Buscar

Grandezas Vetoriais e Escalares

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Vetores 
Grandezas Escalares 
Grandezas físicas como tempo, por exemplo, 5 segundos, ficam perfeitamente definidas quando são especificados o seu módulo (5) e sua unidade de medida (segundo). Estas grandezas físicas que são completamente definidas quando são especificados o seu módulo e a sua unidade de medida são denominadas grandezas escalares. A temperatura, área, volume, são também grandezas escalares. 
Grandezas Vetoriais 
Quando você está se deslocando de uma posição para outra, basta você dizer que percorreu uma distância igual a 5 m? 
Você precisa especificar, além da distância (módulo), a direção e o sentido em que ocorre este deslocamento. 
Quando o PUCK sofre um deslocamento de uma posição A para uma posição B, esta mudança de posição é definida pelo segmento de reta AB orientado, que une a posição inicial com a final, denominado neste caso de deslocamento (fig. 1). 
Figura 1 - Deslocamento do PUCK de uma posição A para B. 
Observe que o deslocamento não fica perfeitamente definido se for dada apenas a distância percorrida (por exemplo, 5,0 cm); há necessidade de especificar a direção e o sentido do deslocamento. Estas grandezas que são completamente definidas quando são especificados o seu módulo, direção e sentido, são denominadas grandezas vetoriais. 
Outras grandezas vetoriais: velocidade, aceleração, força. . . 
Vetores 
A representação matemática de uma grandeza vetorial é o vetor representado graficamente pelo segmento de reta orientado (Fig. 1), que apresenta as seguintes características: 
Módulo do vetor - é dado pelo comprimento do segmento em uma escala adequada (d = 5 cm). 
Direção do vetor - é dada pela reta suporte do segmento (30o com a horizontal). 
Sentido do vetor - é dado pela seta colocada na extremidade do segmento. 
Notação: 
ou d: vetor deslocamento 
a: vetor aceleração 
V: vetor velocidade 
Exemplo de vetores: a fig. 2 representa um cruzamento de ruas, tal que você, situado em O, pode realizar os deslocamentos indicados pelos vetores d1, d2, d3, e d4. Diferenciando estes vetores segundo suas características, tem-se que: 
Os vetores d1 e d3 têm a mesma direção, mesmo módulo, e sentidos opostos. 
Os vetores d2 e d4 têm a mesma direção, módulos diferentes e sentidos opostos. 
Os vetores d1 e d2 têm o mesmo módulo, direções e sentidos diferentes. 
Os vetores d3 e d4 têm módulos, direções e sentidos diferentes. 
Figura 2 - Vetores deslocamento. 
Adição de dois vetores 
Considere que o PUCK realizou os seguintes deslocamentos: 3,0 cm na direção vertical, no sentido de baixo para cima (d1), e 4,0 cm na direção horizontal (d2), no sentido da esquerda para a direita (fig. 5). 
O deslocamento resultante não é simplesmente uma soma algébrica (3 + 4), porque os dois vetores d1 e d2 têm direções e sentidos diferentes. 
Há dois métodos, geométricos, para realizar a adição dos dois vetores, dr = d1 + d2, que são: 
	
Figura 3 - Adição de dois vetores:
Método da triangulação
	Método da triangulação: consiste em colocar a origem do segundo vetor coincidente com a extremidade do primeiro vetor, e o vetor soma (ou vetor resultante) é o que fecha o triângulo (origem coincidente com a origem do primeiro e extremidade coincidente com a extremidade do segundo) (Fig. 3). 
	
