ== QQ 
 
onde Q é o símbolo da grandeza e os expoentes das dimensões são constantes reais 
 
As dimensões de qualquer grandeza Q podem ser determinadas através das dimensões 
de base, assim como as unidades. Assim, as unidades de Q no SI serão 
 cd A mol K s kg m gfedcba 
A equação de dimensões das grandezas estabelece-se com base numa equação de 
definição conhecida para a grandeza em causa. Considere-se por exemplo a grandeza 
derivada velocidade (símbolo aleatório, v). Começa-se por escrever uma equação de 
definição: 
t
sv ∆
∆= 
a velocidade é definida como a razão entre o espaço percorrido (∆s) num dado intervalo 
de tempo (∆t). 
 
Daqui, estabelece-se então a equação de dimensões da grandeza 
 [ ] -110000-101 T L J I N T M L dim =Θ== vv 
 
Chega-se então às unidades da grandeza v no SI: m s-1 
 
 
 
5 
Unidades e Dimensões 
Exercício 1.1 
Para as seguintes grandezas derivadas, escreva as equações de dimensões e estabeleça a 
relação entre as unidades derivadas e as unidades de base do sistema SI. 
 
- Aceleração 
- Força 
- Pressão 
- Energia 
- Potência 
- Carga eléctrica 
 
 
1.3.4 Prefixos do SI 
 
O sistema internacional de unidades é um sistema decimal e portanto admite múltiplos e 
submúltiplos de base 10 das unidades SI. Desta forma evita a utilização de valores 
numéricos muito pequenos ou grandes. Por exemplo, alternativamente a escrever 
1000 m, usa-se 1 km. Na tabela 1.5 apresentam-se exemplos de múltiplos e 
submúltiplos a utilizar no SI. Informação adicional encontra-se no Anexo 2. 
 
Tabela 1.5. Prefixos SI 
 Múltiplo Submúltiplo 
Factor Prefixo Símbolo Factor PrefixoSímbolo 
1012=(103)4 tera T 10-12=(103)-4 pico p 
109=(103)3 giga G 10-9=(103)-3 nano n 
106=(103)2 mega M 10-6=(103)-2 micro µ 
103=(103)1 kilo k 10-3=(103)-1 mili M 
102 hecto h 10-2 centi c 
101 deca da 10-1 deci d 
No SI recomenda-se a utilização de prefixos de base 103 
 
6 
Unidades e Dimensões 
1.3.5 Outras unidades aceites pelo SI 
 
Algumas unidades apesar de não pertencerem ao SI, são de utilização frequente e 
generalizada pelo que o SI admite a sua utilização a título de excepção. Por exemplo: 
Para a grandeza tempo, admite-se o uso de dia (d), hora (h), minuto (min); 
Para a grandeza massa, admite-se o uso de tonelada (t, 1 t = 106 Mg); 
Para a grandeza pressão, admite-se o uso de bar (1 bar= 105 Pa); 
Para a grandeza volume, admite-se o uso de Litro (L ou l, 1 L = 10-3 m3) 
 
1.4 Outros sistemas de unidades 
 
1.4.1 Sistema CGS 
 
O sistema CGS difere do sistema SI, principalmente na unidades de base para massa e 
comprimento (Tabela 1.6). 
 
Tabela 1.6. Grandezas, dimensões e unidades fundamentais do sistema CGS 
GRANDEZA DIMENSÃO UNIDADE SÍMBOLO 
Comprimento L CENTÍMETRO cm 
Massa M GRAMA g 
Tempo T SEGUNDO s 
Temperatura Θ KELVIN 
 (GRAUS CELSIUS) 
K 
 (oC) 
Quantidade de matéria N MOLE mol 
 
Algumas unidades derivadas são também diferentes, como por ex., dine para força e erg 
para energia. 
 
7 
Unidades e Dimensões 
1.4.2 Sistema Inglês 
 
O sistema inglês foi um sistema muito utilizado em ciências de engenharia e apesar de a 
Inglaterra ser signatária do Sistema SI, este sistema ainda aparece muito em obras 
importantes da literatura em engenharia química. As principais unidades deste sistema 
estão resumidas na Tabela 1.7. 
 
Tabela 1.7. Grandezas, dimensões e unidades fundamentais do sistema Inglês 
GRANDEZA DIMENSÃO UNIDADE SÍMBOLO 
Comprimento L PÉ ft 
Massa M LIBRA lb 
Tempo T SEGUNDO s 
Temperatura Θ RANKIN 
 (GRAUS FARENNHEIT) 
ºR 
 (oF) 
Quantidade de matéria N LIBRAMOLE lbmol 
 
Como por exemplos de unidades derivadas seja por exemplo a lbf para força e Btu para 
energia. Outras unidades podem ser encontradas na bibliografia aconselhada no final do 
capítulo. 
 
 
1.5 Conversão de unidades entre sistemas diferentes 
 
1.5.1 Regra da multiplicação por factores iguais a 1 
 
Neste método a conversão é feita através da multiplicação da unidade original por 
factores que são adimensionais e iguais a um. Esses factores são designados de factores 
8 
Unidades e Dimensões 
de conversão e são obtidos pela razão entre as relações entre as várias unidades de base 
dos diferentes sistemas ou entre unidades derivadas e de base dentro de um sistema. 
 
1.5.1.1 Exemplos de conversão entre unidades de força 
 
Exemplo 1-1 
1 dine =? N 
1 dine = 1 g cm s-2 = 1 2-23 s 1cm10
m 1cm 1
g10
kg 11g ××××× 
 
1 dine = 1 g cm s-2 = 1 N10 s 1m 11kg 10 -5-25 =×××× −
 
Exemplo 1-2 
 
1 lbf = ? N Nota : 1 kgf = ? N 
 
1 lbf (peso de um corpo de massa 1 lb) 
 
-2s m 9.8lb 1 ⋅=⋅= gmPeso 
 
 e sabendo que 1 kg = 2.205 lb 
 
(Consultar tabelas de factores de conversão de unidades na bibliografia) 
 
N 4.45 s m kg 45.4s m 9.8
lb2.205
kg 1lb 1lb 1 2-2-f ==⋅= 
 
 
9 
Unidades e Dimensões 
Exercício 1.2 
1. Converter a unidade de aceleração ft/s2 em km/h2 (1 ft = 0.3048 m). 
2. Determinar os factores de conversão entre erg (sistema cgs) e J. 
 
1.5.2 Unidades de pressão 
 
A grandeza pressão é definida como a razão entre a força exercida sobre uma dada 
superfície e o valor da área da superfície. Assim, a unidade SI de pressão, Pa, pode ser 
relacionada com outras unidades do sistema SI. 
1 Pa = 1 N m-2
Existem várias unidades de pressão não pertencentes ao sistema SI, como por exemplo: 
kgf/cm2, bar, Torr, mmHg, atm, psi, kmágua; etc. 
Alguns factores de conversão entre unidades de pressão: 
1 atm = 1.013E5 Pa; 1 bar = 1E5 Pa, 1 Torr = 1 mmHg 
Outros factores de conversão podem ser determinados através da definição de pressão. 
 
Exemplo 1-3 
Converter a unidade de pressão psi (lbf/in2) para o sistema SI 
 
 Notas: 1 lbf = 4.45 N (Exercício 1.2) ; 1 ft=12 in = 0.3048 m 
 
Pa 6895
m
N
3048.0
1245.4
m 0.3048
ft 1
ft 1
in 12
lb 1
N 4.45
in 1
lb 1
22
22
f
2
f =××=⎟⎠
⎞⎜⎝
⎛ ××× 
 
 
 
 
10 
Unidades e Dimensões 
Exemplo 1-4 
Converter a unidade de pressão mmHg para o sistema SI 
 
Por definição a pressão de 1 mmHg corresponde à pressão exercida por uma 
coluna de mercúrio de altura 1 mm sobre a base da coluna. 
 
 
 
 z=1 mm A 
Hg 
 
 
Equação de definição de pressão: P = ρ g z, onde P é a pressão, ρ é a massa 
volúmica do mercúrio (13 600 kg/m3) , g é a aceleração da gravidade (9.8 
m/s2) e z é altura da coluna. 
 
Substituindo na equação fica: 
 
P= 1 mmHg = 13 600 kg/m3 x 9.8 m/s2 x 1 mm x 1 m/(1000 mm) = 133.3 Pa 
 
 
 
 
 
 
 
 
 
 
 
 
11 
Unidades e Dimensões 
1.5.3 Unidades de temperatura 
 
Na Figura 1.1 apresentam-se as escalas de temperatura utilizadas nos vários sistemas de 
unidades. 
 
Figura 1.1 Escalas de temperaturas 
 
As escalas absolutas (K e oR) têm origem no zero absoluto, enquanto que as escalas 
relativas (oC e oF) têm uma origem negativa. 
 
