Buscar

Transformada de Fourier Propriedades

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 40 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 40 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 40 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
1
 
 
8 – Transformadas de 
Fourier 
 
 
 
8.1 – Introdução à Análise de Fourier 3 
8.2 – A Transformada de Fourier para sinais contínuos 4 
 Exemplo 8.1 6 
 Exemplo 8.2 9 
 Exemplo 8.3 11 
8.3 – A Transformada de Fourier para sinais periódicos 13 
 Exemplo 8.4 14 
 Exemplo 8.5 15 
 Exemplo 8.6 15 
 Exemplo 8.7 17 
8.4 – Propriedades da Transformada de Fourier para sinais contínuos 20 
 Linearidade 20 
 Translação no tempo (“time shifting”) 21 
 Exemplo 8.8 21 
 Conjugação 23 
 Exemplo 8.9 25 
 Derivadas 26 
 Integral 27 
 Exemplo 8.10 27 
 Exemplo 8.11 28 
 Escalonamento no tempo (“time scaling”) 29 
 Sinal reflectido / reversão no tempo (“time reversal”) 29 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
2
 
 
 
 Relação de Parseval 30 
 Dualidade 30 
 Exemplo 8.12 30 
 Derivada na frequência (dual da derivada) 31 
 Dual da integral 31 
 Translação na frequência (“frequency shifting”) 32 
 Convolução 32 
 Multiplicação (dual da convolução) 33 
8.5 – Interpretação da propriedade da Convolução 33 
 Exemplo 8.13 35 
 Exemplo 8.14 36 
 Exemplo 8.15 37 
 Exemplo 8.16 38 
8.6 – Tabela da Transformada de Fourier de alguns sinais contínuos 40 
8.7 – A Transformada de Fourier para sinais discretos 43 
8.8 – Propriedades da Transformada de Fourier para sinais discretos 45 
 
 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
Transformadas de Fourier 
 
 
8.1 – Introdução às Transformadas de Fourier 
 
 
Neste capítulo continuaremos a Análise de Fourier estudando agora as Transformadas 
de Fourier. 
 
 
 
Fig. 8.1 – Jean Baptiste Joseph Fourier (1768-1830), francês. 
 
 
A obra principal de Fourier tem o título: “Mémoire sur la théorie de la chaleur”, pu-
blicada no “Extrait du mémoire lu à l'Académie des sciences” le 1er décembre 1828, 
1829, t. 11 p. 13-30. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
4
Na figura 8.2 vemos o livro onde foi publicado esta sua obra e alguns extractos dos 
originais de Fourier. 
 
 
Fig. 8.2 – Alguns extractos dos originais de Fourier. O livro “Extrait du mémoire lu à 
l'Académie des sciences”onde foi publicado a principal obra de Fourier e 
alguns extractos dos seus originais. 
 
Enquanto que as séries de Fourier eram definidas apenas para sinais periódicos, as 
Transformadas de Fourier são definidas para uma classe de sinais muito mais ampla. 
 
Devido ao facto que os sinais sinusoidais são diferenciáveis, a transformada de Fou-
rier permite representar equações diferenciais lineares com coeficientes constantes na 
forma de equações algébricas ordinárias. 
 
Outro detalhe: as transformadas de Fourier tornam a operação de convolução em 
multiplicações simples. 
 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
5
8.2 –Transformadas de Fourier para sinais contínuos 
 
 
A série de Fourier só se aplica a sinais periódicos. Sinais que não são periódicos 
(ditos sinais “aperiódicos”) têm uma outra representação com a transformada de Fou-
rier. 
 
Um sinal aperiódico pode ser visto como um sinal periódico com um período infinito. 
Mas na série de Fourier, quando o período T de um sinal periódico aumenta, a fre-
quência ωo 
T
2
o
pi
=ω
 
 
diminui, e o termos harmonicamente relacionados ficam mais próximos na frequência. 
 
Ou seja, quando o período T cresce, 
 
∞→T
 
 
e por conseguinte a frequência ωo diminui 
 
0
T
2
o →
pi
=ω
 
 
as componentes em frequência (i.e., os ck ‘s) formam um contínuo, e o somatório da 
série de Fourier deste sinal se converte em uma integral. 
 
Considere portanto 
 
um sinal contínuo x(t) ∈ C {conjunto dos números complexos} 
 
ou seja, o sinal x(t) tem valores complexos, com parte real e parte imaginária. 
 
A transformada de Fourier deste sinal x(t), normalmente simbolizada por: 
 
F { x(t) } = X(jω) 
 
permite expressar o sinal x(t), o que não era possível com a série de Fourier se o sinal 
não fosse periódico, como: 
 
 ∫
∞
∞−
ω⋅ω
pi
=
ω d)j(X
2
1)t(x tje
 eq. (8.1) 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
6
onde: 
 ∫
∞
∞−
⋅⋅=ω
⋅ω⋅− dt)t(x)j(X tje
 eq. (8.2) 
 
é a transformada de Fourier do sinal x(t). 
 
Portanto, a transformada de Fourier é uma função de ω (ou de jω) e, de certa forma, 
generaliza a série de Fourier. 
 
A equação eq. (8.1) acima é conhecida como a equação de síntese, ou também como 
a fórmula da transformada inversa de Fourier. 
 
Por outro lado a equação eq. (8.2), que dá propriamente a fórmula da transformada 
de Fourier, é conhecida como as equação de análise. 
 
Quanto à convergência destas integrais, é possível mostrar que estas fórmulas são 
válidas para uma classe bastante ampla de sinais de duração infinita. 
 
 
Exemplo 8.1: 
 
Considere o sinal 
 
0a,)t(u)t(x 1ta >⋅= −e 
 
cujo gráfico vê-se na figura 8.3. 
 
