Buscar

Apostila Desidratação de Frutas e Hortaliças

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 87 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 87 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 87 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

DESIDRATAÇÃO DE FRUTAS E 
HORTALIÇAS 
 
 
 
 
ENG. PEDRO LUIS SANTOS MELONI 
Consultor em desidratação de alimentos 
10ª SEMANA INTERNACIONAL DA FRUTICULTURA, FLORICULTURA E AGROINDÚSTRIA 
01 a 04 de setembro de 2003 – Centro de Convenções 
Fortaleza – Ceará – Brasil 
 
Copyright  FRUTAL 2003 
Exemplares desta publicação podem ser solicitados à: 
Instituto de Desenvolvimento da Fruticultura e Agroindústria – Frutal 
Av. Barão de Studart, 2360 / sl: 1305 – Dionísio Torres 
Fortaleza – CE 
 CEP: 60.120-002 
E-mail: geral@frutal.org.br 
Site: www.frutal.org.br 
Tiragem: 150 exemplares 
EDITOR 
INSTITUTO DE DESENVOLVIMENTO DA FRUTICULTURA E AGROINDÚSTRIA – 
FRUTAL 
DIAGRAMAÇÃO E MONTAGEM 
PEDRO MOTA 
RUA: HENRIQUE CALS, 85 – BOM SUCESSO – FONE: (85): 484.4328 
 
Os conteúdos dos artigos científicos publicados nestes anais são de autorização e 
responsabilidade dos respectivos autores. 
Ficha catalográfica: 
 
Meloni, Pedro Luis Santos. 
 Desidratação de frutas e hortaliças / Pedro Luis Santos Meloni. – 
 Fortaleza: Instituto Frutal, 2003. 
 87p. 
1. Fruta – Desidratação. 2. Hortaliça – Desidratação. I. Título. 
 
 CDD 743.7 
 
10ª SEMANA INTERNACIONAL DA FRUTICULTURA, FLORICULTURA E AGROINDÚSTRIA 
01 a 04 de setembro de 2003 – Centro de Convenções 
Fortaleza – Ceará – Brasil 
 
APRESENTAÇÃO 
 
A nossa FRUTAL chega a sua 10ª edição e com ela atingimos a marca 
aproximada de 10.000 pessoas capacitadas nos Cursos Técnicos que anualmente 
oferecemos. Várias pessoas têm participado dos Cursos da FRUTAL, destacando-
se produtores, empresários, pesquisadores, estudantes, além do público geral 
visitante que, mesmo sendo de outro ramo de atividade, passou a acreditar na 
fruticultura irrigada estimulados pelo nosso movimento, que tem feito o Ceará se 
destacar em nível do cenário nacional no Agronegócio da Agricultura Irrigada. 
 
Procurando deixar registrado todo o conteúdo técnico dos Cursos da FRUTAL, 
temos anualmente editado apostilas como esta, com o conteúdo de cada tema que 
são cuidadosamente selecionados para cada FRUTAL, com uma média de 10 
Cursos por edição. A escolha dos temas para os Cursos da FRUTAL se baseia 
nas sugestões obtidas das Avaliações realizadas com os próprios participantes, 
acrescida de temas de vanguarda como o Curso “Produção Integrada de Frutas” 
que estamos promovendo nesta edição. 
 
Toda a Programação Técnica da FRUTAL está direcionada para o tema central 
que este ano foi eleito “Cooperativismo e Agronegócio”, tema este em consonância 
com a atual política do governo federal. Na sua composição temos Cursos, 
Palestras Técnicas, Painéis, Seminários Setoriais, Fóruns e Eventos Paralelos 
variados, que é referendada por uma Comissão Técnico-Científica formada por 
ilustres e competentes representantes dos principais Órgãos, Instituições e 
Entidades ligados ao setor do Agronegócio da Agricultura Irrigada do Ceará, cujas 
contribuições têm sido essenciais para a qualidade e nível que atingimos. 
 
Nesta edição a comunidade científica terá uma programação especial. Acontecerá 
pela primeira vez no Nordeste e terceira vez no Brasil, já em sua 49ª edição, a 
Reunião Anual da Sociedade Interamericana de Horticultura Tropical, evento que 
deverá trazer para o ambiente da FRUTAL cerca de 600 pesquisadores, que 
apresentarão os mais recentes resultados de trabalhos de pesquisa na área de 
Fruticultura, Floricultura e Horticultura. 
 
Vale ressaltar também neste momento a credibilidade que os Patrocinadores tem 
da FRUTAL, principalmente da iniciativa privada que cada ano tem tido maior 
participação, sendo este um veredicto de nossa intenção de estimular, incrementar 
e consolidar a FRUTAL como uma Feira tipicamente de negócios. 
 
Portanto, esperamos com a edição desta Apostila estar contribuindo para o 
aprimoramento tecnológico do setor da Fruticultura, Floricultura e Agroindústria do 
Brasil e em especial do Estado do Ceará. 
 
 
Antonio Erildo Lemos Pontes 
Coordenador Técnico do Instituto Frutal 
Diretor Técnico do Instituto Frutal 
 
 
10ª SEMANA INTERNACIONAL DA FRUTICULTURA, FLORICULTURA E AGROINDÚSTRIA 
01 a 04 de setembro de 2003 – Centro de Convenções 
Fortaleza – Ceará – Brasil 
 
 
COMISSÃO EXECUTIVA DA FRUTAL 2003 
 
Euvaldo Bringel Olinda 
PRESIDENTE DA FRUTAL 
 
Idealizador da Frutal, Empresário, Engenheiro Pós-Graduado em 
Administração e Negócios. Presidente do SINDIFRUTA e da Frutal, Ex-diretor 
da PROFRUTAS – Associação dos Produtores e Exportadores de Frutas do 
Nordeste e do IBRAF – Instituto Brasileiro de Fruticultura e das Federações 
FAEC e FACIC. 
 
 
 
 
 
 
 
Afonso Batista de Aquino 
 
COORDENADOR GERAL DA FRUTAL 
 
Engenheiro Agrônomo, Pós-graduado em Nutrição de Plantas, com 
especialização em Extensão Rural e Marketing em Israel e Espanha. Diretor 
Geral do Instituto Frutal e Coordenador Geral da Frutal desde 1998. 
 
 
 
 
 
 
Antonio Erildo Lemos Pontes 
COORDENADOR TÉCNICO 
 
Engenheiro Agrônomo com vasta experiência de trabalho voltado para 
Fruticultura Irrigada, Especializado em Israel em Agricultura Irrigada por Sistema 
Pressurizado, Membro Efetivo do IBGE/GCEA do Ceará, Consultor do SEBRAE-
CE na Área de Agronegócios da Fruticultura, Coordenador Titular do Nordeste no 
Fórum Nacional de Conselhos de Consumidores de Energia Elétrica e 
Coordenador Técnico da Frutal desde sua primeira edição em 1994. 
 
10ª SEMANA INTERNACIONAL DA FRUTICULTURA, FLORICULTURA E AGROINDÚSTRIA 
01 a 04 de setembro de 2003 – Centro de Convenções 
Fortaleza – Ceará – Brasil 
 
 
COMISSÃO TÉCNICO-CIENTÍFICA DA FRUTAL 2003 
 
Afonso Batista de Aquino INSTITUTO FRUTAL 
Ana Luiza Franco Costa Lima SETUR 
Antonio Belfort B. Cavalcante INSTITUTO CENTEC 
Antonio Erildo Lemos Pontes INSTITUTO FRUTAL 
Antonio Vieira de Moura SEBRAE/CE 
César Augusto Monteiro Sobral AEAC 
Cézar Wilson Martins da Rocha DFA/CE 
Daniele Souza Veras AGRIPEC 
Ebenézer de Oliveira Silva EMBRAPA 
Egberto Targino Bonfim EMATERCE 
Enid Câmara PRÁTICA EVENTOS 
Euvaldo Bringel Olinda INSTITUTO FRUTAL 
Francisco Eduardo Costa Magalhães BANCO DO BRASIL 
Francisco José Menezes Batista SRH 
Francisco Marcus Lima Bezerra UFC/CCA 
Francisco Zuza de Oliveira SEAGRI/CE 
João Nicédio Alves Nogueira OCEC/SESCOOP 
José Carlos Alves de Sousa COOPANEI 
José de Souza Paz SEAGRI/CE 
José dos Santos Sobrinho FAEC/SENAR 
José Ismar Girão Parente SECITECE 
José Maria Freire SEAGRI/CE 
Joviniano Silva DFA/CE 
Jussara Maria Bisol Menezes FIEC 
Leão Humberto Montezuma Santiago Filho DNOCS 
Liliane Nogueira Melo Lima SEAGRI/CE 
Marcílio Freitas Nunes CEASA/CE 
Maria do Carmo Silveira Gomes Coelho BANCO DO NORDESTE DO BRASIL S/A -BNB 
Paulo de Tarso Meyer Ferreira CREA-CE 
Raimundo Nonato Távora Costa UFC/CCA 
Raimundo Reginaldo Braga Lobo SEBRAE/CE 
Regolo Jannuzzi Cecchettini INSTITUTO AGROPÓLOS DO CEARÁ 
Rui Cezar Xavier de Lima INCRA/CE 
 
10ª SEMANA INTERNACIONAL DA FRUTICULTURA, FLORICULTURA E AGROINDÚSTRIA 
01 a 04 de setembro de 2003 – Centro de Convenções 
Fortaleza – Ceará – Brasil 
 