Conversão de valores de temperaturas entre as várias escalas 
 
T/ K = t/ºC+273.15 ; T/ K = (5/9) (t/ºF+459.67) ; T/ K = (5/9) T/ºR 
 
Conversão das unidades: 1 K = 1 ºC = 1.8 ºR = 1.8 ºF 1 ºR = 1 ºF 
 
12 
Unidades e Dimensões 
Exemplo 1-5 
Converter a unidade kg/K em lb/ºR 
 
Rº
lb1.225
R1.8º
K 1
kg 1
lb 2.205
K
kg1
K
kg1 =⋅⋅⋅= 
 
 
1.5.4 A unidade Mole 
 
O conceito de mole foi introduzido por William Ostwasld em 1986. O nome da unidade 
deriva da palavra latina moles, a qual significa “pilha” ou “monte”, i.e, “grande 
quantidade de..”. 
A definição precisa foi introduzida em 1969 no Comité Internacional de Pesos e 
Medidas, que aprovou o símbolo mol para esta unidade. 
Uma mole no sistema SI é composta por 6.02x1023 entidades ou partículas. 
Outras especificações não padronizadas do conceito mole podem ser utilizadas noutros 
sistemas de unidades: 
Uma libra mole é composta por 6.02x1023 x 453.6 entidades ou partículas. 
1 lbmol = 453.6 mol 
 
1.5.4.1 Peso Molecular 
 
Para calcular o número de moles de uma substância a partir da massa, utiliza-se o peso 
molecular (PM), ou melhor massa molecular (MM), dessa substância, cujas unidade SI é 
kg/mol, sendo no entanto mais usadas as seguintes: 
 
13 
Unidades e Dimensões 
1molg/g/mol/ −⋅⇒= PM
PM
massaQuantidade 
 
1lbmollb/lb/lbmol/ −⋅⇒= PM
PM
massaQuantidade 
 
A massa molecular duma substância é calculada com base nas massas atómicas dos 
elementos. As massas atómicas são expressas em termos relativos à massa do átomo de 
12C cuja massa é 12 g. Define-se uma unidade de massa atómica como sendo igual à 
massa de 121 da massa do átomo de 
12C. 
Exemplificando para a molécula da água, 
 MM (H2O) = 2 x 1.008 + 15.999= 18.015 (peso ou massa de uma molécula) 
 MM (H2O) = 18.015 g/mol = 18.015 lb/lbmol = 18.015 kg/kmol 
 
1.6 Conversão de unidades em equações 
 
As equações que traduzem funções entre grandezas, contém normalmente parâmetros 
(constantes reais) cujo valor numérico depende das unidades das grandezas. Se as 
unidades das grandezas forem alteradas, os valores dos parâmetros devem ser 
recalculados. A metodologia a seguir na conversão de equações é ilustrada a seguir. 
 
 
 
 
14 
Unidades e Dimensões 
Exemplo 1-6 
Converta a equação 
Pa
s m kg 1-3- P
BAG += onde G e P são variáveis e A e B sãoconstantes reais, para a seguinte forma: 
psi
s ft lb 1-3- P
DCG += onde C e D são 
outras constantes reais. Determine a relação entre as constantes das duas 
equações. 
 
Passos a seguir: determinar os factores de conversão das unidades, 
substituir na equação original e re-arranjar a equação 
 
1-3-
3
1-3- s ft lb 06.0
ft 1
m 3048.0
kg 1
lb 2.205s m kg 1 =⎟⎠
⎞⎜⎝
⎛×× e 1 Pa = 1.45 E-4 psi 
 
aplicando estas conversões à primeira equação, vem: 
 
psi 4-1.45E
Pa 1
Pas ft lb 0.06
s m kg
s m kg 1-3-
-1-3
1-3- ×+=× P
BAG 
Re-arranjando, fica 
 
psi
67.806.0s ft lb 1-3- P
BEAG −+= ou seja 
psi
s ft lb 1-3- P
DCG += 
 
onde C=0.06 A e D=8.7E-6 B 
 
 
 
 
15 
Unidades e Dimensões 
1.7 Análise Dimensional 
 
A análise dimensional baseia-se num conceito que consiste na Homogeneidade 
dimensional e que se traduz pelo seguinte: 
 
Numa equação que traduza uma relação entre grandezas dimensionais, existem apenas 
igualdades entre grandezas dimensionalmente iguais e todas as parcelas da equação têm 
as mesmas dimensões. 
Considere-se o seguinte exemplo que ilustra o conceito. 
[ ] [ ] [ ]αα =⎥⎦⎤⎢⎣⎡==++= CPBAGCPBAG então se 
 
 
1.7.1 Importância da análise dimensional 
 
A aplicação da homogeneidade dimensional a equações permite identificar as 
dimensões dos termos ou grandezas das equações. 
Também permite identificar erros de escrita das equações por incoerência dimensional 
dos seus termos. 
Outras das aplicações da análise dimensional consiste na geração de grupos 
adimensionais ou não dimensionais, através da organização das grandezas em 
quocientes em que todas as dimensões se anulam. Estes grupos tem muitas vezes 
significados importantes em diversas áreas da engenharia química, como é o caso do 
número de Reynolds (Re = D v ρ/µ) na mecânica de fluídos. 
16 
Unidades e Dimensões 
Através da análise dimensional e da criação de grupos adimensionais é possível 
estabelecer relações empíricas entre grandezas envolvidas num dado fenómeno físico. O 
objectivo destas relações consiste em estabelecer uma equação entre o menor número de 
variáveis possível para facilitar a determinação dos parâmetros da equação. 
Existem vários métodos que sistematizam o estabelecimento destas equações empíricas 
entre grupos adimensionais, dos quais se destacam o método de Rayleigh e o método 
Buckingham. 
 
1.7.2 Método de Rayleigh 
 
1.7.2.1 Principio 
 
Se n grandezas (Q1, Q2, Q3....Qn) estão envolvidas num determinado fenómeno físico, 
então, para efeitos de análise dimensional, a sua dependência pode ser expressa como, 
an
n
aa QQQKQ ⋅⋅⋅⋅⋅= 23121 
Onde Q1 é a grandeza de maior interesse e K, a1,a2, ....an são constantes reais 
 
As unidades das Q1, Q2, Q3....Qn grandezas (ou variáveis) são derivadas de r unidades 
fundamentais. Aplicando a homogeneidade dimensional à equação acima, as constantes 
a1,a2, ....an têm de obedecer a r condições (restrições), donde se obtém: 
 
 Um sistema de r equações a n-1 incógnitas com n-1-r constantes independentes e r 
constantes dependentes 
 
17 
Unidades e Dimensões 
1.7.2.2 Aplicação do método 
 
Através da resolução do sistema de equações, arranjam-se a n variáveis de modo a 
formar n-r grupos adimensionais (G1, G2, ...Gn-r). O grupo contendo Q1 será igualado a 
um produto dos restantes grupos elevados a n-1-r constantes. 
 
Nova forma da equação que relacion as variáveis 
rbn
rn
bb GGGKG −−−⋅⋅⋅⋅⋅= 123121 
Resulta um menor número de parâmetros (constantes b1 2, ...bn-1-r) a determinar 
 
Exemplo 1-7 
Exemplo de aplicação do método de Rayleigh 
Considere a queda de pressão que ocorre no 
tubos, esquematizada na Figura 1.2: 
 
P2 
v P1 
 
 
 
C 
Figura 1.2 – Escoamento de fl
 
∆P = P1 – P2 depende de características do tub
comprimento (C) e a rugosidade (ε) da superf
propriedades físicas do fluído, como a massa vol
e ainda da velocidade de escoamento (v). 
18 
, b
a
escoamento de fluidos em 
D 
uidos 
o, como o diâmetro (D), o 
ície. Também depende das 
umica (ρ) e viscosidade (µ), 
Unidades e Dimensões 
Pretende-se encontrar a relação: ),,,,( ρµε=∆ CDfP 
 
Segundo o método de Rayleigh pode estabelecer-se a seguinte relação: 
 
 
fedcba vCDkP ρ⋅µ⋅⋅ε⋅⋅⋅=∆
 
Substituindo pelas dimensões das grandezas: 
 
M L-1 T-2 = La Lb Lc (L T-1)d (M L-1 T-1)e (M L-3)f
 
Aplicando o conceito de homogeneidade dimensional: 
 
M: 1 = e + f 
L: -1 = a + b + c + d – e – 3 f 
T: -2 = - d – e 
 
Sistema de 3 equações a 6 incógnitas: 
 
Total de 6 constantes: a, b, c, d, e, f 
Total de 3 restrições: M, L, T ⇒ 3 constantes independentes e 3 
dependentes 
 
Resolve-se o sistema de equações em ordem às dependentes: sejam c, d, f 
 
Resulta: f = 1 -e 
 c = -a – b – e 
 d = 2 -e 
 
Substituindo na equação inicial, resulta: 
19 
Unidades e Dimensões 
eeeebaba vCDkP −−−−− ⋅⋅⋅⋅⋅⋅=∆ 12 ρµε 
 
Agrupando pelos expoentes: 
eba
v
CDk
v
P ⎟⎟⎠
⎞
⎜⎜⎝
⎛⎟⎠
⎞⎜⎝
⎛⎟⎠
⎞⎜⎝
⎛=∆ ρε
µ
εερ2 
 
Obtêm-se uma relação entre 4 grupos adimensionais, com 4 parâmetros a 
estimar: k, a, b e e. 
 
1.7.2.3 Grupos adimensionais importantes 
 
Alguns dos grupos adimensionais que surgem pela aplicação da análise dimensional, 
apresentam grande importância no estudo dos fenómenos físicos, como é o caso dos 
exemplo a seguir: 
Escoamento de fluídos 
Número de Reynolds: Re =
vD ⋅⋅ρ
µ 
Transferência de massa 
Número de Schmidt: Sc = ⋅⋅ iDρ
µ Di/(m s-2) 
Transferência de calor 
Número de Prandtl: Pr = 
k
C p µ⋅ Cp/(J kg-1 oC-1), k/(J s-1 m-1 oC-1) 
Número de Nusselt: Nu =
k
Dh ⋅ h/(J s-1 m-2 oC-1) 
 
20 
Unidades e Dimensões 
1.8 Exercicios propostos 
1.3. O volt (V) é a unidade SI de força electromotriz, a qual pode ser determinada pela 
razão entre a potência e a corrente eléctrica. Decomponha o volt nas unidades de base do 
sistema SI. 
 