 
Fig. 8.3 – O sinal exponencial 0a,)t(u)t(x 1at >⋅= −e do Exemplo 8.1. 
 
A transformada de Fourier deste sinal x(t) pode ser calculada usando a equação 
eq. (8.2). 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
7
∞
∞
ω+−
⋅ω⋅−−
ω+
−
=
=⋅⋅=ω ∫
0
0
t)ja(
tjat
)ja(
1
dt)j(X
e
ee
 
 
e portanto a transformada de Fourier deste sinal x(t) é dada por: 
 
0a,)ja(
1)j(X >
ω+
=ω
 
 
Como a transformada de Fourier tem valores complexos, para expressá-la através de 
um gráfico é necessário decompor em 
 
diagrama de módulo |X(jω)|, 
e, 
diagrama de fase ∠ X(jω). 
 
Para esta transformada X(jω) é fácil de verificar que o diagrama de módulo |X(jω)| 
tem a expressão 
 
22a
1)j(X
ω+
=ω
 
 
que está ilustrado na figura 8.4. 
 
 
Fig. 8.4 – A transformada de Fourier do sinal x(t). Diagrama de módulo |X(jω)|. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
8
e que o diagrama de fase ∠ X(jω) tem a expressão 
 





 ω
−=ω∠
a
tgarc)j(X
 
 
e isso está ilustrado na figura 8.5. 
 
 
 
Fig. 8.5 – A transformada de Fourier do sinal x(t). Diagrama de fase ∠X( j ω). 
 
 
Observe que se ω = 0, então 
 
( ) 00tgarc
a
tgarc ==




 ω
, 
e portanto 
 
( )X( j0) arctg 0 0∠ = − = . 
 
Também é fácil verificar que se ω = –a, então ( )
4
1tg
a
tg 11 pi−=−=




 ω
−−
, e portanto 
 
4a
tgarc)j(X pi→




 ω
−=ω∠
 
 
Por outro lado, se ω = a, então ( )
4
1tgarc
a
tgarc pi==




 ω
 e portanto 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
9
4a
tgarc)j(X pi−→




 ω
−=ω∠
 
Note também que se ω → – ∞, então 
 
( )
2
tgarc
a
tgarclim
a
tgarc pi−→∞−≅




 ω
=




 ω
∞−→ω
, 
 
e portanto 
2a
tgarc)j(X pi→




 ω
−=ω∠
 
 
Mas entretanto, se ω → ∞, então 
 
( )
2
tgarc
a
tgarclim
a
tgarc pi→∞≅




 ω
=




 ω
∞→ω
, 
 
e portanto 
2a
tgarc)j(X pi−→




 ω
−=ω∠
 
 � 
 
Exemplo 8.2: 
 
Considere agora o sinal 
0a,)t(x ta >= −e
 
 
cujo gráfico vê-se na figura 8.6. 
 
 
Fig. 8.6 – O sinal 0a,)t(x ta >= −e do Exemplo 8.2. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier10
A transformada de Fourier de x(t) pode ser calculada usando a equação eq. (8.2). 
 
)a(
1
)a(
1
)ja(
1
)ja(
1
dtdt
dt)j(X
0
0
0
0
0
t)ja(t)ja(
tjtatjta
tjta
ω+
+
ω−
=
ω+−
+⋅
ω−
=
=⋅⋅+⋅⋅=
=⋅⋅=ω
∞
∞−
∞
∞−
∞
ω+−ω−
⋅ω⋅−−⋅ω⋅−
⋅ω⋅−−
∫∫
∫
ee
eeee
ee
 
 
e portanto a transformada de Fourier deste sinal x(t) é dada por: 
 
)a(
a2)j(X 22 ω−=ω 
o que está ilustrado na figura 8.7. 
 
 
 
Fig. 8.7 – A transformada de Fourier do sinal x(t). Diagrama de módulo )j(X ω . 
 
 
O diagrama de módulo |X(jω)| 
 
)a(
a2)j(X
22 ω−
=ω
 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
11
Como o X(jω) tem valores reais positivos para | ω | < a e valores reais e negativos 
para | ω | < a, o diagrama de fase ∠ X(jω) é tem a expressão 
 




>ω−<ωpi−
<ω<−
=ω∠
aouase,
aase,0
)j(X
 
 
e isso está ilustrado na figura 8.8. 
 
 
Fig. 8.8 – A transformada de Fourier do sinal x(t). Diagrama de fase ∠ X( j ω). 
 � 
 
 
Exemplo 8.3: 
 
Considere agora o sinal 
 




>
<
=
atse,0
atse,1
)t(x
 
 
cujo gráfico vê-se na figura 8.9 e é cha-
mado de um “pulso quadrado”. 
 
 
Fig. 8.9 – O sinal x(t) do Exemplo 8.3. 
“pulso quadrado”. 
 
Calculando-se a transformada de Fourier de x(t) usando a equação eq. (8.2), temos 
 
a
a
t)j(
tj
)j(
1
dt1)j(X a
a
−
ω−
⋅ω⋅−
⋅
ω
−
=
=⋅⋅=ω ∫
−
e
e
 
e logo, 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
12
( )jajaj1)j(X ω−ω −⋅ω=ω ee 
 
e portanto, usando Eüler, a transformada de Fourier deste sinal x(t) é dada por: 
 
ω
ω
=ω
)a(sen2)j(X
 
 
Portanto, esta transformada de Fourier X(jω) também só tem valores reais ∀ ω, mas 
entretanto, os valores que X(jω) assume são ora positivos e ora negativos, devido às 
oscilações do seno. 
 
O gráfico de X(jω) está ilustrado na figura 8.10. 
 
 
Fig. 8.10 – A transformada de Fourier do sinal x(t) do Exemplo 8.3. 
 