SUMÁRIO 
 
1. SUMÁRIO..............................................................................................................7 
2. APRESENTAÇÃO................................................................................................. 8 
3. INTRODUÇÃO.......................................................................................................11 
4. PRINCÍPIOS DA DESIDRATAÇÃO.......................................................................14 
5. PSICROMETRIA................................................................................................... 20 
6. EQUIPAMENTOS..................................................................................................297. CONSIDERAÇÕES SOBRE A MATÉRIA PRIMA................................................. 46 
8. FLUXOGRAMAS GERAIS PARA PRODUÇÃO DE FRUTAS E 
HORTALIÇAS DESIDRATADAS...............................................................................50 
9. PRODUZINDO AS FRUTAS DESIDRATADAS.................................................... 61 
10. PRODUZINDO OS VEGETAIS DESIDRATADOS.............................................. 67 
11. IMPLANTAÇÃO DE PROJETOS.........................................................................75 
12. BIBLIOGRAFIA....................................................................................................86 
13. CURRÍCULO DO INSTRUTOR........................................................................... 87 
10ª SEMANA INTERNACIONAL DA FRUTICULTURA, FLORICULTURA E AGROINDÚSTRIA 
01 a 04 de setembro de 2003 – Centro de Convenções 
Fortaleza – Ceará – Brasil 
 
1. SUMÁRIO 
 
A desidratação é uma das técnicas mais antigas de preservação de alimentos 
utilizadas pelo homem. O processo é simples e consiste na eliminação de água de um 
produto por evaporação, com transferência de calor e massa. Uma de suas maiores 
vantagens é não necessitarem de refrigeração durante o armazenamento e transporte. 
As frutas e as hortaliças podem ser desidratadas por diferentes métodos. O mais 
comum no Brasil é a desidratação em secadores do tipo cabine com bandejas e 
circulação forçada de ar quente. Nos últimos dez anos, com o surgimento de secadores 
dimensionados corretamente e com preços mais acessíveis às empresas de pequeno e 
médio porte, fez com que os produtos existentes fossem melhorados e que outros 
produtos fossem desenvolvidos. 
Os vegetais desidratados são empregados como condimentos, na formulação de 
outros alimentos, e principalmente na elaboração de sopas. Estima-se que no ano de 
2001 o mercado de sopas desidratadas tenha faturado R$ 250 milhões. 
Não temos dados estatísticos de produção, comercialização ou mesmo de 
exportações, mas sabemos que o mercado está em crescimento e que as oportunidades 
de novos empreendimentos, se respeitados todos os critérios de implantação de uma 
agroindústria, serão um grande sucesso. 
As frutas secas como a banana, o abacaxi, a manga e o mamão deixaram de ser 
simplesmente frutas secas para consumo ao natural e passaram a ser importantes 
ingredientes para a formulação de outros alimentos. Assim, apresentaremos em detalhes 
todas as informações necessárias para a produção de frutas e vegetais desidratados de 
alta qualidade e os aspectos mais importantes para implantação de uma agroindústria. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
7
 
2. APRESENTAÇÃO 
O grande desafio do mundo globalizado é produzir alimentos para uma população 
que não para de crescer e já ultrapassa os seis bilhões de habitantes. Uma vez que as 
áreas agricultáveis estão diminuindo, a oferta de água para irrigação é escassa e as 
tecnologias de produção já não conseguem dar mais saltos de produtividade, alguns 
especialistas acreditam que até o ano 2020 a oferta de alimentos no mundo crescerá 
menos que a população. 
O Brasil é uma exceção neste panorama e surge como uma das grandes forças 
produtoras no 3° milênio. Com mais de 150 milhões de hectares agricultáveis, 
aproximadamente 20% de toda a água doce do planeta e uma produtividade média ainda 
muito baixa, temos um longo caminho de incorporações de tecnologia a percorrer e nos 
transformar na maior nação produtora de alimentos. 
O Brasil produz hoje 34 milhões de toneladas de frutas, numa área total de 2,2 
milhões de hectares. É o segundo maior produtor de frutas do mundo, atrás apenas da 
China. No ano 2000, o Brasil exportou US$169 milhões em frutas in natura, o equivalente 
a menos de 1% do que o mercado mundial de frutas movimentou no ano passado. 
Os programas de apoio e fortalecimento da fruticultura brasileira pretendem 
reverter este quadro, alcançando US$1 bilhão em exportações em 5 anos. Os principais 
pontos a serem desenvolvidos são: desenvolvimento tecnológico; produção de mudas 
certificadas; promoção interna e externa; integração da produção com implantação de 
selo de qualidade; capacitação, com ênfase em marketing e defesa sanitária; promoção 
da agroindústria; e participação em eventos. A questão da qualidade está em todos os 
itens, com a padronização e classificação em destaque. 
Apesar da indiscutível necessidade de se aumentar a produção de frutas e ampliar 
as exportações, torna-se imprescindível reduzir as perdas que ocorrem em toda a cadeia 
produtiva. Nos países emergentes as perdas são estimadas em 50% para alguns 
produtos. Nossa realidade não é diferente, desde o produtor até o consumidor, a 
magnitude das perdas é considerável. Este fato evidencia a urgente necessidade de 
processos simples e baratos, que possam oferecer caminhos para conservar estes 
alimentos extremamente perecíveis. A instalação de agroindústrias junto as regiões 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
8
 
produtoras seria uma excelente alternativa para reduzir as grandes perdas que ocorrem 
durante os procedimentos de seleção e classificação de frutas para a exportação. 
O enfoque do agronegócio é essencial para retratar as profundas transformações 
verificadas na agricultura brasileira, nas últimas décadas, período no qual o setor 
primário deixou de ser um mero provedor de alimentos in-natura e consumidor de seus 
próprios produtos, para ser uma atividade, integrada aos setores industriais e de 
serviços. 
O agronegócio brasileiro é responsável por cerca de 1/3 do produto interno bruto 
do Brasil, empregando 38% da mão de obra e sendo responsável por 36% das nossas 
importações. É o setor mais importante da nossa economia. 
Com a globalização de mercados, o sucesso de uma empresa, principalmente no 
agronegócio, depende cada vez mais da inter-relação entre fornecedores, produtores de 
matérias primas, processadores e distribuidores. A divisão tradicional entre indústria, 
serviço e agricultura é inadequada. O conceito de agronegócio representa portanto, o 
enfoque moderno que considera todas as empresas que produzem, processam, e 
distribuem produtos agropecuários. 
 
Mercado 
A desidratação de frutas é um mercado com grande potencial de crescimento e 
muito pouco explorado empresarialmente no Brasil. Diversos fatores contribuem para 
esse tímido mercado e sem dúvida alguma, a oferta de frutas frescas durante o ano todo 
é a mais significativa, reduzindo com isso o hábito de se consumir frutas secas ou 
desidratadas. Um outro fator muito importante é que a produção de frutas secas no 
Brasil, esteve concentrada, nos últimos anos, principalmente em banana passa sendo a 
produção, na maioria das vezes, realizada em escala artesanal. Além disso, a falta de 
marketing do produto, a pouca atratividade devido a coloração escura e a falta de padrão 
de qualidade não permitiram o desenvolvimento deste mercado. 
Nos últimos dez anos com o surgimento de secadores dimensionados 
adequadamente para a secagem de frutas e principalmente com custos mais acessíveis, 
o mercado de frutas secas cresceu. A ausência de estatísticas que demonstrem esse 
crescimento não nos impede de realizar essa afirmativa. Basta verificar quantos produtos 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
9
 
e marcas surgiram no mercado e os novos produtos que foram desenvolvidos utilizando 
frutas secas em sua formulação. 
A banana passa tradicional recebeu embalagem moderna e sofisticada e foi 
recoberta com chocolate. Tornou-se um ingrediente importantepara as indústrias e hoje 
está presente no recheio de bombons, em granolas e em barras de cereais. 
O Brasil exporta banana passa em pequenas quantidades. Nos anos de 95/96 as 
exportações foram reduzidas mas, os preços sofreram um significativo aumento. Neste 
período, os preços subiram de US$ 3.68 para US$ 6.10 o quilo (DECEX - 1995). É 
interessante observar o alto grau de agregação de valor da banana passa, cujo preço foi, 
em média, 24 vezes superior ao da fruta fresca. As exportações brasileiras de banana 
passa estão voltadas principalmente para os mercados consumidores da Alemanha e 
Estados Unidos. 
As principais exigências para exportação de banana passa são o controle 
microbiológico, a cor e os níveis de SO2 residual no produto. Uma vez que existe um 
bom potencial de expansão das exportações de banana passa, torna-se imprescindível 
que as agroindústrias ofereçam produtos dentro dos padrões de qualidade exigidos e 
que apresentem regularidade no fornecimento. 
O surgimento de outras frutas secas como a maçã, o mamão, o abacaxi e a 
manga, mesmo que em pequenas quantidades, reforçam a afirmativa de que o mercado 
está em crescimento. 
No seguimento dos vegetais desidratados, a situação é um pouco diferente, 
principalmente devido a sua aplicação. Os vegetais desidratados dificilmente estão 
disponíveis para o consumidor final, exceto os que têm características para serem 
utilizados como tempero ou condimento. A principal aplicação dos vegetais desidratados 
está na formulação de sopas de rápido e fácil preparo. Estima-se que no ano de 2001 o 
mercado de sopas desidratadas tenha faturado R$ 250 milhões. 
O grande diferencial entre o mercado de frutas desidratadas e de vegetais 
desidratados está na forma de comercialização. Os vegetais desidratados são 
ingredientes de alimentos comercializados por indústrias nacionais e multinacionais de 
grande porte e que atuam fortemente em marketing. Já o mercado de frutas, sempre teve 
características um tanto quanto amadora e artesanal, mas com a introdução das barras 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
10
 
de cereais com frutas desidratadas, o setor está passando por uma transformação muito 
positiva. 
O que realmente pode transformar esse mercado é a agroindústria, aproveitando-
se o descarte de diferentes frutas e hortaliças que ocorre durante o processo de seleção 
e classificação, tanto para o mercado interno como externo. Esses descartes podem 
perfeitamente ser aproveitados no processo de secagem e com isso teremos produtos 
finais com preços mais atrativos e com grandes possibilidades de exportação. 
 