1.4. Converta a unidade cm H2O (4ºC) para a unidade SI da grandeza respectiva. A massa 
volúmica da água a 4ºC é 1 g/mL. 
 
1.5. Uma dada grandeza pode ser expressa nas seguintes unidades: ft lbf/h 
a. Escreva a equação de dimensões dessa grandeza e diga de que tipo de grandeza se trata. 
b. Ache o factor de conversão entre estas unidades e a unidade S.I. da grandeza. 
 
1.6. Considere a grandeza condutividade térmica cujas unidades no sistema SI são 
W m-1 K-1. 
a. Escreva a equação de dimensões desta grandeza. 
b. Converta as unidades SI para Btu/(ft h oR) e para psi in3/(ft s oF) 
 
1.7. Sabendo que a constante dos gases ideais é igual a 0.082 atm L mol-1 K-1, determine o 
valor dessa constante em: 
a. Btu/ (lbmol oR) 
b. psi ft3/ (lbmol oR) 
b. Qual é a equação de dimensões desta constante? 
 
1.8. A capacidade calorífica específica de uma dada substância varia com a temperatura de 
acordo com a equação: Cp/(Btu/(lb oF)) = 21 + 5.3 T/ oF 
a. Exprima a equação em cal/(g oC) e oR 
b. Exprima a equação no sistema SI 
 
1.9. A potência (P ) necessária para o funcionamento de um agitador mecânico colocado num 
tanque com um líquido, depende dos seguintes factores: Diâmetro do agitador, D, 
velocidade de agitação, N/s-1, viscosidade do líquido, µ, massa volúmica do líquido, ρ, 
Aplique o método de Rayleigh para determinar os grupos adimensionais a relacionar na 
função entre estas grandezas. 
 
21 
Unidades e Dimensões 
1.10. A transferência de energia de uma esfera sólida para uma fluído em movimento é 
caracterizada por 3 números adimensionais: 
Nº de Reynolds, Re = D v ρ /µ, Nº de Nusselt,Nu = h D / Cd e nº de Prandtl, Pr = Cp µ / Cd , 
onde h/ (W m-2 K-1), Cd/(J s-1 m-1 K-1), Cp/(J kg-1 K-1), D/m, v/(m s-1), ρ /(kg m-3) e 
µ /(kg m-1 s-1). 
Demonstre através da análise dimensional que existe uma relação entre estes três grupos 
de variáveis. 
 
1.11. Demonstre através da análise dimensional aplicando por exemplo o método de Rayleigh, 
como poderiam obter-se as equações seguintes: 
a. Ep = m g h em que Ep é a energia potencial que contém um corpo de massa (m) e que se 
encontra à altura (h) relativamente ao nível médio do mar, sendo (g) a aceleração da 
gravidade. 
b. v2 = ∆P/ρ onde se relaciona a velocidade (v) de um fluido com a variação de pressão (∆P) 
aplicada e a massa volúmica do fluído (ρ). 
 
Dados para os exercícios propostos: 
 
 1 m = 3.281 ft, 1 kg = 2.205 lb, 1 psi = 1 lbf/in2, 1 ft =12 in, 1 J = 9.478E-4 Btu = 0.239 cal 
22 
Composição de Misturas 
 
2 Composição de Misturas 
Objectivos 
Neste capítulo pretende-se que o aluno adquira as seguintes competências: 
Identificar as várias formas de expressar a composição de misturas. 
Converter os dados de composição de umas formas para outras, ex: 
conversão entre fracções molares e mássicas. Definir bases de cálculo. 
Usar a forma mais adequada de expressar composições de acordo com o 
estado da matéria (ex: particularidades de misturas líquidas e gasosas). 
 
 
2.1 Composição mássica e composição molar 
 
 A composição de uma dada mistura gasosa, líquida ou sólida pode ser expressa 
através da fracção molar (y), mássica (w) ou volúmica (z) dos vários componentes da 
mistura. 
 ∑=
i
i
i
i n
ny
 ∑=
i
i
i
i
m
m
w ∑=
i
i
i
i v
vz
 
 
2.1.1 Conversão de fracção molar para mássica: 
 
Pretende-se determinar wi conhecendo-se yi. 
 Base de cálculo: 1 mol de mistura, nt=1 mol 
 
 itii ynyn =×= e iii MMmn /= donde iii MMym ×= 
23 
Composição de Misturas 
 
 Então, ∑∑ ×
×==
i
ii
ii
i
i
i
i MMy
MMy
m
mw onde MMi é a massa molar do componente i. 
 
2.1.2 Conversão de fracção mássica para molar: 
 
Pretende-se determinar yi conhecendo-se wi. 
 Base de cálculo: 1 kg de mistura, mt = 1 kg 
 
 e itii wmwm =×= iii MMmn /= donde iii MMwn /= 
 
 Então, ∑∑ ==
i i
i
i
i
i
i
i
i
MM
w
MM
w
n
ny 
 
 
 
2.2 Massa molar média ou peso molecular médio: 
A massa molar média de uma mistura ( MM ) depende da composição e é calculada a 
partir da média pesada das massas molares dos componentes da mistura, através da 
expressão: 
 
∑ ×=
i
ii MMyMM 
Pode também ser calculada através de 
t
t
m
nMM = 
 
 
24 
Composição de Misturas 
 
Exemplo 2-1 
Uma corrente de lavagem industrial consiste numa mistura de água e NaOH 
com uma composição mássica de 50 % de cada componente. Qual a massa 
molar média dessa mistura? 
 
Componente 1: água Componente 2: NaOH 
 
W1 = W2 = 0.5 MM1 = 18.015 g mol-1 MM2 = 39.997 g mol-1 
Cálculo das fracções molares 
1-
12
1
1
1
mol g 851.24997.39311.0015.18689.0
311.01
689.0
997.39
5.0
015.18
5.0
015.18
5.0
=×+×=×=
=−=
=+==
∑
∑
i
ii
i i
MMyMM
então
yy
e
MM
wi
MM
w
y
 
ou 
 
Base cálculo = 1 kg de mistura, então m1=0.5 kg e m2=0.5 kg 
 
 
1-
11-
mol g 851.24
)mol g 39.997/(g 500)mol g 18.015/(g 500
g 1000
mistura da moles de nº
mistura da massa
=
+=== −
MM
n
mMM
t
t
 
 
25 
Composição de Misturas 
2.3 Misturas gasosas 
 
A equação de estado de gás perfeito ou ideal é nRTPV = ou RTPv = , onde v=V/n é o 
volume molar do gás, de dimensões L3 N-1
Esta equação é válida para gases cujas forças intermoleculares sejam desprezáveis bem 
como o volume das moléculas quando comparado com o volume em que se encontra o 
gás. 
Nas condições normais de pressão e temperatura (PTN), definidas como T=273.15 K e 
P=101.3 kPa = 1 atm, o volume molar de qualquer gás ideal é dado por: 
 
 v=V/n=RT/P=0.082 atm L mol-1 K-1 x 273.15 K/1 atm 
v = 22.4 L mol-1 = 359 ft3 lbmol-1 
 
Para uma mistura gasosa com comportamento de gás perfeito demonstra-se que a 
composição molar é igual à composição volúmica da mistura. 
Por definição a fracção volúmica é dada por: ∑= iii V
Vz onde 
P
RTnV ii = 
Então ∑= iii V
Vz = i
i
i
i
i y
n
n
PRTn
PRTn == ∑∑ /
/
 
 
Pela Lei de Dalton têm-se que pi =yi P, onde pi é a pressão parcial de cada componente 
na mistura gasosa. Assim, para um gás ideal, ∑= iii p
py . 
26 
Composição de Misturas 
 
Para um gás que se desvia da idealidade não se verifica a igualdade entre composição 
volúmica e molar. A equação de estado de gás real fica: nZRTPV = ou , 
onde Z é o factor de compressibilidade, sendo Z=1 para gás ideal. 
ZRTPv =
 
Então ∑= iii V
Vz = i
ii
ii
ii
ii y
Zn
Zn
PRTZn
PRTZn ≠= ∑∑ /
/
 
 
Sendo Zi= f(substância, T , P)= f (Tci,Pci) e Tci e Pci são a temperatura e pressão 
críticas, respectivamente, que são propriedades características de cada substância. 
 
2.3.1 Massa volúmica de gases ideais 
 
A massa volúmica de um gás ideal pode ser determinada através da equação dos gases 
perfeitos, conforme se indica a seguir: 
RT
MMP
V
m ==ρ 
 
Exemplo 2-2 
Determine a massa volúmica do ar seco nas condições PTN. 
O ar é constituído essencialmente por 21 % (molar ou V/V) de oxigénio e 79 
% de azoto. 
 