Logo, é fácil de se obter o diagrama de módulo |X(jω)| conforme pode-se ver ilus-
trado na figura 8.11. 
 
 
Fig. 8.11 – A transformada de Fourier do sinal x(t) do Exemplo 8.3. Diagrama de 
módulo )j(X ω . 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
13
e o gráfico do diagrama de fase ∠ X(jω) é mostrado na figura 8.12. 
 
 
 
Fig. 8.12 – A transformada de Fourier do sinal x(t) do Exemplo 8.3. Diagrama 
de fase ∠ X(jω). 
 
Ou seja, 




<ωpi−
>ω
=ω∠
0)j(X
0)j(X0
)j(X
se
se
 
 � 
 
 
 
 
8.3 – Transformadas de Fourier para sinais periódicos 
 
 
Note que se 
)(u2)j(X oo ω−ω⋅pi=ω 
então 
toj
tj
tj
d)(u
d)(u2
2
1)t(x
oo
oo
ω
⋅ω⋅
⋅ω⋅
=
=ω⋅⋅ω−ω=
=ω⋅⋅ω−ω⋅pi⋅
pi
=
∫
∫
∞
∞−
∞
∞−
e
e
e
 
 
Logo, se 
 ∑
∞
−∞=
ω−ω⋅⋅pi=ω
k
ook )k(uc2)j(X eq. (8.3) 
 
x(t) então será: 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
14
∑
∞
−∞=
ω
⋅=
k
t
k
okjc)t(x e
 
 
que é a série de Fourier para sinais periódicos. 
 
X(jω) que satisfaz a equação eq. (8.3) acima é chamado de 
 
“train of impulses” 
 
e define a transformada de Fourier para os sinais que são periódicos em função dos 
coeficientes ck’s da série de Fourier exponencial. 
 
 
Exemplo 8.4: 
 
Considere o sinal periódico do seno: 
 
x(t) = sen(ωot) 
 
Neste caso os coeficientes ck’s da série exponencial de Fourier são: 
 
⇒= 1kse
 j2
1
c1 = 
⇒−= 1kse
 j2
1
c 1 −=− 
{ } ⇒−∉ 1,1kse
 
0ck = 
 
E a transformada de Fourier (“train of impulses”) neste caso é: 
 
)(uj)(uj)j(X oooo ω+ω⋅
pi
−ω−ω⋅
pi
=ω
 
 
que pode ser vista no gráfico da figura 8.13. 
 
 
 
Fig. 8.13 – A transformada de Fourier do sinal x(t) do Exemplo 8.4. 
 � 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
15
Exemplo 8.5: 
 
Considere o sinal periódico do co-seno: 
 
x(t) = cos(ωot) 
 
Agora, neste caso os coeficientes ck’s da série exponencial de Fourier são: 
 
⇒= 1kse
 
2
1
c1 = 
⇒−= 1kse
 
2
1
c 1 =− 
{ } ⇒−∉ 1,1kse
 
0ck = 
 
e a transformada de Fourier (“train of impulses”) neste caso é: 
 
)(u)(u)j(X oooo ω−ω⋅pi+ω+ω⋅pi=ω 
 
que encontra-se ilustrado na figura 8.14 
 
 
 
Fig. 8.14 – A transformada de Fourier do sinal x(t) do Exemplo 8.5. 
 � 
 
 
Exemplo 8.6: 
 
Considere o sinal x(t) do exemplo 7.1 no capítulo 7 (onda quadrada). 
 





<<
<<−−
=
1t0se,1
0t1se,1
)t(x
 
 
que após ser repetido (ou estendido) para a direita de t = 1 e para esquerda de t = –1, 
nos dá um sinal periódico para ∀t (∞ < t < ∞ ), ilustrado na figura 8.15. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
16
 
Fig. 8.15 – Onda quadrada estendida para ∀t (∞ < t < ∞). 
 
 
 
Este sinal tem frequência natural 
 
pi=
pi
=ω
T
2
o 
 
No Exemplo 7.2 vimos que os coeficientes cks da série de Fourier complexa são: 
 
 






±±±=
pi
−
±±=
=
...,5,3,1kse,j
k
2
...,4,2,0kse,0
ck
 
 
Logo a Transformada de Fourier deste sinal x(t) será dada por 
 
∑
∑
∑
±±±=
±±±=
∞
−∞=
pi−ω⋅




 −
=
=pi−ω⋅








pi
−
⋅pi=
=ω−ω⋅⋅pi=ω
K
K
,5,3,1k
o
,5,3,1k
o
k
ook
)k(uj
k
4
)k(uj
k
22
)k(uc2)j(X
 
 
 
que é um “train of impulses” complexos com áreas: K,
5
j4
,
3
j4
,j4 ±±±
 localizados 
em K,5,3, pi±pi±pi±=ω , respectivamente. Logo, é fácil de se obter o diagrama de 
módulo |X(jω)| conforme pode-se ver ilustrado na figura 8.16. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
17
 
Fig. 8.16 – A transformada de Fourier do sinal x(t), “train of impulses”. Dia-
grama de módulo )j(X ω . 
 
 
Para o diagrama de fase ∠ X(jω), note que quando os impulsos estão multiplicados 
por +j, o ângulo (ou fase) é pi/2 (ou 90º); e quando os impulsos estão multiplicados 
por –j, o ângulo (ou fase) é –pi/2 (ou –90º). Isso pode se ver ilustrado na figura 8.17. 
 
 
 
Fig. 8.17 – A transformada de Fourier do sinal x(t) do Exemplo 8.6. Diagrama 
de fase ∠ X(jω). 
 