3. INTRODUÇÃO 
 
As frutas e hortaliças assumem grande importância no fornecimento de nutrientes 
essenciais à nutrição humana. São fontes indispensáveis de vitaminas e minerais, além de 
fornecerem fibras. 
Uma das técnicas mais antigas de preservação de alimentos utilizadas pelo 
homem é a remoção de umidade dos alimentos através do processo de desidratação. 
Não há registros sobre a origem da técnica de desidratação, mas sabe-se que os 
primeiros grandes impulsos ao desenvolvimento da indústria de legumes e hortaliças 
desidratados ocorreram durante as Grandes Guerras Mundiais. Durante a Primeira 
Guerra Mundial, cerca de 4 milhões de quilos de batatas e produtos para sopas, foram 
enviados às forças armadas americanas na Europa. Segundo a opinião dos veteranos 
esses produtos eram duros e tinham gosto de palha. 
Já na Segunda Guerra, com a introdução da tecnologia do processamento por 
escaldamento antes da secagem, conhecido como “branqueamento”, houve uma 
melhoria da qualidade dos alimentos desidratados. Com as pesquisas, conseguiu-se 
produtos secos com maior período de conservação e de melhor qualidade quando 
reidratados. Um ponto importante para a conservação dos alimentos desidratados foi o 
controle do teor de umidade final dos produtos. 
Após os períodos de guerra, com o desenvolvimento da tecnologia, o mercado de 
legumes e hortaliças desidratados cresceu constantemente possibilitando a obtenção de 
produtos de alta qualidade e excelente conservação. 
Vários fatores influíram no desenvolvimento das novas tecnologias e entre eles 
podemos destacar o fato de que quase todos os legumes e hortaliças precisam sofrer 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
11
 
branqueamento, com água em ebulição ou vapor, para inativar enzimas presentes nas 
matérias-primas que conferem aos produtos desidratados sabor, odor e cor estranhos e 
que praticamente todos os vegetais precisam ter o seu teor de umidade reduzido a 5% 
para se obter a estabilidade desejada. 
 
As principais características dos legumes e hortaliças desidratadas de boa 
qualidade são as seguintes: 
 
• Teor de umidade em torno de 5%, para minimizar a deterioração de cor, sabor e odor, 
provocados pelas reações oxidativas e impedir o desenvolvimento microbiano. 
• Devem reidratar-se de maneira rápida e satisfatória, assumindo forma e aparência 
original do produto antes da secagem. 
• Devem cozinhar rapidamente em água fervente e quando prontos para servir deverão 
ser tenros, retendo muito do seu odor e sabor originais. 
• Quando embalados deverão ser isentos de insetos, umidade e ar, em embalagens 
hermeticamente fechadas e sob vácuo ou atmosfera de gás inerte. 
 
Os legumes e as hortaliças desidratadas apresentam as seguintes vantagens 
e desvantagens: 
 
• Pesam somente cerca de 1/10 do peso original no caso de raízes vegetais e 1/15 ou 
menos para o caso de folhas e tomates. O volume, especialmente se os produtos 
desidratados são comprimidos para a embalagem, é muito menor do que em qualquer 
outra forma. Portanto, devido o reduzido peso e volume, menos quantidade de material 
de embalagem é necessário por unidade do alimento. 
• Os legumes e hortaliças desidratadas não necessitam de refrigeração durante o 
transporte ou armazenamento, como é o caso dos produtos frescos ou congelados. A 
desidratação permite a preservação devido a diminuição do teor de água disponível, o 
que influirá desfavoravelmente na velocidade das reações químicas e escurecimento 
não-enzímico, bem como no crescimento de microrganismos. 
• Compatibilidade com outros ingredientes nas misturas desidratadas, como sopas, etc. 
• O valor nutritivo dos legumes e hortaliças não é muito depreciado pela desidratação. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
12
 
• Muitos vegetais desidratados depois da reidratação e cozimento não apresentam 
sabor e textura iguais aos apenas cozidos. 
• Sob prolongado armazenamento ao ar, vácuo ou gás inerte, principalmente a 
temperaturas superiores a 25ºC, a maioria dos legumes e hortaliças desidratados sofre 
alterações indesejáveis. Alguns, especialmente cenoura e repolho, se deterioram 
rapidamente ao ar e sofrem alterações no sabor, odor e cor. Se for permitida a absorção 
de umidade, eles se deteriorarão ainda mais rapidamente. 
• São altamente susceptíveis ao ataque de insetos se embalados inadequadamente. 
• O consumo diário de vegetais desidratados pode tornar a alimentação monótona 
e levar o consumidor a não apreciá-los. 
 
Produtos agrícolas, tais como frutas e vegetais são considerados meios capilares-
porosos. Sempre que um meio capilar poroso contiver umidade e estiver sujeito a 
quaisquer dos ou todos os gradientes de concentração, pressão parcial de vapor, 
temperatura, pressão total e campos de força externa ocorre transferência simultânea de 
energia e massa. Quando traz como conseqüência a remoção de umidade, esse 
fenômeno é denominado secagem. 
A desidratação de alimentossólidos, como frutas e hortaliças, normalmente 
significa remoção da umidade de sólido por evaporação, e tem por objetivo assegurar a 
conservação das frutas por meio da redução do seu teor de água. Essa redução deve ser 
efetuada até um ponto, onde a concentração de açúcares, ácidos, sais e outros 
componentes seja suficientemente elevada para reduzir a atividade de água e inibir, 
portanto, o desenvolvimento de microrganismos. Deve ainda conferir ao produto final 
características sensoriais próprias e preservar ao máximo o seu valor nutricional. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
13
 
4. PRINCÍPIOS DA DESIDRATAÇÃO 
 
A desidratação é um processo que consiste na eliminação de água de um produto 
por evaporação, com transferência de calor e massa. É necessário fornecimento de calor 
para evaporar a umidade do produto e um meio de transporte para remover o vapor de 
água formado na superfície do produto a ser seco. O processo de secagem pode 
envolver três meios de transferência de calor: convecção, condução e radiação. A 
transferência de calor por convecção é o meio mais utilizado na secagem comercial, em 
que um fluxo de ar aquecido passa através da camada do produto. Durante o processo 
de secagem, a umidade migra do interior para a superfície do produto, de onde se 
evapora para o ambiente. 
Os produtos alimentícios podem ser desidratados por processos baseados na 
vaporização, sublimação, remoção de água por solventes ou na adição de agentes 
osmóticos. Os métodos de desidratação utilizados em maior escala são os que tem como 
base a exposição do alimento a uma corrente de ar aquecido, sendo que a transferência 
de calor do ar para o alimento se dá basicamente por convecção. 
O ar quente é mais empregado, por ser facilmente disponível e mais conveniente 
na instalação e operação de secadores, sendo que o seu controle no aquecimento do 
alimento não apresenta maiores problemas. O princípio básico de secagem, quando se 
utiliza o ar como meio de secagem, está no potencial de secagem do ar ambiente 
aquecido que é forçado entre a massa do produto servindo a duas finalidades: 
• Conduzir calor para o produto: a pressão de vapor da água do alimento é 
aumentada pelo aquecimento do produto, facilitando, assim, a saída de umidade. Parte 
do calor do ar de secagem proporciona um aumento da temperatura do produto (calor 
sensível) e parte fornece o calor necessário para a vaporização da água contida no 
produto (calor latente). 
• Absorver umidade do produto: aumentando-se a temperatura do ar ambiente a sua 
umidade relativa diminui e, conseqüentemente, sua capacidade de absorver umidade 
aumenta. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
14
 
O ar serve ainda, como veículo para transportar a umidade removida do produto para o 
ambiente. Incluem-se nesses processos a secagem ao sol e a secagem realizada em 
secadores de bandejas, de túnel, de leito fluidizado e atomizadores. 
 
CURVA DE SECAGEM 
Quando um alimento é desidratado, ele não perde água a uma velocidade 
constante ao longo do processo. Com o progresso da secagem, sob condições fixas, a 
taxa de remoção de água diminui. Isto pode ser visto na Figura 1, onde apresentamos a 
curva de secagem para cenoura cortada na forma de cubos. Pelo gráfico podemos 
observar que 90% da água do produto é removida em 4 horas e mais 4 horas serão 
necessárias para remover os 10% remanescentes. Na prática, sob condições normais de 
operação, o nível zero de umidade nunca é alcançado. 
No início da secagem, e por algum tempo depois, geralmente a água continua a 
evaporar a uma velocidade constante, semelhante ao mecanismo de evaporação de 
água num reservatório. Isto é chamado de período de velocidade constante, e conforme 
pode ser visto na Figura 1, estende-se por 4 horas. A partir do ponto em que ocorre a 
inflexão da curva de secagem, inicia-se o período de velocidade decrescente de 
secagem. 
Estas mudanças durante a desidratação podem, em grande parte, ser explicadas 
pelos fenômenos de transferência de calor e massa. Um alimento cortado na forma de 
cubo, no decorrer da secagem perderá umidade por suas superfícies e desenvolverá, 
gradualmente, uma espessa camada seca na superfície, e com o restante da umidade 
aprisionada no centro. Do centro para a superfície, um gradiente de umidade será 
estabelecido. Em conseqüência disso, a camada externa seca formará uma barreira 
isolante contra a transferência de calor para o interior do pedaço. Além de ter a 
transferência de calor diminuída, a água restante no centro do alimento tem uma 
distância maior a percorrer até chegar a superfície do que a umidade superficial tinha no 
início da secagem. A medida que o alimento seca e atinge a umidade de equilíbrio, não 
se tem mais secagem e a velocidade cai a zero. 
 