1º Método 
Calcular arMM 
arMM = =0.21x32 g mol∑ ii MMy -1+0.79x28 g mol-1= 29 g mol-1
 
27 
Composição de Misturas 
Aplicar equação 
K273.15KmolLatm 0.082
molg 29atm 1
11
1
⋅⋅⋅⋅
⋅×== −−
−
V
mρ =1.29 g L-1 
 
2º Método 
Definir base de cálculo em quantidade (mol ou L) de gás total 
 
Ex: 100 L de ar então Voxigénio= 21 L e Vazoto = 79 L 
 
Calcular a massa total correspondente, usando o volume molar nas condições 
PTN 
 
noxigénio = 21 L/(22.4 L mol-1) =0.94 mol e nazoto = 79 L/(22.4 L mol-1) = 3.53 
mol 
 
moxigénio = 0.94 mol x 32 g mol-1= 30 g e mazoto =3.53 mol x 28 g mol-1= 99 g 
 
mtotal = moxigénio + mazoto = 129 g 
 
então, 
 
1L g 1.29
L 100
g 129 −===
V
mρ 
 
 
 
 
28 
Composição de Misturas 
 
2.3.2 Densidade relativa 
 
Define-se como a razão entre a massa volúmica da substância e a massa volúmica da 
substância referência ou padrão. 
Para líquidos: 
COH
líquido
o
d
4,2
ρ
ρ= Para gases: 
TPar
TPgásd
,,
,,
ρ
ρ= 
 
2.4 Concentração de soluções líquidas 
 
Para misturas líquidas, álem do uso das fracções molares, mássicas ou volúmicas é 
muito comum o uso de concentração em mol/L e em g/L de um dado composto na 
mistura. 
 
2.4.1 Molaridade 
 
A molaridade é definida como a quantidade em mole de uma substância (soluto) 
existente num litro de solução. Para uma substância pura pode ser calculada através da 
seguinte expressão: 
C /mol L-1= n/V = m/MM x m/ρ ou seja C/mol L-1= ρ/MM 
 
Exemplo 2-3 
Determinar a molaridade da água pura a 4oC. 
CH2O= 1 g mL-1 x 1/(18 g mol-1) x 103 mL/1 L = 55.56 mol/L = 55.56 M 
 
Para soluções de várias substâncias aplica-se a expressão seguinte: 
29 
Composição de Misturas 
Ci= L
mLd
MM
x
i
i
1
103×× = 10/% ×× d
MM
pp 
Onde xi é a fracção mássica do soluto, d é a densidade da solução e %p/p é a 
percentagem peso/peso igual à percentagem em massa do soluto/massa total. 
 
Exemplo 2-4 
Calcular a molaridade do HCL 30%, d=1.2. 
Se 30 % p/p(nem sempre é claro nos rótulos dos produtos) vem: 
CM= 30 g/100 g x 1.2 g mL-1 x 103 mL/1 L 1/(36.5 g mol-1) = 9.86 M
 
2.4.2 Concentração em g/L 
 
A concentração pode também ser expressa em g/L. Para uma substância pura é 
equivalente à massa volúmica e para uma mistura é definida por: 
 
Concentração do soluto i (em massa por unidade de volume total): Ci= mi/V 
Ci/g L-1 = 1L
mL103×× dxi = 10/% ×× dpp = % p/V x 10 
Exemplo 2-5 
Calcular a concentração em g/L de HCL 30%, d=1.2. 
Se 30 % p/p (nem sempre é claro nos rótulos dos productos) vem: 
CHCL= 30 g/100g x 1.2 g mL-1 x 103 mL/1 L = 360 g L-1 
Se 30 % p/V* vem apenas: CHCL= 30 g/100 mL x 103 mL/1 L = 300 g L-1 
*Segundo as regras de uso de unidades do SI não se deve usar % p/V 
 
30 
Composição de Misturas 
 
2.5 Exercícios Propostos 
2.1. Sabendo que a constante R da equação de gás ideal é 10.73 psi ft3 lbmol-1 oR, prove que 
vPTN= 359 ft3 lbmol-1. 
 
2.2. Escreva as equações que relacionam as propriedades de estado de uma gás ideal quando 
este está sujeito a processos isotérmicos, isobáricos e isocóricos. Aplique as equações que 
ache conveniente à resolução do seguinte problema: Um pneu de automóvel enche-se à 
pressão manométrica de 2.2 bar e à temperatura de 5 oC. calcule a temperatura máxima a 
que pode estar o pneu sabendo que a pressão absoluta não pode exceder 3.5 bar. Considere 
que o pneu não dilata. 
 
2.3. Determine a massa volúmica (nas unidades SI) do amoníaco gasoso a 270 oC e a 1.4 bar. 
 
2.4. Uma dada mistura gasosa apresenta a seguinte composição mássica: 70 % CH4, 20 % 
C2H6 e 10 % N2. 
a. Exprima a composição da mistura em percentagem molar. 
b. Determine a massa volúmica e a densidade relativa da mistura nas condições PTN. 
c. Repita a alínea b para uma pressão de 300 kPa e uma temperatura de 280 K. 
 
2.5. O ácido sulfúrico comercial contém 98 % (em massa) de H2SO4 e 2 % de água. 
a. Qual a composição molar da mistura. 
b. Qual é a quantidade (mol) de mistura existente em 50 kg de solução . 
 
2.6. Um recipiente contém uma solução aquosa de ácido nítrico com a concentração de 1.7 lb 
de HNO3/lb de H2O. 
a. Qual é a composição mássica da solução? 
b. Sabendo que a densidade relativa à temperatura ambiente é 1.38, calcule a concentração 
do ácido em g L-1. 
c. Nestas condições, exprima a concentração em molaridade. 
 
 
 
 
 
31 
Composição de Misturas 
 
 
 
 
 
 
32 
Balanços Materiais 
 
3 Balanços Materiais 
Objectivos 
Neste capítulo pretende-se que sejam desenvolvidas as seguintes 
competências: 
Definir um sistema e respectivas fronteiras. 
Distinguir um sistema aberto de um sitema fechado. 
Aplicar o conceito de conservação de massa e aplicar na escrita do balanço 
de matéria a uma dado sistema. 
Definir as váriáveis de projecto de um dado processo. 
Escrever o balanço de matéria em sistemas que envolvem reacções químicas. 
Interpretar a estequeometria da reacção, definir reagente limitante, 
reagente em excesso, conversão e rendimento da reacção. 
 
 
3.1 Princípio da conservação da matéria 
 
A elaboração de um balanço de matéria num sistema ou processo baseia-se na aplicação 
do princípio da conservação de matéria: 
 
“ A matéria nem é criada nem é destruída” 
Lavoisier 
 
 
O balanço de matéria é aplicado a um sistema cuja definição deve ser claramente 
efectuada, bem como a respectiva fronteira. 
 
33 
Balanços Materiais 
3.2 Sistema e fronteira 
 
Define-se sistema como a porção arbitrária ou a totalidade de um processo definido 
especificamente para análise. Essa porção está limitada pela fronteira entre o sistema e o 
exterior. 
 
3.2.1 Processo 
 
Define-se processo como o conjunto de acções, operações ou tratamentos, que levam a 
um determinado fim (produto), i.e., a alterações físicas e químicas das substâncias. 
Em engenharia química ou biológica os processos podem ser de vários tipos: 
• Reacções químicas 
• Transporte de fluídos 
• Transferência de massa 
• Mudança de fase 
• Produção e transferência de calor 
• Separação de substâncias 
 
Os sistemas podem ser classificados em abertos e fechados, e os processos podem ser 
classificados em contínuos ou descontínuos de acordo com o tipo de trocas que se 
estabelecem entre o sistema e o exterior. 
 
• Sistema aberto ? Processo contínuo 
 
Ocorre transferência de matéria através da fronteira do sistema. 
 
34 
Balanços Materiais 
• Sistema fechado ? Processo descontínuo 
 
Não ocorre transferência de matéria através da fronteira do sistema, durante o período 
de tempo de interesse para a análise 
 
 
Como exemplo de um sistema aberto pode referir-se a combustão contínua de um dado 
combustível (Figura 3.1). Existe transferência de reagentes (combustível e oxigénio) 
através da fronteira do exterior para o sistema e a contínua transferência pela fronteira 
de produtos da reacção do sistema para o exterior. 
 
 
 
 
 
 
 
 
 
Câmara de 
combustãoCombustível 
 
O2 
Gases de Combustão 
Fronteira 
Figura 3.1- Combustão - sistema aberto 
 
Como exemplo de um sistema fechado pode referir-se o processo descontínuo de 
fermentação, para produzir vinho ou cerveja. 
 
 
 
 
 
35 
Balanços Materiais 
3.3 Equação genérica de balanço material 
 
Genericamente, o balanço de matéria a um daddo sistema traduz-se pela seguinte 
equação: 
 
⎭⎬
⎫
⎩⎨
⎧
⎭⎬
⎫
⎩⎨
⎧
⎭⎬
⎫
⎩⎨
⎧
⎭⎬
⎫
⎩⎨
⎧
⎭⎬
⎫
⎩⎨
⎧ −+−=
sistema
no Consumo
sistema
no Produção
fronteira da
através Saída
fronteira da
através Entrada
sistema no
Acumulação
 
 
onde sistema do dentro molesou massa da tempono Variação 
sistema no
Acumulação =⎭⎬
⎫
⎩⎨
⎧
Quando este termo é nulo significa que o sistema se encontra em estado estacionário, 
isto é, a quantidade de matéria no sistema é constante no período de tempo 
seleccionado. Quando não ocorre variação de matéria com o tempo, diz-se que o 
sistema está em estado estacionário. 
 
A equação de balanço de matéria pode ser escrita em termos de massa total ou total de 
moles, massa ou moles de um determinado composto químico, ou ainda de massa ou 
moles de uma determinada espécie iónica. 
Os balanços materiais podem ser aplicados a uma larga variedade de produtos, de 
escalas de sistemas e com maior ou menor grau de complexidade. 
O balanço de matéria pode ser representado esquematicamente através de Diagramas 
de fluxo conforme o exemplo da figura seguinte (Figura 3.2). 
 