 
 
Exemplo 8.7: 
 
Considere o sinal periódico x(t) abaixo: 
 





<<
<
=
2
T
tase,0
atse,1
)t(x
 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
18
e suponha que foi estendido para esquerda e para direita, tornando-o um sinal perió-
dico, como se encontra-se ilustrado na figura 8.18. 
 
 
 
Fig. 8.18 – O sinal x(t) do Exemplo 8.7. “Onda quadrada”. 
 
 
Para calcular os coeficientes ck’s da série de Fourier exponencial, fazemos primeiro 
para k = 0, e temos que: 
 
T
a2
dt1
T
1
c
a
ao
=
⋅= ∫
−
 
 
Para k ≠ 0 temos que: 
 
0k,j2Tk
2
Tkj
1
dt1
T
1
c
akojakoj
a
a
tkoj
a
a
tkoj
o
o
k
≠








−
⋅⋅ω
=
=⋅
⋅⋅ω⋅
−=
=⋅⋅=
⋅ω−⋅ω
−
⋅ω−
−
⋅ω−
∫
ee
e
e
 
 
 
onde 




 pi
=ω
T
2
o . Agora, usando-se as equações de Eüler temos que: 
 
0k,
Tk
)ak(sen2
c
o
o
k ≠
ω
ω
=
 
 
ou, equivalentemente: 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
19
0k,
k
)ak(sen
c ok ≠
pi
ω
=
 
 
 
Logo,a transformada de Fourier deste sinal periódico x(t) é o “train of impulses” 
X(jω) abaixo: 
∑
∑
∞
∞
≠
−∞=
−∞=
ω−ω⋅γ=
ω−ω⋅
ω
⋅+⋅⋅pi=ω
k
)k(u
)k(u
k
)ak(sen2)a(u
T
a22)j(X
ook
0k
k
oo
o
o
 
 
onde: 
 







≠
ω
⋅
=
pi
=γ
0kse
k
)ak(sen2
0kse
T
a4
o
k
 
 
 
Na figura 8.19 pode-se ver o gráfico de X(jω) x ω para o caso particular de T = 4a. 
 
 
 
Fig. 8.19 – A transformada de Fourier do sinal x(t) do Exemplo 8.7. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
20
Neste caso (T = 4a), ωo = pi/2, e os valores de ck e dos γk são: 
 
2
1
co = pi=γo 
pi
==
−
1
cc 11 211 =γ=γ − 
0cc 22 == − 022 =γ=γ − 
pi
−==
− 3
1
cc 33 3
2
33 −=γ=γ − 
0cc 44 == − 044 =γ=γ − 
pi
−==
− 5
1
cc 55 5
2
55 −=γ=γ − 
0cc 66 == − 066 =γ=γ − 
M M 
 � 
 
 
 
 
8.4 – Propriedades da Transformada de Fourier para sinais contínuos 
 
 
 Linearidade: 
 
Suponha que 
x1(t) e x2(t) são dois sinais contínuos. 
 
e que 
)t(x)t(x)t(y 21 β+α= 
 
então, mostra-se que a transformada de Fourier de y(t) é: 
 
)j(X)j(X)j(Y 21 ω⋅β+ω⋅α=ω 
 
ou seja, 
{ } { } { })t(x)t(x)t(x)t(x 2121 FFF ⋅β+⋅α=β+α 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
21
Translação no tempo (“time shifting”): 
 
Suponha que x(t) é um sinal contínuo e que: 
 
)tt(x)t(y o−= 
 
ou seja, )t(y é o sinal )t(x com uma translação (shift) no tempo, de to. 
 
Então, mostra-se que: 
)j(X)j(Y otj ω⋅=ω ω−e
 
ou seja, 
{ } { })t(x)tt(x otjo FF ⋅=− ω−e 
 
 
 
Nota: 
 
O módulo do sinal transladado não se altera. Somente a fase. Ou seja, escrevendo-se 
a transformada de Fourier de x(t) na forma polar (módulo e ângulo): 
 
{ } )j(X)j(X)j(X)t(x ω∠⋅ω=ω= eF
 
 
temos que a transformada de Fourier de x(t–to) pode ser expressa como: 
 
{ }
[ ]ot)j(X(j
otj
)j(X
)j(X)tt(x o
ω−ω∠
ω−
⋅ω=
=ω⋅=−
e
eF
 
 
 
 
Uma translação ou shift (de to) no sinal x(t) 
 
⇓ 
uma translação ou shift (de ωto) 
na transformada X(jω) deste sinal. 
 
 
 
Exemplo 8.8: 
 
Considere o sinal x(t) da figura 8.20: 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
22
 
Fig. 8.20 – O sinal x(t) do Exemplo 8.8. 
 
 
Este sinal pode ser reescrito em função de dois sinais transladados: )5,2t(x1 − e 
)5,2t(x 2 − : 
 
)5,2t(x)5,2t(x)t(x 21 −+−= 
 
que estão representados graficamente na figura 8.21. 
 
 
Fig. 8.21 – Sinais x1(t) e x2(t) do Exemplo 8.8. 
 