Estas não são as únicas mudanças do alimento que contribuem à forma de uma 
curva de secagem típica, embora sejam os fatores principais. A forma precisa de uma 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
15
 
curva de secagem normal varia conforme o alimento, com os diferentes tipos de 
secadores, e em resposta às variações das condições de secagem tais como a 
temperatura, a umidade, a velocidade do ar, o sentido do ar, a espessura do alimento, 
entre outros fatores. 
A secagem da maioria dos produtos alimentícios geralmente apresenta período de 
velocidade constante e de velocidade decrescente, e a remoção da água abaixo de 
aproximadamente 2%, sem danos ao produto é extremamente difícil. 
 
 
 
Figura 1 – Exemplo de curvas de secagem de diferentes produtos para a 
temperatura de 60oC. 
 
ATIVIDADE DE ÁGUA (AA) NO PRODUTO DESIDRATADO 
A atividade de água é uma das propriedades mais importante para o 
processamento, conservação e armazenamento de alimentos. Ela quantifica o grau de 
ligação da água contida no produto e conseqüentemente sua disponibilidade para agir 
como um solvente e participar das transformações químicas, bioquímicas e 
microbiológicas. 
 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
16
 
A atividade de água pode ser definida pela equação abaixo: 
 
Aa = P/Po 
Em que: 
P = pressão parcial de vapor da água no alimento 
Po = pressão de vapor da água pura 
 
A atividade de água de qualquer produto é sempre inferior a 1 e no estado de 
equilíbrio existe uma igualdade entre a umidade relativa do ar e a atividade de água do 
produto, que é chamado de umidade relativa de equilíbrio. Dessa forma pode-se utilizar 
as isotermas de adsorção e dessorção de umidade de cada produto para conduzir a 
secagem e estabelecer a umidade final ou atividade de água do produto, tal que garanta 
nas condições de estocagem (temperatura e umidade relativa do ar) a integridade 
biológica do produto. 
 
PARÂMETROS DE QUALIDADE EM ALIMENTOS DESIDRATADOS 
A qualidade dos alimentos desidratados depende em parte das mudanças que 
ocorrem durante o processamento e armazenagem. Algumas destas mudanças 
envolvem modificações na estrutura física. Estas modificações afetam a textura, a 
reidratação e a aparência. Outras mudanças são também devido a reações químicas. No 
alimento desidratado, a atividade enzimática residual, a atividade microbiana e a 
reidratação são parâmetros de grande importância. Durante o processo de secagem 
convectivo, o alimento sofre perdas da qualidade tais como a cor, sabor, textura e tendo 
muitas vezes uma reidratação deficiente. A contração de volume e o endurecimento 
(formação de casca na superfície) do produto são tambémconsiderados problemas de 
grande importância na desidratação de alimentos. Na atualidade as pesquisas estão 
voltadas no sentido de aumentar a retenção das propriedades nutritivas sensoriais do 
produto desidratado mediante a alteração das condições de processo e o uso de pré-
tratamentos. 
Poucas diferenças são observadas nos teores de carboidratos, proteínas, fibras e 
cinzas, quando a variação no conteúdo de umidade é levada em consideração. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
17
 
As mudanças que ocorrem durante a secagem são principalmente químicas, 
particularmente se as reações enzimáticas são incluídas como mudanças químicas. 
Quando as condições de secagem e a matéria-prima a ser utilizada são satisfatórias, 
nenhuma das transformações que ocorrem durante a secagem da fruta é devido a 
atividade de microrganismos. 
As mudanças na cor tem grande influência na determinação da procedência de 
secagem para cada fruta. 
Os pigmentos da antocianina presentes nas frutas são geralmente alterados 
durante e após a secagem. Esses pigmentos, caso as frutas não sejam tratadas por meio 
de sulfuração ou sulfitação, geralmente tornam-se castanhos devido a oxidação durante 
a secagem. 
O escurecimento enzimático pela ação da peroxidase e outras enzimas oxidativas 
ocorre na fruta durante a secagem, principalmente nas superfícies cortadas, onde ocorre 
com maiores velocidades. 
Comercialmente, a maioria das frutas devem ser tratadas antes da desidratação 
para manter uma boa aparência e para prevenir o escurecimento, perdas do sabor e da 
vitamina C. Os agentes mais comumente utilizados no pré-tratamento são ácido 
ascórbico e o dióxido de enxofre (SO2). 
O pré-tratamento com esses agentes tem como principais finalidades: 
• preservação da cor natural dos alimentos. 
• prolongar a armazenagem. 
• retardar as perdas de vitamina C. 
• prevenir a deterioração microbiana. 
 
O método mais utilizado pela indústria alimentícia para controle do escurecimento 
enzimático consiste no emprego de agentes sulfitantes devido a sua grande eficácia e 
amplo espectro de utilização. O agente sulfitante mais utilizado no tratamento pré-
secagem é o dióxido de enxofre SO2. O SO2 devido a sua ação redutora e propriedades 
inibidoras de enzimas, evita as reações enzimáticas e oxidativas que ocorrem durante a 
desidratação. O SO2 retarda a formação de pigmentos escuros, mas não previne a sua 
formação nem os branqueia após terem sido formados. O tratamento pode ser realizado 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
18
 
através da sulfuração pela queima de enxofre ou pela sulfitação em solução aquosa com 
bissulfito de sódio (Na2S2O5). 
Uma vez que o maior mercado consumidor de frutas secas é o mercado de 
produtos naturais, a utilização desses tratamentos descaracteriza os produtos como cem 
por cento naturais. O fabricante deve informar no rótulo do produto sobre a presença de 
agentes sulfitantes. 
Para contornar essa situação, recomenda-se que a produção, quando possível 
seja realizada de acordo com o giro dos produtos, de forma que os mesmos sejam 
consumidos rapidamente e com isso evitar os problemas causados pelo escurecimento 
não-enzimático. 
As alterações no sabor das frutas secas seguem estreitamente as mudanças na 
coloração, sendo em alguns casos desejáveis essas mudanças. 
Já as alterações na textura que ocorrem com a secagem das frutas não são de 
natureza química. O principal fator alterador da textura das frutas secas é o teor de 
umidade final. Com teores baixos de umidade, a textura é muito dura, enquanto que com 
teores mais elevados tornam-se mais apetitosas. 
 
REIDRATAÇÃO 
Uma das características mais importantes dos produtos desidratados é a sua 
capacidade de reidratação rápida e completa. 
A razão de reidratação pode ser definida como sendo a razão do peso do alimento 
reidratado pelo seu peso seco. As condições de reidratação dos diferentes tipos de 
alimentos devem ser estabelecidas, uma vez que diversos fatores influenciam na 
quantidade de água absorvida, bem como nas propriedades sensoriais do produto. São 
vários os fatores que podem afetar a qualidade dos alimentos desidratados durante a 
reidratação. Podem-se citar o período de tempo de imersão, a temperatura da água, e a 
razão entre a quantidade de água utilizada e a de produto. Pequenas quantidades de água 
diminuem a razão de absorção, em conseqüência da menor área superficial de contato, e o 
excesso aumenta as perdas de nutrientes solúveis. Elevadas temperaturas da água 
aumentam a razão de absorção, reduzindo o tempo total necessário para ocorrer a 
reidratação, o que pode, entretanto, afetar negativamente a palatabilidade do produto. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
19
 
Além destes fatores, verifica-se que a razão de absorção de água durante a 
reconstituição de alimentos desidratados é afetada, também, pelo tamanho e pela forma 
das partículas, bem como pelas trocas físico-químicas que ocorrem durante o processo de 
desidratação e a estocagem do produto. 
 
5. PSICROMETRIA 
 
O estudo detalhado das propriedades da mistura de ar seco e vapor de água é de 
tal importância que constitui uma ciência separada, denominada psicrometria. 
A psicrometría é definida como uma área da física relacionada com a medição ou 
determinação das condições do ar atmosférico, particularmente relativo à mistura de ar 
seco e vapor d’água, ou aquela parte da ciência que de certa forma está intimamente 
ligada as propriedades termodinâmicas do ar úmido. 
As propriedades termodinâmicas da mistura de ar seco e vapor d’água têm grande 
interesse na fase de pós-colheita dos produtos agrícolas, devido ao efeito da umidade do 
ar atmosférico sobre o conteúdo de umidade dos produtos. 
Na conservação e armazenamento de produtos agrícolas se empregam diversas 
práticas com participação direta da psicrometria, sendo a secagem uma delas. Em 
particular, na secagem sob baixas temperaturas, a taxa de secagem depende da 
capacidade do ar para evaporar a umidade (potencial de secagem), na qual é 
determinada pelas condições psicrométricas do ar: temperatura e umidade relativa. 
O conhecimento das condições de umidade e temperatura do ar também são de 
grande importância em muitos outros aspectos. A conservação de produtos como frutas, 
legumes, ovos e carnes, em câmaras frigoríficas, depende da manutenção da umidade 
relativa apropriada da atmosfera ambiente. A perda de peso depende da umidade do ar 
na câmara de armazenamento; se a umidade é baixa, a perda de peso é alta. 
 