 
36 
Balanços Materiais 
 
Figura 3.2 
37 
Balanços Materiais 
3.4 Estado estacionário sem reacção química 
 
Quando num sistema em estado estacionário não ocorre reacção química aplicam-se as 
seguintes simplificações à equação de balanço de matéria. 
 
0
sistema
no Consumo
sistema
no Produção
sistema no
Acumulação === ⎭⎬
⎫
⎩⎨
⎧
⎭⎬
⎫
⎩⎨
⎧
⎭⎬
⎫
⎩⎨
⎧ 
 
Assim, a equação de balanço de matéria fica reduzida à seguinte expressão: 
 
⎭⎬
⎫
⎩⎨
⎧
⎭⎬
⎫
⎩⎨
⎧ =
fronteira da
através Saída
fronteira da
através Entrada
 
 
Esta equação traduz o conceito de que toda a massa que entra num sistema igual a 
massa que sai e é válida para sistema que envolvam ou não, reacções químicas. 
 
 
3.4.1 Metodologia 
 
A condição necessária para a resolução de um problema de balanço material é que o 
número de variáveis cujos valores são desconhecidos devem igualar o número de 
equações independentes. Define-se número de variáveis de projecto (Np), ou número de 
graus de liberdade, como o número de variáveis cujos valores devem ser conhecidos 
para que o problema de balanço materialtenha solução, i.e., todos os valores das 
restantes variáveis possam ser determinados, de modo a obter um sistema linear de 
equações com solução única. 
 
38 
Balanços Materiais 
Esquematizando vem: 
 Np = Nv – Ne Nv – número total de variáveis 
 Ne – número total de equações 
 
 Nv = Nf (1 + Nc) Nc – número total de componentes 
 Ne = Nc + Nf Nf – número total de correntes 
 
Exemplo de processo: Evaporador, cristalizador, centrifuga, destilador, 
secador... 
 
 
 
 
 
 
 
 Ou distribuidor de correntes 
(neste caso a composição é a mesma em todas as correntes) 
 
 
Supondo de 2 componentes: genericamente 1 e 2 
 
 
X21 
X22X11 X12
X31 
X32
F2
F3
F1
 
 
 
 
39 
Balanços Materiais 
Número total de Variáveis: 
 
 Fj – Caudal molar ou mássico da corrente j M T-1 ou N T-1 
Xji – Fracção molar ou mássica do componente i na corrente j 
 
Nv = Nf (1 + Nc) = 3 ( 1 + 2) = 9 
 
Número total de Equações: 
 
Estequiométricas - 3 equações = Nf 1=∑
i
jiX
 
Balanço material global (quantidade total): 321 FFF += 
Balanço material ao componente 1: 331221111 FXFXFX += 
Balanço material ao componente 2: 332222112 FXFXFX += 
 
No sistema acima, as 3 equações são linearmente dependentes, pelo que só se podem 
utilizar 2, ou seja um número igual ao número de componentes. 
 
Ne = Nc + Nf = 5 
Np = Nv – Ne = 9 – 5 = 4 ⇒ 4 graus de liberdade 
 
Os valores de 4 das variáveis devem ser escolhidos à priori e os valores das restantes 
variáveis serão obtidos pela resolução do sistema de equações. 
 
 
 
 
40 
Balanços Materiais 
Exemplo 3-1 
Pretende-se concentrar, através de um evaporador, uma solução aquosa de 
NaCl com 40 % em massa do sal. Determine a quantidade e composição da 
solução salina obtida, sabendo que por 100 kg/h de solução alimentada ao 
evaporador, se obtem 40 kg/h de água pura. 
 
 
X21 
X22=1 X11=0.4 X12
X31 
X32
F2=40 kg/h 
F3
F1=100 kg/h 
 
 
 
 
 
 
 
Incógnitas: X12, X21, X31, X32, F3 
 
Equações: X12 = 1 - X11 = 1 – 0.4 = 0.6 
X21 = 1 – X22 = 1 – 1 = 0 
F3 = F1 – F2 = 100 kg/h – 40 kg/h = 60 kg/h 
X31 F3 = X11 F1 – X21 F2 
X31 67.0
kg/h 60
kg/h 400-kg/h 1000.4 =××=
 X32 = 1 - X31 = 1 – 0.67 = 0.33 
 
Exemplo 3-2 
Misturam-se duas soluções aquosas de sacarose. Uma com 20 % em massa 
de açúcar e outra com 3 %. Sabe-se que a quantidade final de solução 
obtida é o dobro da solução a 3 % e que se utilizam 80 kg de solução a 20 %. 
Realize o balanço material a esta unidade. 
 
41 
Balanços Materiais 
1 – sacarose, 2 - água 
 
 
Misturador
X21=0.03 
X22
X11=0.2 
X12
X31 
X32
F2
F3=2F2 
F1=80 kg 
Restrição 
+1 equação 
+1 incógnita 
 
 
 
 
 
 
Incógnitas: X12, X22, X31, X32, F2, F3 
 
Equações: X12 = 1 - X11 = 1 – 0.2 = 0.8 
X22 = 1 – X21 = 1 – 0.03 = 0.97 
 
F3 = F1 + F2 = 80 kg/h + F2 F2 = 80 kg/h 
F3 = 2 F2 F3 = 160 kg/h 
 
X31 F3 = X11 F1 + X21 F2 
 
X31 115.0
kg/h 160
kg/h 800.03kg/h 800.2 =×+×= 
 
 X32 = 1 - X31 = 1 – 0.115 = 0.885 
 
 
Exemplo 3-3 
Exemplo de processo com múltiplas unidades. 
Considere o processo de recuperação de acetona representado 
esquematicamente no diagrama seguinte: 
 
 
42 
Balanços Materiais 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Coluna 
de 
Desti-
lação 
Ar húmido 
(0.5 % água) 
3 
Gás, 
 F1 = 1400 kg/h 
 
Ar (1) – 95 % 
Acetona (2) – 3 % 
Água (3) – 2 % 
 
Absor-
vedor 
Condensador 
Água 81 % 
Acetona 19 % 
4 
1 
2 
Água pura 6 
Água 1 % 
Acetona 99 % 
7 
5 
Água 96 % 
Acetona 4 % 
 
Realize o balanço de massa a este processo sabendo que as composições 
indicadas são mássicas. 
abelecer as equações de balanço material para cada unidade 
 Global: F1 + F2 = F3 + F4 
 Ar: 0.95 x 1400 kg/h = F3 x 0.995 → F3 = 1337 kg/h 
 Acetona: 0.03 x 1400 kg/h = F4 x 0.19 → F4 = 221 kg/h 
Resolução: Est
 
Absorvedor: 
 
 
 
 Voltando ao 1ª equação: F2 = 158 kg/h 
 
Condensador: F7 = F6 A composição das correntes também é igual 
 
Coluna de destilação: = F5 + F6 
 Acetona: g/h = F5 x 0.04 + F6 x 0.99 
 F
 Global: F4 
0.19 x 221 k
5 = 186 kg/h e F6 = 35 kg/h = F7 
43 
Balanços Materiais 
Poder-se-ia ter utilizado a equação de balanço de matéria global, que 
poderia ser estabelecida à massa total das correntes ou a cada um dos 
componentes: 
 
 F1 + F2 = F3 + F5 + F6 
 
 
3.4.2 Correntes de reciclagem, purga e curto-circuito 
 
3.4.2.1 Reciclagem 
 
Corrente que devolve ao processo, matéria de uma corrente a jusante do processo. 
 
 Reciclagem 
Processo 
 
 
 
 
3.4.2.2 Purga 
 
 Corrente que permite remover do processo, inertes ou substâncias indesejáveis, que 
podem estar presentes na corrente de reciclagem. 
 
Reciclagem 
Processo 
Purga 
 
 
 
 
 
 
44 
Balanços Materiais 
3.4.2.3 Curto-circuito 
 
Corrente que permite evitar a passagem de uma dada corrente por uma ou mais etapas 
do processo, levando a matéria para outra etapa mais a jusante. 
 
Processo 
Curto-circuito 
 
 
 
 
 
Nestes casos devem incluir-se na análise do sistema, os separadores de correntes e os 
misturadores. 
 
Exemplo 3-4 
A produção de vitaminas inclui normalmente uma etapa de separação dos 
sólidos suspensos do líquido, através de centrifugação e filtração. 
De acordo com o esquema seguinte (Figura 3.3), determine o caudal da 
corrente de reciclagem. 
 
 
Figura 3.3 – Etapas da produção de vitaminas (adaptado de Himmelblau, 1998). 
45 
Balanços Materiais 
 
 Esquema simplificado - componentes: 1-água, 2- vitaminas 
 
 
 
 
 
 
 
 
Centrífuga Filtro 
contínuo 
F1 = 98 lb/h 
X12=0.2 
Água 
Reciclagem, X52=0.286, X51=0.714 
X42=0.6 
X41=0.4 
X62=0.96 
X61=0.04 
5
4
61
2
3 
Nota: 0.4 lb (vit.)/(1 lb (água) + 0.4 lb (vit.)) = 0.286 
 
Balanço global: 
F1 = F3 + F6
 Vitaminas: 0.2 x 98 = 0.96 F6 ⇒ F6 = 20.4 lb/h ⇒ F3 = 77.6 
lb/h 
 
À unidade – filtro: 
 Balanço global: F4 = F5 + F6 ⇒ F4 = F5 + 20.4 
Vitaminas: 0.6 x F4 = 0.286 x F5 + 0.96 x 20.4 
 
 F4 = 43.8 lb/h e F5 = 23.4 lb/h 
 
Determinar s restantes incógnitas do processo 
Completar o
 
 
 
46 
 a
 ba nço material 
 
la
Balanços Materiais 
 
Exemplo 3-5 
Considere a seguinte etapa integrante de um processo de obtenção de 
gasolina (Figura 3.4). Esta etapa tem o objectivo de remover isopentano de 
uma corrente isenta de butano. Pretende-se saber que fracção desta 
corrente é alimentada à torre. 
 