Figura 4 -Adição de dois vetores: Método do paralelogramo
	Método do paralelogramo: consiste em colocar as origens dos dois vetores coincidentes e construir um paralelogramo; o vetor soma (ou vetor resultante) será dado pela diagonal do paralelogramo cuja origem coincide com a dos dois vetores (Fig. 4). A outra diagonal será o vetor diferença. 
Adição de dois vetores perpendiculares entre si 
Geometricamente, aplica-se o método da triangulação ou do paralelogramo (fig. 5) para determinar o vetor resultante dr. 
Figura 5 - Adição de dois vetores perpendiculares entre si 
Determina-se o módulo do vetor resultante aplicando-se o teorema de Pitágoras para o triângulo ABC da fig. 5. 
	dr2 = d12 + d22
(1) 
Aplicação numérica 
Sendo d1 = 3 cm e d2 = 4 cm, o módulo do vetor resultante dr é calculado substituindo estes valores em (1): 
dr2 = 32 + 42 = 25 
dr = 5 cm 
Observação: O vetor diferença é obtido de modo análogo ao vetor soma; basta fazer a soma do primeiro vetor com o oposto do segundo vetor. 
d = d1 + ( -d2) 
Componentes de um vetor 
Considere o vetor deslocamento d como sendo o da fig. 6a. Para determinar as componentes do vetor, adota-se um sistema de eixos cartesianos. As componentes do vetor d, segundo as direções x e y, são as projeções ortogonais do vetor nas duas direções. 
Notação: 
dx: componente do vetor d na direção x 
dy: componente do vetor d na direção y 
Vamos entender o que seriam estas projeções. Para projetar o vetor na direção x basta traçar uma perpendicular da extremidade do vetor até o eixo x e na direção y traça-se outra perpendicular da extremidade do vetor até o eixo y; estas projeções são as componentes retangulares dx e dy do vetor d (fig. 6a). 
Figura 6a - Os vetores dx e dy são as componentes retangulares do vetor d. 
Qual o significado das componentes do vetor? Significa que os dois vetores componentes atuando nas direções x e y podem substituir o vetor d, produzindo o mesmo efeito. 
Para determinar os valores destas componentes, aplicam-se as relações trigonométricas para o triângulo retângulo OAB (fig.6a ou 6b). 
Figura 6b - Triângulo retângulo OAB. 
Para o triângulo OAB da fig. 6b, que é o da mesmo da fig. 6a, valem as relações: 
sen = cateto oposto / hipotenusa = dy / d. 
Resolvendo para dy, tem-se que: 
	dy = d sen 
componente vertical do vetor d na direção Y (2a) 
cos = cateto adjacente / hipotenusa = dx / d. 
Resolvendo para dx , tem-se que: 
	dx = d cos 
componente horizontal do vetor d na direção X (2b) 
Aplicação numérica 
Considerando que o módulo do vetor deslocamento é igual a 3,0 m, e o ângulo que este deslocamento faz com a direção X é igual a 60o, determinar as componentes deste vetor, dx e dy. 
Substituindo em (2b): 
dx = d cos = 3,0 cos 60o = 3,0 * 0,50 
	dx = 1,5 m
Substituindo em (2a): 
dy = d sen = 3,0 sen 60o = 3,0 * 0,87 
	dy 2,6 m
ANÁLISE GRÁFICA DO MOVIMENTO:Vetores velocidade e aceleração
Movendo vetores 
Quando vamos fazer a adição ou a diferença de dois vetores graficamente, precisamos mover o vetor tal que ele tenha sua origem coincidente com um novo ponto. 
Vamos ver como se faz esta translação geometricamente. 
Figura1
 (A)Os vetores deslocamento S1 e S2. (B) Movendo um vetor (S1). 
Para mover um vetor (S1) para uma nova posição temos que, primeiro, desenhar uma reta paralela com o auxílio de uma régua e um transferidor como mostra a fig. 1B, transportando o vetor paralelamente para a nova posição. 
Para colocar o comprimento do vetor na nova posição, pode-se usar um pedaço de papel ou um compasso para medir o comprimento na posição inicial e transportar esta medida para a nova posição. O erro é menor medindo-se desta forma do que com régua. 
Figura2
 (A)Adição de dois vetores (triangulação).(B) Diferença entre dois vetores (triangulação). 
As fig. 2A e 2B mostram como se faz a adição e a diferença entre dois vetores S1 e S2 (fig. 1A), usando o método da triangulação. 
A adição de dois vetores (fig. 2A) foi realizada movendo-se o vetor S2 tal que a origem dele coincidisse com a extremidade de S1. O vetor soma S1 + S2 é o vetor que fecha o triângulo, cuja origem coincide com a origem do primeiro vetor e a extremidade coincide com a extremidade do segundo vetor. 
A diferença entre os dois vetores (S2 e S1) foi realizada movendo-se o vetor S1 (fig. 2B), considerando o vetor oposto (- S1). O vetor diferença S2 - S1 é o vetor que fecha o triângulo, cuja origem coincide com a origem do vetor S2 e a extremidade coincide com a extremidade do vetor - S1.Se quisermos a diferença S1 - S2 , devemos mover o vetor S2, considerando o oposto dele (-S2). 
Vetor velocidade 
Sabemos que V = S/t =(S2 - S1)/t (1)
Podemos determinar a direção e o sentido do vetor V determinando a diferença entre dois vetores deslocamento graficamente, usando a regra do paralelogramo ou da triangulação (fig. 2B). O módulo é determinando dividindo-se a medida do vetor S por t. 
O vetor V tem a mesma direção e o mesmo sentido de S; o módulo de V é proporcional a S. 
Vetor aceleração 
O vetor aceleração é dado pela relação: 
A = V / t (2)
Esta relação pode se reescrita em função de S. Como V = S / t , substituindo em (2), obtemos: 
A = (S / t) /t 
	A = S / t2 (3)
A vantagem da equação (3) é que expressando a aceleração em termos do vetor diferença S, a direção e o sentido do vetor A são os mesmos de S e o módulo de A é proporcional a S. 
Para determinar graficamente o vetor A, o primeiro passo é construir o vetor diferença S. Este vetor aponta na mesma direção e sentido de A. Medimos o comprimento deste vetor S em centímetros, e em seguida dividimos o resultado por t2 (fig. 2). 
Repetindo este processo para cada duas posições sucessivas de uma trajetória, obtemos um quadro detalhado da aceleração do movimento. 
Vamos aplicar este processo, considerando que a trajetória do movimento do PUCK seja o da fig.3. (Huggins, 1979) 
Figura 3 - Determinando os vetores S1 e S2 em uma trajetória do PUCK 
Medindo os comprimentos destes vetores S1 e S2 (fig. 3) que são iguais a 1 cm e considerando os intervalos de tempo t1 e t2 entre duas posições sucessivas iguais a 0,1s, obtemos os valores das acelerações nas posições (1) e (2): 
A1 = A2 = S/t2 = (1 cm) / (0,1)2 = 100 cm/s2 
e a direção e o sentido de A1 e de A2 são os mesmos de S1 e S2, respectivamente. 
Deste modo obtemos as acelerações A1, A2, A3,...An graficamente.

Outros materiais

Perguntas Recentes