 
Como as transformadas de Fourier de x1(t) e de x2(t) são respectivamente X1(jω) e 
X2(jω): 
 
ω





 ω
=ω
2
sen
)j(X1 e 
ω





 ω
=ω
2
3
sen2
)j(X 2 
 
então, usando as propriedades da linearidade e da translação (time shifting) temos 
que: 
 














ω





 ω
+




 ω
⋅=ω
ω
− 2
3
sen2
2
sen
)j(X 2
5j
e
 
 � 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
23
 Conjugação: 
 
Suponha que 
x(t) é um sinal com período T e tem coeficientes de Fourier kc 
e que 
)t(x)t(y ∗=
 
 
o conjugado de x(t); então, mostra-se que a transformada de Fourier de y(t) é: 
 
)j(X)j(Y ω−=ω ∗
 
 
isto é, a transformada de Fourier do conjugado de um sinal é o simétrico do conju-
gado da a transformada de Fourier deste sinal: 
 
{ } )j(X)t(x ω−= ∗∗F
 
 
 
Nota: 
 
Como consequência desta propriedade pode-se concluir que: 
 
Se x(t) ∈ R, então 
)j(X)j(X ω−=ω ∗
 
 
Além disso, se a transformada de Fourier de x(t) é expressa na forma cartesiana (parte 
real e parte imaginária): 
 
{ } { } { })j(XIm)j(XRe)j(X)t(x ω+ω=ω=F
 
 
então, como x(t) ∈ R, temos que 
 
 
{ } { })j(XRe)j(XRe ω−=ω
 (a parte real de X(jω) é par) eq. (8.4) 
 
{ } { })j(XIm)j(XIm ω−−=ω
 (a parte imaginária de X(jω) é ímpar) eq. (8.5) 
 
 
Entretanto, se a transformada de Fourier de x(t) é expressa na forma polar (módulo e 
ângulo): 
 
{ } )j(Xe)j(X)j(X)t(x ω∠⋅ω=ω=F
 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
24
 
Fig. 8.22 – Diagrama esquemático que mostra o módulo e a fase de ambos z e z*. 
 
 
Conforme ilustra a figura 8.22, 
 
∗
= zz
 
e 
∗∠−=∠ zz
 
 
e portanto, temos então que: 
 
 
)j(X)j(X ω−=ω ∗
 (o módulo de X(jω) é par) eq. (8.6) 
 
)j(X)j(X ω−∠−=ω∠ ∗
 (a fase de X(jω) é ímpar) eq. (8.7) 
 
 
Logo, se x(t) ∈ R, então só é necessário calcular a transformada de Fourier, para fre-
quências 
0>ω
 
 
tanto no caso de módulo e fase 
 
( ))j(Xe)j(X ω∠ω , 
 
como no caso de parte real e parte imaginária 
 
{ } { }( ))j(XIme)j(XRe ω−ω− , 
 
pois estes valores para frequências negativas ( 0<ω ) podem ser determinados 
usando as relações acima [ eq. (8.4) e eq. (8.5), ou eq. (8.6) e eq. (8.7)]. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
25
Outro detalhe: 
Se x(t) ∈ R é um sinal par ( ))t(x)t(x −= ⇒ 
∈ω)j(X
 R, isto é, ∈ω)j(X eixo real; e 
)j(X)j(X ω−=ω
 , isto é, )j(X ω é par. 
(a transformada de Fourier é uma função real e par) 
 
Se x(t) ∈ R é um sinal ímpar ( ))t(x)t(x −−= ⇒ 
)j(X ω é imaginário puro , isto é, ∈ω)j(X eixo imaginário; e 
)j(X)j(X ω−−=ω
 , isto é, )j(X ω é ímpar. 
 
 
Finalmente, a decomposição de um sinal x(t) em parte par { }( ))j(XEv ω e 
ímpar { }( ))j(XOd ω : 
 
 
{ }{ } { }{ } { })j(XRe)t(xRe)t(xEv ω== FF
 eq. (8.8) 
 
{ }{ } { }{ } { })j(XImj)t(xImj)t(xOd ω⋅=⋅= FF
 eq. (8.9) 
 
 
 
Exemplo 8.9: 
 
Considere o sinal x(t) abaixo: 
 
0a,e)t(x ta >−=
 
 
 
que vimos na figura 8.6 (Exemplo 8.2) acima. Mas, pelo resultado do Exemplo 8.1 
sabemos que: 
 
{ } ( )ω+=⋅ ja
1)t(u)t(x 1F
 
 
e como 
 




<
>
=
−
0t
0t
)t(x
se
se
ta
ta
e
e
 
 
podemos escrever que: 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
26
{ })t(uEv2
2
)t(u)t(u2
)t(u)t(u)t(x
1
ta
1
ta
1
ta
1
ta
1
ta
⋅⋅=
=








−⋅+⋅
=
=−⋅+⋅=
−
−
−
e
ee
ee
 
 
 
Agora, usando a eq. (8.8) acima, temos que: 
 
{ }{ } ( ) 




ω+
=⋅
−
ja
1Re)t(uEv 1taeF 
 
logo, 
 { }{ }
( )
( )22
1
a
a2
ja
1Re2
)t(uEv2)j(X ta
ω+
=
=






ω+
⋅=
=⋅⋅=ω
−
eF
 
 
que foi o resultado obtido no Exemplo 8.2. 
 � 
 
 
 Derivadas: 
 
Suponha que x(t) é um sinal e que 
)t(
dt
dx)t(y =
 
então, mostra-se que: 
 
)j(Xj)j(Y ω⋅ω=ω
 
 
ou seja, 
 
{ })t(xj)t(
dt
dx
FF ⋅ω=






 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
27
Nota: 
Para o caso de derivadas de ordem 2 ou mais, pode-se aplicar esta regra sucessivas 
vezes. Por exemplo, no caso da segunda derivada, se 
 
2
2
dt
xd)t(y =
 
 
então a Transformada de Fourier de y(t) é 
 
( ) )j(X)j(Xj)j(Y 22 ω⋅ω−=ω⋅ω=ω . 
 
ou seja, 
{ })t(x
dt
xd 2
2
2
FF ⋅ω−=






 
 
 
 
 Integral: 
 
Suponha que x(t) é um sinal e que 
 
∫
∞−
=
t
dt)t(x)t(y
 
 
então, mostra-se que: 
 