Figura 3.4 – Separação do isopentano (adaptado de Himmelblau, 1998). 
 
Resolução resumida: 
 
Balanço global: S + P = 100 kg ⇒ S = 100-P 
 Balanço ao componente n-C5: 0.8 *100 = 0.9* P ⇒ P = 88.9 kg 
Balanço apenas à Torre: X = S + Y = 100 - 88.9 + Y 
 Balanço ao componente n-C5 : 0.8 * X = Y 
 
 X = 11.1 + 0.8*X ⇒ X = 55.5 kg ⇒ X / F = 0.555 
47 
Balanços Materiais 
3.5 Equação química e estequiometria – balanços com reacção 
 
A equação química traduz, de forma qualitativa e quantitativa, as reacções químicas que 
estão envolvidas num determinado processo. 
 
 Genericamente: ...... dDcCbBaA +→++ 
 
Esta equação traduz o seguinte: a mol (kmol, lbmol, ou µmol) de A reagem com b mol 
de B, originando c mol de C e d mol de D,onde A e B são reagentes, C e D são produtos 
e onde os coeficientes estequiométricos, a, b, c e d estabelecem a proporção relativa 
entre a quantidade (mol) dosvários compostos intervenientes na reacção. 
 
Considere-se o seguinte exemplo: 
 
 Ex: C6H12O6 + O2 → CO2 + H2O 
 
Informação qualitativa: da oxidação completa da glucose pelo oxigénio, 
resulta a formação de dióxido de carbono e água. 
 
 ?acertando a equação : C6H12O6 + 6 O2 → 6 CO2 + 6 H2O 
 
Informação quantitativa: para oxidar 1 mol de glucose é necessário 6 mol de 
oxigénio, produzindo-se 6 mol de dióxido de carbono e água 
 
Diz-se que dois reagentes se encontram nas proporções estequiométricas quando a 
razão entre a quantidade (mol) de cada reagente iguala a razão entre os respectivos 
coeficientes estequiométricos. 
48 
Balanços Materiais 
Exemplo 3-6 
Determinar a quantidade estequiométrica (em massa) de oxigénio necessária para reagir 
com 10 kg de glucose. 
 
( ) ( )( )
( )
( )
( )
( ) ( )22
2
6126
2
6126
6126
6126 O kg 11 O kmol 1
 O kg 32
OHC kmol 
O kmol 
 OHC kg 180
OHC kmol 1
OHC kg 10 =×××
1
6 
 
 
3.5.1 Reagente limitante 
 
Definine-se reagente limitante como aquele que se encontra em menor quantidade 
estequiométrica, i.e., é o reagente que desapareceria primeiro caso a reacção se desse. 
 
3.5.2 Reagente em excesso 
 
Define-se reagente em excesso como o que está presente em quantidade excessiva 
relativamente ao reagente limitante. Define-se percentagem de excesso de um reagente 
pela seguinte forma: 
 100
mol/
mol/mol/excesso de mPercentage ×−=
necessário
necessáriototal
N
NN 
 
3.5.3 Conversão 
 
A conversão é definida como a fracção de um determinado reagente (ou alimentação 
total) que é convertida em produtos. 
 100
mol/
mol/
conversão de mPercentage ×=
total
reagiu
N
N
 
 
49 
Balanços Materiais 
3.5.4 Rendimento 
 
O rendimento de uma reacção é dado pela massa de um dado produto obtido por 
unidade de massa de um determinado reagente (ou alimentação total) que é convertida. 
 
 100 rendimento
kg/
kg/ ×=
reagente
produto
m
m
 
 
Exemplo 3-7 
O cloro gasoso pode ser obtido através da oxidação do cloreto de 
hidrogénio pelo oxigénio. Sabendo que se utiliza 30 % de excesso de ar e 
que a conversão de HCl é 80 %, pretende-se determinar a massa de ar que é 
necessário fornecer ao reactor por mole de cloro produzido, bem como, a 
composição mássica da mistura à saída do reactor. 
 
Cl2, 
 restantes produtos 
HCl
Reactor 
 
 
 2 HCl + 
2
1
O2 → Cl2 + H2O 
Ar
 
Oxigénio necessário = 1mol Cl2 x ½ mol de O2/ mol de Cl2
Oxigénio em excesso = 0.3 x ½ mol de O2 
Oxigénio fornecido = 1.3 x ½ mol de O2 = 0.65 mol 
Azoto fornecido = 79/21 x 0.65 mol = 2.44 mol 
 
Massa total de ar fornecida = 0.65 mol x 32 g/mol + 2.44 mol x 28 g/mol = 
89 g 
 
50 
Balanços Materiais 
 
Cálculo dos produtos de reacção 
Produtos moles Massa (g)= n * MM X=mi/mtotal
HCl 0.5♣ 18.25 0.10 
Cl2 1 71 0.39 
H2O 1 18 0.10 
O2 0.3 x 0.5 4.8 0.03 
N2 2.44 68.32 0.38 
Total 180.37 1.00 
 
 
Exemplo 3-8 
A corrosão de tanques pelo oxigénio pode ser evitada pela utilização de 
sulfito de sódio que remove todo o oxigénio dissolvido na água, através da 
seguinte reacção: 
Na2SO3 + ½ O2 → Na2SO4 
Determine a massa de sulfito de sódio que é necessário adicionar a 1 t de 
água, na qual existe 0.001% (em massa) de O2 dissolvido, de modo a eliminar 
todo o oxigénio e a manter uma quantidade final de Na2SO3 de 0.01 % (em 
massa). 
 
Resolução: 
 n(O2)= 0.001/100x1000kgx1/32 (kg/kmol) = 0.3E-3kmol=0.3 mol de O2
 pela estequiometria: 
 n(Na2SO3) = 2x0.3 mol = 0.6 mol, m(Na2SO3) = 0.6 mol x Msulfito 
 m(Na2SO3)reagiu =0.6 molx 126 g/mol =75.6 g 
 m(Na2SO3)final=0.01/100x1000kg = 0.1kg = 100 g 
 m(Na2SO3)adicionada= m(Na2SO3)reagiu + m(Na2SO3)final = 75.6g+100g=175.6 g 
 
 
 
♣ HCl convertido = 2 mol 80 % conversão ⇒ 80 = n. conv/ n. Total x 100 ⇒ n. Total = 2.5 mol 
51 
Balanços Materiais 
Exemplo 3-9 
O hidróxido de potássio (KOH) pode ser obtido fazendo reagir o K2CO3 
com o Ca(OH)2. Estes reagentes entram no reactor em duas correntes 
separadas: uma de 100 Kg contendo K2CO3 e 2 % (percentagem mássica) 
de inertes sólidos e outra que contém 40 % de água e Ca(OH)2. Do reactor 
obtém-se uma mistura que contém KOH, CaCO3, inertes sólidos e água. 
Determine a composição da mistura que sai do reactor. 
 
Resolução: 
 
K2CO3 + Ca(OH)2 → 2 KOH + CaCO3 
 À saída do reactor não existem reagentes, logo a reacção é completa 
M (K2CO3) = 138 kg/kmol , n (K2CO3)= 0.71kmol138kg/kmol
100kg0.98 =× 
 
À saída do reactor temos uma mistura com: CaCO3, KOH, água e inertes 
 
m (KOH) = 2 x 0.71 kmol x 56 kg/kmol = 79.5 kg 
 
m (CaCO3) = 0.71 kmol x 100 kg/kmol = 71 kg 
 
m (inertes) = 2 kg 
 
m (água) = 74kg/kmol0.71kmol
60
40m
60
40
2)OH(Ca
××=× = 35 kg 
 
m total = 187.5 kg 
 
w(KOH)= %42100
5.187
5.79 =× ,w(CaCO3)= 38 %, w(água)=19 %, w(inertes)= 1 % 
 
 
52 
Balanços Materiais 
 
3.6 Exercícios propostos 
3.10. No processo de fabrico de sabão, uma das fases finais é a secagem. No secador 
pretende-se reduzir o conteúdo em água do sabão de 25 % (em massa) para 15 %. Para isso 
utiliza-se uma corrente de ar seco com 0.3 % (molar) de vapor de água. Sabe-se que o 
secador opera eficientemente quando a razão entre os caudais mássicos de ar seco e sabão, 
à entrada, é igual a 3. 
a. Diga qual o número de variáveis de projecto deste problema e identifique-as nos dados 
do problema. 
b. Realize o balanço de massa a esta unidade para 1200 lb/h de sabão seco. 
 
3.11. Uma solução composta por 50% (em massa) de etanol, 10% de metanol e 40% de água é 
alimentada a um separador a um caudal de 100 kg/h. O separador produz 60 kg/h de uma 
mistura com 80% (em massa) de etanol, 15% de metanol e 5% de água e uma outra mistura 
de composição desconhecida. Caracterize esta mistura em composição e caudal. 
 