PROPRIEDADES TERMODINÂMICAS DO AR ÚMIDO 
Há diversas propriedades termodinâmicas fundamentais ligadas as propriedades 
do ar úmido. Há duas propriedades independentes, além da pressão atmosférica 
necessária para estabelecer o estado termodinâmico do ar úmido. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
20
 
 
Três propriedades estão relacionadas com a temperatura: 
a. temperatura de bulbo seco; 
b. temperatura termodinâmica de bulbo úmido; 
c. temperatura do ponto de orvalho. 
 
Algumas propriedades termodinâmicas caracterizam a quantidade de vapor d’água 
presente no ar úmido: 
a. pressão de vapor; 
b. razão de umidade; 
c. umidade relativa; 
d. grau de saturação. 
Outras propriedades de fundamental importância, relacionadas com o volume 
ocupado pelo ar e com a energia do ar, respectivamente, são elas: 
a. o volume específico, 
b. a entalpia.A entalpia e o volume específico são propriedades da mistura de ar seco e vapor 
d’água, mas para maior comodidade são expressas na base de uma unidade de massa 
de ar seco. 
A temperatura psicrométrica de bulbo úmido (Tbu) não é uma propriedade 
termodinâmica da mistura de ar seco e vapor d’água e será tratada separadamente. 
A seguir apresenta-se uma breve descrição de cada um destas propriedades. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
21
 
Temperatura de bulbo seco (T) 
A temperatura de bulbo seco, é a verdadeira temperatura do ar úmido e freqüentemente 
se denomina temperatura do ar; é a temperatura do ar que marca um termômetro 
comum. 
 
Temperatura de ponto de orvalho (Tpo) 
A temperatura de ponto de orvalho, é a temperatura na qual o ar úmido não saturado se 
satura, quer dizer, quando o vapor d’água começa a condensar-se, por um processo de 
resfriamento, enquanto a pressão e a razão de umidade permanecem constante. 
 
Temperatura termodinâmica de bulbo úmido (Tbu) 
A temperatura termodinâmica de bulbo úmido, é a temperatura de equilíbrio que se 
alcança quando a mistura de ar seco e vapor d’água passa por um processo de 
resfriamento adiabático até chegar a saturação. 
 
Pressão de vapor (Pv) 
A pressão de vapor, é a pressão parcial que exercem as moléculas de vapor d’água 
presentes no ar úmido. Quando o ar está completamente saturado de vapor d’água, sua 
pressão de vapor se denomina pressão de vapor saturado (PVS). 
 
Razão de umidade (razão de mistura) (W) 
A razão de umidade do ar, é definido como a relação entre a massa de vapor d’água e a 
massa de ar seco em um determinado volume de mistura. Alguns autores confundem os 
termos razão de umidade e umidade absoluta; a umidade absoluta, denominada também 
de densidade do vapor de água, é a relação entre a massa de vapor d’água e o volume 
que ocupa a mistura de ar seco e vapor d’água. 
 
Umidade relativa (UR) 
A umidade relativa do ar, se define como a razão entre a pressão de vapor d’água em 
um determinado momento (Pv) e a pressão de vapor d’água quando o ar está saturado 
de umidade (Pvs), para a mesma temperatura. A umidade relativa você pode expressar 
como decimal ou como porcentagem. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
22
 
 
Grau de saturação (m) 
O grau de saturação, é a relação entre a razão de umidade real da mistura (W) e a razão 
de umidade do ar em estado de saturação (Ws), para mesma temperatura e pressão 
atmosférica. 
 
Entalpia (h) 
O entalpia da mistura de ar seco e vapor d’água, é a energia do ar úmido por unidade de 
massa de ar seco, sobre uma temperatura de referência. 
 
Volume específico (Ve) 
O volume específico do ar úmido, é definido como o volume que ocupa a mistura de ar 
seco e vapor d’água por unidade de massa de ar seco. A massa específica do ar úmido 
não é igual ao recíproco de seu volume específico. A massa específica do ar úmido é a 
relação entre a massa total da mistura e o volume que ela ocupa. 
 
PSICRÔMETROS 
Um psicrômetro é composto de dois termômetros, um deles em equilíbrio térmico 
com o ar atmosférico (termômetro de bulbo seco) e o outro tem o bulbo envolvido por um 
tecido que é molhado antes de ser usado e é designado de termômetro de bulbo úmido. 
Quanto mais seco estiver o ar, mais intensa será a evaporação da água do tecido que 
envolve o bulbo úmido e, como a evaporação é um fenômeno que necessita calor, este é 
retirado do bulbo umedecido que, desse modo, indicará uma temperatura mais baixa. Se 
não houver evaporação o termômetro não se resfria e, assim, indicará a mesma 
temperatura do bulbo seco, isto ocorre quando o ambiente se encontra saturado de 
umidade, isto é, com 100% de umidade relativa. Quanto menor a umidade relativa do ar, 
isto é, mais seco o ambiente, maior será a diferença entre os dois termômetros devido a 
um maior abaixamento da temperatura do termômetro de bulbo úmido, porque mais 
intensa será a evaporação da água que umedece o tecido. A diferença de temperatura 
entre os dois termômetros é chamada diferença psicrométrica. 
Podemos determinar a umidade relativa pela diferença psicrométrica apresentada 
pelos dois termômetros. Na Tabela 1 procura-se na primeira coluna a temperatura real 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
23
 
do ambiente indicada pelo termômetro de bulbo seco. No sentido horizontal dessa 
temperatura encontramos a UR na coluna correspondente à diferença psicrométrica. 
Exemplo: se a temperatura ambiente é de 27o C e a do bulbo úmido é de 21o C a 
diferença será de 6o C e a UR 59%. 
TABELA 1 – Tabela psicrométrica simplificada 
Temperatura 
do termômetro 
de bulbo seco 
oC 
 
% DE UMIDADE RELATIVA 
Diferença entre os termômetros de bulbo seco e úmido oC 
 1 2 3 4 5 6 7 8 9 10 
 9 88 76 65 53 42 32 22 12 0 0 
 12 89 78 68 58 48 48 30 21 12 4 
 15 90 80 71 62 53 44 36 28 20 13 
 18 90 82 73 65 57 49 42 35 27 20 
 21 91 83 75 67 60 53 46 39 32 26 
 24 92 85 77 70 63 56 49 43 37 31 
 27 93 86 79 72 65 59 53 47 41 36 
 30 93 86 79 73 67 61 55 50 44 39 
 33 93 86 79 72 65 59 53 47 41 36 
 36 93 86 80 74 68 63 57 52 47 42 
 39 94 88 82 76 71 66 61 56 52 47 
 
 
 
Com duas temperaturas obtidas pelo psicromêtro podemos obter a umidade 
relativa do ambiente e conhecer todas as propriedades físicas do ar em estudo através 
do gráfico psicrométrico. 
 
UTILIZAÇÃO DO GRÁFICO PSICROMÉTRICO 
As propriedades termodinâmicas da mistura de ar seco e vapor d’água que 
constituem o ar atmosférico, podem ser apresentados adequadamente em forma de 
gráfico, com o nome de gráfico psicrométrico. 
 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
24
 
 
 
FIGURA 2 – Gráfico psicrométrico na pressão ao nível do mar (760 mm de 
mercúrio) apresentando as linhas que determinam as propriedades da mistura ar-
vapor. 
 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
25
 
 A seguir apresentamos uma descrição resumida das principais linhas que compõem 
o gráfico psicrométrico: 
 
1. As linhas que dão a temperatura de bulbo seco são paralelas, dirigindo-se da base 
até atingir a curva de saturação (100% de UR). São lidas no eixo horizontal, que 
no exemplo é de 5 em 5oC mas, normalmente, se apresentam a cada grau de 
temperatura. 
 
2. As linhas de temperatura de bulbo úmido partem da curva de saturação (100% de 
UR),são ligeiramente inclinadas e se prolongam para a direita e os pontos de 
leitura são indicados na curva. 
 
3. Nos prolongamentos para a esquerda, das linhas do bulbo úmido, encontramos a 
indicação do calor contido na mistura ar-vapor, apresentada pelo calor total em 
Kcal por quilo de ar seco (entalpia). 
 
4. A escala correspondente ao ponto de orvalho (temperatura na qual a 
condensação começa a se processar) é a mesma que a escala de bulbo úmido. 
Entretanto, as linhas que se estendem horizontalmente, uma para cada 
temperatura do ponto de orvalho. 
 
5. À direita do gráfico encontramos a escala da pressão de vapor d’água em gramas 
por centímetro quadrado (g/cm2) que no gráfico é de 0 a 55. 
 
6. Neste gráfico podemos ler as gramas de vapor d’água por quilo de ar seco (razão 
de mistura) e, como podemos ver, são as mesmas linhas horizontais e paralelas 
que vão indicar, também, a pressão e o ponto de orvalho. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
26
 
CURVAS DE UMIDADE RELATIVA 
Com as duas temperaturas, indicadas pelo psicrômetro, podemos conhecer a 
umidade relativa pela intersecção das linhas do bulbo seco e bulbo úmido (100%, 90%, 
80%, etc). Ver o gráfico. 
As linhas cortadas (ver gráfico psicrométrico), aproximadamente, perpendiculares 
às curvas de UR, nos dão o volume úmido do ar apresentando valores 0,80 – 0,85 – 
0,90, indicando metros cúbicos de ar por quilo de ar seco. 
 