)(u)0(X)j(Xj
1)j(Y o ωpi+ω⋅
ω
=ω
 
 
ou seja, 
 { } { } )(u)0(X)t(xj1d)(x ot ωpi+⋅ω=ττ∫ ∞−FF 
 
 
 
Exemplo 8.10: 
 
A transformada de Fourier do impulso unitário uo(t): 
 
{ } dt)t(u)t(u tjoo ω−⋅= ∫∞
∞−
eF
 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
28
e usando a propriedade da integral para o impulso unitário uo(t), que vimos no capí-
tulo 3 [eq. (3.13)], isto é, 
 
β<<α=−⋅∫
β
α
a),a(xdt)at(u)t(x o 
 
obtemos que: 
 
{ } 1)t(u
0
t
o
t
j
==
=
ω−
eF
 
 
Ou seja, a transformada de Fourier do impulso unitário uo(t) é igual a 1. 
 � 
 
 
 
Exemplo 8.11: 
 
Considere o sinal x(t) degrau unitário u1(t): 
 
)t(u)t(x 1= 
Como 
∫
∞−
ττ=
t
o d)(u)t(x 
 
então, como { } 1)t(uo =F usando a propriedade da integral para a transformada 
de Fourier, temos que 
 
)(u1j
1)j(X o ω⋅⋅pi+
ω
=ω
 
 
ou seja, a transformada de Fourier do degrau unitário )t(u1 é: 
 
{ } )(uj
1)t(u o1 ω⋅pi+
ω
=F
 
 
Por outro lado, como 
 
)t(
dt
du)t(u 1o = 
 
usando a propriedade da derivada para a transformada de Fourier, temos que 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
29
{ } { }
ω⋅ω⋅pi⋅+=
=





ω⋅pi+
ω
⋅ω=
=⋅ω=
)(uj1
)(uj
1j
)t(uj)t(u
o
o
1o FF
 
 
Entretanto, sabemos que 0,0)(uo ≠ω∀=ω e isso implica que: 
 
0)(uo =ω⋅ω 
 
e portanto: 
{ } 1)t(u o =F 
 
que foi o resultado encontrado no Exemplo 8.10. 
 � 
 
 
 Escalonamento no tempo (“time scaling”): 
 
Suponha que x(t) é um sinal e que 
)t(x)t(y α=
 
então, mostra-se que: 






α
ω
⋅
α
=ω
jX1)j(Y
 
ou seja, 
{ } 





α
ω
⋅
α
=α
jX1)t(xF
 
 
 
 
 Sinal reflectido / reversão no tempo (“time reversal”) em torno de t = 0: 
 
Suponha que x(t) é um sinal e que 
)t(x)t(y −=
 
então, mostra-se que: 
 
)j(X)j(Y ω−=ω
 
ou seja, 
{ } )j(X)t(x ω−=−F
 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
30
 Relação de Parseval: 
 
Suponha que x(t) é um sinal. Então, mostra-se que a energia total do sinal 
 
dt)t(xE 2∫
∞
∞−
∞
=
 
 
pode ser expressa em termos da transformada de Fourier pela relação de Parseval: 
 
ωω⋅
pi
== ∫∫
∞
∞−
∞
∞−
d)j(X
2
1dt)t(xE 22
 
 
 
 
 Dualidade: 
 
Suponha que x1(t) e x2(t) são sinais contínuos e que 
 
{ } )j(X)t(x 11 ω=F 
{ } )j(X)t(x 22 ω=F 
 
Mostra-se que: se 
( ) tjX)t(x 12 =ωω= 
 
então, 
 
( )
ω=
⋅pi=ω
t12
)t(x2jX
 
 
 
 
Exemplo 8.12: 
 
Usando o resultado obtido no Exemplo 8.2 podemos afirmar que: se 
 
t)t(f −= e
 
 
então: 
 
{ } ( )21
2)t(f)j(F
ω+
==ω F
 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
31
Logo, se 
( )2t1
2)t(g
+
=
 
 
então, pela propriedade da dualidade: 
 
{ } ω−⋅pi==ω e2)t(g)j(G F
 
 � 
 
 
 Derivada na frequência (dual da derivada): 
 
Suponha que x(t) é um sinal e que 
 
( ) )t(xtj)t(y ⋅−=
 
 
então, mostra-se que: 
 
ω
ω
=ω
d
)j(dX)j(Y
 
ou seja, 
 
{ } { }( ))t(x
d
d)t(xtj FF
ω
=⋅−
 
 
que é a derivada de X(jω) em ω, ou dita: derivada na frequência. 
 
 
 Dual da integral: 
 
Suponha que x(t) é um sinal e que 
 
)t(u)0(x)t(x
tj
1)t(y o⋅⋅pi+⋅−=
 
 
então, mostra-se que: 
 
∫
ω
∞−
γγ=ω d)(X)j(Y
 
ou seja, 
 
∫
ω
∞−
γγ=






⋅⋅pi+⋅ d)(X)t(u)0(x)t(x
tj
1
oF 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
32
 Translação na frequência (“frequency shifting”): 
 
Esta propriedade é a dual da propriedade da translação no tempo (“time shifting”). 
Agora a translação (shift) foi aplicada à variável ω e não no tempo t. 
 
Suponha que x(t) é um sinal e que 
 
)t(x)t(y otj ⋅= ωe
 
 
ou seja, y(t) é o sinal x(t) multiplicado por otj ωe . 
 
Então, mostra-se que: 
 
( ))(jX)j(Y oω−ω=ω 
 
ou seja, { } ( ))(jX)t(x ootj ω−ω=⋅ωeF 
 
a transformada de Fourier de y(t) é a transformada { })t(x)j(X F=ω com uma 
translação (shift) na frequência ω, de ωo. 
 