3.12. O concentrado de sumo de laranja (com 20 % em massa de água) obtem-se através de 
um processo evaporação de água de sumo de laranja com 80 % (massa) de água. 
a. Determine a quantidade de água evaporada por kg de concentrado obtido. 
b. Sabe-se que o processo de evaporação é mais eficiente se parte do sumo de laranja 
original for curto-circuitado ao evaporador e misturado ao sumo concentrado que saí do 
evaporador, de modo a obter-se um concentrado final com 20 % de água. Determine o 
caudal e composição da corrente que saí do evaporador neste caso. 
 
3.14. Uma unidade de evaporação de triplo efeito (3 evaporadores) é utilizada para reduzir 
a água numa solução salina, de 25% (em massa) para 3%. Cada evaporador produz uma 
corrente de água pura que se retira do processo e uma solução de sal que alimentará o 
evaporador seguinte. À saída do 1º evaporador e do 2º evaporador obtêm-se soluções com 
33% de sal e 50% de sal, respectivamente. Determine a quantidade de solução a 25% de sal 
alimentada ao processo de modo a obter 14 670 lb/h de solução salina final, bem como a 
totalidade de água removida. 
 
3.15. Numa unidade de produção de açúcar concentra-se uma solução com 20 % em peso de 
sacarose, através de processos de evaporação, cristalização e secagem, conforme se indica 
no diagrama seguinte. Realize o balanço material ao processo global. 
53 
Balanços Materiais 
 
 
 
 
 
 
 
 
 
 
3.16. Considere o esquema seguinte que representa um processo de remoção de benzeno do 
ar através da absorção em óleo. Realize o balanço de matéria a este processo, sabendo que 
se purga 2 % do caudal de óleo que sai do aquecedor. 
 
 
 
 
 
 
 
 
 
 
 
 
3.17. Num reactor biológico contínuo utiliza-se uma cultura bacteriana para degradar fenol 
(C6H6O). Tratando-se de um processo aeróbio, fornece-se ar ao reactor a uma taxade 
10 m3/h (medido nas condições PTN). Considerando que o reactor é alimentado com 10 kg/h 
de uma solução aquosa de fenol a 1 % (em massa) e que a conversão de oxigénio é de 1 %, 
determine: 
a. O grau de conversão de fenol 
b. O CO2 produzido expresso em L(PTN)/h 
c. A composição da mistura gasosa à saída 
 
 
 
Evaporador Cristalizador Secador 
1000 kg/h 
sacarose 20 % 
Sacarose
 52 % 
 
Sacarose 38 %
água
6 % 
 
água 
1 % 
 
água 
água 
 
Absorvedor 
Aquecedor 
F=47 kg/h 
ar 86 %, benzeno 14 % 
óleo 90 % 
benzeno 10 % 
ar 99.7 % 
benzeno 0.3 % 
benzeno puro 
óleo puro 
óleo puro 
54 
Balanços Materiais 
3.18. O TiCl4 pode ser obtido através da reacção do TiO2 com HCl. O TiO2 disponível está 
na forma de um minério com 22% (em massa) de inertes e o HCl é fornecido ao reactor com 
20% de excesso, numa solução aquosa a 45% de HCl (em massa). A conversão do TiO2 é de 
75%. Os produtos de reacção passam por um separador que produz 3 correntes: uma de 
TiCl4 puro, outra de TiO2 puro que é reciclado à corrente de minério que alimenta o reactor 
e a terceira corrente contém os restantes produtos de reacção. A equação que traduz a 
reacção é a seguinte TiO2 + 4 HCl → TiCl4 + 2 H2O 
Por 1 kg de de TiCl4 utilizado, determine: 
a. A massa de minério utilizado 
b. A massa de solução ácida alimentada ao reactor 
c. A massa de TiO2 reciclado 
 
3.19. Um dado gás combustível tem a seguinte composição volumétrica: 
 CH4 – 70 %, C2H6 – 10 %, CO – 5 %, N2 – 10 %, O2 – 5 % 
Determine a composição mássica (em base seca) da mistura gasosa resultante da 
combustão do gás com 20 % de excesso de ar relativamente ao necessário à oxidação 
completa do gás. Sabe-se no entanto, que as condições de operação limitam a conversão do 
etano a 90%. 
 
3.20. Na reacção do carboneto de cálcio (CaC2 (s)) com o azoto gasoso forma-se CaCN2 (s) e 
C (s). O carbono formado oxida-se a CO (g) na presença de oxigénio. 
 Se se carregar um reactor com 100 Kg de CaC2 98 % em massa (o resto são inertes 
sólidos) e se for fornecido ar (79 % (molar)-N2 e 21 %-O2) com a quantidade de azoto 
necessária à reacção completa de CaC2, determine: 
a. A massa de ar fornecida ao reactor. 
b. A massa e composição da corrente sólida de produtos e massa de CO (g) produzido. 
 
3.21. Pode preparar-se CO2 puro tratando calcáreo com H2SO4. O calcáreo contém CaCO3, 
MgCO3 e inertes insolúveis. O ácido utilizado tem 12 % em peso de H2SO4, sendo o 
restante água. Da reacção obtêm-se duas correntes: um resíduo que contém 55.7 % (em 
peso) de CaSO4, 34 % de MgSO4, 6.8 % de H2SO4 e 3.5 % de inertes; e uma corrente de 
H2CO3 aquoso. Esta corrente após aquecimento origina CO2 gasoso puro e água líquida com 
5 % (em peso) de CO2 dissolvido. Determine por 100 kg de resíduo: 
a. A composição mássica do calcáreo. 
b. A massa total da corrente de ácido utilizada. 
c. A quantidade de CO2 gasoso produzido.
55 
Balanços Materiais 
56 
Introdução ao Equilíbrio de Fases 
 
4 Introdução ao Equilíbrio de Fases 
 
Objectivos 
Neste capítulo pretende-se que sejam desenvolvidas as seguintes 
competências: 
Descrever os estados da matéria. Interpretar o diagrama de fases de uma 
substância pura. Descrever os processos de mudança de fase e representar 
os processos no diagrama de fases. 
Relacionar as fases em equilíbrio líquido-vapor para substâncias puras e 
misturas com um ou dois componentes. 
Utilizar a lei de Henry e a lei de Rauolt. Calcular pontos de ebulição e de 
orvalho de misturas binárias ideais. 
 
4.1 Definições 
 
4.1.1 Estado 
 
O estado de um sistema é caracterizado pelo conjunto de valores que as suas 
propriedades assumem num determinado tempo. Dependendo da pressão e temperatura, 
as substâncias podem encontrar-se num dado estado, ou para determinados valores de P 
e T, podem coexistir diferentes estados, consistindo em mais do que uma fase. 
De um modo geral os estados da matéria podem ser classificados em: 
 
57 
Introdução ao Equilíbrio de Fases 
Nome Tipo de estrutura entre as moléculas 
Gás perfeito Inexistente 
Gás real Quase inexistente 
Líquido Ténue, relativa 
Amorfo (sólido) Fraca 
Cristal (sólido) Completa, elevada 
 
4.1.2 Propriedade 
 
Característica quantificável de uma substância (fluído ou sólido) que pode ser calculada 
ou deduzida, como por exemplo: Pressão, temperatura, volume, energia interna, etc. 
 
4.1.3 Equilíbrio 
 
Estado de um sistema em que não existe tendência espontânea para a ocorrência de 
variação das propriedades de estado. 
 
4.1.4 Fase 
 
A matéria diz-se numa só fase quando se encontra num estado uniforme, i.e., 
completamente homogénea. 
 
4.1.5 Gás Perfeito 
 
O termo gás perfeito é utilizado para definir o estado de uma substância que se encontra 
em condições tais que a distância média entre as moléculas é suficientemente grande 
58 
Introdução ao Equilíbrio de Fases 
para que as forças intermoleculares sejam desprezáveis, bem como o volume das 
moléculas comparado com o volume do sistema. Um gás nestas condições ideais 
obedece à seguinte equação, já referida na secção 2.3: 
 P V = n R T ou P v = R T 
Onde P é a pressão total, V é o volume, n é o número de moles da substância, T é a 
temperatura e v=V/n e designa-se de volume específico ou volume molar. 
Esta relação entre as propriedades de estado de gás ideal dá origem à superfície da 
Figura 4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.1- Relação entre as propriedades de estado de qualquer gás ideal 
(Himmelblau, 1996) 
59 
Introdução ao Equilíbrio de Fases 
4.1.6 Gás real 
 
O comportamento de maioria dos gases em condições de pressão e temperatura 
diferentes das condições de idealidade, isto é, à medida que pressão aumenta, a 
temperatura e o volume diminuem, afasta-se do comportamento descrito pela equação 
de gás perfeito e esta deve ser corrigida de modo a prever o desvio à idealidade. Assim, 
a equação generalizada que relaciona as propriedades de estado de um gás real pode ser 
Pv=ZRT, onde se introduziu o factor de compressibilidade (secção 2.3) Quanto mais 
afastado da unidade for o valor de Z, mais longe das condições de idealidade se encontra 
o gás. Como Z depende da substância, a relação entra as propiedades de estado é única 
para cada gás real. 
 
4.2 Diagrama de fases de uma substância 
 
Na Figura 4.2 ilustra-se a relação entre as propriedades de estado para a água. A 
projecção da superfície em cada um dos planos, P constante, T constante e v constante, 
dá origem aos diagramas de fase. A figura seguinte (Figura 4.3) representa o diagrama 
de fases da água para um dado volume específico constante. 
 