PROPRIEDADES DO AR EM ESTUDO 
Conhecendo-se duas das variáveis que indicam o estado de uma massa de ar, 
facilmente determinamos no gráfico um ponto característico, chamado Ponto de Estado, 
a partir do qual, podemos conhecer outras propriedades do ar em estudo. 
Exemplo: O ar apresentando uma temperatura de 21o C (Tbs) e 14,6o C na 
temperatura de bulbo úmido, a umidade relativa será de 50%. Aquecendo-se a 40o C o 
ponto de estado move-se, horizontalmente, para a direita e apresentará uma nova 
condição, conforme mostra a Figura 3. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
27
 
FIGURA 3 – Mudança das propriedades do ar aquecido, quando a temperatura do 
bulbo seco passa de 21o C para 40o C. Indicando, principalmente, a mudança da UR 
que passa de 50% para 18%. 
 
A umidade relativa decresce para 18%. O aquecimento aumentou o calor contido 
na mistura ar-vapor de 14,1 para 18,8 Kcal por quilo de ar seco. A quantidade de calor, 
fornecida pela mudança, é de 4,8 kcal por quilo de ar seco (18,9 – 14,1). Devido ao 
aquecimento o volume úmido é aumentado de um pouco menos de 0,85 para um pouco 
mais de 0,90 m3 de ar por quilo de ar seco. Verifica-se que, no aquecimento da mistura 
ar-vapor, a razão da mistura permanece com o mesmo valor, a qual, no exemplo, é de 
7,5 gramas de vapor d’água por quilo de ar seco. 
 
 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
28
 
6. EQUIPAMENTOS 
 
No projeto dos equipamentos para desidratação de alimentos, busca-se obter a 
máxima taxa de secagem com o menor dano ao produto e com um menor custo possível. 
A desidratação de alimentos é verdadeiramente uma área onde os cientistas e os 
engenheiros de alimentos devem trabalhar juntos para alcançar ótimos resultados. 
Existem relações matemáticas entre cada uma das principais variáveis que 
governam o processo de secagem e de transferência de calor e massa. Por causa das 
peculiaridades de cada produto, as melhores condições de secagem para um produto, 
raramente são as mesmas para um outro. 
Cálculos de engenharia baseados na modelagem matemática dos sistemas é um 
caminho em direção a seleção adequada e ideal das condições de secagem, mas 
raramente são suficientes para predizer exatamente o comportamento da secagem. Isto 
porque, os alimentos são altamente variáveis na sua composição inicial, nos totais de 
água livre e ligada, no encolhimento e no modelo de migração de solutos, e mais 
importante, nas mudanças de suas propriedades durante a operação de secagem 
Existem diversos métodos para desidratação de alimentos. O método de escolha 
depende do tipo de alimento a ser desidratado, do nível de qualidade que se deseja 
obter e de um custo que possa ser justificado. 
Entre os métodos mais comuns de desidratação podemos listar a secagem em 
cilindros rotativos (“drum drying”), por atomização (“spray drying”), secagem a vácuo, 
liofilização ou secagem pelo frio (“freeze drying”), cabines e túneis com circulação 
forçada de ar quente, leito fluidizado entre outros. Alguns desses métodos são 
apropriados para alimentos líquidos ou pastosos e outros para alimentos em pedaços. 
 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
29
 
TIPOS DE SECADORES 
No Quadro 1 apresentamos um resumo com os tipos de secadores mais 
adequados para desidratação de alimentos na forma líquida, pastosa e sólida ou em 
pedaços. 
 
Quadro 1 – Tipos de secadores mais adequados à desidratação. 
 
Tipo de secador Tipo de alimento 
Secadores por convecção de ar 
 Cabine Pedaços 
 Esteira contínuo Pedaços 
 Leito fluidizado Pedaços pequenos e granulados 
 Atomização ou pulverização Líquidos, purês 
Secadores de cilindro rotativo 
 Atmosférico Purês, líquidos 
 Vácuo Purês, líquidos 
Secadores a vácuo 
 Vácuo Pedaços, purês, líquidos 
 Vácuo contínuo Purês, líquidos 
 Liofilização Pedaços, líquidos 
 
 
SECADORES DO TIPO CABINE 
Os secadores do tipo cabine apresentam duas variações a saber: 
a) Com bandejas fixas e, 
b) Com bandejas apoiadas sobre uma base móvel. 
Em ambos os casos, são secadores onde a transferência de calor se dá por 
convecção forçada de ar quente. 
a) Bandejas Fixas 
São secadores que operam em bateladas, ou seja é preciso desidratar um lote de 
produto de cada vez. São de construção simples e de custo relativamente baixo. 
Basicamente, consiste de uma cabine com parede dupla e isolamento térmico entre elas. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
30
 
A câmara de secagem possui apoios para as bandejas onde os alimentos previamente 
preparados são desidratados. 
A distância entre uma bandeja e outra, a dimensão das bandejas e a quantidade 
de produto a ser colocada, dependem do tipo de produto a ser desidratado. 
São dotados de ventiladores centrífugos ou axiais para realizar a circulação do ar 
que pode ser sobre as bandejas (Figura 4) ou através delas (Figura 5). 
 
 
 
Figura 4 – Esquema do secador do tipo cabine com circulação de ar sobre as 
bandejas. 
 
 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
31
 
Figura 5 – Esquema do secador do tipo cabine com circulação de ar através das 
bandejas. 
A velocidade do ar aquecido pode variar (0,5 a 3 m/s) conforme o seu sentido de 
movimentação em relação às bandejas. Velocidades mais baixas podem ser 
empregadas sem prejuízo ao processo de desidratação quando o ar quente atravessa a 
camada de produto disposta sobre a bandeja, conforme mostra a Figura 6. 
 
 
Figura 6 – Esquema do fluxo de ar quente atravessando a camada de produto. 
 
Somente determinados alimentos podem ser desidratados desta maneira, pois é 
preciso que quando uma camada seja distribuída sobre a bandeja o ar quente consiga 
atravessá-la. Produtos como cebola fatiada, cenoura em cubos ou em forma de raspas, 
batata em cubos, maçã em cubinhos, entre muitos outros alimentos desidratam 
rapidamente por este processo, devido ao contato mais íntimo do ar quente com oproduto. 
Na desidratação, principalmente de frutas inteiras ou em pedaços maiores, onde a 
distribuição do produto sobre a bandeja é feita em uma única camada, o sentido de 
movimentação do ar adotado é sobre as bandejas ou paralelo a elas, conforme mostra a 
Figura 7, abaixo. 
 
Figura 7 – Esquema do fluxo de ar quente circulando sobre a camada de produto. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
32
 
 
Bananas inteiras, ameixas, abacaxi em pedaços ou rodelas, manga em fatias, 
entre outros são tradicionalmente desidratados nesse sistema. Sendo assim, o tempo de 
secagem é mais longo e a velocidade do ar empregada deve ser maior. 
Os secadores de cabine com bandejas fixas são muito utilizados para a 
desidratação de frutas, legumes e hortaliças, em pequena escala, pois possibilitam maior 
flexibilidade na operação conforme maior ou menor disponibilidade das diferentes 
matérias-primas. 
 
b) Bandejas Apoiadas sobre uma Base Móvel 
Todas as considerações feitas para os secadores de bandejas fixas podem ser 
aplicadas ao estudo dos secadores com bandejas apoiadas sobre uma base móvel, uma 
vez que são apenas uma variação do primeiro caso. As principais diferenças entre eles 
são: 
• As bandejas se movimentam no interior da câmara de secagem ou de um túnel de 
secagem, e 
• São secadores semicontínuos com capacidade de secagem muito superiores aos 
de bandejas fixas. 
 Estes equipamentos, normalmente, são de capacidade muito maior do que 
os de bandeja fixa, sendo indicados para fabricas de média a grande capacidade. 
 Os túneis de secagem são secadores de maior porte, portanto, demandam 
mais espaço dentro da fábrica. Basicamente, constituem-se de uma grande câmara de 
secagem, neste caso designada de túnel, capaz de comportar vários carrinhos que se 
movimentam no seu interior de maneira programada e semicontínua. 
 A operação é simples, enquanto em uma extremidade do túnel se efetua a 
carga de um carrinho com produto úmido, na outra é retirado um carrinho com produto 
desidratado. 
 Os túneis secadores são construídos em dois modelos: 
a) Concorrente (Figura 8): a secagem inicial é rápida em função do contato do ar quente 
e seco com o produto úmido. No final, a secagem é mais lenta, pois o carrinho ocupa 
uma posição dentro do túnel em que o ar é relativamente mais frio e úmido. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
33
 
 
Figura 8 – Esquema do secador tipo túnel concorrente. 
 
b) Contracorrente (Figura 9): a secagem inicial é lenta, com ar mais frio e úmido e à 
medida que caminha dentro do túnel perde água, chegando nas posições finais 
recebendo ar mais quente e seco. 
 
Figura 9 – Esquema do secador contracorrente. 
 
 O aquecimento do ar pode ser realizado por meio de resistências elétricas, queima 
de gás GLP, uso de vapor em trocadores de calor, mas a escolha deve ser feita levando-
se em consideração principalmente o aspecto econômico e de poluição ambiental. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
34
 
O projeto desses secadores pode ser melhorado, no que diz respeito à eficiência, 
através de dispositivos que permitam o reaproveitamento de parte do ar de exaustão, ou 
seja, através da recirculação de parte do ar que passou sobre o produto. A quantidade 
de ar a ser reaproveitada depende do produto que está sendo desidratado e do período 
da curva de secagem em que o produto se encontra. A Figura 10 representa um secador 
tipo túnel contracorrente com reaproveitamento de parte do ar de exaustão. 
 