 
 Convolução: 
 
Suponha que x1(t) e x2(t) são sinais contínuos e que 
 
)t(x)t(x
d)(x)t(x)t(y
21
21
∗=
=ττ⋅τ−= ∫
∞
∞−
 
 
então, mostra-se que: 
 
( ) ( )ω⋅ω=ω jXjX)j(Y 21 
 
ou seja, 
 
{ } { } { }
( ) ( )ω⋅ω=
⋅=∗
jXjX
)t(x)t(x)t(x)t(x
21
2121 FFF
 
 
isto é, a transformada de Fourier da convolução entre 2 sinais x1(t) e x2(t) é o produto 
das transformadas de Fourier destes sinais. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
33
 Multiplicação (dual da convolução): 
 
Suponha que x1(t) e x2(t) são sinais contínuos e que 
 
)t(x)t(x)t(y 21 ⋅= 
 
Então, mostra-se que: 
 
( ) ( )( )∫
∞
∞−
θ⋅θ−ω⋅⋅θ
pi
=ω djXjX
2
1)j(Y 21 
ou seja, 
 
{ } ( ) ( )( )∫
∞
∞−
θ⋅θ−ω⋅⋅θ
pi
=⋅ djXjX
2
1)t(x)t(x 2121F 
 
 
 
8.5 – Interpretação da propriedade da Convolução 
 
Uma interpretação da propriedade da Convolução vista na secção anterior é dada aqui. 
 
Já vimos no capítulo 4 (sobre Sistemas) que a saída y(t) de um sistema linear e inva-
riante no tempo (SLIT) é a convolução de h(t) [resposta do sistema ao impulso unitá-
rio] com x(t) [sinal de entrada do sistema]. 
 
A figura 8.23 ilustra o que foi dito acima através do diagrama de blocos (caixa preta) 
de um sistema termos de x(t), h(t) e y(t), conforme visto no capítulo 4. 
 
 
 
Fig. 8.23 – Diagrama esquemático de um sistema em função de x(t), h(t) e y(t). 
 
 
A figura 8.24 apresenta novamente o diagrama de blocos (caixa preta) de um sistema 
mas agora em termos de X(jω), H(jω) e Y(jω). 
 
 
Fig. 8.24 – Diagrama esquemático de um sistema em função de X(jω), H(jω) e Y(jω). 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
34
Portanto, Y(jω) = F {y(t)}, a transformada de Fourier da saída y(t) de um sistema é o 
produto 
( ) ( )ω⋅ω=ω jXjH)j(Y
 
 
onde: 
 
H(jω) = F {h(t)} = a transformada de Fourier de h(t) [resposta impulsional do 
sistema], também chamado de “resposta na frequência”. 
X(jω) = F {x(t)} = a transformada de Fourier x(t) [sinal de entrada do sistema] 
 
A propriedade da convolução permite escrevermos o diagrama de blocos (caixa preta) 
na forma mostrada na figura 8.25. 
 
 
Fig. 8.25 – Diagrama esquemático de um sistema em função de X(jω), H(jω) e Y(jω) 
ilustrando a propriedade da transformada da convolução. 
 
 
Além disso, também foi visto no capítulo 4 (sobre Sistemas) que se dois sistemas S1 e 
S2, lineares e invariantes no tempo (SLIT), estão ligados em cascata, conforme ilustra 
a figura 8.26, então a resposta à entrada impulso unitário dos dois sistemas juntos 
(S1 e S2) é a convolução ( h1(t) * h2(t) ). 
 
 
Fig. 8.26 – Diagrama esquemático de um sistema em cascata. 
 
 
Portanto, a saída y(t) deste sistema em cascata é a convolução (dupla) de h1(t) com 
h2(t) com x(t). 
 
( ) ( ) ( )txthth)t(y 21 ∗∗= 
 
e isso está ilustrado na figura 8.27. 
 
 
Fig. 8.27 – Diagrama esquemático de um sistema em cascata. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
35
Este sistema em cascata pode ser representado de forma equivalente por apenas um 
bloco conforme mostra a figura 8.28. 
 
 
Fig. 8.28 – Diagrama esquemático equivalente a de um sistema em cascata. 
 
 
Pela propriedade da convolução para a Transformada de Fourier, a resposta na fre-
quência deste sistema é 
 
( ) ( )ω⋅ω=ω jHjH)j(H 21 
 
e a transformadade Fourier da saída y(t) deste sistema em cascata é o produto das 
transformadas de Fourier de h1(t), h2(t) e x(t). 
 
{ } { } { } { }
( ) ( ) ( )ω⋅ω⋅ω=
⋅⋅=
jXjHjH
)t(x)t(h)t(h)t(y
21
21 FFFF
 
 
E isso está ilustrado na figura 8.29. 
 
 
 
Fig. 8.29 – Diagrama esquemático equivalente a de um sistema em cascata. 
 
 
Exemplo 8.13: 
 
Considere o sistema SLIT onde a resposta ao impulso é dada por 
 
( )oo ttu)t(h −= . 
 
Usando a propriedade dual do “time shifting” para a transformada de Fourier, obte-
mos a resposta no domínio da frequência, a transformada de Fourier de h(t) 
 
( ){ }
otj
otj tu)j(H o
ω−
ω−
=
=⋅=ω
e
e F
 
 
e isso está ilustrado na figura 8.30. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
36
 
Fig. 8.30 – Diagrama esquemático de um sistema SLIT com otj)j(H ω−=ω e . 
 