 
 
 
 
 
 
60 
Introdução ao Equilíbrio de Fases 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.2 – Superfície e diagramas de fases da água (Himmelblau, 1996). 
61 
Introdução ao Equilíbrio de Fases 
 
Figura 4.3 - Diagrama de fases da água (P-T) 
 
No diagrama de fases de uma substância pura estão indicadas as zonas de pressão e 
temperatura a que correspondem os diferentes estados da matéria. As linhas que 
delimitam os diferentes estados correspondem a pontos de equilíbrio entre dois ou mais 
estados e em que existem várias fases em equilíbrio. 
No diagrama está também exemplificado a condensação da água a temperatura 
constante: o ponto A representa vapor de água que ao ser comprimido condensa ao 
atingir a pressão do ponto B, neste ponto existe vapor em equilíbrio com líquido e o 
sucessivo aumento da pressão leva a que todo o vapor condense,o ponto C representa 
liquido. 
O percurso C-D-E marcado no diagrama ilustra a vaporização a pressão constante, i.e., 
água líquida é aquecida até que se atinge a temperatura do ponto D, onde se inicia a 
62 
Introdução ao Equilíbrio de Fases 
vaporização, existindo 2 fases em equilíbrio até que termina a vaporização e o ponto E 
representa vapor sobreaquecido. 
O ponto triplo da água assinalado no diagrama, representa o ponto em que se estabelece 
o equilíbrio entre sólido, líquido e vapor. 
O ponto crítico caracteriza-se por algumas das propriedades físicas das substâncias 
neste ponto serem idênticas na fase líquida e gasosa. 
Um fluído supercrítico encontra-se num estado em que as propriedades de estado se 
encontram acima do ponto crítico, e o estado do fluído assume propriedades de gas e 
líquido. Por exemplo, os fluidos supercríticos têm densidade próxima dum líquido e 
difusividade próxima de um gás. 
O termo vapor utiliza-se para uma substância que encontrando-se no estado gasoso, está 
abaixo do seu ponto crítico, podendo facilmente condensar. 
O termo gás utiliza-se para uma substância que encontrando-se no estado gasoso, está 
acima do seu ponto crítico e portanto está afastado das condições de condensação. 
 
4.2.1 Pressão de vapor 
 
Define-se pressão de vapor como a pressão à qual, a uma dada temperatura, a fase 
líquida de um componente puro está em equilíbrio com a fase vapor, e que corresponde 
ao ponto B do diagrama de fases da água acima descrito. 
 
A mudança de fase A-B-C pode ser ainda ilustrada pelo esquema seguinte (Figura 4.4). 
63 
Introdução ao Equilíbrio de Fases 
 
Figura 4.4 – Condensação a temperatura constante (adaptado de Himmelblau, 1996). 
 
A condensação inicia-se quando a pressão exercida pelas moléculas na fase gasosa 
atinge o valor da pressão de vapor a 20 ºC, que para a água é 17.5 mmHg. O vapor neste 
ponto, definido como ponto de orvalho, diz-se saturado. 
 
O ponto de orvalho pode ainda ser definido como a temperatura à qual a pressão de 
vapor do líquido iguala a pressão parcial do componente na fase gasosa, que no caso de 
uma substância pura é igual à pressão total, e corresponde sempre ao inicio da 
condensação. 
 
A vaporização C-D-E a pressão constante pode ser ilustrada pelo esquema seguinte 
(Figura 4.5): 
 
64 
Introdução ao Equilíbrio de Fases 
 
Figura 4.5 Vaporização a pressão constante (adaptado de Himmelblau, 1996) 
 
A vaporização inicia-se quando a temperatura atinge o valor ao qual a pressão de vapor 
do líquido é igual à pressão total (101.3 kPa). Este ponto define-se como ponto de 
ebulição e corresponde ao início da vaporização. Neste ponto o líquido encontra-se 
saturado. O ponto de ebulição normal é definido à pressão total de 1 atm = 760 mmHg = 
101.3 kPa. 
 
4.2.2 Variação da pressão de vapor com a temperatura 
 
A pressão de vapor é uma propriedade específica da substância e de um modo geral, 
aumenta com o aumento da temperatura. A relação da variação da pressão de vapor, PS, 
com a temperatura pode ser descrita pela equação de Antoine: 
TC
BAPS −+=ln 
onde A, B e C são constantes reais, dependentes da substância. 
65 
Introdução ao Equilíbrio de Fases 
Exemplo 4-1 
a. Determinar a pressão de vapor da água a 25 C, usando a equação de 
Antoine, sabendo que para a água A = 18.3036, B = 3816.44, C = - 46.13, com 
T em K e P em mmHg. 
o
s
mmHg 6.23
15.29813.46
3816.443036.18expexp =⎟⎠
⎞⎜⎝
⎛
+−−=⎟⎠
⎞⎜⎝
⎛
+= TC
B-APS
 
b. Determinar o ponto de ebulição normal da água. 
 
K 15.37313.46
760ln3036.18
3816.44 =+−== −− CT sPA
B
ln
 
c. Determinar o ponto de orvalho da água a 700 mmHg. 
 
K 9.37013.46
700ln3036.18
3816.44 =+−=−−
= CsPA
BT
ln
 
Exercício 4.1 
Sabendo que as constantes da equação de Antoine para o benzeno são A=15.9008, 
B=2788.51 e C=-52.36 
a. Calcule a pressão de vapor do benzeno a 25 oC 
b. Calcule o ponto de ebulição normal do benzeno 
c. Compare a volatilidade do benzeno relativamente à água 
 
 
 
 
 
66 
Introdução ao Equilíbrio de Fases 
A dependência da pressão de vapor com a temperatura e a substância é normalmente 
representada graficamente através do gráfico de Cox (). 
 
Figura 4.6 – Diagrama de Pressões de vapor (Hougen, Watson e Ragatz, 1984) 
 
Exercício 4.2 
Usando o diagrama de pressão de vapor determine: 
a. A pressão de vapor do álcool etílico a 30 oC. 
b. O ponto de ebulição normal do tolueno. 
c. O ponto de orvalho a 2000 mmHg do éter etílico 
67 
Introdução ao Equilíbrio de Fases 
4.3 Misturas de gases e vapores condensáveis 
 
Quando um gás não-condensável (ex: ar, CO2, N2) entra em contacto com um líquido 
puro (ex: água, acetona, etanol) ocorre vaporização do líquido para o gás até se atingir o 
ponto de saturação, i.e., o ponto em que a pressão parcial que a substância vapor exerce 
na fase gasosa iguala a pressão de vapor (equilíbrio) do líquido. A partir daqui por cada 
molécula de líquido evaporada, condensa-se outra molécula de vapor, atingindo-se 
assim o equilíbrio. Este fenómeno é ilustrado pelo esquema seguinte (Figura 4.7): 
 
Figura 4.7 – Vaporização de um líquido para um gás (adaptado de Himmelblau, 1996) 
 
Podem estabelecer-se as seguintes relações entre pressões parciais e fracções molares 
dos componentes na mistura gasosa: 
 págua = yágua * P , P = págua+ par , págua/ par = nágua/nar 
Onde P é a pressão total. 
68 
Introdução ao Equilíbrio de Fases 
No ponto de saturação ou ponto de orvalho, págua= PS(água), onde PS(água) depende 
da temperatura e págua depende da quantidade de água que o ar contém. 
 
Nos fenómenos de vaporização-condensação a quantidade de gás não é alterada no 
processo, apenas varia a quantidade da substância vapor na fase gasosa. Conforme se 
ilustra na Figura 4.8, num processo de vaporização a pressão variável a pressão parcial 
de gás também permanece constante aumentando a pressão total à medida que se dá a 
vaporização. Na vaporização a pressão constante, a pressão total não é alterada e como é 
a soma das pressões parciais de gás e vapor, a pressão parcial do gás decresce à medida 
que aumenta a pressão parcial do vapor. 
 
 
Figura 4.8 – Variação da pressão com o tempo na vaporização de um líquido para um 
gás (adaptado de Himmelblau, 1996) 
 
 
 
 
69 
Introdução ao Equilíbrio de Fases 
4.3.1 Definições 
 
4.3.1.1 Saturação relativa ou humidade(quando o vapor é água) relativa, SR 
 
SR= S
vapor
P
p
 
4.3.1.2 Saturação absoluta ou humidade(quando o vapor é água) absoluta, SA 
 
SA= ⎟⎟⎠
⎞
⎜⎜⎝
⎛
−
−×=
vaporT
S
T
S
vapor
S
vapor
pP
PP
P
p
n
n
 
4.3.1.3 Humidade molar ou mássica, H 
H/(mol de vapor por mol de gás) =
gás
vapor
n
n
 
H/(kg de vapor por kg de gás) =
gás
vapor
m
m
 
 
4.4 Equilíbrio líquido-vapor em sistemas multicomponente 
 
4.4.1 Solubilidade de gases em líquidos 
 
O equilíbrio líquido-vapor envolve a vaporização de um líquido para um gás, e por sua 
vez o gás não condensável pode dissolver-se no líquido em contacto com o gás+vapor, 
conforme se ilustra no seguinte esquema. 
 
70 
Introdução ao Equilíbrio de Fases 
 
 
Gás +vapor 
Líquido + 
moléculas do 
gás dissolvido 
 2 componentes em cada fase 
 
 
 
A Lei de Henry permite determinar a pressão parcial na fase gasosa de um soluto (gás) 
muito diluído numa mistura em equilíbrio, sendo dada pela seguinte expressão: 
iiji xHp ×= 
Onde pi é a pressão parcial do soluto diluído (gás) i na fase gasosa, xi é a fracção molar 
do soluto na fase líquida em equilíbrio, i.e., xi é a solubilidade

Outros materiais