 
 
 
Figura 10 – Esquema do secador tipo túnel contracorrente com reaproveitamento 
de parte do ar de exaustão. 
 
SECADORES DE ESTEIRA CONTÍNUO 
São secadores construídos de forma a permitir o transporte contínuo de produto a 
ser desidratado. O transporte do material é realizado por uma esteira, normalmente 
confeccionada em tela de aço inoxidável, para permitir a passagem do ar quente através 
da camada de produto disposta sobre ela. A câmara de secagem ou túnel é composta 
pela união de vários módulos que possuem sistema de aquecimento, ventilação, 
recirculação e exaustão própria. Na Figura 11 apresentamos um esquema de um 
secador de esteira contínuo. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
35
 
 
Figura 11 - Esquema de um secador de esteira contínuo. 
Os secadores de esteira contínuo apresentam a vantagem de podermos controlar 
a temperatura, a umidade relativa, a velocidade e a recirculação do ar, 
independentemente em cada módulo, melhorando seu desempenho e reduzindo os 
custos. 
Na desidratação de produtos com elevada umidade inicial, como a maioria dos 
vegetais, pode-se utilizar no primeiro módulo temperaturas elevadas (100 a 130oC) e 
velocidade do ar de 0,8 a 1,2 m/s, sem contudo comprometer a qualidade do produto e 
conseguindo-se uma capacidade de secagem extremamente alta. Nos estágios 
subseqüentes a temperatura deve ser reduzida para a faixa de 60 a 70oC e a velocidade 
para 0,5 m/s. O tempo de secagem no secador de esteira pode ser bastante reduzido, 
dependendo do produto, de sua umidade inicial, tipo de preparo que sofreu e da umidade 
final desejada. 
Este secador é utilizado para produções em larga escala e portanto a 
disponibilidade de matéria prima deve ser suficiente para que o secador opere sempre 
com a capacidade máxima recomendada pelo fabricante, caso contrário o processo será 
realizado em condições econômicas inadequadas. A fábrica deve ser dimensionada 
corretamente para que não ocorram interrupções freqüentes na linha de produção. 
 
SECADORES DE TAMBOR OU CILINDROS ROTATIVOS 
Na secagem em tambor ou cilindro rotativo, alimentos líquidos, purês, pastas e 
massas são aplicados em uma fina camada sobre a superfície aquecida do cilindro 
rotativo. O cilindro é aquecido internamente geralmente com o emprego de vapor. Os 
secadores podem ter um único cilindro ou um par, conforme Figura 12. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
36
 
 
Figura 12 – Esquema do secador de cilindros, simples e duplo. 
O alimento é aplicado entre dois cilindros, sendo que o afastamento entre os dois 
determina a espessura da camada aplicada ou, dependendo do modelo utilizado o 
alimento pode ser aplicado em outra área do cilindro. O alimento é aplicado 
continuamente e a camada fina à medida que gira em contato com o cilindro, perde 
umidade. Em um determinado ponto sobre o cilindro ou cilindros uma lâmina raspadora é 
posicionada para raspar a fina camada de alimento seco. 
A velocidade dos cilindros é regulada de modo que a camada de alimento esteja 
seca quando alcançar a lâmina raspadora. A camada de alimento é seca em uma volta 
do cilindro e é raspada antes que o mesmo atinja a posição inicial onde mais alimento 
úmido é aplicado. 
Usando vapor sob pressão a temperatura na superfície do cilindro atinge 100oC 
até 150oC. Como a espessura da camada de alimento é de aproximadamente 2 mm, a 
secagem pode ser completada em 1 minuto ou menos, dependendo do tipo de alimento. 
Estes secadores são dotados também de dispositivos para retirada de vapor 
d’água proveniente do produto seco e de transportadores que conduzem o produto seco 
para fora do secador. 
Produtos tipicamente desidratados em cilindros incluem purê de batata e de frutas 
e pasta de tomate. Estes secadores apresentam algumas limitações que restringem sua 
utilização para alguns tipos de alimentos. 
Para conseguir uma secagem rápida a temperatura na superfície do cilindro deveser alta, usualmente em torno de 120oC. Os produtos apresentam mais cor e sabor de 
cozidos do que quando são secos a baixas temperaturas. Uma alternativa para se 
trabalhar com temperaturas mais baixas seria a utilização de vácuo. Para isso os 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
37
 
cilindros deveriam ser montados dentro de uma câmara de vácuo, mas isto aumenta os 
custos do equipamento e de operação se comparados aos secadores convencionais de 
cilindro ou os de secagem por atomização. 
A segunda limitação é a dificuldade em se conseguir variar a temperatura em 
diferentes regiões da superfície do cilindro. Isto é particularmente importante para 
alimentos termoplásticos. Enquanto que, para leite e batata desidratados por este 
sistema a raspagem da superfície quente do cilindro é fácil, para alguns tipos de frutas e 
outros produtos que tendem a ser pegajosos isto não é possível. Alguns produtos 
tendem a enrugar, enrolar e acumular-se na lâmina raspadora formando uma massa 
difícil de ser removida. 
Esta condição pode ser substancialmente melhorada pela adaptação de uma zona 
de resfriamento, porém isto não é simples e depende, entre outros fatores, do diâmetro e 
comprimento do cilindro. Uma forma de resfriamento é através de um fluxo de ar frio 
sobre um segmento de produto sobre o cilindro antes da lâmina de raspagem. 
Para alimentos resistentes ao calor, a secagem em cilindros rotativos é um dos 
métodos menos dispendioso de desidratação. Os produtos desidratados por este método 
apresentam um pouco mais da característica de “cozido” do que pela secagem por 
atomização, conseqüentemente, leite desidratado nesse sistema não é empregado para 
o preparo de bebida, mas é satisfatório para a formulação de outros produtos 
alimentícios industrializados. 
 
SECADORES A VÁCUO 
Os métodos de desidratação a vácuo são capazes de produzir produtos 
desidratados de alta qualidade, mas os custos geralmente também são altos se 
comparados a outros métodos que não emprega vácuo. Na desidratação a vácuo, a 
temperatura do alimento e a taxa de remoção de água são controladas pela regulagem 
do grau de vácuo e da intensidade de calor introduzida. A transferência de calor para o 
alimento é em grande parte pela condução e radiação. A Figura 13 apresenta um 
esquema de um secador a vácuo. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
38
 
 
Figura 13 – Esquema do secador a vácuo. 
Todos os sistemas de desidratação a vácuo apresentam essencialmente quatro 
elementos: uma câmara de vácuo de construção pesada para resistir a pressão externa 
do ar que pode exceder a pressão interna em 9800 kg/m2; uma fonte de calor; um 
dispositivo de produção e manutenção de vácuo; e componentes para coletar o vapor 
d’água que é evaporado do produto. 
A câmara de vácuo geralmente contém prateleiras ou outros suportes para conter 
os alimentos. Essas prateleiras também chamadas de placas podem ser aquecidas 
eletricamente ou através da circulação de um fluido aquecido. As placas são distribuídas 
no interior da câmara umas sobre as outras, transportando calor por condução para as 
bandejas contendo o produto acima delas e por radiação da placa logo acima de uma 
bandeja. 
O dispositivo para produção e manutenção do vácuo está do lado de fora da 
câmara e pode ser uma bomba mecânica de vácuo ou um ejetor de vapor. Um ejetor de 
vapor é um tipo de aspirador no qual um jato de vapor a alta velocidade passando por 
uma abertura puxa o ar e vapor do interior da câmara. 
Geralmente, no sistema de secagem a vácuo convencional a secagem se 
processa a pressões inferiores a 3 mm Hg. 
O modelo mais simples de secador a vácuo é o de bandejas, onde a secagem é 
realizada em bateladas. Também podem ser projetados para operar continuamente. Um 
esquema de um secador a vácuo contínuo de esteira pode ser visto na Figura 14. Estes 
secadores são utilizados comercialmente para desidratar suco concentrado de frutas, 
chás instantâneos, entre outros alimentos líquidos. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
39
 
 
Figura 14 – Esquema do secador a vácuo contínuo. 
Neste tipo de secador, o alimento na forma de purê é alimentado pela parte 
inferior da câmara através de um rolo de alimentação que deposita uma fina camada de 
produto sobre uma face da esteira. Sobre a outra face um conjunto de aquecedores 
aplica calor sobre a esteira e esta por condução aquece o produto, formando bolhas de 
vapor de água de modo a produzir uma estrutura porosa. Ao passar pelo cilindro 
aquecido ocorre a evaporação da maior quantidade de água presente no produto. Em 
seguida, ao passar pela parte superior da câmara, a camada de produto é exposta a uma 
fonte de calor radiante completando a secagem. No outro cilindro o produto é resfriado 
chegando por fim às facas de raspagem e ao sistema coletor. 
 