 
Portanto, para uma entrada x(t) com transformada de Fourier X(jω) = F {x(t)}, tem-
se que a transformada de Fourier da saída y(t), Y(jω) = F {y(t)} é dada por 
 
( ) ( )
( )ω⋅=
=ω⋅ω=ω
ω− jX
jXjH)j(Y
otje
 
 
e portanto, usando a propriedade dual do “time shifting” para a transformada de Fou-
rier 
)tt(x)t(y o−= 
 
observamos que a saída y(t) é o sinal x(t) com uma translação (shift) de to e que este 
sistema é o “sistema com retardo” (time delay system). 
 � 
 
 
 
Exemplo 8.14: 
 
Considere o sistema SLIT chamado de “diferenciador”, onde para um sinal de 
entrada x(t) a saída y(t) é a sua derivada 
 
)t(
dt
dx)t(y =
 
 
conforme está ilustrado na figura 8.31. 
 
 
 
Fig. 8.31 – Diagrama esquemático do sistema “diferenciador”. 
 
 
Usando a propriedade da derivada para a transformada de Fourier temos que 
 
{ } ( )ω⋅ω==ω jXj)t(y)j(Y F
 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
37
Logo, pela propriedade da convolução para a transformada de Fourier, a resposta na 
frequência H(jω) é 
 
( ) ω=ω jjH
 
 
que se encontra ilustrado na figura 8.32. 
 
 
 
Fig. 8.32 – Diagrama esquemático do sistema “diferenciador”, ( ) ω=ω jjH . 
 
 
Este resultado é consistente com a definição de H(jω), pois 
 
( )
dt
)t(du
th o=
 
 
e portanto H(jω) = F {h(t)} é 
 
{ }
ω=
=⋅ω=ω
j
)t(uj)j(H oF
 
 � 
 
 
 
Exemplo 8.15: 
 
Considere agora o sistema SLIT abaixo chamado de “integrador”, onde para um sinal 
de entrada x(t) a saída y(t) é a sua integral 
 
∫
∞−
ττ=
t
d)(x)t(y
 
 
que está ilustrado na figura 8.33. 
 
 
Fig. 8.33 – Diagrama esquemático do sistema “integrador”. 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
38
Usando a propriedade da integral para a transformada de Fourier, 
 { } )(uj1d)(u ot 1 ωpi+ω=ττ∫ ∞−F 
e, como 
( ) ∫
∞−
ττ=
t
o d)(uth 
 
então a resposta do sistema na frequência é: 
 
{ } 





ωpi+
ω
==ω )(uj
1)t(h)j(H oF . 
 
que se encontra ilustrado na figura 8.34. 
 
 
Fig. 8.34 – Diagrama esquemático do sistema “integrador”. 
 
 
e pela propriedade da convolução para a transformada de Fourier, temos que Y(jω), a 
a transformada de Fourier da saída y(t) é dada por 
 
( ) ( ) ( ) ( ) ( )
( ) ( ) )(u0XjXj
1
)(ujXjXj
1jXjHjY
o
o
ω⋅⋅pi+ω⋅
ω
=
=ω⋅ω⋅pi+ω⋅
ω
=ωω=ω
 
 
que é o mesmo resultado que obtemos calculando ( ) { })t(yjY F=ω pela proprie-
dade da integral para transformada de Fourier. 
 { } ( ) ( ) )(u0XjXj1d)(x ot ω⋅⋅pi+ω⋅ω=ττ∫ ∞−F 
 � 
 
 
Exemplo 8.16: 
 
Considere agora o filtro passa-baixa ideal (“low pass band filter”). 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
39
( )




ω>ω
ω<ω
=ω
c
c
se
se
0
1
jH
 
 
que se encontra ilustrado na figura 8.35. 
 
 
Fig. 8.35 – Diagrama esquemático do filtro passa-baixa ideal (“low pass band filter”). 
 
 
 
Pelo Exemplo 8.3 e pela propriedade da dualidade para transformada de Fourier 
temos que 
 
( ) ( ){ }
t
)t(sen
jH-th
c
1
pi
ω
=
=ω= F
 
 
cujo gráfico é mostrado na figura 8.36. 
 
 
 
Fig. 8.36 – Gráfico de h(t) do filtro passa-baixa ideal (“low pass band filter”). 
 � 
J. A. M. Felippe de Souza 8 – Transformadas de Fourier 
 
 
40
8.6 – Tabela da Transformada de Fourier de alguns sinais contínuos 
conhecidos 
 
 
x(t) X(jωωωω) 
x(t) = uo(t) X(jω) = 1, ∀ω 
x(t) = u1(t) ( ) )(uj
1jX o ω⋅pi+
ω
=ω
 
x(t) = u2(t) ( ) ( ) )(uj
1
j
1jX o2 ω+ω=ω 
x(t) = e jωt
 
)(u2)j(X oo ω−ωpi=ω 
x(t) = 1, ∀t ( ) )(u2jX o ωpi=ω 
x(t) = sen ωot ( ) [ ])(u)(ujjX oooo ω+ω−ω−ω
pi
=ω
 
x(t) = cos ωot ( ) [ ])(u)(ujX oooo ω+ω+ω−ωpi=ω 
x(t) = e–at
 
u1(t) , a > 0 ( ) )ja(
1jX
ω+
=ω
 
0>a,)t(ut)t(x 1at−⋅= e ( ) 2)ja(
1jX
ω+
=ω
 
0>a,)t(u)!1n(
t)t(x 1
1n
at−
⋅
−
=
−
e
 
( )
n)ja(
1jX
ω+
=ω
 
t
)t(sen)t(x c
pi
ω
=
 
( )



ω>ω
ω<ω
=ω
c
c
se
se
0
1jX
 
( )




>
<
=
o
o
tt0
tt1
tx
se
se
 
ω
ω⋅
=ω
)t(sen2)j(X o
 
( ) ∑
+∞
−∞=
−=
n
o )nTt(utx 




 pi
−ω
pi
=ω ∑
+∞
−∞= T
k2
u
T
2)j(X
k
o

Outros materiais