TORRE DE ATOMIZAÇÃO OU SPRAY 
O mais importante tipo de secador que funciona com convecção forçada de ar é 
conhecido como torre de atomização e um esquema deste secador é apresentado na 
Figura 15. Existem vários tipos de torres de atomização projetados para produtos 
alimentícios específicos. São limitados a alimentos que possam ser atomizados, como 
por exemplo líquidos e purês de baixa viscosidade. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
40
 
 
Figura 15 – Esquema do secador tipo spray dryer. 
A atomização em pequenas gotas resulta na secagem da substância em poucos 
segundos com temperatura de entrada do ar de aproximadamente 200oC. Visto que o 
resfriamento evaporativo raramente permite que as partículas adquiram temperaturas 
superiores à 80oC e que os sistemas são corretamente projetados para rapidamente 
removerem as partículas secas das zonas aquecidas, a qualidade não chega a ser 
comprometida. Este método de desidratação pode produzir produtos de alta qualidade, 
mesmo em produtos altamente sensíveis ao calor como leite, ovos e café. 
O alimento na forma líquida é introduzido como um fino spray ou névoa dentro de 
uma torre ou câmara junto com ar aquecido. Como as pequenas gotas têm um contato 
íntimo com o ar quente, perdem rapidamente a umidade, tornando-se pequenas 
partículas, e descem para o fundo da torre de onde são removidas. O ar quente torna-se 
úmido sendo retirado torre através de um exaustor. É um processo contínuo, sendo o 
alimento na forma de líquido continuamente bombeado e atomizado dentro da câmara 
junto com o ar quente e seco. 
Os principais componentes de um sistema de secagem por spray diferem em sua 
construção dependendo do produto a ser desidratado. No caso de leite, o sistema inclui 
tanques para armazenar o líquido, uma bomba de alta pressão para introduzir o líquido 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
41
 
dentro da torre, bicos pulverizadores ou um dispositivo similar para sua atomização, uma 
fonte de ar quente com ventilador, depósito para acúmulo de produto retirado da torre e 
meios para retirada do ar umedecido. 
O principal objetivo da torre ou câmara de secagem é promover uma mistura 
íntima entre o ar quente e as gotículas dispersas. Nos vários modelos desses secadores 
mostrados na Figura 16, o ar quente e o produto atomizado podem entrar juntos na torre 
por cima ou por baixo ou podem entrar separadamente. As partículas podem descer 
segundo um caminho em linha reta ou espiral, e a câmara pode ser vertical ou horizontal. 
Como nos secadores de túnel, a introdução das gotas e do ar quente na mesma 
direção resultanuma secagem inicial rápida e lenta no final. Fluxos contracorrentes 
devem ser preferidos devido à alta higroscopicidade dos produtos. 
Essas configurações podem aumentar ou reduzir o tempo de residência do 
produto dentro do secador. Um tempo de residência maior pode ser desejável para 
reduzir o conteúdo de umidade ou para permitir um aumento no tamanho das partículas 
dentro do secador. Com tempos maiores, a possibilidade de partículas secas colidirem 
com partículas ainda com umidade pode levar a formação de aglomerados. 
Um produto seco com boas características, tão importante quanto à geometria e o 
modelo de injeção de ar quente na câmara é a natureza da atomização. Os dois 
principais tipos de atomizadores são: bicos atomizadores (pulverizadores) sob pressão e 
atomizadores centrífugos. 
 
 
Figura 16 – Diferentes modelos de secadores do tipo spray dryer. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
42
 
No sistema de bicos atomizadores sob pressão, o produto a ser desidratado é 
bombeado para o bico a uma pressão relativamente alta, da ordem de 150 a 600 
kgf/cm2. 
Os atomizadores centrífugos, consistem basicamente de um disco que gira na 
extremidade de um eixo. O tamanho do disco e a sua velocidade de rotação variam de 
50 a 600 mm e de 25.000 a 3.500 rotações por minuto, respectivamente. 
Os atomizadores centrífugos apresentam a vantagem de poder atomizar produtos 
viscosos a pressões mais baixas, sem causar entupimentos. Já com bicos atomizadores 
sob pressão é mais fácil a obtenção de partículas maiores no produto seco. 
Pequenas gotículas promovem uma secagem rápida, portanto gotas com tamanho 
uniforme são necessárias para uma boa desidratação. O tamanho e a trajetória das 
gotas determinam o tempo de secagem e, como conseqüência, o tamanho da câmara. 
Não sendo uniforme, as gotas menores secam primeiro tornando-se super secas 
enquanto as maiores ainda estão secando. 
O tamanho das gotas determina o tamanho final da partícula seca. Se o tamanho 
das partículas varia substancialmente, então pode ocorrer a estratificação na embalagem 
final, ou seja, a formação de camadas do produto por tamanho de partículas. 
O tamanho das partículas afeta significativamente a taxa de solubilidade. As 
partículas maiores afundam e outras muito finas geralmente flutuam sobre a água 
contribuindo para uma reconstituição desuniforme dos produtos. 
As partículas muito finas são mais difíceis de serem recuperadas no secador, uma 
vez que elas tendem a se perder quando transportadas pelo ar de saída, por isso o 
sistema de coleta deve ser altamente eficiente. 
Durante a atomização, o ângulo de saída do bico pulverizador ou a trajetória, no 
caso do disco rotativo, devem ser considerados. Caso as gotículas não estejam 
completamente secas e entrem em contato com a parede da câmara, podem aderir 
formando uma crosta difícil de ser removida. A trajetória geralmente é projetada para 
prevenir ou minimizar o contato com a parede nos primeiros estágios da secagem. 
A aparência, tamanho, forma, densidade, e solubilidade da partícula ao final da 
secagem pode ser afetada pela pressão do bico, viscosidade do líquido, tensão 
superficial, natureza dos sólidos, entre outros. 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
43
 
Liofilização ou Freeze-Drying 
A liofilização ou secagem pelo frio foi amplamente estudada, atingindo um nível 
altamente avançado. Os trabalhos de desenvolvimento visaram a otimização do 
processo e dos equipamentos para reduzir os custos da desidratação. Comparado aos 
outros métodos de secagem, o custo para se remover 1 kg de água por liofilização é de 2 
a 5 vezes mais caro. 
A liofilização é um processo onde a água é retirada dos alimentos sem submetê-
los a altas temperaturas. 
O fundamento físico para o processo de liofilização é a coexistência dos três 
estados da água - o sólido, o líquido e o gasoso - em determinadas condições de 
temperatura e pressão. Sob temperaturas de aproximadamente 0oC e pressão de 4,7 
mm Hg (milímetros de mercúrio) obtém-se o chamado ponto triplo da água, possibilitando 
sua passagem diretamente do estado sólido para o gasoso, sem passar pela fase 
líquida. 
Como nos demais processos, os alimentos a serem liofilizados passam por etapas 
de preparo (lavagem, descascamento, corte, branqueamento), mas além destas, deve 
ser congelado a temperaturas de – 40oC e em seguida colocado em câmaras de alto 
vácuo. Com o aumento gradativo da temperatura e a manutenção da condição de alto 
vácuo, obtém-se a saída de água do alimento por sublimação. 
O congelamento deve ser rápido, para que se formem microcristais de gelo, que 
não danifiquem a membrana celular do alimento. Se o congelamento for lento, os cristais 
formados são grandes e rompem a membrana celular, acarretando perda do líquido 
citoplasmático e conseqüentemente, encolhimento do alimento, que fica com aspecto de 
“murcho”. 
Os principais componentes de um liofilizador são: a câmara de vácuo, uma fonte 
de aquecimento, o sistema gerador de vácuo e componentes para coletar o vapor d’água 
que é evaporado do produto. Basicamente um liofilizador, Figura 17, descontínuo não 
difere de um secador a vácuo. 
Pelo fato da liofilização não submeter os alimentos a altas temperaturas como nos 
outros processos de desidratação, apresenta uma série de vantagens: 
• Manutenção da forma original do alimento, pois a retirada da água por sublimação 
mantém intactas as estruturas dos alimentos de origem animal e vegetal, 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
44
 
favorecendo uma reidratação mais completa, devido à estrutura esponjosa deixada 
pela saída da água. 
• Preservação das características sensoriais como o sabor, o odor e o aroma dos 
alimentos. Os componentes que conferem essas características são modificados 
pela alta temperatura e na liofilização as temperaturas empregadas são baixas. 
• Preservação do valor nutritivo, pois como o calor não é empregado no alimento as 
estruturas protéicas e o conteúdo de vitaminas é mantido no processo. 
 
 
Figura 17 – Representação esquemática de um liofilizador. 
 
A aplicação da liofilização para produtos alimentícios ainda é cara e portanto tem 
sido aplicada com mais freqüência para produtos nobres e que necessitem de uma 
reidratação rápida e completa. Apesar de se encontrar no mercado frutas em pedaços 
liofilizadas e alguns tipos de vegetais, as carnes bovinas e de aves são mais 
empregadas. Camarões inteiros e cogumelos fatiados apresentam excepcional qualidade 
quando liofilizados. 
 
FRUTAL’2003 
- COOPERATIVISMO E AGRONEGÓCIO - 
DESIDRATAÇÃO DE FRUTAS E HORTALIÇAS 
45
 
7. CONSIDERAÇÕES SOBRE A MATÉRIA PRIMA 
 
A qualidade da matéria-prima é fundamental para se obter um produto final de boa 
qualidade. Além de influenciar nos custos das operações de preparo para a secagem, 
influi altamente no rendimento do produto desidratado e conseqüentemente, terá reflexos 
no custo final do produto. 
A qualidade e o custo são dois fatores que devem ser considerados 
conjuntamente na compra da matéria-prima pelas indústrias. Muitas vezes um lote de 
matéria-prima pode custar mais por quilo do que um outro, porém devido a sua melhor 
qualidade vai precisar de menos preparo para a secagem, resultando em maior 
rendimento, o que tornará o custo global de produção por quilo de produto desidratado 
menor, comparativamente ao lote de matéria-prima mais barato. 
Podemos concluir que o responsável pelas compras dentro da indústria, ou seja, o 
comprador deverá avaliar criteriosamente tanto o

Outros materiais